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Let K be a p-adic field, that is the fraction field of a complete d.v.r. of characteris-
tic 0, with perfect residue field k of characteristic p > 0. We denote by OK0

:= W (k)
the ring of Witt vectors over k, and by K0 its fraction field, which we identify as a
subfield of K.
As in the previous talk, C := ˆ̄K with normalized valuation v, such that v(p) = 1.

For any subfield L ⊂ C, we can restrict the valuation on C to L, and have there-
fore, as usual, the notions of: ring of integers OL, maximal ideal ML and residue field
kL.

Throughout the lecture, we denote for any algebraic field extension L of K0 GL :=
Gal(K̄/L) and HL := Gal(K̄/Lcyc).

Recall the ring R := R(OK̄/pOK̄) = R(OC/pOC) introduced in the last talk, with
fraction field C. The valuation vR((x(n))) := vC(x(0)) defines a valuation on C, which
makes it a complete, non-archimedian, algebraically closed field of characteristic p
(cf. last lecture).

We have seen so far in this seminar, how one can explain (p-adic or mod p) Galois
representations of GE (E of positive characteristic), in terms of certain “étale ϕ-
modules”. Our goal in this talk is to give an equivalence of categories between Galois
representations of GK (for K a p-adic field) and (ϕ, Γ)-modules.

1. The action of Galois on R

Proposition 1.1. Let L be an extension of K0 contained in K̄. Then RGL =
R(OL/pOL) (and therefore also CGL = Frac(R(OL/pOL))). Moreover, the residue
field of RGL is kL, the residue field of L.

Proof. Take x ∈ RGL and write it in sequence representation: x = (x(n)), where
x(n) ∈ OC . The Galois group acts coordinatewise on R, and therefore x(n)g

= x(n),
which means x(n) ∈ OGL

C , for all n ∈ N.

Now, OGL
C = OCGL = OL̂ = lim

←−
OL̂/pnOL̂ = lim

←−
OL/pnOL; from which it follows

RGL = R(OL/pOL).

Let [·] : k̄ →R be the Teichmüller lift. Since the residue field of R is k̄, we get by

taking GL-invariants to k̄
[·]
→֒ R ։ k̄ the identity map on kL: kGL = kL →֒ RGL ։ kL;

hence kL is the residue field of R. �

Corollary 1.2. If v(L×) is discrete, then RGL = kL.

Proof. We already know that kL ⊂ RGL. Hence we only need to show that x ∈ RGL

with v(x) > 0 is only satisfied for the zero element.
For such an element, we have v(x) = vC(x(0)) = pnv(x(n)) > 0, from which follows

that v(x(n))
n→∞
−→ 0. Since the valuation is assumed to be discrete, there exists a

non-negative integer N0, such that for all n ≥ N0, x(n) = 0, but then all coordinates
happen to be zero, and so x = 0. �
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2. R(OKcyc
0

/pOKcyc
0

), ε and π

Take ε := (ε(n))n≥0 ∈ R
cyc
0 := R(OKcyc

0
/pOKcyc

0
) a compatible system of primitive

pn-th roots of unity:

ε(0) = 1, ε(1) 6= 1 and (ε(n+1))p = ε(n), ∀n ≥ 1;

which we fix throughout this lecture.
Set Kcyc

0 := lim
−→

n

K0(ε
(n)) and π := ε− 1 ∈ Rcyc

0 .

Lemma 2.1. The element π has valuation greater than 1. In particular, ε :=
(ε(n))n∈N is a unit of Rcyc

0 .

Proof.

v(π) = v(π(0)) = v( lim
m→∞

(ε(m) − 1)pm

) =
p

p− 1
> 1,

since we know, from the classical cyclotomic theory, that

v(ε(m) − 1) =
1

(p− 1)pm−1
, ∀m ≥ 1.

�

Remark 2.2. (1) From Proposition 1.1 we know, that

R
G

K
cyc

0 = Rcyc
0

dfn.
= R(OKcyc

0
/pOKcyc

0
).

(2) Since the Galois action onR is continuous, Rcyc
0 is still complete. The element

π has valuation greater than one, and so k[[π]] ⊂ Rcyc
0 .

Similarly, defining Ccyc
0 := Frac(Rcyc

0 ), we get that k((π)) ⊂ Ccyc
0 .

(3) Rcyc
0 is perfect; since for any x = (x(n))n∈N ∈ R

cyc
0 one can define y :=

(y(n))n∈N as y(n) := x(n+1), and therefore y ∈ Rcyc
0 and one easily checks that

x− yp = 0.
(4) Summing up the remarks above, we have the following inclusions

̂k[[π]]rad ⊂ Rcyc
0 , ̂k((π))rad ⊂ Ccyc

0 ;

where the subscript rad denotes the radical completion in the algebraically
closed field C.

We set from now on E0 := k((π)) and OE0
:= k[[π]].

Theorem 2.3. We have indeed equalities:

̂k[[π]]rad = Rcyc
0 , ̂k((π))rad = Ccyc

0 .

Proof. We need to prove that OErad
0

:= k[[π]]rad is dense in Rcyc
0 = lim

←−
ϕ

OKcyc
0

/pOKcyc
0

.

For this, it suffices to show that θm(OErad
0

) = OKcyc
0

/pOKcyc
0

, ∀m ∈ N0. The inclusion
⊂ is clear, so we prove ⊃.

OKcyc
0

equals the union (in Rcyc
0 ) of the rings OK0

[πn], where πn := ε(n)−1. Denote
by πn the image of πn under the projection map OKcyc

0
→ OKcyc

0
/pOKcyc

0
; hence

πn = εn − 1. Since OKcyc
0

/pOKcyc
0

is a k-algebra generated by the πn (OK0
= W (k)

and k is perfect), the claim follows, if we prove that

πn ∈ θm(OErad
0

) = θm(k[[π]]rad) ∀m, n ∈ N0.

Since for any s ∈ Z, πps
∈ k[[π]]rad and πps

= (πn−s)n∈N0
= εps

− 1 = (ε(n−s))− 1 =
(εn−s − 1); where ε(n) = 1 for n < 0. Now, θm(πpm−n

) = εm−(m−n) − 1 = εn − 1 =
πn. �



P -ADIC GALOIS REPRESENTATION OF GK , FOR K A p-ADIC FIELD 3

Remark 2.4. At several stages (for example in the proof above), one can prove the
statement using the ǫ(n)’s instead of the πn’s - something which may be easier in some
cases.1

3. A fundamental Theorem

Let Es
0 be the separable closure of E0 = k((π)) ⊂ Ccyc

0 in C.

Theorem 3.1. (1) Es
0 is dense in C, and stable under GK0

.
(2) There exists an isomorphism Gal(K̄/Kcyc

0 )
∼
−→ Gal(Es

0/E0), given by restrict-
ing the natural action of Gal(K̄/Kcyc

0 ) on C to the subfield Es
0.

Proof. Since by Krasner’s Lemma Ês
0 = Ê0, it suffices to show the density of E0 in

C, or what amounts to the same, the density of OE0
in R.

As in the proof of Theorem 2.3, we need to show that θm(OE0
) = OK/pOK , for

all m ∈ N0. Since E0 is algebraically closed, the general claim follows from the case
m = 0; which we now prove.

Since

OK = lim
−→

[L:K0]<∞
L/K0 Galois

OL,

it suffices to check that θ0(OE0
) ⊃ OL/pOL, for any such L.

Put K0,n := K0(ε
(n)), Ln := L · K0,n and Jn := Gal(Ln/K0,n). The decreasing

sequence of finite Galois groups Jn stabilizes to the finite group, say, J - we assume
from now on, n to be big enough, so that Jn = J . Since k̄ ⊂ OE0

, without loss
of generality, we may replace K0 by a finite algebraic extension K ′

0, so that all the
extensions Ln/K ′

0 are totally ramified. By abuse of notation we keep using K0 for K ′
0.

Since Ln/K0,n is totally unramified, we can write OLn = OK0,n [νn], for nun a
uniformizer of Ln. From Theorem 2.3 we have θ0(OE0

) ⊃ OK0,n/pOK0,n , hence we
need only to show that there exists an n, such that OLn/pOLn ∋ νn lies in θ0(OE0

).
The case J = {Id} trivially holds; so we assume from now on |J | := d > 1. Let

Pn ∈ K0,n[X] be the minimal (Eisenstein) polynomial of νn (of degree d = absJ):

Pn(X) =
∏

g∈J

(X − g(νn)).

By Lemma 3.2 below, we know that for any 1 6= g ∈ J , limn→∞ v(g(νn)−νn) = 0 . Let
n be large enough, so that furthermore (Jn = J should still hold) v(g(νn)−νn) < 1/d
is fulfilled for all g ∈ J \ {Id}.
We have the following diagram, where we choose Q to be a lift of Pn over OE0

[X]
(monic and of degree d).

1This Remark was done by Gebhard during the talk.
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OK0,n [X] // OK0,n/pOK0,n [X]
� _

��
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OKcyc
0

/pOKcyc
0

[X] � � // OK/pOK [X]

OE0
[X]

θ0

we claim surjectivity here!

66llllllllllllll

Pn
� // PnOO

_

Q

Now choose a root α ∈ OE0
of Q closest to νn. If we set β := θ0(α) ∈ OK̄/pOK̄ ,

by closest to νn we mean:

(1) v(β − νn) ≥ v(β − g(νn)), ∀g ∈ J.

It may be necessary to make some comments on the meaning of v in the inequalities
(1). For any x ∈ OK̄/pOK̄ , pick a lift x̃ ∈ OK̄ and define

v(x) :=

{
1 if 1 < v(x̃) <∞,

v(x̃) else.

This definition is independent of the lift x̃, and hence the meaning of (1) is explained.

Since α is a root of Q, v(Pn(β)) ≥ 1. Choose a lift b ∈ OK̄ of β. Hence, we have

v(Pn(b)) = v(Pn(β)) ≥ 1, and so v(Pn(b)) ≥ 1. This means, that there exists a g0 ∈ J
such that v(b − g0(νn)) ≥ 1/d. It follows then from (1) that v(β − νn) ≥ 1/d, and
since v(νn − g(νn)) < 1/d for any Id 6= g ∈ J , g0 must be necessarily Id. There-
fore v(b − νn) > v(b − g(νn)) for all 1 6= g ∈ J ; which by Krasner’s Lemma implies
that νn ∈ K0,n(b) (indeed νn ∈ OK0,n(b), since it was assumed from the very begin-
ning to be integral). The element νn can be represented by a polynomial in b with
coefficients in OK0,n , hence we need to lift b and the coefficients, i.e. the elements

of OK0,n. Since b reduces to β, we have νn ∈ OK0,n/pOK0,n = k[ǫ(n), β]. Therefore
νn ∈ θ0(OE0(π1/pn )(α)), which proves the assertion.

Since Ês
0 = C, and GK acts naturally on C, we get an action on Ês

0. We prove now
the stability of Es

0 with respect to the action of GK , which gives an action of GK on
Es

0.
Let x ∈ Es

0, with separable minimal polynomial Px(T ) ∈ E0[T ], then for any g ∈ GK ,
g(x) is a root of the separable polynomial (Px)

g. Therefore, for the stability of Es
0 we

need only to show that the coefficients, i.e. the elements of E0, are stable under the
Galois action. But this is clear, since g(π) = (1 + π)χ(g) − 1 ∈ k((π)) = E0.

Summing up, we obtain a group homomorphism GK = Gal(K/Kcyc
0 )→ Gal(Es

0/E0),
simply by restriction. The last claim of the Theorem is that this map is an isomor-
phism.

Injectivity: Let g ∈ GK be in the kernel. Since the action of Galois is con-

tinuous, this element acts also trivially on C = Ês
0: for any x = (x(n)) ∈ C,

g(x(n)) = x(n) ∈ C = K̂ for all n. But the map θ̃0 : C → C is surjective (i.e.
any element of C can be the zeroth coordinate of an element in C), therefore g acts
trivially on C and is consequently the identity map.
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Surjectivity: By injectivity of the restriction map, we may identify GK with a
closed subgroup H of Gal(Es

0/E0). If H 6= Gal(Es
0/E0), then (Es

0)
H would define

a non-trivial separable extension of E0 inside (C)H = (Frac(R))H = Êrad
0 ; which is

impossible after Lemma 3.3 below.
�

We prove the two Lemmas used in the proof of the theorem.

Lemma 3.2. With notation as in the proof of Theorem 3.1. We have for any Id 6=
g ∈ J that limn→∞ v(νn − g(νn)) = 0.

Proof. Since OLn = OK0,n [νn], we know that the discriminant DLn/K0,n
is generated

by P ′
n(νn) =

∏
Id 6=g∈J(νn − g(νn)). In Lecture 7, using Herbrandt’s integrals, we see

that v(DLn/K0,n)→ 0 as n tends to infinity; which proves our claim, since

v(DLn/K0,n) =
∑

Id 6=g∈J

v(νn − g(νn)).

�

Lemma 3.3. Let E be a complete field of characteristic p > 0. There is no nontrivial

separable extension of E inside Êrad.

Proof. Let E ′ be a separable extension of E inside Êrad. Denote by σ1, . . . , σd the
distinct embeddings of E ′ into Es (d = [E ′ : E]). We extend each map σi to a

map defined on E ′rad by setting σi(a) := (σi(a
pn

))p−n
. By continuity, we get a map

Ê ′rad = Êrad → Ê, which is the identity on Erad, hence on the whole Êrad = Ê ′rad,
and therefore σi must be the identity map, so d = 1. �

4. (ϕ, Γ)-modules

We assume here for simplicity K = K0, and denote E := E0 (see in the book, for
the general case).
Let V be a Zp (p-adic) representation of GK . Since HK := Gal(K/Kcyc) is isomorphic
to a Galois group GE := Gal(Es

0/E) in characteristic p, the restricted action of GK

to HK on V gives rise to a Zp (p-adic) representation V |HK
of GE. We know already

from the representation theory of Galois groups of characteristic p-fields, that V |HK

corresponds to an étale ϕ-module over the Cohen ring OE of E given by

(OdEunr ⊗Zp V )HK ∈Mét
ϕ (OE).

From the exact sequence

(2) 1 // HK
// GK

χ // ΓK
// 1

Gal(E0/E) =: GE

∼=

OO

we obtain an action of ΓK on (OdEunr ⊗Zp V )HK via the cyclotomic character χ.

Set B̃ := Frac(W (C)) = W (C)[1/p] ⊃ E := Frac(OE). Denote by [·] the Teichmüller
lift corresponding to the Cohen ring OE , then [ǫ], πǫ := [ǫ] − 1 ∈ OE . We can now
give an explicit description of a Cohen ring of E

OE := {
+∞∑

n=−∞

λnπ
n
ǫ | λn ∈W (k), λn

n→−∞
−→ 0} = ̂W (k)((πǫ));
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since one easily checks that this is a complete ring, whose maximal ideal is generated
by p, and with residue field E.
The action of Frobenius on [ǫ] = (ǫ, 0, 0, . . .) is simply ϕ([ǫ]) = (ǫp, 0, 0, . . .), and
g([ǫ]) = (ǫχ(g), 0, 0, . . .). These actions are commuting and semi-linear on (OdEunr ⊗Zp

V )HK . This motivates the following

Definition 4.1. An étale (ϕ, Γ)-module over OE is an étale ϕ-module over OE with
a continuous semi-linear action of ΓK which commutes with ϕ.
The category of such modules will be denoted by Mét

ϕ,Γ(OE).

Remark 4.2. Similarly, one defines étale (ϕ, Γ)-modules for E := Frac(OE).

For any Zp-representation V of GK , i.e. V ∈ RepZp
(GK), we write

D(V ) := (OdEunr ⊗Zp V )Hk ∈ Mét
ϕ,Γ(OE);

and for any D ∈Mét
ϕ,Γ(OE)

V(D) := (OdEunr ⊗OE
D)ϕ=1 ∈ Rep

Zp
(GK).

Theorem 4.3. The functors D and V are equivalences of (Tannakian) categories.

Proof. Since the actions of ϕ and ΓK commute, the equivalence of categories between
Rep

Zp
(HK) = Rep

Zp
(GE) and Mét

ϕ (OE), which was proven in the last lecture, gives

us the statement, by simply using the exact sequence (2). �

Remark 4.4. (1) There is also a corresponding statement of the Theorem above
for p-adic representations and étale (ϕ, Γ)-modules over E (where in the defi-
nition of the functors we have to tensorize over Qp, and over E respectively;
cf. last lecture).

(2) An étale (ϕ, Γ)-module D over E can be explicitly given in the following way.
Fix a topological generator γ0 of ΓK, and fix also a basis of D (which is of
dimension d < ∞ by the étale assumption). Then, the action of γ0 and the
action of ϕ give rise to two matrices Mγ0

, Mϕ ∈ GLd(E). The fact that these
two semi-linear action commute, is expressed through the following equation

(3) Mγ0
γ0(Mϕ) = Mϕϕ(Mγ0

).

Therefore, an étale (ϕ, Γ)-module over E of rank d is nothing else than two
matrices of GLd(E), which satisfy the relation (3) above.


