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Modular forms

There are five fundamental operations: addition, subtraction,
multiplication, division, and modular forms.

Martin Eichler (1912-1992)

J’aime bien les formes modulaires. [...] C’est un sujet sur lequel on
n’a jamais de mauvaises surprises: si l’on devine un énoncé, c’est
un énoncé encore plus beau qui est vrai !

Jean-Pierre Serre (*1926)
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Arithmetic significance of coefficients of modular forms
Examples (19th century):

Gotthold Eisenstein (1823-1852) Carl Jacobi (1804-1851)

Eisenstein series

Coefficients: Special zeta-value and divisor function.

Matching Jacobi’s Theta-series with Eisenstein series, one gets:

#{x ∈ Z4 | x2
1 + x2

2 + x2
3 + x2

4 = n} = 8
∑

4-d |n,1≤d≤n
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Another view on Eisenstein series.

Recall: Ek = (k−1)!
(2πi)k · ζ(k) +

∑∞
n=1 σk−1(n) · qn.

Fix a prime `.

`-adic cyclotomic character: χ(Frobp) = p.
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Another view on Eisenstein series.

Recall: Ek = (k−1)!
(2πi)k · ζ(k) +

∑∞
n=1 σk−1(n) · qn.

Fix a prime `.

`-adic cyclotomic character: χ(Frobp) = p.

Consider the reducible semi-simple Galois representation

ρ := 1⊕ χk−1 : GQ → GL2(Zp), ρ(σ) =
(

1 0
0 χk−1(σ)

)
.

In particular,

ρ(Frobp) =
(

1 0
0 χk−1(Frobp)

)
=
(

1 0
0 pk−1

)
.

Then Tr(ρ(Frobp)) = 1+ pk−1 = σk−1(p).

This is the p-th coefficient of the Eisenstein series of weight k .
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Eisenstein series: Tr(ρ(Frobp)) = 1+ pk−1 = σk−1(p).

The Eisenstein series example is a very special case of a general
theorem of Shimura and Deligne:

Let f =
∑∞

n=0 anqn be a Hecke eigenform (of level N, Dirichlet
character ψ and weight k) with a1 = 1. Let ` be a prime. Then
there exists a Galois representation

ρf : GQ → GL2(Z`)

which is unramified outside N` and satisfies for all primes p - N`

Tr(ρ(Frobp)) = ap and det(ρ(Frobp)) = ψ(p)pk−1.
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A concrete (baby) example.
I Let f =

∑∞
n=1 anqn a particular modular form with Galois

representation ρ = ρf .

I Let P(X ) = X 6 − 6X 4 + 9X 2 + 23. The absolute Galois group
of its splitting field is the kernel of ρf .
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Arithmetic significance of coefficients of modular forms

A concrete (baby) example.
I Let f =

∑∞
n=1 anqn a particular modular form with Galois

representation ρ = ρf .
I Let P(X ) = X 6 − 6X 4 + 9X 2 + 23. The absolute Galois group

of its splitting field is the kernel of ρf .

P mod p Frobp ρ(Frobp) trace ap

()()()()()() identity ( 1 0
0 1 ) 2 2

()() 2 3-cycles
(
ζ 0
0 ζ2

)
,
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ζ2 0
0 ζ

)
, ζ = e2πi/3 −1 −1

()()() 3 2-cycles ( 0 1
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(II) What information is contained in the Galois representation?
(III) In how far are Galois representations governed by modular

forms?



Arithmetic significance of coefficients of modular forms

Natural questions:
(I) How are the ap distributed?
(II) What information is contained in the Galois representation?

(III) In how far are Galois representations governed by modular
forms?



Arithmetic significance of coefficients of modular forms

Natural questions:
(I) How are the ap distributed?
(II) What information is contained in the Galois representation?
(III) In how far are Galois representations governed by modular

forms?



Distribution of coefficients

Fix a Hecke eigenform f of weight k (say, ψ = 1).

(1) Distribution modulo `m.

Chebotarev: The proportion of ρf (Frobp) mod `m falling into a
given conjugacy class C equals #C

#G , where G is the image of the
Galois representation ρf modulo `m (a finite group).

(2) ‘Real distribution’.

Normalise the coefficients bp =
ap

p(k−1)/2 ∈ [−2, 2].

The normalised coefficients are equidistributed with respect to the
Sato-Tate measure. Proved very recently by Taylor, etc. (Hard).
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Distribution of coefficients

Fix a Hecke eigenform f of weight k (say, ψ = 1).

(3) Lang-Trotter.

Say f comes from a non-CM elliptic curve.

The set {p | ap = 0} has density 0 and behaves asymptotically like
c
√

x
log(x) for some constant c > 0.

(4) Lang-Trotter-like question.

Say f is of weight 2 (without inner twists) with coefficients in a
quadratic field Q(

√
D). The set {p | ap ∈ Q} has density 0.

How does it behave asymptotically?
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Distribution of coefficients
Fix a prime number p and consider a sequence of Hecke eigenforms
fn such that weight+level tend to infinity.

(2) ‘Real distribution’.

The normalised coefficients bp(fn) (p fixed and n running!) are
equidistributed.
This is a theorem of Serre (1997)

(1) Distribution modulo `m.

What can one say about ap(fn) mod `m for p fixed and running n?

Related: Let f run through all Hecke eigenforms of weight 2 and all
prime levels. Are the mod ` reductions of all the coefficients of all
these forms contained in a finite extension of F`?

I guess ‘no’, but I cannot prove it.

Computations carried out with Marcel Mohyla suggest that the
maximum residue degree in level q grows linearly with q.
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Arithmetic information in ρf

The Galois representation ρf attached to f explains arithmetic
significance of the coefficients. What else?

Theorem. If f is of weight one, prime-to-` level and geometrically
defined over F`, then ρf is unramified at `. Moreover, this
characterises weight one among all weights (at least if ` > 2).

The theorem is trivial for Hecke eigenforms that are reductions of
holomorphic forms (because those have attached Artin
representations, and there is not even any ‘`’).

However, not all parallel weight one Hecke eigenforms that are
geometrically defined over F` lift to holomorphic forms.
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Arithmetic information in ρf

Theorem (Dimitrov, W.). Let f be a Hilbert modular eigenform
(over any totally real field F ) of parallel weight one, geometrically
defined over F`, of level prime to `. Then the attached Galois
representation

ρf : GF = Gal(F/F )→ GL2(F`)

is unramified above `.

It is believed and partially proved that this characterises parallel
weight one forms among all Hilbert Hecke eigenforms.

The theorem is again trivial for Hilbert modular forms that are
reductions of holomorphic forms (because those have attached
Artin representations, and there is not even any ‘`’).

Are there parallel weight one Hilbert eigenforms that are
geometrically defined over F` which do not lift to holomorphic
forms?
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Arithmetic information coming from modular forms

Theorem (Khare, Wintenberger, Deligne, Shimura). We have
a correspondence

{f =
∑∞

n=0 anqn | f Hecke eigenform }

l f 7→ ρf

{ρ : GQ → GL2(F`) | ρ odd, semi-simple }.

For Hilbert modular forms, such a correspondence is conjectured.

Modular forms are explicitly computable. This makes Galois
representations computationally accessible.

Standard methods work for weights ≥ 2. Weight 1 is different!
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Thank you for your attention!


