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Plan

(I) Arithmetik von Koeffizientenkörpern von Familien von
Modulformen. Einführung.

(II) Berechnungen aus der Diplomarbeit von Marcel
Mohyla und daraus resultierende Fragen.
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Koeffizientenkörper

Sei f = f(z) =
∑

∞

n=1 an e2πinz eine Neuform (von Primstufe).

Koeffizientenkörper von f : Qf = Q(an | n ∈ N).
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Koeffizientenkörper

Sei f = f(z) =
∑

∞

n=1 an e2πinz eine Neuform (von Primstufe).

Koeffizientenkörper von f : Qf = Q(an | n ∈ N).

Qf ist ein Zahlkörper.

Ist das Gewicht von f gleich 2, dann ist Qf der
Quotientenkörper des Endomorphismenrings einer
abelschen Varietät.
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Koeffizientenkörper

Sei f = f(z) =
∑

∞

n=1 an e2πinz eine Neuform (von Primstufe).

Koeffizientenkörper von f : Qf = Q(an | n ∈ N).

Qf ist ein Zahlkörper.

Ist das Gewicht von f gleich 2, dann ist Qf der
Quotientenkörper des Endomorphismenrings einer
abelschen Varietät.

Was weiß man von der Arithmetik von Qf?
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Koeffizientenkörper
Was weiß man von der Arithmetik von Qf = Q(an | n ∈ N)?

Sei p Primzahl. Koeffizientenkörper von f modulo p:

Fp,f = Fp(an; n ∈ N)

für eine Wahl von Z
x7→x
։ Fp.
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Koeffizientenkörper
Was weiß man von der Arithmetik von Qf = Q(an | n ∈ N)?

Sei p Primzahl. Koeffizientenkörper von f modulo p:

Fp,f = Fp(an; n ∈ N)

für eine Wahl von Z
x7→x
։ Fp.

Falls p nicht den Index von Z[an | n ∈ N] im Ring der
ganzen Zahlen von Qf teilt, dann ist Fp,f der
Restklassenkörper von Qf für ein Primideal über p.
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Koeffizientenkörper
Was weiß man von der Arithmetik von Qf = Q(an | n ∈ N)?

Sei p Primzahl. Koeffizientenkörper von f modulo p:

Fp,f = Fp(an; n ∈ N)

für eine Wahl von Z
x7→x
։ Fp.

Falls p nicht den Index von Z[an | n ∈ N] im Ring der
ganzen Zahlen von Qf teilt, dann ist Fp,f der
Restklassenkörper von Qf für ein Primideal über p.

Fp,f hängt nur von der Gal(Fp/Fp)-Konjugationsklasse
[f ] von f ab. Wir schreiben: Fp,[f ].
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Koeffizientenkörper
Was weiß man von der Arithmetik von Qf = Q(an | n ∈ N)?

Sei p Primzahl. Koeffizientenkörper von f modulo p:

Fp,f = Fp(an; n ∈ N)

für eine Wahl von Z
x7→x
։ Fp.

Falls p nicht den Index von Z[an | n ∈ N] im Ring der
ganzen Zahlen von Qf teilt, dann ist Fp,f der
Restklassenkörper von Qf für ein Primideal über p.

Fp,f hängt nur von der Gal(Fp/Fp)-Konjugationsklasse
[f ] von f ab. Wir schreiben: Fp,[f ].

Warum ist Fp,[f ] wichtig?
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Koeffizientenkörper mod p

Warum ist Fp,[f ] wichtig?

Shimura/Deligne: Es gibt eine ungerade
Galois-Darstellung

ρ[f ] : Gal(Q/Q) → GL2(Fp,[f ]),

deren Arithmetik in [f ] ”gespeichert“ ist.
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Koeffizientenkörper mod p

Warum ist Fp,[f ] wichtig?

Ribet: Für fast alle p gibt es einen total imaginären
Zahlkörper Kf,p, dessen Galois-Gruppe Gal(Kf,p/Q)

gleich PSL2(Fp,[f ]) or PGL2(Fp,[f ]) ist.

Die Arithmetik von Kf,p ist in [f ] ”gespeichert“.
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Koeffizientenkörper mod p

Warum ist Fp,[f ] wichtig?

Ribet: Für fast alle p gibt es einen total imaginären
Zahlkörper Kf,p, dessen Galois-Gruppe Gal(Kf,p/Q)

gleich PSL2(Fp,[f ]) or PGL2(Fp,[f ]) ist.

Die Arithmetik von Kf,p ist in [f ] ”gespeichert“.

Serre’s Modularitätsvermutung (Theorem von Khare,
Wintenberger, Kisin):

Jeder total imaginäre Zahlkörper mit Galois-Gruppe
PSL2(F) oder PGL2(F) mit einem endlichen Körper F
entsteht auf diese Weise.
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Koeffizientenkörper mod p

Was wissen wir von Qf und Fp,[f ]?

In konkreten Fällen: Berechnen von Qf und Fp,[f ] ist
einfach.
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Koeffizientenkörper mod p

Was wissen wir von Qf und Fp,[f ]?

In konkreten Fällen: Berechnen von Qf und Fp,[f ] ist
einfach.

Jede Neuform hat eine Stufe N ∈ N und ein Gewicht
k ∈ N.

Kennt man aber nur Stufe und Gewicht, dann weiß man
nicht viel über Qf und Fp,[f ].

Zur Asymptotik von Modulformen - Wolken und deren Grenzen – p.7/43
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In konkreten Fällen: Berechnen von Qf und Fp,[f ] ist
einfach.

Jede Neuform hat eine Stufe N ∈ N und ein Gewicht
k ∈ N.

Kennt man aber nur Stufe und Gewicht, dann weiß man
nicht viel über Qf und Fp,[f ].

Kann man etwas ”Asymptotisches“ für variierendes f
sagen?
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Koeffizientenkörper mod p

Kann man etwas ”Asymptotisches“ für variierendes f
sagen?

Wir werden folgende Punkte betrachten:

Summe der Grade [Fp,[f ] : Fp] für alle [f ] in gegebener
Stufe und Gewicht.

Ausartung der Mod-p-Hecke-Algebren.
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Kann man etwas ”Asymptotisches“ für variierendes f
sagen?

Wir werden folgende Punkte betrachten:

Summe der Grade [Fp,[f ] : Fp] für alle [f ] in gegebener
Stufe und Gewicht.

Ausartung der Mod-p-Hecke-Algebren.

Mittlerer Grad [Fp,[f ] : Fp] über alle [f ] in gegebener
Stufe und Gewicht.
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Koeffizientenkörper mod p

Kann man etwas ”Asymptotisches“ für variierendes f
sagen?

Wir werden folgende Punkte betrachten:

Summe der Grade [Fp,[f ] : Fp] für alle [f ] in gegebener
Stufe und Gewicht.

Ausartung der Mod-p-Hecke-Algebren.

Mittlerer Grad [Fp,[f ] : Fp] über alle [f ] in gegebener
Stufe und Gewicht.

Maximaler Grad [Fp,[f ] : Fp] unter allen [f ] in gegebener
Stufe und Gewicht.
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Ausartung mod p

Wir betrachten Primstufe N und ein Gewicht k.

Wir definieren

dimk(N) = (Anzahl Neuformen in Stufe N und Gewicht k).
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Ausartung mod p

Wir betrachten Primstufe N und ein Gewicht k.

Wir definieren

dimk(N) = (Anzahl Neuformen in Stufe N und Gewicht k).

Summe der Restklassengrade

deg
(p)
k (N) =

∑

[f ]

[Fp,[f ] : Fp],

wobei [f ] die Gal(Fp/Fp)-Konjugationsklassen der Neufor-

men in Stufe N und Gewicht k durchläuft.
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Ausartung mod p

Theorem. dimk(N) = deg
(p)
k (N)

def
=

∑

[f ][Fp,[f ] : Fp]

(die Mod-p-Hecke-Algebra ist nicht ausgeartet) ⇔
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Ausartung mod p

Theorem. dimk(N) = deg
(p)
k (N)

def
=

∑

[f ][Fp,[f ] : Fp]

(die Mod-p-Hecke-Algebra ist nicht ausgeartet) ⇔

es gibt keine Kongruenz modulo p zwischen zwei
Neuformen von Stufe N und Gewicht k und

die Koeffizientenkörper Qf sind bei p unverzweigt für
alle Neuformen f in Stufe N und Gewicht k und

p ∤ Index Zf = Z[an(f) | n ∈ N] in den ganzen Zahlen
von Qf für alle Neuformen f in Stufe N und Gewicht k.
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Ausartung mod p

Theorem. dimk(N) = deg
(p)
k (N)

def
=

∑

[f ][Fp,[f ] : Fp]

(die Mod-p-Hecke-Algebra ist nicht ausgeartet) ⇔

es gibt keine Kongruenz modulo p zwischen zwei
Neuformen von Stufe N und Gewicht k und

die Koeffizientenkörper Qf sind bei p unverzweigt für
alle Neuformen f in Stufe N und Gewicht k und

p ∤ Index Zf = Z[an(f) | n ∈ N] in den ganzen Zahlen
von Qf für alle Neuformen f in Stufe N und Gewicht k.

Man könnte vermuten, dass strikte Ungleichheit

dimk(N) > deg
(p)
k (N) ein seltenes Phänomen ist.

Ist das wahr?
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Ausartung mod p

Wir fixieren eine Primzahl p und ein Gewicht k.

Wir zeichnen deg
(p)
k (N) als Funktion von dimk(N) für alle

Primstufen N ≤ 2000 (für k = 2).

Zunächst für ungerades p.
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Ausartung mod p
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Dimension                 k = 2, p = 3

x * 0.990097
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Ausartung mod p
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Dimension                 k = 2, p = 5

x * 0.991183
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Ausartung mod p
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Dimension                 k = 2, p = 7

x * 0.995265
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Ausartung mod p
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Dimension                 k = 2, p = 11

x * 0.995979
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Ausartung mod p
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Dimension                 k = 2, p = 31

x * 0.999248
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Ausartung mod p
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Dimension                 k = 2, p = 97

x * 0.999889
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Ausartung mod p
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Dimension                 k = 4, p = 3

x * 0.970169
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Ausartung mod p
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Dimension                 k = 4, p = 7

x * 0.994612
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Ausartung mod p

Jetzt p = 2.
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Ausartung mod p
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Dimension                 k = 2, p = 2

x * 0.521382
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Ausartung mod p
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Dimension                 k = 4, p = 2

x * 0.409027
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Ausartung mod p
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Dimension                 k = 6, p = 2

x * 0.358230
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Ausartung mod p

Frage: Fixiere eine Primzahl p > 2 und ein Gewicht k ≥ 2.

Gibt es 0 < α ≤ 1 und C > 0, so dass

deg
(p)
k (N) ≥ α dimk(N) − C ?
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Ausartung mod p

Frage: Fixiere eine Primzahl p > 2 und ein Gewicht k ≥ 2.

Gibt es 0 < α ≤ 1 und C > 0, so dass

deg
(p)
k (N) ≥ α dimk(N) − C ?

Frage: Fixiere ein Gewicht k ≥ 2.

Gibt es 0 < α ≤ β < 1 und C,D > 0, so dass

β dimk(N) + D ≥ deg
(2)
k (N) ≥ α dimk(N) − C ?
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Grade von Koeffizientenkörpern
Theorem (Serre). Nehmen an: Nm + km → ∞ für m → ∞.

Dann ist die Menge

{[Qf : Q] | f Neuform von Stufe Nm, Gewicht km ein m}

unbeschränkt.
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Grade von Koeffizientenkörpern
Theorem (Serre). Nehmen an: Nm + km → ∞ für m → ∞.

Dann ist die Menge

{[Qf : Q] | f Neuform von Stufe Nm, Gewicht km ein m}

unbeschränkt.

Im Allgemeinen weiß ich nicht, ob die Menge

{[Fp,[f ] : Fp] | f Neuform von Stufe Nm, Gewicht km ein m}

unbeschränkt ist. Die Fälle, wenn Nm eine große
Primpotenz enthalten, können mittels Verzweigung
behandelt werden.
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Grade von Koeffizientenkörpern
Theorem (Serre). Nehmen an: Nm + km → ∞ für m → ∞.

Dann ist die Menge

{[Qf : Q] | f Neuform von Stufe Nm, Gewicht km ein m}

unbeschränkt.

Im Allgemeinen weiß ich nicht, ob die Menge

{[Fp,[f ] : Fp] | f Neuform von Stufe Nm, Gewicht km ein m}

unbeschränkt ist. Die Fälle, wenn Nm eine große
Primpotenz enthalten, können mittels Verzweigung
behandelt werden.

Wie verhalten sich die [Fp,[f ] : Fp], wenn k fixiert ist und N

die Primzahlen durchläuft?
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Grade von Koeffizientenkörpern
Wir definieren:

max
(p)
k (N) := max[f ][Fp,[f ] : Fp]

maximaler Grad der Koeffizientenkörper mod p.

Hierbei durchläuft [f ] die Gal(Fp/Fp)-Konjugiertenklassen
von Neuformen in Stufe N und Gewicht k.
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Grade von Koeffizientenkörpern
Wir definieren:

max
(p)
k (N) := max[f ][Fp,[f ] : Fp]

maximaler Grad der Koeffizientenkörper mod p.

Hierbei durchläuft [f ] die Gal(Fp/Fp)-Konjugiertenklassen
von Neuformen in Stufe N und Gewicht k.

Kann max
(p)
k (N) durch Funktionen in dimk(N) beschränkt

werden?
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Grade von Koeffizientenkörpern
Fixiere p und k = 2.

Wir raten eine Abhängigkeit der Form

max
(p)
k (N) ∼ C

(

dimk(N)
)α.

Wir zeichnen log(max
(p)
k (N)) als Funktion von log(dimk(N))

für die Primzahlen N ≤ 2000.

Bemerkung. Nimmt man statt des maximal Grades den mit-

tleren Grad, dann sehen die Graphen ganz ähnlich aus.
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Grade von Koeffizientenkörpern
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Log(Dimension)                 k = 2, p = 2

-0.567464 + x * 0.825435
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Grade von Koeffizientenkörpern
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-0.205983 + x * 0.833940
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Grade von Koeffizientenkörpern
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Log(Dimension)                 k = 2, p = 5

-0.404973 + x * 0.866407
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Grade von Koeffizientenkörpern

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6

Lo
g(

M
ax

im
um

 R
es

id
ue

 D
eg

re
e)

Log(Dimension)                 k = 2, p = 7
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Grade von Koeffizientenkörpern
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Grade von Koeffizientenkörpern
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-0.608967 + x * 0.917626
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Grade von Koeffizientenkörpern

Jetzt k = 4.
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Grade von Koeffizientenkörpern
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Grade von Koeffizientenkörpern
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Grade von Koeffizientenkörpern
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Grade von Koeffizientenkörpern
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Log(Dimension)                 k = 4, p = 11

-0.585422 + x * 0.907441

Zur Asymptotik von Modulformen - Wolken und deren Grenzen – p.38/43



Grade von Koeffizientenkörpern

Jetzt k = 6.

Zur Asymptotik von Modulformen - Wolken und deren Grenzen – p.39/43



Grade von Koeffizientenkörpern
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Log(Dimension)                 k = 6, p = 2

-1.249466 + x * 0.707720
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Grade von Koeffizientenkörpern
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Log(Dimension)                 k = 6, p = 3

-0.862598 + x * 0.721713
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Grade von Koeffizientenkörpern
Frage: Fixiere p und ein Gewicht k ≥ 2.

Gibt es 0 < α ≤ β < 1 und C,D > 0, so dass

D dimk(N)β ≥ max
(p)
k (N) ≥ C dimk(N)α ?
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Grade von Koeffizientenkörpern
Frage: Fixiere p und ein Gewicht k ≥ 2.

Gibt es 0 < α ≤ β < 1 und C,D > 0, so dass

D dimk(N)β ≥ max
(p)
k (N) ≥ C dimk(N)α ?

Die gleichen Fragen stellen wir auch für den mittleren Grad.
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Danke!
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