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1 Introduction

The MAGMA ([2]) package CommMatAlg provides various functions on commutative matrix
algebras. It was written for the study of Hecke algebras, which are prominent examples coming
from the theory of modular forms (see e.g. [4] and [5]).

Before describing the functions of the package, we shall summarize the underlying theory.
A good reference is [1]. In a final section, the use of the package is demonstrated in a simple
example.

2 Mathematical background

We fix a field k throughout this note. By a representation of a k-algebra A we understand a finite
dimensional k-vector space V together with a k-algebra homomorphism ρ : A → Endk(V ). If
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the homomorphism is injective, the representation is said to be faithful. In the sequel, a subalge-
bra of Endk(V ) will be called a matrix algebra. Hence an abstract k-algebra is isomorphic to a
matrix algebra if and only if it has a faithful representation, which is the case if and only if A is
finite dimensional as a k-vector space.

One can for instance consider the (left) regular representation, which is defined as follows.
Given an (abstract) commutative Artinian k-algebra A with k-vector space basis a1, . . . , an, we
let V be kn, on which a ∈ A acts by sending the standard basis vector ej = (0, . . . , 0, 1, 0 . . . , 0)

of V to the vector (cj,1, . . . , cj,n) satisfying aaj =
∑n

i=1 cj,iai.
Another faithful representation is the dual representation. We take V = Homk(A, k) = A∨

and we let (a.f)(ã) = f(aã) be the action. If we choose the same basis of A as above, the matrix
representing a in the dual representation for the dual basis will be the transpose of the matrix for
the regular one.

In this note we shall only be concerned with finite dimensional commutative k-algebras,
which are assumed to have a 1, unless explicitly stated otherwise, in order to apply the general
theory of commutative algebra. This we shall assume for the sequel.

Such a k-algebra A is Artinian, i.e. every descending chain of ideals becomes stationary. This
is equivalent to the algebra being Noetherian and zero-dimensional. Consequently, all prime
ideals are maximal, whence the Jacobson radical equals the nilradical N , which is the set of
all nilpotent elements in A. We number the necessarily finitely many maximal ideals of A by
m1, . . . , mn. From general arguments we obtain

{ zero-divisors } =
n

⋃

i=1

mi and N = { nilpotent el. } =
n

⋂

i=1

mi.

Moreover, the primary decomposition of the zero ideal implies the existence of integers ri such
that (0) = m

r1

1 . . .mrn

n . Application of the Chinese remainder theorem yields

A = A/(0) = A/mr1

1 . . . mrn

n
∼=

n
∏

i=1

A/mri

i =:

n
∏

i=1

Ai,

where Ai is a local Artinian quotient algebra of A. Equivalently, there exist idempotents ei ∈ A

such that Ai = A/(1 − ei)A. One also has that Ai is the localisation of A at mi.
For every element a ∈ A we have its minimal polynomial ga ∈ k[X]. Using the theory above

we find for an element a ∈ A the following equivalences

a is a non-unit ⇔ a is a zero-divisor ⇔ ga(0) = 0.

In particular, an element a, which is invertible in A, is already a unit in the algebra generated
by a. We call an element a ∈ A diagonalisable if the minimal polynomial ga is a product
of pairwise coprime separable irreducible polynomials and primary if ga is the power of an
irreducible separable polynomial. The algebra A is said to be diagonalisable resp. primary if all
its elements are.

If k is perfect, we dispose of the (additive) Jordan decomposition. It asserts that any element
a ∈ A is uniquely the sum d + n with d ∈ A diagonalisable and n ∈ A nilpotent. This result can
be derived from the Jordan decomposition over a separable closure by taking Galois invariants.
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Lemma 2.1 A commutative Artinian k-algebra A is local if and only if it is primary.

Proof. We assume first that A is primary and we let a be a non-unit of A. Hence ga(0) = 0 and
consequently ga(X) = Xrf(X) with f(0) 6= 0. As ga is a power of an irreducible polynomial it
can only be equal to Xr, whence a is nilpotent. Consequently, A is local.

Conversely, we have to show that in a local algebra A every element is primary. Since this
is trivial for nilpotent elements, let a ∈ A be a unit and a be its image in the k-algebra A/m,
which is a field extension of k. Thus the minimal polynomial ga ∈ k[X] of a is irreducible.
Moreover we have that ga(a) is in the maximal ideal and thus nilpotent. As consequently the
minimal polynomial of a divides a power of ga, the result follows. �

A decomposition of the k-algebra A into a product
∏n

i=1 Ai together with a representation
ρ : A → Endk(V ), yields a corresponding decomposition V =

⊕n

i=1 Vi by putting Vi := ρ(ei)V ,
where the ei ∈ A are the natural idempotents. More precisely, we have the natural homomor-
phisms Ai = A/(1 − ei)A → End(Vi), a 7→ ρ(a)|Vi

, which provide a factorisation of ρ:

ρ : A ∼=

n
∏

i=1

Ai →
n

∏

i=1

End(Vi) ↪→ End(V ).

In other words, after a suitable choice of basis all matrices will be zero except for blocks on the
diagonal corresponding to Ai → End(Vi).

Such a decomposition of V can for instance be calculated by considering for each maximal
ideal m the sequence

V [m] ⊂ V [m2] ⊂ · · · ⊂ V [mr],

where V [mi] is defined to be the subvector space of those v ∈ V satisfying ρ(m)v = 0 for
all m ∈ m

i. By looking at the natural idempotent ei ∈ A corresponding to the maximal ideal
m = mi, one immediately sees that Vi = ρ(ei)V equals V [mr

i ], where r can be chosen as the
minimal integer such that the sequence of inclusions above becomes stationary. Explicitly, one
has Vi =

⋂

Ker(ρ(g)), where g runs through a set of ideal generators of m
r
i .

If one chooses a basis of V [m], extends it to a basis of V [m2] and so on, one finds that the
blocks of the matrices corresponding to m are (lower) triangular, provided that k = A/m and
that k is perfect.

We also note that V [m] is the biggest subspace of V [mr], on which A acts diagnonalisably,
i.e. if ρ : A → Endk(V [m]) denotes the restriction, then gρ(a) is irreducible for all a ∈ A. We
shall call V [m] the generalised eigenspace corresponding to the maximal ideal m.

A local commutative k-algebra A is said to be Gorenstein if the annihilator a of the maximal
ideal is a simple A-module. This is the case if and only if a is a 1-dimensional A/m-vector
space. Accordingly, we define the Gorenstein defect of the local algebra to be this dimension
minus 1. A commutative algebra is called Gorenstein if all its localisations are. Hence we define
its Gorenstein defect to be the supremum of the Gorenstein defects of the localisations.

The algorithms implemented are easy consequences of the theory outlined above.
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3 Documentation of CommMatAlg

If PATH is the directory in which CommMatAlg.mg is stored, type

Attach("PATH/CommMatAlg.mg");

in order to use the package. We remark that vectors in MAGMA are row vectors. This convention
is adopted below.

3.1 Creation functions

• intrinsic MatrixAlgebra ( L :: SeqEnum ) -> AlgMat

intrinsic MatrixAlgebra ( L :: SeqEnum, S :: Tup ) -> AlgMat

intrinsic MatrixAlgebra ( A :: AlgMat, S :: Tup ) -> AlgMat

Creates the matrix algebra generated by the given data:

– the (commuting) matrices in the list L.

– the restrictions to the stable subspace S (see section on algebra decompositions) of
the (commuting) matrices in the list L.

– the restriction to the stable subspace S of the matrix algebra A.

• intrinsic Transpose ( A :: AlgMat ) -> AlgMat

Given a matrix algebra A, this function creates the transposed matrix algebra.

3.2 Algebra decompositions

Let us assume that we have a matrix algebra A of degree d, i.e. A < End(kd). A decomposi-
tion

∏n

i=1 Ai of A corresponds to a direct sum kd =
⊕n

i=1 Vi, where each k-vector space Vi is
stabilised by A.

Such a decomposition is represented gives rise to a tuple T,S as follows. S is a tuple
<C,D>, where D = C−1 and C is the base change matrix from the standard basis to a basis
{v1,1, . . . , v1,n1

, v2,1, . . . , v2,n2
, . . . , vn,1, . . . , vn,nn

} of V s.t. {vi,1, . . . , vi,ni
} is a basis of Vi. T

is an n-tuple << C1,D1 >, . . . , < Cn,Dn >> with Ci resp. Di corresponding to the rows of C
resp. the columns of C−1 belonging to the i-th subspace Vi. In other words, given an element
of A considered as a matrix M w.r.t. to the standard basis of V , then CiMDi is the block of M
corresponding to the restriction of M to Vi. Vi resp. < Ci,Di > are both called stable subspaces.

Moreover, CiDi is the identity matrix of size the dimension of Vi and DiCi is the idempotent
in End(V ) corresponding to Vi in the given decomposition, i.e. Vi is the image of the idempotent
DiCi.

We allow also that
⊕n

i=1 Vi is a proper subspace of kd. Those may occur in the program
for instance as common eigenspaces. Internally, some complement is used in order to make the
computations work.
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• intrinsic Idempotents ( D :: Tup ) -> SeqEnum, Tup

Given a tuple of stable subspaces D =<< C1,D1 >, . . . , < Cn,Dn >>, this function
returns a list of the idempotents corresponding to the subspaces and a tuple < C,C−1 >,
where C is the base change matrix from the standard basis to a basis for the sum of the
stable subspaces (plus some complement, if necessary).

• intrinsic CommonLowerTriangular ( A :: AlgMat ) -> Tup,Tup

intrinsic LocalDecomposition ( A :: AlgMat ) -> Tup,Tup

Given a matrix algebra A of degree d, which decomposes into n local factors
∏n

i=1 Ai,
these two identical functions decompose kd into

⊕n

i=1 Vi such that A stablilizes each Vi

and such that Ai < End(Vi). More precisely, the decomposition is obtained by for each
maximal ideal mi taking a basis of kd[mi], extending it to a basis of kd[m2

i ] and so on. If
the algebra is defined over the field A/mi, one obtains by this a basis with respect to which
the blocks of the matrices corresponding to mi are lower triangular.

• intrinsic CommonGeneralizedEigenspaces ( A :: AlgMat ) -> Tup

Given a matrix algebra A of degree d, which decomposes into n local factors
∏n

i=1 Ai, this
function computes the subspace

⊕n
i=1 kd[mi] of kd. The vector space kd[mi] is called a gen-

eralised eigenspace. If A is defined over A/mi, then kd[mi] is the simultaneous eigenspace
corresponding to mi.

• intrinsic CommonEigenspaces ( A :: AlgMat ) -> Tup

Given a matrix algebre A of degree d, this function computes the direct sum of all simulta-
neous eigenspaces.

• intrinsic Eigenspaces ( M :: Mtrx ) -> Tup

This function is the same as CommonEigenspaces for the algebra generated by the
matrix M.

• intrinsic RestrictMatrix ( M :: Mtrx, P :: Tup ) -> Mtrx

Given a tuple P =< C,D >, calculates the matrix CMD. For instance, P could correspond
to a stable subspace.

• intrinsic RestrictList ( L :: SeqEnum, P :: Tup ) -> SeqEnum

Applies the function RestrictMatrix to all matrices in the list L.

3.3 Other functions

• intrinsic JordanDecomposition ( M :: Mtrx ) -> Mtrx, Mtrx

Calculates the decomposition M = D+ N with D diagonalisable and N nilpotent.
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• intrinsic GorensteinDefect ( A :: AlgMat ) -> RngIntElt

Returns the Gorenstein defect of the commutative matrix algebra A.

• intrinsic IsGorenstein ( A :: AlgMat ) -> BoolElt

Returns whether the commutative matrix algebra A is Gorenstein, that is has Gorenstein
defect 0.

• intrinsic IsLocalAlgebra ( A :: AlgMat ) -> BoolElt

Returns whether the algebra A is local.

• intrinsic CommonResidueField ( A :: AlgMat ) -> Any

Returns the field generated by the residue fields of the matrix algebra A.

• intrinsic ChangeRingList ( L :: SeqEnum , F :: Rng ) -> SeqEnum

Changes the coefficient ring of all the matrices in the list L to the ring F.

• intrinsic IdealTorsion ( m :: AlgMat ) -> ModTupFld

Given an ideal m in a matrix algebra of degree d over a field F , calculate the sub vector
space of F d consisting of those elements killed by every element of m.

• intrinsic UPO ( A :: AlgMat ) -> RngIntElt

Computes the unipotency order of the matrix algebra A. That is by (my personal) definition
the number maxmCA maximal

(

minn≥0 (mn = (0))
)

.

4 An example session

We assume that the package is stored in the folder PATH. First we attach the package:

> Attach("PATH/CommMatAlg.mg");

We create the full matrix algebra of 4 by 4 matrices over GF(2).

> alg := MatrixAlgebra (GF(2),4);

Next, we create the following three matrices:

> id := alg!1; id;

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

> x := alg![1,1,1,1,0,0,0,0,1,1,0,1,0,0,1,0]; x;

[1 1 1 1]

[0 0 0 0]
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[1 1 0 1]

[0 0 1 0]

> y := alg![1,0,1,1,0,0,0,0,1,1,0,1,0,1,1,0]; y;

[1 0 1 1]

[0 0 0 0]

[1 1 0 1]

[0 1 1 0]

Now we take the matrix algebra generated by these matrices:

> A := MatrixAlgebra([id,x,y]); A;

Matrix Algebra of degree 4 with 3 generators over GF(2)

Let us check whether the algebra is commutative.

> Centre(A) eq A;

true

Its dimension is:

> Dimension(A);

4

Now we generate its local factors.

> L,S := LocalDecomposition(A); #L;

2

There are two of them. The first one is just a copy of F2:

> A1 := MatrixAlgebra(A,L[1]); A1;

Matrix Algebra of degree 1 with 3 generators over GF(2)

The second is more interesting.

> A2 := MatrixAlgebra(A,L[2]); A2;

Matrix Algebra of degree 3 with 3 generators over GF(2)

> Basis(A2);

[

[1 0 0]

[0 1 0]

[0 0 1],

[0 0 0]

[0 0 0]

[1 0 0],

[0 0 0]

[0 0 0]

[0 1 0]

]
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We see that the algebra consists of lower triangular matrices, as it ought to, since the residue field
is the ground field and the algebra was generated by choosing such a basis.

We can also base change the whole algebra to the lower triangular basis:

> B := MatrixAlgebra(A,S); Basis(B);

[

[1 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0],

[0 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1],

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 1 0 0],

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 1 0]

]
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