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Abstract

These are notes from my talk in the Forschungssemingp-adic Galois representations,
which mainly follows the Fontaine-Ouyang book project. tdies are likely, so, please beware.
1 Notation
We fix the following data througout the talk:
e paprime.

e Q)" the maximal unramified extension @, (inside some fixed algebraic closu@).

K/Q, afinite extension, ap-adic field” (inside@p).

Ko = Q)" N K = the maximal absolutely unramified extension(f contained ink'.

k the residue field of{y and K.

o : Gal(Qy™/Qp) — Gal(Qy™/Qy) the absolute arithmetic Frobenius, coming from- z?
on Gal(F,/Fp).

Gk = Gal(K/K) the absolute Galois group.

2 Filtered vector spaces - Hodge numbers and polygons

Let V' be aK-vector space together with a filtratidfil®* V' which is decreasing, separated and ex-
haustive. This means that for everyg Z the sub¥ -vector spaceFil’ V of V satisfy

e Fil'V D Fil'"! V for all i € Z (decreasing),
e N,z Fil'V = (0) (separated) and

e U,z Fil'V = D (exhaustive).



A homomorphism of filtered vector spaces V — W is a K-linear map compatible with the
filtration, i.e.(Fil’ V) C Fil W. In particular, the filtration on sulb¢-vector space¥” < V is such
thatFil' V! < Fil' V.

We define the-th graded piecas

gr' V.= Fil' V/Fil'"' V.

We say thay is ajumpif gr/ V # 0.
Let V1, V5, ..., V, be filtered K-vector spaces. Thensor productl} @k Vo Qi -+ Qg Vi, IS
equipped with the filtration

Fil' V := Z Fil" V; @ Fil? Vo @ - - - @ Fil*r V...
i1+ige i =i

As this definition is symmetric in th¥;, it descends to a filtration dfym” V and \" V..
We first define the Hodge number abstractly.

Definition 2.1 (i) Let V' be1-dimensional with only jump in the filtration g TheHodge number
is defined as
tg(V) =ty (V,Fil) := j.

(ii) If dimg V = h > 1, theHodge numbeis defined as

with the induced filtration on the right.

More concretely, we have:

Proposition 2.2 We have (V) = 3, i - dimg gr' V.

Proof. Let j; < --- < j, be the jumps of the filtration dF. We know that there is only a single
jump in the filtration of theh-th exterior product, as it is of dimensidn Hence, we are looking for
the biggest possible choice af < i5 < --- < 4, such that

Fil" V@Fi?V®-- @Fil"" V # (0).
e Choosgj; as often as possible so that there is
0Fvis ANvas A=Ay, s € gris V = Fil’s V.

Necessarilyh, equals the dimension gf/s V.



e Choosegj;_ as often as possible, so that there is
0% V15-1AV2s 1A ADp,_, 51 € greV.

Necessarilyh,_; equals the dimension @f’s—1 V. Note that by taking representatives, we so
far have

0 75 V1,s—1 ANV2s—1 N ANUp,_1 s-1 ANV s ANV2s N+ NV, s € FilJs—1 V.

e Continue like this down tg;.

From )
Zi -dimp gr' V = ij - dimp g’k V
i€Z k=1
we obtain the claimed formula. O

Proposition2.3 (@) If 0 — V/ — V — V” — 0 is a short exact sequence of filterédvector
spaces (the maps must be compatible with the filtration, all filtrations areratgah exhaustive
and desending), then we have

tg(V) =tg(V') +tg(V").
(b) LetV; andV; be two filteredK -vector spaces. Then we have
tH(Vl QK VQ) = tH(Vl) dimK(Vg) + tH(VQ) dimK(Vl).

We now associate thdodge polygorio a filtered K -vector space with jumpg < --- < j, and
h; = dimg grf V. It is the polygon with vertices

(0,0), (h1, i), (b1 + ha, 1y + jaha), .., (b, Y jihi = tu (V).
i=1

The slope of the-th line segment is the position of theth jump, i.e. equal tg,., since the slope is

> i1 dihi = Sish dihi _ jrhy
Sici hi = izt hi hr

= Ir.

v

T
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3 Semi-linear algebra - Newton numbers and polygons

The beginning of this section is very basic. However, in the end we needdie @ theorem of
Dieudonné’s (or Manin’s). Thanks to Kay and Andre for telling me albuthad - in vain - tried to
prove it over the week-end. It would still be interesting to find an eleme miargf.

The integral theory of what we treat here is that of isocrystals (sean$tance, Katz: Slope
filtration of F-crystals). We will, however, not go into this theory and usedhoc approach, just
as in the book (the book hides important concepts in Remark 6.47 withouggiviy citation or any
appreciation of the depth of the statements).

Definition 3.1 LetD be aKy-vector space. Amap : D — D is calledsemi-lineaif itis Q,-linear
and satisfiegp(ad) = o(a)p(d) forall a € Ky and alld € D.

Conceptually speaking, this is a very bad definition because the compositim seEmi-linear
maps is not semi-linear any more! One would have to weaken the conceptdriskence of such
that p(ad) = o'(a)p(d). Or, more generally, one could allow anye Gal(K,/Q,), even if the
Galois group is non-cyclic (and even non-abelian).

The ad-hoc approach is to still use matrices akfgrfor describing semi-linear maps. Let us fix
a basis{e,...,e,} of D asKy-vector space and say thatis represented by the matrik = (a; ;)
with respect to the chosen basis, igge;) = > "', a;e;. Let{e],. .., e} be another basis. Write

n
j=1

n n
e, = Z cixe; ande; = Zd&je}
i=1 =1

such thatDC = I = CD with C = (¢; ;) andD = (d; ;).

We compute:
n n n n
p(er) = 0O ciner) =Y _olei)ple) =D > olcik)ajie;

=1 =1 =1 j=1

n n n n

= Y olein)ajidejey =y (DAa(C)), et
i=1 j=1 (=1 /=1
Hence, the matrix representingwith respect to the basi&, ..., e.} is C~1A0(C). For some

reason, this formula differs from the one in the book (maybe: column \@etorow vectors?).

Corollary 3.2 Letyp : D — D be a semi-linear map on the finite dimensioh&l-vector spaceD.
Let A be the matrix ofp with respect to some basis. Then tiewton number

tn(D) :=tn(D,p) = vy(det(A))

is well-defined, i.e. does not depend on the choice of basis.



Proof. We havedet(C~1A40(C)) = "fide‘f((cc))) det(A) and@ is a unit inOk, for all s # 0.
0

The semi-linear map : D — D gives a semi-linear map on tensor powers, symmetric powers
and onA\" D. If h is the dimension oD, let (a) the1 x 1-matrix representing on A" D. We have
the equality:

This is due to the definition of the determinant.

Proposition3.3 (a) If 0 — D’ — D — D” — 0 is a short exact sequence of finite-dimensional
Ky-vector spaces compatible with semi-linear mafysy, ¢”, then we have

tN(D) = tN(D/) + tN(D”).

(b) LetD; and D+ be two finite dimensiondky-vector spaces with semi-lineas. Then we have
tN(Dl ® Dg) = tN(Dl) dimKO (DQ) + tN(DQ) dimKO (Dl)

for p(d1 ® d2) = ¢(d1) ® p(da).

We are now going to introduce thdewton polygon The casek, = Q, is elementary and
we start by it. In this case, we define the Newton polygorDoés the usual Newton polygon for
the characteristic polynomigl of . The slopes of the Newton polygon are the valuations of the
eigenvalues ofp: We factor f into irreducibles: f = [];_, f;. The valuations of the zeros of an
irreducible polynomial are equal: we call that valuation stepeof the irreducible polynomial or of
its roots. More precisely, possibly after base change, for everyrioccsiopen there isd € D andA
such thatp(d) = Ad andv,(\) = o € Q. We order the slopes in size; < as < --- < o, (We may
haves < r, since slopes can appear more than once). We can decompase

D=@D.,
=1
(generalised Jordan normal form). Now the Newton polygon is the polygtbrvertices
(0,0), (hy, a1ha), (ha + ha, 01hy + aghg), ..., (b, > aih; =ty (D))
=1

with h; = dimg, D,,. The slope of thé-th line segment ig.

We now go back to generdly C Q™. The miracle is that in the semi-linear world something
even stronger holds, which one could aifigonalisability of every semi-linear may/e first have to
introduce base change for semi-linear maps to the maximal unramified exte@sien D andp, we
define

0: QM ®Ky D — Q" ®ky D, z®@d+— o(z)® ¢(d).
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Note that this is a well-defined semi-linear map@§i"* @, D.

The following short calculation illustrates (part of) the difficulty of handlggmi-linear maps
(compare with part (b) below). Lete Q)™ ®x, D andX € Q, such thato(d) = Ad and letr € K.
Then

olad) = o(x)p(d) = "D

The eigenvalue changed, but its valuation did noﬁ—(g& has valuatior.

Theorem 3.4 (Dieudonné, Manin)Let D and ¢ as above.

(a) There exist rational numbers;, < as < --- < ay, called theslopesof ¢, andy-stable subK-

vector spaced),; for j = 1,...,s of D such that
S
D=0,
i=1
and eachQ;™ ®k, D, has a basidey,...,en} suchthatforalk = 1,... mthereis); € @p

with v, (A;) = a andp(e;) = Ae;.
(b) Ifthereisd € Q™ @, Do andX € Q, such thatp(d) = \d, thenv,(\) = a.
(€) > 25— ajdimg, Do, = tn (D).
(d) ajdimg, Dy, € Zforall j =1,...,s.

In the general case, we define the Newton polygon as before, i.e. pslyfgon with vertices
(0,0), (1, 1ha), (hn + ha, a1hy + azhy), ..., (b, > aih; =ty (D))
=1

with h; = dimg, D,,. The slope of thé-th line segment ig.

4 Semi-stablep-adic Galois representations

In this section, we will define semi-stable and crystalline representationsibg the ringsB,; and
B..is in the way that we are meanwhile used to (e.g. Christian Liedtke’s talk).
In the previous talk, Stefan Kukulies introduced the rifys and Be,;s.

Proposition 4.1 The ringsBs; and B,is are (Q,, G )-regular.

The proof of this proposition is similar to the proof that we saw in Coung'’s t@alklie case of
Bpr. Let
p:Gr — Autg, (V)

be ap-adic Galois representation. We let



e Dy (V) := (By ®g, V)% and

e Deis(V) = (Beris ®q, V).

Purely formally, as proved in Ralf’s talk, the regularity yields the followingotiary.
Corollary 4.2 Lete stand forst or cris.

(@) There is an injectivé,[G i |-linear homomorphism
Qe(V): Be ®ky De(V) = Be ®q, V, A®@z+— Az

for the action ofG'x on B, ®x, De(V') on the first component and the diagotak-action on
Be ®Qp V.

(b) dimg, De(V) < dimg, V.
(¢) dimg, De(V') = dimg, V' < e (V) is an isomorphismes V' is B,-adimissible.
(d) The functord, (V') are compatible with, ) and duals onB,-admissiblel/.

Now we make the expected definition.

Definition 4.3 e Ap-adic Galois representatioll of GGk is calledsemi-stabléf itis By-admissible.
e Ap-adic Galois representatiol of G i is calledcrystallineif it is B.,is-admissible.

As B is contained inBg;, we have thal3..;s ®g, V' < Byt ®q, V (asKo|Gx]-modules). As
further takingG i -invariants is left exact, we hav@..is ®g, V)% < (By ®q, V)% asKo-vector
spaces. From Corollary 4.2 we further obtain the inequality:

dimp, Deris(V) < dimg, Dt (V) < dimg, V.
This together with Corollary 4.2 immediately gives the following corollary.

Corollary 4.4 Any crystalline representation is semi-stable.

We also have:

Proposition 4.5 (a) For anyp-adic Galois representation we haveé ® g, D (V) < Dgr(V) as
K-vector spaces.

(b) If V' is semi-stable, theK @, Ds(V) = D4r(V') as K-vector spaces.

(c) Any semi-stable representation is de Rham.



Proof. The basic (and only) ingredient is the following injection (from Stefan’s)talk
K ®k, Bst — Bygr-
As above, we tensor with” and take(7 i--invariants and obtain the injection &f-vector spaces

(K ®k, Bst) ®q, V)GK — (Bar ®q, V)GK =Dgr (V).

Noticing the trivial equalityX ®x, Dg(V) = K ®, (Bt ®q, V)GK = ((K ®k, Bst) ®q, V) Ox

leads us to conclud& @k, Dg (V) < Dgr(V') as K-vector spaces, i.e. (a). Using tt@,, Gk )-
regularity of Bqr, we obtain the inequality

dimKO Dst(V) < dimK DdR(V) < dime V,

from which the other parts of the proposition follow. O

5 Towards filtered (¢, N)-modules

In this part we will approach the definition @p, V)-modules via its main exampl®g (V).
Let us recall from Stefan’s talk:

e The “Frobenius’y uniquely extends td; by requiringy(log[w]) = plog[w].

e On B there is the “monodromy operatolN : By, — Bg, which is defined by

N(D balloglw))™) = nby(log[w])™ .

neN neN

e gp = pgandgN = Ng foreveryg € Gg,, i.e. andN commute with the Galois action.

N¢ = peN.

The sequence
0 — Beris — Bst i Bs — 0

is exact.

This implies the following for @-adic Galois representation: G — Autg, (V):

e On Dy (V) = (Bs ®q, V)GK we define the “Frobenius” by : Dy (V) — Dg (V) by
p(b®v) = p(b) @ .

e OnDy (V) = (By ®q, V)GK we define the “monodromy operatoN : Dg (V) — Dy (V)
by N(b® v) = N(b) @ v.

e OnDg (V) we still have the formulagy = pg andgN = Ng for everyg € Gg,, i.e.o andN
commute with the Galois action. This is clear, since the action is only on the firstarmnp
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e We also haveVy = pp N onDg (V) for the same reason.
e Because oflimg, Dy (V) < dimg, V, this dimension is finite.

e The Frobeniug is an isomorphism o (1), since it is injective orBg; (and, consequently,
also onBy; ®q, V, and thus or{ By ®q, V)GK).

e The sequence

0 = Deris(V) — Dg(V) 25 Dy (V)

is exact, as ®g, V is exact and-)“ is left exact.

Let V be semi-stable. Then we have

V crystalline < dimg, Deis(V) = dimg, Dgt (V) = dimg, V < N = 0.

Further, we recall from Christian’s talk that there is a descending filtratidid-vector spaces on
DdR<V):
- DFil ' Dgr(V) D Fil' Dgr(V) D Film ' Dy (V) D ... ..

We use it for defining a descending filtration Af-vector spaces oy = K ®k, Dg(V) <
Dyr (V) (see Proposition 4.5) by putting

Fil' D := Di NFil' Dgr (V).

This will makeDg (V') into a filtered(y, N')-module overK of finite dimension with bijectivep.
The filtration is separated and exhaustive.

6 Filtered (¢, N)-modules - definitions and simple properties
We now use as definition the properties that we just saiDi(V').

Definition 6.1 A (¢, N)-moduleover K (or k) is a Ky-vector spaceD together with two maps
@ : D — D*"Frobenius”and N : D — D “monodromy”

such that

(1) ¢ is semi-linear,

(2) N is Ky-linear and

(3) Ny =peN.

Definition 6.2 Let D; and D, be two (¢, N)-modules with operatorg; and N; (: = 1,2). A
morphismn : Dy — D of (¢, N)-modules is aK-linear map such thatp; o n = 1 o ¢ and
Nyon=mnoNj.



Definition 6.3 Let D; and D2 be two(y, N)-modules with operatorg; and N; (: = 1,2). The
tensor producD; ® D- is defined as thé{y-vector spaceD; ® D, := D; ®g, D2 equipped with
Frobenius

p(di @ da) 1= p(d1) @ p2(da)

and the monodromy
N(dy ® da) := Ni(d1) ® da + d1 @ Na(d2).

Here we note (the book does not do this) that the definition is symmetflg emd.D,. Hence, we
obtain (¢, N)-modulesSym” D (r-fold symmetric product) as wej\" D (r-fold exterior product).
(The book mentions at one point that one can see the exterior prodacudsobject of the tensor-
product. This is correct, but only because we are over a field of ctaistic zero. Otherwise, the
correct way is to see the symmetric product as a quotient of the tensargbaot the exterior product
as a sub-object of the symmetric product.)

Definition 6.4 Let D be a(y, N)-module such thabj is finite dimensional a¥(y-vector space and
such thaty is bijective. Thedual D* of D is defined as thé{,-vector spacélom k, _jinear( D, Ko)
equipped with the Frobenius

3071 6 o
©*(a) := (D L D= Ky— Ko)
and monodromy
N*(a) := —avo N.

There is a “category-way” of seeing, N)-modules. Namely, they are modules over the non-
commutative ring generated y,, N andy subject to the relationga = o(a)yp, Na = aN for all
a € Ko and the relationiVy = ppN.

Proposition 6.5 Let D be a finite dimensiondlp, N )-module overK, with bijectivey.
(a) N decreases slopes hiyi.e. N(Dg,) € Dq_1.
(b) N is nilpotent.
Proof. (a) We may test this after base changélffy". Letd € Q™ ®k, D, and\ € @p such
thatv,(\) = o andp(d) = Ad. We compute

oNd = 1Ncp(d) = 1N)\cl = iNd
p p p
and conclude thaWd is an eigenvector fop with valuationa — 1, whenceNd € D, .
(b) (First proof.) By (a) and the fact that the decomposition= @jzl D, is finite, N* = 0.
(Second proof, not using (a).) Let# A\ € Q, be an eigenvalue oV such that the associated
eigenspacd C D ® @p is non-trivial. Letv € V. Because oNypv = ppNv = ppiv = pAyv,
it follows that N acts onp (V') by multiplication withpA, whencep(V) NV = (0). It follows that
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A = 0, as iterating the application @f would imply thatV is infinite-dimensional. Hencey has
only 0 as eigenvalue and is hence nilpotent. O

Now we introduce another important structure (@n N )-modules, namely the filtration. In the
exampleDg (V') we have a filtration o’ @k, D (V'): the de Rham-filtration.

Definition 6.6 Afiltered(y, NV)-module overk is a(y, N)-moduleD over K, together with a filtra-
tion Fil* Dg on theK-vector spacdk := K ®g, D which is decreasing, separated and exhaustive.
The category of filteredp, V)-modules ovek is denoted bW F (o, N).

Definition 6.7 A morphism of filtered(y, N)-modules overK is a morphismn : D; — Dy of
(¢, N)-modules overk such that the induced mapc : D1 x — D3k is a homomorphism of
filtered K -vector spaces as defined earlier in this talk.

Definition 6.8 LetDy, Do, ..., D, befiltered(p, N)-modules oveK. Thetensor producD; ® Dy ®
.-+ ® D, in the category of filteredy, N)-modules ovef is the tensor producD := D; ® Dy ®
-+~ ® D, in the category of o, N)-modules ovelk, equipped with the filtration o x as defined
earlier in this talk. As this definition is symmetric in thg the filtration descends to give rise$gm”
and\" in the category of filteredy, N)-modules overk’.

Definition 6.9 Let D be a filtered(y, NV)-module overK such thatD is a finite-dimensional-
vector space and such thatis bijective. Thelual filtered(y, V)-moduleD* over K of D is the dual
D* in the category ofp, N)-modules ovel, equipped with the filtration

Fil'(D*) g = (Fil=""! D)™
For a filtered(y, N)-moduleD over K, we define théHodge numbeof D as
tg(D) :=ty(Dg)
and theNewton numbety (D) as before. We have the following properties from earlier on.

Proposition 6.10(a) If 0 — D’ — D — D” — 0 is a short exact sequence of filtered, V)-
modules ovef, then we have

tN(D) = tN(D,) + dN(D”) andtH(D) = tH(D,) + dH(D”).
(b) LetD; and D be two filtered ¢, N)-modules ovef. Then we have
tN(Dl &® DQ) = tN(Dl) dimKO (DQ) + tN(DQ) dimK0<D1>
and

tH(Dl () DQ) = tH<D1) dimKO (DQ) + tH(DQ) dimKO (Dl)
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(c) For a finite dimensionaly, N)-module D with bijective, we haveiy(D*) = —ty(D) and
tH(D*) = —tH<D).

Definition 6.11 A filtered (¢, N)-module ovelK is calledadmissiblaf
(i) dimg, D < oo,
(i) ¢ is bijective onD,
(i) ty(D)=tn(D)and
(iv) for any subobjecD’ < D in the category of filteredyp, N)-modules ovek the inequality
tg(D') < tn(D')
holds.

The category of admissible filter¢g, N')-modules ovels is denoted bMFad (o, N).

Let D be an admissiblép, N)-module overK and D’ be a sub-object. A very useful statement
is that the Hodge polygon dd’ stays below the Newton polygon & (we allow that they “touch”,
of course).

The argument is best given in a picture. We sketch itD1fonly has a single Newton slope
the statement is clear. Note that all Hodge slopes occuring in the polygby, @fiso occur in the
Hodge polygon ofD’, but possibly on longer line segmentsalfvas the smallest Newton slope, then
we conclude that up tdim D/, the Hodge polygon remains below the Newton polygon. (Note that
whereas the Newton polygon can be obtained by concatenating the Newlygoms of allD!,, this
is not true for Hodge polygons.) If no®’ = D! & D/, we get the statement from our previous
observation and the inequality; (D, & Dj) < tn (D, @ Dj;). We repeat the argument from above
that all Hodge slopes here have to occur in the Hodge polygoifpbut possibly on longer line
segments. This again implies that now updien D/, + dim Db the Hodge polygon is below the
Newton polygon. Like this we continue.

7 Examples of admissible filtered ¢, V)-modules

7.1 Trivial filtration

A filtration on a K -vector spacé’ is calledtrivial if
Fil’(V) = V and Fil}(V) = (0).
This means that the Hodge polygon is the straight line f(on0) to (h,0) with & = dimg V.

Lemma 7.1 Let D be a filtered(y, NV )-module overk with trivial filtration. ThenD is admissible if
and only ifD is of slope0. In that caseN = 0.
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Proof. If D is admissible, then the Newton polygon has to be above the Hodge polygon (i.e.
above0) with endpointt (D) = tx(D) = 0, so the Newton polygon also has to be the straight line
from (0, 0) to (h,0) with h = dimg V', whence all the slopes are zero.

Conversely, if the slope is zero, then the Newton polygon is the straightrbne(f, 0) to (k, 0).

The same holds for all sub-objects, whergés admissible.

If all the slopes are zero, thdn = Dy andND C D_; = (0). 0
7.2 Tate twist
Let D be a filtered ¢, N)-module overK. Fori € Z define the-th Tate twistD (i) as follows

e D(i) := D asKj-vector space,

e Fil"(D{(i)) g := Fil"™ Dy forr € Z,

e N onD(i) is the same a8/ on D,

e ponD(i)is defined ap—p on D.

Lemma 7.2 (a) D(:) is afiltered(¢, N')-module overx.
(b) D(i) is admissible if and only iD is admissible.
(6) Da(V/(1)) = (D (V)) (i)
We skip the proof, which is by a computation. As a consequence of the lemrhawse
dimg, V(i) = dimg, V' < dimg, D (V) = dim g, (Ds (V (7))).
We immediately obtain the first of the equivalences:
e V is semi-stable= V(i) is semi-stable,

e VVis de Rham= V(i) is de Rham,

e Vs crystallines V(i) is crystalline.

7.3 Dimensionl

We now suppose that we are giver-@limensional(y, N)-module D over K. We choose a basis
d € D, so thatp(d) = \d for some\ € K, whencel y (D) = v,(A). The monodromy operata¥
must be zero, as it is nilpotent. Dueltalimensionality, the filtration o i has a single jump, which
by definition occurs atz (D).

Here is the general construction of admissipte V)-modules of dimension over K. It only
depends on\ € K. We define an associatéd, N)-moduleD) as follows.

D,\:Ko, QOZ)\O', N=0
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with the filtration

D forr < wv,(A),

Fir (Dy) = % orr =
0 for r > v, ().

We haveD, = D,, as(¢, N)-modules if and only if there is in the unit group of the integers of

Ky such thay = A2 For, if suchu is given, then the isomorphisim, — D,, of Ky-vector spaces

u

is given by multiplication by:. Conversely, any isomorphisi, — D,, must be multiplication by

someu and an easy calculation gives the relatios- A2

u

7.4 Dimension2

The aim of this section is to classify all admissilje NV )-modules ovel’ = Q,, of dimensiore.
The case of trivial filtration was treated above. By the Tate twist we caméhétom now on
assume that there are two jumps occuring ahd;j. Hence, we have

DK if r < O,
Fil" Dk = J L if1<r<j,
0) ifr>y,

with somel-dimensionalQ,-vector space..

We now compute and plot the Newton and the Hodge polygon. The Hodgegooilly by definition
the polygon with vertice$0, 0), (1,0), (2, j).

Let f(X) = X%+ uX + v € Q,[X] be the characteristic polynomial f The Newton polygon
of D is just the usual Newton polygon gf i.e. the convex hull of0,0), (1,v,(u)), (2,v,(v)). A
different description is as follows. FacttX) = (X — A1)(X — X2) in @,[X], where we ordei;
and ), such thate := v,(A1) < b := v,(A2): the first line segment has slopethe second one has

slopeb.

A A

a+b i

v

I \ I \
1 2 1 2

Newton polygon Hodge polygon
We see that ifD is admissible, then

tN(D) =a+b=j= tH(D) anda > 0.
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The latter condition comes from the fact that the Newton polygon has to lve éie Hodge polygon.

7.4.1 The non-crystalline caseéV # 0

Let v be an eigenvector with eigenvalues @p (we will shortly see thah € Q,). We have
1 1 A

pNv=—-Npv=-N\v=—Nuo.

p p p

Hence,Nv is either0 or an eigenvector ap with eigenvalueg. Applying this with an eigenvectar
with eigenvalue\;, we find Nv; = 0, as the eigenvalue d¥v; would have valuation smaller than
vp(A2) > v, (A1), which is a contradiction. This also shows that\;) # v,(A2) (otherwiseN = 0).

Let vo an eigenvector with eigenvalue. It follows that Vv, # 0, as otherwiseV = 0, sincev;
andv; form a basis ofD. This givespA; = Xo. It follows thatA;, > € Q, and

J=1tu(D) =1tn(D) =1+ 2vp(A1).
Now choose the basig’, ea} of D with e; := vo ande; = Nes. Then we have
A
o= (4,5 ) andN = (88).
We now determind. explicitly. There is a uniqué-dimensional subobjed®’ < D because it has

to be fixed byy and N, namelyD’ = (e;). Obviously,ty(D’) = vy(\1) = a < j = 2a+ 1. The
filtration on D’ is the one induced from, i.e.

D' if r <0,
Fil'D'=D'NFi'D={D'NL ifl1<r<j,
0 if 7> j.
Hence, we have
ty(D')=0if L # D" andty(D')=jif L=D'". (7.1)

It follows that
tH(D,) < tN(D/) =a& D # L.
The admissibility thus implie®’ # L, whenceL = (es + ae;) for a uniquex € Q,.
Conversely, choosing € Q, and0 # A € Z, and putting (for the standard basis on the
dimensionalQ,-vector spaceD)

v = (épo)\) andN:(g(l))v

as well as
D if r <0,
Fil' D= ¢ ((9)) if1<r<j
(0) if r> 4,

we obtain an admissiblgp, V)-module overQ,. By Tate twisting we obtain all admissible, NV )-
modules ovef),.
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7.4.2 The crystalline caseN =0

First casef(X) = X2 + uX + v isirreducible overQ,,.

As there is no non-trivial subobject (it would be a line with eigenvalu®ji admissibility of D
is equivalenttar + b =ty (D) =ty (D) = j.

Suppose thab is admissible and pick any vector# e; € L. Then{ey,ea} with ea = p(e1)
form a basis ofD. The characteristic polynomial forces the following shape:

e=(92Y) andN =0

and
D if r <0,
Fil'D= () if1<r<j
(0) if r> j.

Conversely, givem, v € Q, with j = v,(v) > 0 such thatX? + uX + v is irreducible inQ, [ X],
by the above formulae we can associate to it an irreducible admigsiblé)-module overQ,. By
Tate twisting we obtain all of this type.

Second casef(X) = (X — A)(X — A2) with Ay, A2 € Q.

We first treat the casg := A\; = Ay such that (for some basfg1,e2}) ¢ = (3 1). I do not
find this case treated in the text, but it does not seem to be excluded. Irai@stbere is a unique
subobject, namelyD’ = (e1). We havety(D') = v,(\) = a < 2¢ = j. By Equation 7.1,
admissibility hence impliesy (D) = 0, whenceL # (eq).

Suppose now that there is a basis of eigenvedtorses } with eigenvalues\; and\,, respectively
(we allowA; = \2). There are two stable subobjects, namely and(ez). Admissibility implies as
above that_ is neither of them. By rescaling andes we can assume thét= (e; + e2).

Hence, we obtain in this case

¢ = (Aol ;)2) andN =0

and
D if r <0,
Fil' D =9((1)) if1<r<j
(0) if r> j.

Conversely, givem\;, Ay € Z, with v,(A1) < vp(A2) andj = vp(A1) + vp(A2), the above
formulae give rise to an admissible, NV)-module overQ,. We may again apply the Tate twist.

| do not state Proposition 7.11 of the book because thegas 3 i) seems to be missing. By
Dieudonné’s theorem we know thatcan be diagonalised after base chang®$t" as a semi-linear
map. But, | do not see where an isomorphisn@asV)-module with any of the diagonal ones should
come from. In fact, it cannot exist, since the minimal polynompadn the non-diagonal module is
different from the minimal polynomial on the diagonal one. Could it be thatbeules become
isomorphic overQ;™?
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8 Theorem of Fontaine-Colmez (Theorem B)
So far we have described the functor
Dt : Repg, (Gx) — MFk (9, N), V — Dg(V).

Proposition 8.1 (Theorem B(1))If V' is a semi-stablep-adic Galois representation off -, then
D (V) is an admissible filtere¢p, N)-module overK with ¢ and N as defined before. More pre-
cisely, we have the functor

Dy, : Repy, (Gx) — MFi(p, N), V = Dy (V).
It is compatible with tensor products and duals.
Definition 8.2 For D a filtered(y, N)-module overk’, let
V(D) :={v € By ® D|p(v) =v, N(v) =0, 1®v € Fil’(K ®, (Bs ® D))},

where the tensor produdBy; ® D is the tensor product in the category of filteréd, N')-modules
overK.

We have thalV (D) is a sub&,-vector space o3y, ® D (that is clear), which is stable under
G k. For the latter we need thétx respects the filtration oB4g (I think).

Proposition 8.3 (Theorem B(2)) If D is an admissible filteredlp, N)-module overk, thenV (D)
is a semi-stable-adic representation of . More precisely, we have the functor

Vg : MF¥ (¢, N) — Repg (Gk), D — V(D).
It is compatible with tensor products and duals.

Finally we can state the main part of Theorem B.
Theorem 8.4 (Theorem B(3)) The functor
Dy, : Repg (Gk) — MFi (¢, N), V = Dg(V).
is an equivalence of categories with quasi-inverse

Vi : MF§(p, N) — Rep§, (Gk), D — V(D).
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