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Plan

(1) Arithmetik von Koeffizientenkorpern von Familien von
Modulformen. Einflhrung.

(Il) Berechnungen aus der Diplomarbeit von Marcel
Mohyla und daraus resultierende Fragen.
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Koeffizientenkorper

Sei f = f(z) =Y 22 a, ™ eine Neuform (von Primstufe).

n=1

Koeffizientenkdrper von f: Q¢ = Q(a, | n € N).
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Koeffizientenkorper

Sei f = f(z) =>.72 a, ™ eine Neuform (von Primstufe).

Koeffizientenkdrper von f: Q¢ = Q(a, | n € N).

® Qy ist ein Zahlkorper.
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Koeffizientenkorper

Sei f = f(z) =Y 22 a, ™ eine Neuform (von Primstufe).

n=1

Koeffizientenkdrper von f: Q¢ = Q(a, | n € N).

o Qy ist ein Zahlkorper.

# [st das Gewicht von f gleich 2, dann ist Q, der

QuotientenkOrper des Endomorphismenrings einer
abelschen Varietat.
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Koeffizientenkorper

Sei f = f(z) =Y 22 a, ™ eine Neuform (von Primstufe).

n=1

Koeffizientenkdrper von f: Q¢ = Q(a, | n € N).

o Qy ist ein Zahlkorper.

# |st das Gewicht von f gleich 2, dann ist Q, der
QuotientenkOrper des Endomorphismenrings einer
abelschen Varietat.

Was weifd man von der Arithmetik von Q,?
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Koeffizientenkorper

Was wells man von der Arithmetik von Q¢ = Q(a, | n € N)?
Sei p Primzahl. Koeffizientenkérper von f modulo p:

Fp,f = Fp(%;n S N)

fiir eine WahlvonZ =" Fy.
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Koeffizientenkorper

Was wells man von der Arithmetik von Q¢ = Q(a, | n € N)?
Sei p Primzahl. Koeffizientenkérper von f modulo p:

Fp’f — Fp(%;n c N)

fiir eine WahlvonZ =" Fy.

# Falls p nicht den Index von Z[a,, | n € N] im Ring der
ganzen Zahlen von Q¢ teilt, dann ist I¥,,  der

Restklassenkorper von Q¢ fur ein Primideal Uber p.
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Koeffizientenkorper

Was wells man von der Arithmetik von Q¢ = Q(a, | n € N)?
Sei p Primzahl. Koeffizientenkérper von f modulo p:

Fp’f — Fp(%;n c N)

fiir eine WahlvonZ =" Fy.

# Falls p nicht den Index von Z[a,, | n € N] im Ring der
ganzen Zahlen von Q¢ teilt, dann ist I¥,,  der

Restklassenkorper von Q¢ fur ein Primideal Uber p.

»® T, ¢ hangt nur von der Gal(F,/F,)-Konjugationsklasse
f] von f ab. Wir schreiben: T, 4.
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Koeffizientenkorper

Was wells man von der Arithmetik von Q¢ = Q(a, | n € N)?
Sei p Primzahl. Koeffizientenkérper von f modulo p:

Fp’f — Fp(%;n c N)

fiir eine WahlvonZ =" Fy.

# Falls p nicht den Index von Z[a,, | n € N] im Ring der
ganzen Zahlen von Q¢ teilt, dann ist I¥,,  der

Restklassenkorper von Q¢ fur ein Primideal Uber p.

»® T, ¢ hangt nur von der Gal(F,/F,)-Konjugationsklasse
f] von f ab. Wir schreiben: T, 4.

Warum ist F, s wichtig?

INSTITUT FUR EXPERIMENTELLE MATHEMATIK Zur Asymptotik von Modulformen - Wolken und deren Grenzen — p.4/43



Koeffizientenkorper mod p

Warum ist ¥, s wichtig?

# Shimura/Deligne: Es gibt eine ungerade
Galois-Darstellung

pr - Gal(Q/Q) — GLa(F, 1),
deren Arithmetik in | f] "gespeichert” ist.
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Koeffizientenkorper mod p

Warum ist ¥, s wichtig?

# Ribet: Fur fast alle p gibt es einen total imaginaren
Zahlkorper K, dessen Galois-Gruppe Gal(K,/Q)
gleich PSLy(IF,, (4)) or PGLa(IF,, (4)) ISt.

Die Arithmetik von K, ist in [f] "gespeichert”.
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Koeffizientenkorper mod p

Warum ist ¥, s wichtig?

# Ribet: Fur fast alle p gibt es einen total imaginaren
Zahlkorper K, dessen Galois-Gruppe Gal(K,/Q)

gleich PSLy(IF,, (4)) or PGLa(IF,, (4)) ISt.

Die Arithmetik von K, ist in [f] "gespeichert”.
# Serre’s Modularitatsvermutung (Theorem von Khare,
Wintenberger, Kisin):

Jeder total imaginare Zahlkorper mit Galois-Gruppe
PSLy(IF) oder PGL2(F) mit einem endlichen Korper F
entsteht auf diese Weise.
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Koeffizientenkorper mod p

Was wissen wir von Qy und ¥, 111?

# In konkreten Fallen: Berechnen von Qy und F,, 4 Ist
einfach.
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Koeffizientenkorper mod p

Was wissen wir von Qy und ¥, 111?

» In konkreten Fallen: Berechnen von Qy und F,, 4 ist
einfach.

® Jede Neuform hat eine Stufe N € N und ein Gewicht
k € N.

® Kennt man aber nur Stufe und Gewicht, dann welifs man
nicht viel iber Q und F,, .
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Koeffizientenkorper mod p

Was wissen wir von Qy und ¥, 111?

» In konkreten Fallen: Berechnen von Qy und F,, 4 ist
einfach.

® Jede Neuform hat eine Stufe N € N und ein Gewicht
k € N.

® Kennt man aber nur Stufe und Gewicht, dann welifs man
nicht viel iber Q und F,, .

Kann man etwas "Asymptotisches" fur variierendes f
sagen?
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Koeffizientenkorper mod p

Kann man etwas "Asymptotisches” fur variierendes f
sagen?
Wir werden folgende Punkte betrachten:

® Summe der Grade [F, 4 : Fp| fur alle [f] in gegebener
Stufe und Gewicht.

Ausartung der Mod-p-Hecke-Algebren.
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Koeffizientenkorper mod p

Kann man etwas "Asymptotisches” fur variierendes f
sagen?
Wir werden folgende Punkte betrachten:

® Summe der Grade [F, 4 : Fp| fur alle [f] in gegebener
Stufe und Gewicht.

Ausartung der Mod-p-Hecke-Algebren.

» Mittlerer Grad [F), 4 : IF,)| Uber alle [f] in gegebener
Stufe und Gewicht.
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Koeffizientenkorper mod p

Kann man etwas "Asymptotisches” fur variierendes f
sagen?
Wir werden folgende Punkte betrachten:

® Summe der Grade [F, 4 : Fp| fur alle [f] in gegebener
Stufe und Gewicht.

Ausartung der Mod-p-Hecke-Algebren.

» Mittlerer Grad [F), 4 : IF,)| Uber alle [f] in gegebener
Stufe und Gewicht.

» Maximaler Grad [F, ¢ : F,] unter allen | f] in gegebener
Stufe und Gewicht.
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Ausartung mod p

Wir betrachten Primstufe NV und ein Gewicht k.

Wir definieren

dimg (N) = (Anzahl Neuformen in Stufe N und Gewicht k).
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Ausartung mod p

Wir betrachten Primstufe NV und ein Gewicht k.

Wir definieren

dimg (N) = (Anzahl Neuformen in Stufe N und Gewicht k).

Summe der Restklassengrade

degi” (N) =Y [F, () : Fyl.
f]

wobei [f] die Gal(F,/F,)-Konjugationsklassen der Neufor-

men In Stufe NV und Gewicht k& durchlauft.
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Ausartung mod p

def

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(die Mod-p-Hecke-Algebra ist nicht ausgeartet) <
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Ausartung mod p

def

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(die Mod-p-Hecke-Algebra ist nicht ausgeartet) <

# es gibt keine Kongruenz modulo p zwischen zwel
Neuformen von Stufe N und Gewicht £ und
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Ausartung mod p

def

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(die Mod-p-Hecke-Algebra ist nicht ausgeartet) <

# es gibt keine Kongruenz modulo p zwischen zwel
Neuformen von Stufe N und Gewicht £ und

» die Koeffizientenkorper Q; sind bei p unverzweigt flr
alle Neuformen f in Stufe N und Gewicht £ und
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Ausartung mod p

def

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(die Mod-p-Hecke-Algebra ist nicht ausgeartet) <

# es gibt keine Kongruenz modulo p zwischen zwel
Neuformen von Stufe N und Gewicht £ und

» die Koeffizientenkorper Q; sind bei p unverzweigt flr
alle Neuformen f in Stufe N und Gewicht £ und

® ptindex Zy = Zlay(f) | n € N| In den ganzen Zahlen
von Q¢ flr alle Neuformen f in Stufe NV und Gewicht k.
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Ausartung mod p

def

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(die Mod-p-Hecke-Algebra ist nicht ausgeartet) <

# es gibt keine Kongruenz modulo p zwischen zwel
Neuformen von Stufe N und Gewicht £ und

» die Koeffizientenkorper Q; sind bei p unverzweigt flr
alle Neuformen f in Stufe N und Gewicht £ und

® ptindex Zy = Zlay(f) | n € N| In den ganzen Zahlen
von Q¢ flr alle Neuformen f in Stufe NV und Gewicht k.

Man kdnnte vermuten, dass strikte Ungleichheit
dimg(N) > deg,(f)(N) ein seltenes Phanomen ist.

Ist das wahr?
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Ausartung mod p

Wir fixieren eine Primzahl p und ein Gewicht k.

Wir zeichnen deg](f)(N) als Funktion von dimg (N) fur alle
Primstufen N < 2000 (far & = 2).

Zunachst flr ungerades p.
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Ausartung mod p
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Ausartung mod p

x*0.991183
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Dimension k=2,p=5
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Ausartung mod p
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Ausartung mod p
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Dimension k=2,p=11
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Ausartung mod p
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Ausartung mod p
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Ausartung mod p
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Ausartung mod p
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Ausartung mod p

Jetzt p = 2.
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Ausartung mod p
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Ausartung mod p
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Ausartung mod p

X*0.358230

Sum of Residue Degrees

Dimension k=6,p=2
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Ausartung mod p

Frage: Fixiere eine Primzahl p > 2 und ein Gewicht & > 2.
Gibtes0 < a<1undC > 0, so dass

deg!” (N) > adimy,(N) — C 2
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Ausartung mod p

Frage: Fixiere eine Primzahl p > 2 und ein Gewicht & > 2.
Gibtes0 < a<1undC > 0, so dass

deg!” (N) > adimy,(N) — C 2

Frage: Fixiere ein Gewicht £ > 2.
GibtesO0<a<g<1lundC,D > 0, so dass

Bdimg(N) + D > deg\” (N) > ardimy(N) — C 2
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Grade von Koeffizientenkorpern

Theorem (Serre). Nehmen an: N,,, + k,,, — oo flr m — oc.
Dann ist die Menge
{lQf : Q] | f Neuform von Stufe N,,, Gewicht k,, ein m}

unbeschrankt.
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Grade von Koeffizientenkorpern

Theorem (Serre). Nehmen an: N,,, + k,,, — oo flr m — oc.
Dann ist die Menge

{lQf : Q] | f Neuform von Stufe N,,, Gewicht k,, ein m}
unbeschrankt.

Im Allgemeinen weil3 ich nicht, ob die Menge

{[Fp, s : Fp] | f Neuform von Stufe N,,, Gewicht k,, ein m}

unbeschrankt ist. Die Falle, wenn N, eine grolie
Primpotenz enthalten, konnen mittels Verzweigung
behandelt werden.
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Grade von Koeffizientenkorpern

Theorem (Serre). Nehmen an: N,,, + k,,, — oo flr m — oc.
Dann ist die Menge
{lQf : Q] | f Neuform von Stufe N,,, Gewicht k,, ein m}

unbeschrankt.

Im Allgemeinen weil3 ich nicht, ob die Menge
{[Fp, s : Fp] | f Neuform von Stufe N,,, Gewicht k,, ein m}

unbeschrankt ist. Die Falle, wenn N, eine grolie
Primpotenz enthalten, konnen mittels Verzweigung
behandelt werden.

Wie verhalten sich die [F, s : Fp], wenn £ fixiert ist und N
die Primzahlen durchlauft?
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Grade von Koeffizientenkorpern

Wir definieren:

maxép) (N) = max[f] [Fp,[f] . Fp]
maximaler Grad der Koeffizientenkorper mod p.

Hierbei durchlauft [f] die Gal(F,/F,)-Konjugiertenklassen
von Neuformen in Stufe N und Gewicht k.
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Grade von Koeffizientenkorpern

Wir definieren:
maxép) (N) = max[f] [Fp,[f] . Fp]
maximaler Grad der Koeffizientenkorper mod p.

Hierbei durchlauft [f] die Gal(F,/F,)-Konjugiertenklassen
von Neuformen in Stufe N und Gewicht k.

Kann max,(f)(N) durch Funktionen in dimg(/N) beschrankt

werden?
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Grade von Koeffizientenkorpern

Fixiere p und k£ = 2.
Wir raten eine Abhangigkeit der Form

max” (N) ~ C(dim(N))".

Wir zeichnen log(max ) (V) als Funktion von log(dim;(N))
far die Primzahlen N < 2000.

Bemerkung. NImmt man statt des maximal Grades den mit-

tleren Grad, dann sehen die Graphen ganz ahnlich aus.
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Grade von Koeffizientenkorpern
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Grade von Koeffizientenkorpern

-0.205983 + x *0.833940
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Grade von Koeffizientenkorpern

-0.404973 + x * 0.866407 ——
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Grade von Koeffizientenkorpern

-0.398383 + x * 0.868597
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Grade von Koeffizientenkorpern

-0.590970 + x * 0.906161 ——
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Grade von Koeffizientenkorpern

-0.608967 + x * 0.917626 ——
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Grade von Koeffizientenkorpern

Jetzt £ = 4.
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Grade von Koeffizientenkorpern

-1.281886 + x * 0.777429 ———
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Grade von Koeffizientenkorpern

-0.680725 + x * 0.776524 ———
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Grade von Koeffizientenkorpern

-0.267688 + x * 0.833341
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Grade von Koeffizientenkorpern

-0.585422 + x * 0.907441 ——
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Grade von Koeffizientenkorpern

Jetzt k£ = 6.
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Grade von Koeffizientenkorpern

-1.249466 + x * 0.707720 ———
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Grade von Koeffizientenkorpern

-0.862598 + x * 0.721713 ———
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Grade von Koeffizientenkorpern

Frage: Fixiere p und ein Gewicht k£ > 2.
GibtesO0<a<g<1lundC,D > 0, so dass

D dimy(N)? > max!” (N) > C dimy,(N)* 2
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Grade von Koeffizientenkorpern

Frage: Fixiere p und ein Gewicht k£ > 2.
GibtesO0<a<g<1lundC,D > 0, so dass

D dimy(N)? > max!” (N) > C dimy,(N)* 2

Die gleichen Fragen stellen wir auch fur den mittleren Grad.
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Danke!
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