Manual of the MaGMA packagdHeckeAl gebr a

Gabor Wiesé
8th August 2008

Abstract

This is a short manual for the MsMA [1] packageHeckeAl gebr a. It is designed for the computation of
Hecke algebras of modular forms over finite fields of characteristiche following cases:

¢ all eigenforms for a given leveV, weightk and Dirichlet character: (Z/NZ)* — F;,
e dihedral modular forms coming from the Hilbert class field of a quadratinber field,
e icosahedral modular forms (currently only in characterigtie 2) given by anAs-polynomial.

The package needs the authorssMA packageArt i nAl gebr as. Both packages can be downloaded
from the author’s webpage.

The package was originally written in 2006 and has only been slightly updated. It was used for the
computations in [2]. The author would like to thank Lloyd Kilford for venyfel suggestions.

Contents
‘1 Installation and Examplé 1
‘2 Mathematical description 3

3 Functions

‘3.1 The modularformformat e
3.2 Dihedralmodularforms e e
3.3 Icosahedral modular forhs
3.4 The Hecke algebra fornhat
3.5 Heckealgebras. e
3.6 Storage functiohs ...
3.7 Outputfunctions e e
3.8 Other functioﬁs ..

0 ~N~NOUOa D DWW

1 Installation and Example

Note that you need the packaghst i nAl gebr as andHeckeAl gebr a. They can be downloaded from the
author's webpage. For installation, just unpack the tar-files.

Suppose thaPATHL containsArt i nAl gebr as. spec and thatPATH2 containsHeckeAl gebr a. spec.
Then we attach the packages using

> AttachSpec("PATH1/ArtinAlgebras.spec”);

> AttachSpec("PATH2/HeckeAlgebra.spec”);

The following example explains the main functions of the package. We thamtackage to be silent, so we put
> SetVerbose ("HeckeAlgebra",0);

If we would like more information on the computations being performedskaild have put the valuk Since
we want to store the data to be computed in a file, we already create the file.

*Institut fir Experimentelle Mathematik, Universitat DuisgtEssen, Ellernstr. 29, D-45326 Essen, Germany.
http://mat hs. pratum net/, e-mail:gabor. wi ese@ini - due. de

>my_file := "datafile";

> CreateStorageFile(my _file);

Next, we would like to compute the Hecke algebras of the dihedral eigesfof level2039 over extensions of
IF». First, we create a list of such forms.

> dih := DihedralForms(2039 : ListOfPrimes := [2], completely_split := false);

Now, we compute the corresponding Hecke algebras, print part cbti@uted data in a human readable format,
and finally save the data to our file.

> for fin dih do

for> ha := HeckeAlgebras(f);

for> HeckeAlgebraPrint1(ha);

for> StoreData(my _file, ha);

for> end for;

The functionDihedralForms also allows to compute only representations that are completely split in the cha
acteristic. The default isompletely_split := true. The following example illustrates this.

> dih1 := DihedralForms (431 : bound := 20);

> for fin dih1 do

for> ha := HeckeAlgebras(f);

for> HeckeAlgebraPrint1(ha);

for> StoreData(my _file, ha);

for> end for;

One can also compute icosahedral modular forms over extensi@hs sthrting from an integer polynomial with
Galois groupAs, as follows.

> R<x> := PolynomialRing(Integers());

> pol := X"5-x"4-780*x"3-1795*x"2+3106*x+344;

> f:= A5Form(pol);

With this kind of icosahedral examples one has to pay attention to the condagibcan be huge. This polyno-
mial has prime conductor. But, conductors need not be squargiffrgeneral.

> print Modulus(f'Character);

It's 1951, so it's reasonable. Do the computation.

> ha := HeckeAlgebras(f);

> HeckeAlgebraPrint1(ha);

There are two forms, which is okay, since they come from a weightame ih two different ways and this case
is not exceptional. We now save them, as always.

> StoreData(my _file, ha);

Itis also possible to compute all forms at a given character and weight.

> eps := DirichletGroup(229,GF(2)).1;

> ha := HeckeAlgebras(eps,2);

> HeckeAlgebraPrintl(ha);

> StoreData(my _file,ha);

Next, we illustrate how one reloads what has been saved. One would likpetoltyad my _file; But that does
not work. One has to do it as follows.

> load "datafile";

> mf := RecoverData(LoadIn,LoadInRel);

Now, mf contains a list of all algebra data computed before. There’s a ratheisegprinting function, displaying
part of the information.

> HeckeAlgebraPrint(mf);

One can also create a LaTeX longtable. The entries can be chosen in djeitéke way, but there’s also a
standard choice of entries given ByandardLatexList(), which is used in our example.

> HeckeAlgebralLaTeX(mf,StandardLaTeXList(), "table.tex") ;

A short LaTeX file displaying the table is the following:

\docunent cl ass[11pt]{articl e}

\begi n{ docunent}

\i nput {t abl e. t ex}

\end{ docurent }

The table we created is this one:

Level | Wt | Char | ResD | Dim | GorDef | EmbDim | NilO | largest| HB | Gp
2039 | 2 2 2 1 0 0 0 5 340 | Ds
2039 | 2 2 2 6 2 3 2 7 340 | Ds
2039 | 2 2 6 1 0 0 0 5 340 | Dy
2039 | 2 2 4 1 0 0 0 5 340 | Dis
2039 | 2 2 4 1 0 0 0 5 340 | Dis
2039 | 2 2 12 1 0 0 0 5 340 | Dys
2039 | 2 2 12 1 0 0 0 5 340 | Dys
431 2 2 1 4 2 3 1 13 72 D3
431 11 11 3 4 2 3 1 11 396 | Dy
1951 | 2 2 4 3 0 1 2 326 | As
1951 | 2 2 4 6 0 2 3 5 326 | As

229 2 2 1 1 0 0 0 37 39

229 2 2 2 2 0 1 1 37 39

229 2 2 1 4 0 1 3 37 39

229 2 2 5 2 0 1 1 37 39

In the examples of level29 the image of the Galois representations as an abstract group is not.kiibamnis
due to the fact that we created these examples without specifying the Gadoesentation in advance.

It is possible to compute arbitrary Hecke operators on the local Hecker§agenerated bileckeAlgebras(),
as the following example illustrates.

> A,B,M,C := HeckeAlgebras(DirichletGroup(253,GF(2)).1,2 : @er_residue_field := true);

Suppose that we want to know the Hecke oper@igron the4th local factor.

>j=4;

> T := BaseChange(HeckeOperator(M,17),Cl[i]);

The coefficients are the eigenvalues (only one):

> Eigenvalues(T);

Let us remember the eigenvalue.

> e := SetToSequence(Eigenvalues(T))[1][1];

In order to illustrate the optionver_residue_field we also compute the following:

>A1,B1,M1,C1 := HeckeAlgebras(DirichletGroup(253,GF(2)).12 : over_residue_field := false);

> T1 := BaseChange(HeckeOperator(M1,17),C1[i]);

> Eigenvalues(T1);

The base field is strictly smaller than the residue field in this example and thet@pElL cannot be diagonalised
over the base field. We check, thais nevertheless a zero of the minimal polynomialldf.

> Evaluate(MinimalPolynomial(T1),e);

The precise usage of the package is described in the following sections.

2 Mathematical description

For a description of the algorithms and the background we refer to thex f2Jp Some more details can be found
in [3]. Moreover, we include some mathematical background in theriggiem of the functions in the following
section.

3 Functions

3.1 The modular form format

In the package, modular forms are often represented by the followouaya.
ModularFormFormat := recformat <

Character : GrpDrcheElt,

Weight ! RngIntElt,
CoefficientFunction : Map,
ImageName : MonStgElt,
Polynomial : RngUPoIEIt

>;

The fieldsCharacter and Weight have the obvious meaning. Sometimes, the image of the associated Galois
representation is known as an abstract group. Then that name ideddoimageName e.g.A_5o0rD_3. In
some cases, a polynomial is known whose splitting field is the number fiewltby the Galois representation.
Then the polynomial is stored folynomial. The cases in which polynomials are known are usually icosahedral
ones. TheCoefficientFunction is a function from the integers to a polynomial ring. For all primesfferent
from the characteristic and not dividing the level of the modular form {he modulus of theCharacter), the
coefficient function should return the minimal polynomial of tkté coefficient in they-expansion of the modular

form in question.

3.2 Dihedral modular forms

Eigenforms whose associated Galois representation take dihedrabgasumages provide an important source
of examples, in many contexts. These eigenforms are cdileiral. The big advantage is that their Galois
representation, and hence theicoefficients, can be computed using class field theory. That enabéetoo
exhibit Galois representations in the context of modular forms with certainber theoretic properties. The
property for which these functions were initially created is that the reptaiens should be unramified in the
characteristic, say, and that is completely split in the number field cut out by the representation.

Any dihedral representation in our context arises by induction of aackerrof a quadratic field. The Dirichlet
character of the associated modular form is the Legendre symbol qtitdratic field.

intrinsic GetLegendre (N :: RngIntElt, K :: FldFin) -> GrpDrchElt

For an odd integeN, this function returns the element birichletGroup(Abs(N),K) (with K a finite field of
characteristic different fror2) which corresponds to the Legendre sympol- (ip—N) The sign in front ofN
is chosen so that the number is congruent tnod 4.

intrinsic DihedralForms (N :: RngIntElt :
bound := 100, ListOfPrimes := [], completely_split := true) -> Rec

This function computes all modular forms over a finite field of charadterjsthat come from dihedral
representations which arise from the quadratic figld= Q(+/£N) by induction of an unramified character of
K. The sign in front ofN is chosen so that the number is congruent tnod 4. If the optioncompletely_split
is set, only those representations are returned which are completelytgplitifathe option ListOfPrimes is
assigned a non-empty list of primes, only those primes are considetbd aharacteristic. If it is the empty set,
all primes up to thébound are taken into consideration.

3.3 Icosahedral modular forms

Eigenforms whose attached Galois representation takes the grpap projective image are callécbsahedral.
Since extensive tables of;-extensions of the rationals are available, one disposes of icosh&aloa repre-
sentations which one knows very well. That allows one to test certain ¢argscconcerning modular forms on
icosahedral ones.

We note the isomorphisms = SLy(F4). Thus, As-extenstions of the rationals give rise to icosahedral
Galois representations in characteristievhich (should) come from modular forms mad It would also be
possible to use other primes, but this has not been implemented.

intrinsic A5Form (f :: RngUPOIEIt) -> Rec
Returns the icosahedral form in characterigtiand weight2 of smallest predicted level corresponding to the
polynomialf. No checks about are performed.

3.4 The Hecke algebra format

The data concerning the Hecke algebra of one eigenform that is codnipythe functionHeckeAlgebrasis a
record of the following form.
AlgebraData := recformat <

Level ! RngintElt,
Weight . RngintElt,
Characteristic . RngintElt,
BaseFieldDegree . RngintElt,
CharacterOrder . RngintElt,
CharacterConductor : RngintElt,
Characterindex . RngintElt,
AlgebraFieldDegree ! RngIntElt,
ResidueDegree : RngintElt,
Dimension ! RngintElt,
GorensteinDefect . RngIntElt,
EmbeddingDimension : RngIntElt,
NilpotencyOrder . RngIntEl,
Relations : Tup,
NumberGenUsed ! RngintElt,
ImageName : MonStgElt,
Polynomial : RngUPoIEIt

>
Level and Weight have the obvious meaning. L&f be the base field for the space of modular symbols
used. TherCharacteristic is the characteristic oK and BaseFieldDegreds the degree of< over its prime
field. The entriesCharacterOrder, CharacterConductor and Characterindex concern the Dirichlet char-
acter for which the modular symbols have been computed. The latter fi¢het iBxdex of the character in
Elements(DirichletGroup(-)). Note that that might change between different versions of Magma. fi€lds
ResidueDegregover the prime field) Dimension and GorensteinDefecthave their obvious meaning for the

Hecke algebra in question. The tuple
<AlgebraFieldDegree, EmbeddingDimension, NilpotencyOrder, Relans>

are the data from whiclffineAlgebra can recreate the Hecke algebra up to isomorphistnberGenUsed
indicates the number of generators used by the package for the caimpuatethe Hecke algebra. This number
is usually much smaller than the Sturm bourthageNameand Polynomial have the same meaning as in the
recordModularFormFormat .

3.5 Hecke algebras

intrinsic HeckeAlgebras (eps :: GrpDrchElt, weight :: RngIntElt :
first_test := 3, test _interval := 1, when_test_p := 3, dimensiorfactor := 2,
ms_space := 0, cuspidal := true, DegreeBound := 0, OperatorLiis= [],
ms_space =0, over_residue_field := true, force_local := false,
expected_forms := 0 ms_space := 0,
) -> SeqEnum, SeqEnum, ModSym, Tup, Tup
intrinsic HeckeAlgebras (t:: Rec:
first_test .= 3, test_interval := 1, when_test_p := 3, dimensiorfactor := 2,
ms_space := 0, cuspidal := true, DegreeBound := 0, Operatorliis= [],
ms_space =0, over_residue_field := true, force_local := false,
expected_forms := 0 ms_space := 0,
) -> SeqEnum, SeqEnum, ModSym, Tup, Tup
These functions compute all local Hecke algebras (up to Galois conjumeitie specifiedveight for the given

Dirichlet characteeps respectively those corresponding to the modular formiven by a record of typ&od-
ularFormFormat . The functions return 5 value4,B,C,D,E. A contains a list of records of typ&lgebraData
describing the local Hecke algebra factoBsis a list containing the local Hecke algebra factors as matrix alge-
bras.C is the space of modular symbols used in the computatiDris.a tuple containing the base change tuples
describing the local Hecke factors. Its knowledge is necessary im trd@®@mpute matrices representing Hecke
operators in the local factor. Finall§, contains a tuple consisting of all computed Hecke operators for eadh loca
factor of the Hecke algebra.

The usage in practice is described in the example at the beginning of thisMetew explaint the different
options in detail.

The modular symbols space to be used in the computations can be dettmasiriellows. The option
ms_spacecan be set to the valuds(the plus-space),-1 (the minus-space) an@ (the full space). Whether
the restriction to the cuspidal subspace is taken, is determinedidpyidal. It is not necessary to pass to the
cuspidal subspace, for example, if a cusp is given by a coefficigrdtibn (see the description of the record
ModularFormFormat).

In some cases, a list of Hecke operators on the modular symbols ispgaestion may already have been
computed. In order to prevent Magma from redoing their computattbey, may be passed on to the function
using the optiorOperatorList .

Often, one wants to compute the local Hecke algebra of a modular fomeendegree of the coefficient field
over its prime field is known, e.g. in the case of an icosahedral formanacieristic2 for the trivial Dirichlet
character the coefficient field ;. By assigning a positive value to the optibregreeBoundthe function will
automatically discard any systems of eigenvalues beyond that bouith sfeeds up the computations. One
must be a bit careful with this option, as there may be cases when thel lnoay not be respected at “bad
primes”. Hence, one better ad?ido the degree of the coefficient field, e.g. one chod3egreeBound := 4in
the icosahedral example just described. If no system of eigenvdioetdsbe discarded for degree reasons, one
must setDegreeBound := Q

The optionsdimension_factor, first_test, test_interval, when_test_p force_local and expected_forms
concern the stop criterion. Theoretically, the Sturm bound KeekeBound) tells us up to which bound Hecke
operators must be computed in order to be sure that they generate ales ddtke algebra. In practice, how-
ever, the algorithm can often determine itself when enough Hecke opehatee been computed to generate the
algebra. That number is usually much smaller than the Sturm bound.tdfher&erion is the following. Lef\/
be the modular symbols space used &nthe set of Hecke operators computed so far. Thén= @_, M;

(for somer) such that eacli/; is respected by the Hecke operators and the minimal polynomial of Baetd
restricted tolM; is a prime power (i.e. each/; is a primary space for the action of the algebra generated by all
elements ofS). Let A; be the algebra generated BYy,, for all 7' € S. One knows (in many cases, and in all
cases of interest) that; is equal to a direct product of local Hecke algebras if one has thdiggua

f x dim(A4;) = degree ofM;.

Here, f is given bydimension_factor and should bd if the plus-space or the minus space of modular sym-
bols are used, an? otherwise. The correct assignmentdifnension_factor must be made by hand, whence
experimentations are possible. If the stop criterion is not reached, thethig terminates at the Hecke bound.

It may happen that when the stop criterion is reached,4yris isomorphic to a proper direct product of local
Hecke algebras. If in that case the optifonce _local is true, the computation of Hecke operators is continued
until eachA; is isomorphic to a single Hecke factor. ffrce_local is false, then a fast localisation algorithm is
applied to eac;. Hence, the cases in which one may wiglce_localto betrue are rare.

In many cases of interest the Hecke operdipmwith p the characteristic is needed in order to generate the
whole Hecke algebra. The optiamhen_test ptells the algorithm at which step to compdfg. It is very
advisable to chose a small number. In practice, the stop criterion ise@adter very few steps, e.g. 5 steps,
whenT, is computed early. Otherwise, the algorithm often has to continueTintd computed, although most
of the operators before did not change the generated algebra.

The optionfirst_test tells the algorithm at which step the first test for the stop criterion is to be ipeefh
The next test is then carried out aftest_interval many steps, and so on. These numbers should be chosen small,
too, unless the dimension test takes much time, which is rare, so that waet$don is less often, meaning that
possibly more Hecke operators than necessary are computed (tisuniog).

If expected_forms := nis non-zero, the algorithm only stops when both the stop criterion is reamtbd
exactlyn local algebra factors have been computed.

Finally, over_residue_fieldtells the algorithm whether at the end of the computation the local Heckedactor
should be base changed to their residue field. If that is done, only dhe ebnjugate local factors of the base
changed algebra is retained.

3.6 Storage functions

The package provides functions to store a list whose elements areseaifdypeAlgebraData in a file, and to
re-read it. The usage of these functions is explained in the example adhming of this note.

intrinsic CreateStorageFile (filename :: MonStgElt)
This function prepares the fildenamefor storing the data.

intrinsic StoreData (filename :: MonStgElt, forms :: SeqEnum)
This functions appends the litrms of Hecke algebra data to the fildkename. That file must have been created
by CreateStorageFile

intrinsic StoreData (filename :: MonStgElt, form :: Rec)
This function appends the Hecke algebra datan to the file filename. That file must have been created by
CreateStorageFile

intrinsic RecoverData (LoadIn :: SeqEnum, LoadInRel :: Tup) -> SeqEnum
In order to read Hecke algebra data from filename, proceed as follows:

> load filename;

> readData := RecoverData(LoadIn,LoadInRel).
ThenreadData will contain a list whose elements are records of tdgebraData.

3.7 Output functions

intrinsic HeckeAlgebraPrint (ha :: SeqEnum)

intrinsic HeckeAlgebraPrintl (ha :: SeqEnum)

These functions print part of the data stored in theHisof records of typeAlgebraData in a human readable
format.

intrinsic GetLevel (a :: Rec) -> Any

intrinsic GetWeight (a :: Rec) -> Any

intrinsic GetCharacteristic (a :: Rec) -> Any

intrinsic GetResidueDegree (a :: Rec) -> Any

intrinsic GetDimension (a :: Rec) -> Any

intrinsic GetGorensteinDefect (a :: Rec) -> Any

intrinsic GetEmbeddingDimension (a :: Rec) -> Any

intrinsic GetNilpotencyOrder (a :: Rec) -> Any

intrinsic GetLargestOperator (a :: Rec) -> Any

intrinsic GetHeckeBound (a :: Rec) -> Any

intrinsic GetPolynomial (a :: Rec) -> Any

intrinsic GetlmageName (a :: Rec) -> Any

These functions return the property of the recardf type AlgebraData specified by the name of the function.
If the corresponding attribute is not assigned, the empty string is returned

intrinsic StandardLaTeXList () -> SeqEnum

This function creates a standard format for writing Hecke algebras &JaX table. That format is a list of tuples
<f, name>. Heref is a function that evaluates a record of typgebraData to some Magma object which is
afterwards transformed into a string usiSgrint. Examples forf are the functionsGetLevel etc., which are
described above. Theame will appear in the table header.

intrinsic HeckeAlgebralLaTeX (ha :: SeqEnum, which :: SeqEnum, filsmmame :: MonStgElt)
This function creates the LaTeX fifdename containing a longtable consisting of certain properties of the objects

in ha which are supposed to be records of tyllgebraData. The properties to be written are indicated by the
list which consisting of tuplesf, name>. Heref is a function that evaluates a record of typlgebraData to
some Magma object which is afterwards transformed into a string Bpnigt . Examples foif are the functions
Getlevel etc., which are described above. Tienewill appear in the table header. For a sample usage, see the
example at the beginning of this note.

3.8 Other functions

intrinsic HeckeBound (N :: RngIntElt, k :: RngIntElt) -> RngIntElt

intrinsic HeckeBound (eps :: GrpDrchElt, k :: RngIntElt) -> Rngin tElt

These functions compute the Hecke bound for welglaind levelN, respectively Dirichelt charact@ps Note
that the Hecke bound is also often called Sturm bound.

References

[1] W. Bosma, J. J. Cannon, C. Playoushe Magma Algebra System I: The User LanguaheSymbolic
Comput.24 (1997), pp. 235-265

[2] L.J.P. Kilford, G. Wiese.On the failure of the Gorenstein property for Hecke algebras of primghtve
Experimental Mathematics 17(1), 2008, 37-52.

[8] G. Wiese. Computational Arithmetic of Modular Form&ecture Notes from a course at Universitat
Duisburg-Essen. Available frofmt t p: / / mat hs. prat um net/.

	Installation and Example
	Mathematical description
	Functions
	The modular form format
	Dihedral modular forms
	Icosahedral modular forms
	The Hecke algebra format
	Hecke algebras
	Storage functions
	Output functions
	Other functions

