
Math Prep Camp: Sets and Functions

Winter Term 2020/2021

University of Luxembourg
Prof. Dr. Gabor Wiese

Exercise sheet 1

1. *Membership (1)*

Fill in correctly either \in or \notin :

(a) $-3 \underline{\quad} \mathbb{N}$, $-3 \underline{\quad} \mathbb{Z}$, $-3 \underline{\quad} \mathbb{Q}$, $-3 \underline{\quad} \mathbb{R}$
(b) $\frac{1}{2} \underline{\quad} \mathbb{N}$, $\frac{1}{2} \underline{\quad} \mathbb{Z}$, $\frac{1}{2} \underline{\quad} \mathbb{Q}$, $\frac{1}{2} \underline{\quad} \mathbb{R}$

2. *Sets via enumeration.*

(a) Define via enumeration the set of even integers between 3 and 9.

(b) Define via enumeration the set of all capital letters from A to G (in alphabetic order).

3. *Two important rules.* Which ones of the following sets are equal:

$A := \{a, d, b, a, d\}$, $B := \{a, d, d, a\}$, $C := \{a, d, c, a\}$, $D := \{b, a, d, d\}$,
 $E := \{a, b, c, d\}$, $F := \{d, a, a, d\}$, $G := \{d, a, b\}$.

4. *Sets by properties.*

(a) Define the following set via a property: $\{2, 4, 8, 16, 32, 64, 128, \dots\}$.

(b) Define the following set via a property: $\{-2, -1, 0, 1, 2\}$.

(c) Define the emptyset via a property.

5. *Subsets and equality of sets*

If possible, fill in correctly one of the symbols: $=$, \subseteq , \supseteq .

- (a) $\mathbb{N} ___ \mathbb{Z}$
- (b) $\{1, 5, 3, 4\} ___ \{4, 1, 5\}$
- (c) $\{1, 5, 3\} ___ \{4, 1, 5\}$
- (d) $\emptyset ___ \{0\}$
- (e) $\emptyset ___ \{n \in \mathbb{N} \mid n < 0\}.$

6. *Operations on sets*

Let $A := \{a, d, g\}$, $B := \{e, b, f\}$, $C := \{a, b, c\}$. Compute:

- (a) $A \cup B$
- (b) $A \cup C$
- (c) $A \cup B \cup C$
- (d) $A \cap B$
- (e) $A \cap C$
- (f) $A \setminus C$
- (g) Which of the unions $A \cup B$, $A \cup C$, $B \cup C$ is disjoint?

7. *Cartesian product*

Let $A := \{a, d, g\}$, $B := \{e, b, f\}$. Write by enumeration $A \times B$.

8. *Power sets (I)*

List the elements of $\mathcal{P}(\{0, 1, 2\})$.

9. Membership (2)

Fill in correctly either \in or \notin :

(a) Let $E = \{n \in \mathbb{N} \mid 3 \text{ divides } n\}$:

$$3 __ E, 2 __ E, -3 __ E, \frac{1}{3} __ E$$

(b) $\emptyset __ \{\emptyset, \{\emptyset\}\}$.

(c) $4 __ \{\{4\}\}$.

10. Equality of sets

Which of the following sets are equal?

$$A := \{1, 5, 9 - 2, 3\},$$

$$B := \{x \in \mathbb{N} \mid 1 \leq x < 7 \wedge (2 \text{ does not divide } x)\},$$

$$C := (\{x \in \mathbb{R} \mid x \geq 1\} \setminus \{2, 4, 6\}) \cap \{x \in \mathbb{R} \mid x < 8\},$$

$$D := \{x \in \mathbb{N} \mid 1 \leq x \leq 8 \wedge (2 \text{ does not divide } x)\},$$

$$E := \{x \in \mathbb{R} \mid 1 \leq x \leq 8 \wedge x \notin \{n \in \mathbb{N} \mid n \text{ is even}\}\}.$$

11. Subsets and equality of sets (2)

Consider the following sets:

$$A = \{1, 2, 5\}, B = \{\{1, 2\}, 5\}, C = \{\{1, 2, 5\}\}, D = \{\emptyset, 1, 2, 5\}, \\ E = \{5, 1, 2\}, F = \{\{1, 2\}, \{5\}\}, G = \{\{1, 2\}, \{5\}, 5\}, H = \{5, \{1\}, \{2\}\}.$$

(a) Which sets are related by equality and which by inclusion?

(b) Compute the cardinality of each of these sets.

(c) Determine $A \cap B$, $G \cup H$ and $E \setminus G$.

12. Complements

Consider the following four subsets of \mathbb{N} :

$$I = \{1, 2, 3, 4, 5, 6, 7\}, J = \{1, 3, 5, 7\}, K = \{2, 4, 6\}.$$

(a) Determine $I \setminus J$ and $I \setminus K$ (i.e. the complements of J and K in I).

(b) The symmetric difference of two sets A and B , denoted by $A \Delta B$, is the set of elements that are either in A or in B , but not in $A \cap B$. Determine $I \Delta J$ and $J \Delta K$.

13. Intersection, union, complement, etc.

Let

$$A = \{n \in \mathbb{N} \mid n \text{ is divisible by } 2\} \text{ and } B = \{n \in \mathbb{N} \mid n \text{ is divisible by } 5\}.$$

(a) Describe the intersection $A \cap B$.

(b) Describe the union $A \cup B$.

(c) Describe the complement $B \setminus A$.

(d) Describe the complement $A \setminus B$.

(e) Give the cardinality of $[12, 27] \cap A$ and of $[12, 27] \cap B$.

14. *Power sets (2)*

List the elements of:

- (a) $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- (b) $\mathcal{P}(\mathcal{P}(\{1, 2\}))$.

15. *Proofs of equivalences involving sets.*

Let A and B be sets. Prove:

- (a) $A \subseteq B \iff A = A \cap B \iff B = A \cup B$;
- (b) $A \cap B = \emptyset \iff A \setminus B = A$.

16. *More proofs of equivalences involving sets.*

Let E be a set and A, B subsets of E . Prove:

- (a) $A \cap B = \emptyset \iff B \subseteq E \setminus A \iff A \subseteq E \setminus B$;
- (b) $A \cup B = E \iff E \setminus A \subseteq B \iff E \setminus B \subseteq A$.

17. Let S be a set and let $A \subseteq S$ and $B \subseteq S$ be subsets. Consider the following statements:

- (1) $A \sqcup (S \setminus A) = S$
- (2) $S \setminus (S \setminus A) = A$
- (3) $A \subseteq B \iff (S \setminus B) \subseteq (S \setminus A)$
- (4) $S \setminus (A \cup B) = (S \setminus A) \cap (S \setminus B)$
- (5) $S \setminus (A \cap B) = (S \setminus A) \cup (S \setminus B)$

Let $x \in S$ and let a be the assertion $x \in A$ and b be the assertion $x \in B$.

For each of the above statements, translate it into a statement from logic involving the assertions a and b , which you should recognise as a well-known rule from logic.