
Manual of the MAGMA packageHeckeAlgebra

Gabor Wiese∗

8th August 2008

Abstract

This is a short manual for the MAGMA [1] packageHeckeAlgebra. It is designed for the computation of

Hecke algebras of modular forms over finite fields of characteristicp in the following cases:

• all eigenforms for a given levelN , weightk and Dirichlet characterǫ : (Z/NZ)× → F
×

p ,

• dihedral modular forms coming from the Hilbert class field of a quadraticnumber field,

• icosahedral modular forms (currently only in characteristicp = 2) given by anA5-polynomial.

The package needs the author’s MAGMA packageArtinAlgebras. Both packages can be downloaded

from the author’s webpage.

The package was originally written in 2006 and has only been slightly updatedsince. It was used for the

computations in [2]. The author would like to thank Lloyd Kilford for very helpful suggestions.

Contents

1 Installation and Example 1

2 Mathematical description 3

3 Functions 3

3.1 The modular form format 3

3.2 Dihedral modular forms 4

3.3 Icosahedral modular forms 4

3.4 The Hecke algebra format 5

3.5 Hecke algebras 5

3.6 Storage functions 7

3.7 Output functions 7

3.8 Other functions 8

1 Installation and Example

Note that you need the packagesArtinAlgebras andHeckeAlgebra. They can be downloaded from the

author’s webpage. For installation, just unpack the tar-files.

Suppose thatPATH1 containsArtinAlgebras.spec and thatPATH2 containsHeckeAlgebra.spec.

Then we attach the packages using

> AttachSpec("PATH1/ArtinAlgebras.spec");

> AttachSpec("PATH2/HeckeAlgebra.spec");

The following example explains the main functions of the package. We wantthe package to be silent, so we put

> SetVerbose ("HeckeAlgebra",0);

If we would like more information on the computations being performed, weshould have put the value1. Since

we want to store the data to be computed in a file, we already create the file.

∗Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstr. 29, D-45326 Essen, Germany.

http://maths.pratum.net/, e-mail:gabor.wiese@uni-due.de

1

> my_file := "datafile";

> CreateStorageFile(my_file);

Next, we would like to compute the Hecke algebras of the dihedral eigenforms of level2039 over extensions of

F2. First, we create a list of such forms.

> dih := DihedralForms(2039 : ListOfPrimes := [2], completely_split := false);

Now, we compute the corresponding Hecke algebras, print part of thecomputed data in a human readable format,

and finally save the data to our file.

> for f in dih do

for> ha := HeckeAlgebras(f);

for> HeckeAlgebraPrint1(ha);

for> StoreData(my_file, ha);

for> end for;

The functionDihedralForms also allows to compute only representations that are completely split in the char-

acteristic. The default iscompletely_split := true. The following example illustrates this.

> dih1 := DihedralForms (431 : bound := 20);

> for f in dih1 do

for> ha := HeckeAlgebras(f);

for> HeckeAlgebraPrint1(ha);

for> StoreData(my_file, ha);

for> end for;

One can also compute icosahedral modular forms over extensions ofF2, starting from an integer polynomial with

Galois groupA5, as follows.

> R<x> := PolynomialRing(Integers());

> pol := xˆ5-xˆ4-780*xˆ3-1795*xˆ2+3106*x+344;

> f := A5Form(pol);

With this kind of icosahedral examples one has to pay attention to the conductor, as it can be huge. This polyno-

mial has prime conductor. But, conductors need not be square-free, in general.

> print Modulus(f‘Character);

It’s 1951, so it’s reasonable. Do the computation.

> ha := HeckeAlgebras(f);

> HeckeAlgebraPrint1(ha);

There are two forms, which is okay, since they come from a weight one form in two different ways and this case

is not exceptional. We now save them, as always.

> StoreData(my_file, ha);

It is also possible to compute all forms at a given character and weight.

> eps := DirichletGroup(229,GF(2)).1;

> ha := HeckeAlgebras(eps,2);

> HeckeAlgebraPrint1(ha);

> StoreData(my_file,ha);

Next, we illustrate how one reloads what has been saved. One would like to type: load my_file; But that does

not work. One has to do it as follows.

> load "datafile";

> mf := RecoverData(LoadIn,LoadInRel);

Now, mf contains a list of all algebra data computed before. There’s a rather concise printing function, displaying

part of the information.

> HeckeAlgebraPrint(mf);

One can also create a LaTeX longtable. The entries can be chosen in quite aflexible way, but there’s also a

standard choice of entries given byStandardLatexList() , which is used in our example.

> HeckeAlgebraLaTeX(mf,StandardLaTeXList(),"table.tex") ;

A short LaTeX file displaying the table is the following:

\documentclass[11pt]{article}
\begin{document}
\input{table.tex}
\end{document}

2

The table we created is this one:

Level Wt Char ResD Dim GorDef EmbDim NilO largest HB Gp

2039 2 2 2 1 0 0 0 5 340 D3

2039 2 2 2 6 2 3 2 7 340 D5

2039 2 2 6 1 0 0 0 5 340 D9

2039 2 2 4 1 0 0 0 5 340 D15

2039 2 2 4 1 0 0 0 5 340 D15

2039 2 2 12 1 0 0 0 5 340 D45

2039 2 2 12 1 0 0 0 5 340 D45

431 2 2 1 4 2 3 1 13 72 D3

431 11 11 3 4 2 3 1 11 396 D7

1951 2 2 4 3 0 1 2 5 326 A5

1951 2 2 4 6 0 2 3 5 326 A5

229 2 2 1 1 0 0 0 37 39

229 2 2 2 2 0 1 1 37 39

229 2 2 1 4 0 1 3 37 39

229 2 2 5 2 0 1 1 37 39

In the examples of level229 the image of the Galois representations as an abstract group is not known. That is

due to the fact that we created these examples without specifying the Galoisrepresentation in advance.

It is possible to compute arbitrary Hecke operators on the local Hecke factors generated byHeckeAlgebras(·) ,

as the following example illustrates.

> A,B,M,C := HeckeAlgebras(DirichletGroup(253,GF(2)).1,2 : over_residue_field := true);

Suppose that we want to know the Hecke operatorT17 on the4th local factor.

> i := 4;

> T := BaseChange(HeckeOperator(M,17),C[i]);

The coefficients are the eigenvalues (only one):

> Eigenvalues(T);

Let us remember the eigenvalue.

> e := SetToSequence(Eigenvalues(T))[1][1];

In order to illustrate the optionover_residue_field, we also compute the following:

> A1,B1,M1,C1 := HeckeAlgebras(DirichletGroup(253,GF(2)).1,2 : over_residue_field := false);

> T1 := BaseChange(HeckeOperator(M1,17),C1[i]);

> Eigenvalues(T1);

The base field is strictly smaller than the residue field in this example and the operatorT1 cannot be diagonalised

over the base field. We check, thate is nevertheless a zero of the minimal polynomial ofT1 .

> Evaluate(MinimalPolynomial(T1),e);

The precise usage of the package is described in the following sections.

2 Mathematical description

For a description of the algorithms and the background we refer to the paper [2]. Some more details can be found

in [3]. Moreover, we include some mathematical background in the description of the functions in the following

section.

3 Functions

3.1 The modular form format

In the package, modular forms are often represented by the following record.

ModularFormFormat := recformat <

3

Character : GrpDrchElt,

Weight : RngIntElt,

CoefficientFunction : Map,

ImageName : MonStgElt,

Polynomial : RngUPolElt

>;

The fieldsCharacter andWeight have the obvious meaning. Sometimes, the image of the associated Galois

representation is known as an abstract group. Then that name is recorded inImageName, e.g.A_5 or D_3. In

some cases, a polynomial is known whose splitting field is the number field cut out by the Galois representation.

Then the polynomial is stored inPolynomial. The cases in which polynomials are known are usually icosahedral

ones. TheCoefficientFunction is a function from the integers to a polynomial ring. For all primesl different

from the characteristic and not dividing the level of the modular form (i.e. the modulus of theCharacter), the

coefficient function should return the minimal polynomial of thel-th coefficient in theq-expansion of the modular

form in question.

3.2 Dihedral modular forms

Eigenforms whose associated Galois representation take dihedral groups as images provide an important source

of examples, in many contexts. These eigenforms are calleddihedral. The big advantage is that their Galois

representation, and hence theirq-coefficients, can be computed using class field theory. That enables one to

exhibit Galois representations in the context of modular forms with certain number theoretic properties. The

property for which these functions were initially created is that the representations should be unramified in the

characteristic, sayp, and thatp is completely split in the number field cut out by the representation.

Any dihedral representation in our context arises by induction of a character of a quadratic field. The Dirichlet

character of the associated modular form is the Legendre symbol of thequadratic field.

intrinsic GetLegendre (N :: RngIntElt, K :: FldFin) -> GrpDrchElt

For an odd integerN , this function returns the element ofDirichletGroup(Abs(N),K) (with K a finite field of

characteristic different from2) which corresponds to the Legendre symbolp 7→
“

±N

p

”

. The sign in front ofN

is chosen so that the number is congruent to1 mod4.

intrinsic DihedralForms (N :: RngIntElt :

bound := 100, ListOfPrimes := [], completely_split := true) -> Rec

This function computes all modular forms over a finite field of characteristic p that come from dihedral

representations which arise from the quadratic fieldK = Q(
√
±N) by induction of an unramified character of

K. The sign in front ofN is chosen so that the number is congruent to1 mod4. If the optioncompletely_split

is set, only those representations are returned which are completely split at p. If the optionListOfPrimes is

assigned a non-empty list of primes, only those primes are considered as the characteristic. If it is the empty set,

all primes up to thebound are taken into consideration.

3.3 Icosahedral modular forms

Eigenforms whose attached Galois representation takes the groupA5 as projective image are calledicosahedral.

Since extensive tables ofA5-extensions of the rationals are available, one disposes of icoshaedralGalois repre-

sentations which one knows very well. That allows one to test certain conjectures concerning modular forms on

icosahedral ones.

We note the isomorphismA5
∼= SL2(F4). Thus,A5-extenstions of the rationals give rise to icosahedral

Galois representations in characteristic2 which (should) come from modular forms mod2. It would also be

possible to use other primes, but this has not been implemented.

intrinsic A5Form (f :: RngUPolElt) -> Rec

Returns the icosahedral form in characteristic2 and weight2 of smallest predicted level corresponding to the

polynomialf . No checks aboutf are performed.

4

3.4 The Hecke algebra format

The data concerning the Hecke algebra of one eigenform that is computed by the functionHeckeAlgebras is a

record of the following form.

AlgebraData := recformat <

Level : RngIntElt,

Weight : RngIntElt,

Characteristic : RngIntElt,

BaseFieldDegree : RngIntElt,

CharacterOrder : RngIntElt,

CharacterConductor : RngIntElt,

CharacterIndex : RngIntElt,

AlgebraFieldDegree : RngIntElt,

ResidueDegree : RngIntElt,

Dimension : RngIntElt,

GorensteinDefect : RngIntElt,

EmbeddingDimension : RngIntElt,

NilpotencyOrder : RngIntElt,

Relations : Tup,

NumberGenUsed : RngIntElt,

ImageName : MonStgElt,

Polynomial : RngUPolElt

>;

Level andWeight have the obvious meaning. LetK be the base field for the space of modular symbols

used. ThenCharacteristic is the characteristic ofK andBaseFieldDegreeis the degree ofK over its prime

field. The entriesCharacterOrder , CharacterConductor and CharacterIndex concern the Dirichlet char-

acter for which the modular symbols have been computed. The latter field isthe index of the character in

Elements(DirichletGroup(·)) . Note that that might change between different versions of Magma. The fields

ResidueDegree(over the prime field),Dimension andGorensteinDefecthave their obvious meaning for the

Hecke algebra in question. The tuple

<AlgebraFieldDegree, EmbeddingDimension, NilpotencyOrder, Relations>

are the data from whichAffineAlgebra can recreate the Hecke algebra up to isomorphism.NumberGenUsed

indicates the number of generators used by the package for the computation of the Hecke algebra. This number

is usually much smaller than the Sturm bound.ImageNameandPolynomial have the same meaning as in the

recordModularFormFormat .

3.5 Hecke algebras

intrinsic HeckeAlgebras (eps :: GrpDrchElt, weight :: RngIntElt :

first_test := 3, test_interval := 1, when_test_p := 3, dimension_factor := 2,

ms_space := 0, cuspidal := true, DegreeBound := 0, OperatorList := [],

ms_space := 0, over_residue_field := true, force_local := false,

expected_forms := 0 ms_space := 0,

) -> SeqEnum, SeqEnum, ModSym, Tup, Tup

intrinsic HeckeAlgebras (t :: Rec :

first_test := 3, test_interval := 1, when_test_p := 3, dimension_factor := 2,

ms_space := 0, cuspidal := true, DegreeBound := 0, OperatorList := [],

ms_space := 0, over_residue_field := true, force_local := false,

expected_forms := 0 ms_space := 0,

) -> SeqEnum, SeqEnum, ModSym, Tup, Tup

These functions compute all local Hecke algebras (up to Galois conjugacy) in the specifiedweight for the given

5

Dirichlet charactereps, respectively those corresponding to the modular formt given by a record of typeMod-

ularFormFormat . The functions return 5 valuesA,B,C,D,E. A contains a list of records of typeAlgebraData

describing the local Hecke algebra factors.B is a list containing the local Hecke algebra factors as matrix alge-

bras.C is the space of modular symbols used in the computations.D is a tuple containing the base change tuples

describing the local Hecke factors. Its knowledge is necessary in order to compute matrices representing Hecke

operators in the local factor. Finally,E contains a tuple consisting of all computed Hecke operators for each local

factor of the Hecke algebra.

The usage in practice is described in the example at the beginning of this note. We now explaint the different

options in detail.

The modular symbols space to be used in the computations can be determined as follows. The option

ms_spacecan be set to the values1 (the plus-space),−1 (the minus-space) and0 (the full space). Whether

the restriction to the cuspidal subspace is taken, is determined bycuspidal. It is not necessary to pass to the

cuspidal subspace, for example, if a cusp is given by a coefficient function (see the description of the record

ModularFormFormat).

In some cases, a list of Hecke operators on the modular symbols spacein question may already have been

computed. In order to prevent Magma from redoing their computations,they may be passed on to the function

using the optionOperatorList .

Often, one wants to compute the local Hecke algebra of a modular form whose degree of the coefficient field

over its prime field is known, e.g. in the case of an icosahedral form in characteristic2 for the trivial Dirichlet

character the coefficient field isF4. By assigning a positive value to the optionDegreeBoundthe function will

automatically discard any systems of eigenvalues beyond that bound, which speeds up the computations. One

must be a bit careful with this option, as there may be cases when the bound may not be respected at “bad

primes”. Hence, one better adds2 to the degree of the coefficient field, e.g. one choosesDegreeBound := 4in

the icosahedral example just described. If no system of eigenvalues should be discarded for degree reasons, one

must setDegreeBound := 0.

The optionsdimension_factor, first_test, test_interval, when_test_p, force_local andexpected_forms

concern the stop criterion. Theoretically, the Sturm bound (seeHeckeBound) tells us up to which bound Hecke

operators must be computed in order to be sure that they generate the whole Hecke algebra. In practice, how-

ever, the algorithm can often determine itself when enough Hecke operators have been computed to generate the

algebra. That number is usually much smaller than the Sturm bound. The stop criterion is the following. LetM

be the modular symbols space used andS the set of Hecke operators computed so far. ThenM =
Lr

i=1
Mi

(for somer) such that eachMi is respected by the Hecke operators and the minimal polynomial of eachT ∈ S

restricted toMi is a prime power (i.e. eachMi is a primary space for the action of the algebra generated by all

elements ofS). Let Ai be the algebra generated byT |Mi
for all T ∈ S. One knows (in many cases, and in all

cases of interest) thatAi is equal to a direct product of local Hecke algebras if one has the equality

f × dim(Ai) = degree ofMi.

Here,f is given bydimension_factor and should be1 if the plus-space or the minus space of modular sym-

bols are used, and2 otherwise. The correct assignment ofdimension_factor must be made by hand, whence

experimentations are possible. If the stop criterion is not reached, the algorithm terminates at the Hecke bound.

It may happen that when the stop criterion is reached, oneAi is isomorphic to a proper direct product of local

Hecke algebras. If in that case the optionforce_local is true , the computation of Hecke operators is continued

until eachAi is isomorphic to a single Hecke factor. Ifforce_local is false, then a fast localisation algorithm is

applied to eachAi. Hence, the cases in which one may wishforce_local to betrue are rare.

In many cases of interest the Hecke operatorTp with p the characteristic is needed in order to generate the

whole Hecke algebra. The optionwhen_test_p tells the algorithm at which step to computeTp. It is very

advisable to chose a small number. In practice, the stop criterion is reached after very few steps, e.g. 5 steps,

whenTp is computed early. Otherwise, the algorithm often has to continue untilTp is computed, although most

of the operators before did not change the generated algebra.

The optionfirst_test tells the algorithm at which step the first test for the stop criterion is to be performed.

The next test is then carried out aftertest_interval many steps, and so on. These numbers should be chosen small,

too, unless the dimension test takes much time, which is rare, so that wants toperform is less often, meaning that

possibly more Hecke operators than necessary are computed (time consuming).

6

If expected_forms := nis non-zero, the algorithm only stops when both the stop criterion is reachedand

exactlyn local algebra factors have been computed.

Finally, over_residue_fieldtells the algorithm whether at the end of the computation the local Hecke factors

should be base changed to their residue field. If that is done, only one ofthe conjugate local factors of the base

changed algebra is retained.

3.6 Storage functions

The package provides functions to store a list whose elements are records of typeAlgebraData in a file, and to

re-read it. The usage of these functions is explained in the example at the beginning of this note.

intrinsic CreateStorageFile (filename :: MonStgElt)

This function prepares the filefilename for storing the data.

intrinsic StoreData (filename :: MonStgElt, forms :: SeqEnum)

This functions appends the listforms of Hecke algebra data to the filefilename. That file must have been created

by CreateStorageFile.

intrinsic StoreData (filename :: MonStgElt, form :: Rec)

This function appends the Hecke algebra dataform to the filefilename. That file must have been created by

CreateStorageFile.

intrinsic RecoverData (LoadIn :: SeqEnum, LoadInRel :: Tup) -> SeqEnum

In order to read Hecke algebra data from filefilename, proceed as follows:

> load filename;

> readData := RecoverData(LoadIn,LoadInRel).

ThenreadData will contain a list whose elements are records of typeAlgebraData.

3.7 Output functions

intrinsic HeckeAlgebraPrint (ha :: SeqEnum)

intrinsic HeckeAlgebraPrint1 (ha :: SeqEnum)

These functions print part of the data stored in the listha of records of typeAlgebraData in a human readable

format.

intrinsic GetLevel (a :: Rec) -> Any

intrinsic GetWeight (a :: Rec) -> Any

intrinsic GetCharacteristic (a :: Rec) -> Any

intrinsic GetResidueDegree (a :: Rec) -> Any

intrinsic GetDimension (a :: Rec) -> Any

intrinsic GetGorensteinDefect (a :: Rec) -> Any

intrinsic GetEmbeddingDimension (a :: Rec) -> Any

intrinsic GetNilpotencyOrder (a :: Rec) -> Any

intrinsic GetLargestOperator (a :: Rec) -> Any

intrinsic GetHeckeBound (a :: Rec) -> Any

intrinsic GetPolynomial (a :: Rec) -> Any

intrinsic GetImageName (a :: Rec) -> Any

These functions return the property of the recorda of typeAlgebraData specified by the name of the function.

If the corresponding attribute is not assigned, the empty string is returned.

intrinsic StandardLaTeXList () -> SeqEnum

This function creates a standard format for writing Hecke algebras to a LaTeX table. That format is a list of tuples

<f, name>. Heref is a function that evaluates a record of typeAlgebraData to some Magma object which is

afterwards transformed into a string usingSprint . Examples forf are the functionsGetLevel etc., which are

described above. Thename will appear in the table header.

intrinsic HeckeAlgebraLaTeX (ha :: SeqEnum, which :: SeqEnum, filename :: MonStgElt)

This function creates the LaTeX filefilenamecontaining a longtable consisting of certain properties of the objects

7

in ha which are supposed to be records of typeAlgebraData. The properties to be written are indicated by the

list which consisting of tuples<f, name>. Heref is a function that evaluates a record of typeAlgebraData to

some Magma object which is afterwards transformed into a string usingSprint . Examples forf are the functions

GetLevel etc., which are described above. Thename will appear in the table header. For a sample usage, see the

example at the beginning of this note.

3.8 Other functions

intrinsic HeckeBound (N :: RngIntElt, k :: RngIntElt) -> RngIntElt

intrinsic HeckeBound (eps :: GrpDrchElt, k :: RngIntElt) -> RngIn tElt

These functions compute the Hecke bound for weightk and levelN , respectively Dirichelt charactereps. Note

that the Hecke bound is also often called Sturm bound.

References

[1] W. Bosma, J. J. Cannon, C. Playoust.The Magma Algebra System I: The User Language.J. Symbolic

Comput.24 (1997), pp. 235-265

[2] L.J.P. Kilford, G. Wiese.On the failure of the Gorenstein property for Hecke algebras of prime weight.

Experimental Mathematics 17(1), 2008, 37-52.

[3] G. Wiese. Computational Arithmetic of Modular Forms. Lecture Notes from a course at Universität

Duisburg-Essen. Available fromhttp://maths.pratum.net/.

8

	Installation and Example
	Mathematical description
	Functions
	The modular form format
	Dihedral modular forms
	Icosahedral modular forms
	The Hecke algebra format
	Hecke algebras
	Storage functions
	Output functions
	Other functions

