

Computing (with) Modular Forms

Gabor Wiese

Institut für Experimentelle Mathematik

Universität Duisburg-Essen

27 March 2009

Plan

- (I) Arithmetic of coefficient fields of families of modular forms. Introduction.
- (II) Calculations (by Marcel Mohyla) and questions.
- (III) Modular forms algorithms and implementations
- a wiki.

Coefficient fields

Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a newform (today mostly of prime level).

Coefficient field of f : $\mathbb{Q}_f = \mathbb{Q}(a_n \mid n \in \mathbb{N})$.

Coefficient fields

Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a newform (today mostly of prime level).

Coefficient field of f : $\mathbb{Q}_f = \mathbb{Q}(a_n \mid n \in \mathbb{N})$.

- \mathbb{Q}_f is a number field.

Coefficient fields

Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a newform (today mostly of prime level).

Coefficient field of f : $\mathbb{Q}_f = \mathbb{Q}(a_n \mid n \in \mathbb{N})$.

- \mathbb{Q}_f is a number field.
- If the weight of f is 2, let A_f be the abelian variety attached to f (by Shimura).

Then $\mathbb{Q}_f = \mathbb{Q} \otimes_{\mathbb{Z}} \text{End}_{\mathbb{Q}}(A_f)$.

Coefficient fields

Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a newform (today mostly of prime level).

Coefficient field of f : $\mathbb{Q}_f = \mathbb{Q}(a_n \mid n \in \mathbb{N})$.

- \mathbb{Q}_f is a number field.
- If the weight of f is 2, let A_f be the abelian variety attached to f (by Shimura).

Then $\mathbb{Q}_f = \mathbb{Q} \otimes_{\mathbb{Z}} \text{End}_{\mathbb{Q}}(A_f)$.

What about the arithmetic of \mathbb{Q}_f ?

Coefficient fields

What is the arithmetic of: $\mathbb{Q}_f = \mathbb{Q}(\textcolor{red}{a_n} \mid n \in \mathbb{N})$?

We consider the *coefficient field of f mod p* :

$$\mathbb{F}_{p,f} = \mathbb{F}_p(\overline{a_n}; n \in \mathbb{N})$$

for a choice of $\overline{\mathbb{Z}} \xrightarrow{x \mapsto \overline{x}} \overline{\mathbb{F}}_p$ with a prime p .

Coefficient fields

What is the arithmetic of: $\mathbb{Q}_f = \mathbb{Q}(\textcolor{red}{a_n} \mid n \in \mathbb{N})$?

We consider the *coefficient field of f mod p* :

$$\mathbb{F}_{p,f} = \mathbb{F}_p(\overline{a_n}; n \in \mathbb{N})$$

for a choice of $\overline{\mathbb{Z}} \xrightarrow{x \mapsto \overline{x}} \overline{\mathbb{F}}_p$ with a prime p .

- If $p \nmid \text{index of } \mathbb{Z}[a_n \mid n \in \mathbb{N}]$ in the integers of \mathbb{Q}_f , then $\mathbb{F}_{p,f}$ is just a residue field of f for a prime above p .

Coefficient fields

What is the arithmetic of: $\mathbb{Q}_f = \mathbb{Q}(\overline{a_n} \mid n \in \mathbb{N})$?

We consider the *coefficient field of f mod p* :

$$\mathbb{F}_{p,f} = \mathbb{F}_p(\overline{a_n}; n \in \mathbb{N})$$

for a choice of $\overline{\mathbb{Z}} \xrightarrow{x \mapsto \overline{x}} \overline{\mathbb{F}}_p$ with a prime p .

- If $p \nmid \text{index of } \mathbb{Z}[a_n \mid n \in \mathbb{N}] \text{ in the integers of } \mathbb{Q}_f$, then $\mathbb{F}_{p,f}$ is just a residue field of f for a prime above p .
- $\mathbb{F}_{p,f}$ only depends on the $\text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ -conjugacy class $[f]$ of f . Write $\mathbb{F}_{p,[f]}$.

Coefficient fields

What is the arithmetic of: $\mathbb{Q}_f = \mathbb{Q}(\textcolor{red}{a_n} \mid n \in \mathbb{N})$?

We consider the *coefficient field of f mod p* :

$$\mathbb{F}_{p,f} = \mathbb{F}_p(\overline{a_n}; n \in \mathbb{N})$$

for a choice of $\overline{\mathbb{Z}} \xrightarrow{x \mapsto \overline{x}} \overline{\mathbb{F}}_p$ with a prime p .

- If $p \nmid \text{index of } \mathbb{Z}[a_n \mid n \in \mathbb{N}] \text{ in the integers of } \mathbb{Q}_f$, then $\mathbb{F}_{p,f}$ is just a residue field of f for a prime above p .
- $\mathbb{F}_{p,f}$ only depends on the $\text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ -conjugacy class $[f]$ of f . Write $\mathbb{F}_{p,[f]}$.

Why is $\mathbb{F}_{p,[f]}$ important?

Coefficient fields mod p

Why is $\mathbb{F}_{p,[f]}$ important?

- Shimura/Deligne: There is an odd Galois representation

$$\rho_{[f]} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{F}_{p,[f]})$$

whose arithmetic is encoded in $[f]$.

Coefficient fields mod p

Why is $\mathbb{F}_{p,[f]}$ important?

- Ribet: If f has no CM, then for almost all p there is a totally imaginary field $K_{f,p}$ with $\text{Gal}(K_{f,p}/\mathbb{Q})$ equal to $\text{PSL}_2(\mathbb{F}_{p,[f]})$ or $\text{PGL}_2(\mathbb{F}_{p,[f]})$.

The arithmetic of $K_{f,p}$ is encoded in $[f]$.

Coefficient fields mod p

Why is $\mathbb{F}_{p,[f]}$ important?

- Ribet: If f has no CM, then for almost all p there is a totally imaginary field $K_{f,p}$ with $\text{Gal}(K_{f,p}/\mathbb{Q})$ equal to $\text{PSL}_2(\mathbb{F}_{p,[f]})$ or $\text{PGL}_2(\mathbb{F}_{p,[f]})$.
The arithmetic of $K_{f,p}$ is encoded in $[f]$.
- Serre's modularity conjecture (Theorem of Khare, Wintenberger, Kisin):
Every totally imaginary number field with Galois group $\text{PSL}_2(\mathbb{F})$ or $\text{PGL}_2(\mathbb{F})$ for any finite field \mathbb{F} arises in this way.

Coefficient fields mod p

What do we know about \mathbb{Q}_f and $\mathbb{F}_{p,[f]}$?

- In concrete cases: easy to compute \mathbb{Q}_f and $\mathbb{F}_{p,[f]}$.

Coefficient fields mod p

What do we know about \mathbb{Q}_f and $\mathbb{F}_{p,[f]}$?

- In concrete cases: easy to compute \mathbb{Q}_f and $\mathbb{F}_{p,[f]}$.
- Not directly related to the level and the weight of f :
Just from level and weight, one cannot say much about \mathbb{Q}_f and $\mathbb{F}_{p,[f]}$.

Coefficient fields mod p

What do we know about \mathbb{Q}_f and $\mathbb{F}_{p,[f]}$?

- In concrete cases: easy to compute \mathbb{Q}_f and $\mathbb{F}_{p,[f]}$.
- Not directly related to the level and the weight of f :
Just from level and weight, one cannot say much about \mathbb{Q}_f and $\mathbb{F}_{p,[f]}$.

Can one say something 'asymptotic', when varying f ?

Coefficient fields mod p

Can one say something 'asymptotic', when varying f ?

We will study:

- Sum of degrees $[\mathbb{F}_{p,[f]} : \mathbb{F}_p]$ for all $[f]$ in a given level and weight.

Degeneration of mod p Hecke algebras.

Coefficient fields mod p

Can one say something 'asymptotic', when varying f ?

We will study:

- Sum of degrees $[\mathbb{F}_{p,[f]} : \mathbb{F}_p]$ for all $[f]$ in a given level and weight.

Degeneration of mod p Hecke algebras.

- Average degree $[\mathbb{F}_{p,[f]} : \mathbb{F}_p]$ for all $[f]$ in a given level and weight.

Coefficient fields mod p

Can one say something 'asymptotic', when varying f ?

We will study:

- Sum of degrees $[\mathbb{F}_{p,[f]} : \mathbb{F}_p]$ for all $[f]$ in a given level and weight.
Degeneration of mod p Hecke algebras.
- Average degree $[\mathbb{F}_{p,[f]} : \mathbb{F}_p]$ for all $[f]$ in a given level and weight.
- Maximum degree $[\mathbb{F}_{p,[f]} : \mathbb{F}_p]$ among all $[f]$ in a given level and weight.

Degeneration mod p

We fix a (prime) level N and a weight k .

Define

$\dim_k(N) = (\text{number of newforms of level } N \text{ and weight } k).$

Degeneration mod p

We fix a (prime) level N and a weight k .

Define

$\dim_k(N) = (\text{number of newforms of level } N \text{ and weight } k).$

Consider the **sum of residue degrees**

$$\deg_k^{(p)}(N) = \sum_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]$$

where $[f]$ runs through the $\text{Gal}(\bar{\mathbb{F}}_p/\mathbb{F}_p)$ -conjugacy classes of newforms of level N and weight k .

Degeneration mod p

Theorem. $\dim_k(N) = \deg_k^{(p)}(N) \stackrel{\text{def}}{=} \sum_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]$

(the mod p Hecke algebra is non-degenerate) \Leftrightarrow

Degeneration mod p

Theorem. $\dim_k(N) = \deg_k^{(p)}(N) \stackrel{\text{def}}{=} \sum_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]$

(the mod p Hecke algebra is non-degenerate) \Leftrightarrow

- there is no congruence modulo p between two newforms of level N and weight k and

Degeneration mod p

Theorem. $\dim_k(N) = \deg_k^{(p)}(N) \stackrel{\text{def}}{=} \sum_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]$

(the mod p Hecke algebra is non-degenerate) \Leftrightarrow

- there is no congruence modulo p between two newforms of level N and weight k and
- the coefficient fields \mathbb{Q}_f are unramified at p for all newforms f of level N and weight k and

Degeneration mod p

Theorem. $\dim_k(N) = \deg_k^{(p)}(N) \stackrel{\text{def}}{=} \sum_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]$

(the mod p Hecke algebra is non-degenerate) \Leftrightarrow

- there is no congruence modulo p between two newforms of level N and weight k and
- the coefficient fields \mathbb{Q}_f are unramified at p for all newforms f of level N and weight k and
- $p \nmid \text{index } \mathbb{Z}_f = \mathbb{Z}[a_n(f) \mid n \in \mathbb{N}]$ in integers of \mathbb{Q}_f for all newforms f of level N and weight k .

Degeneration mod p

Theorem. $\dim_k(N) = \deg_k^{(p)}(N) \stackrel{\text{def}}{=} \sum_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]$

(the mod p Hecke algebra is non-degenerate) \Leftrightarrow

- there is no congruence modulo p between two newforms of level N and weight k and
- the coefficient fields \mathbb{Q}_f are unramified at p for all newforms f of level N and weight k and
- $p \nmid \text{index } \mathbb{Z}_f = \mathbb{Z}[a_n(f) \mid n \in \mathbb{N}]$ in integers of \mathbb{Q}_f for all newforms f of level N and weight k .

One could expect that strict inequality $\dim_k(N) > \deg_k^{(p)}(N)$ (degeneration modulo p) is a rare phenomenon.

Is that true?

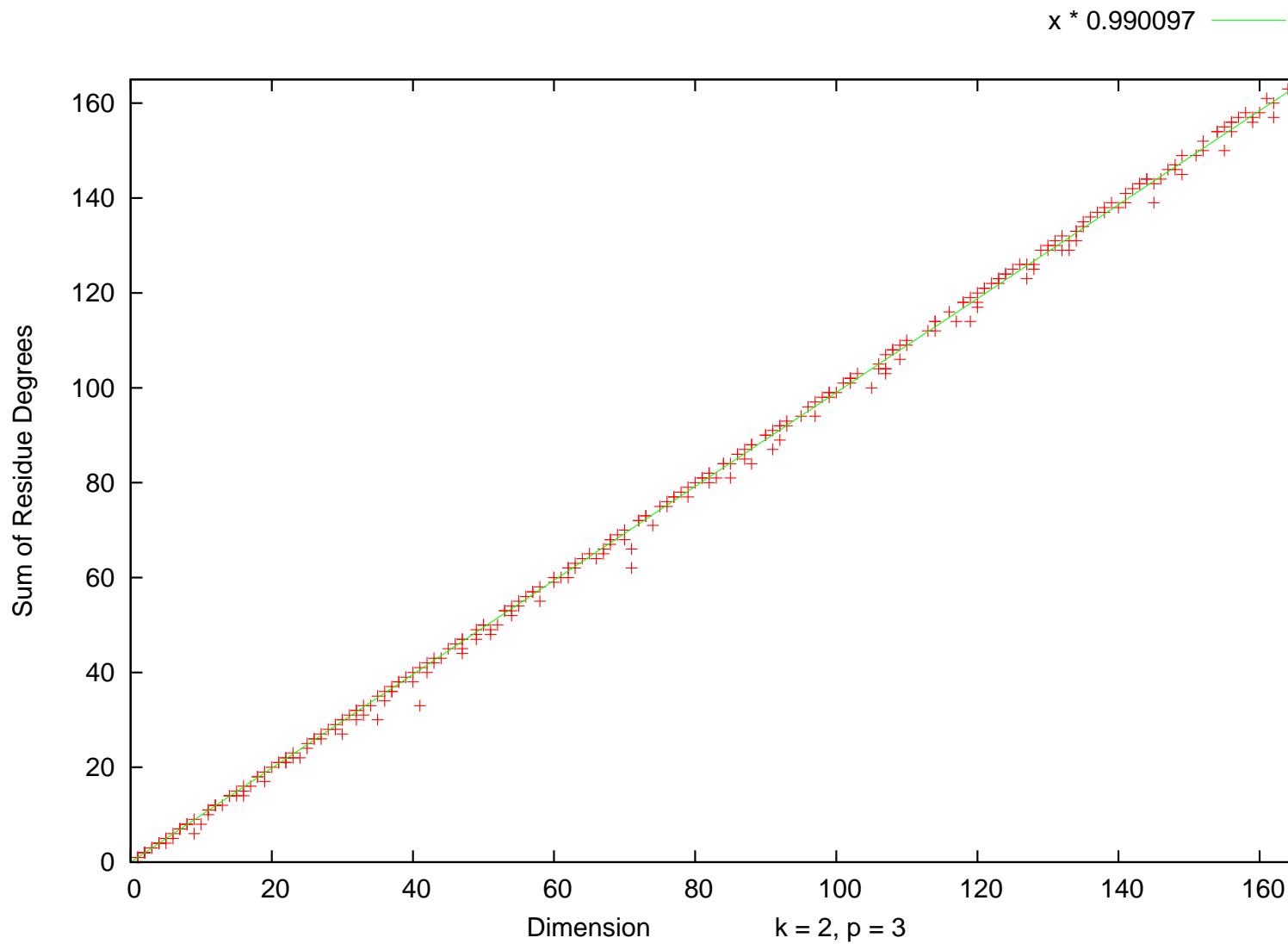
Degeneration mod p

Let us fix the prime p and the weight k .

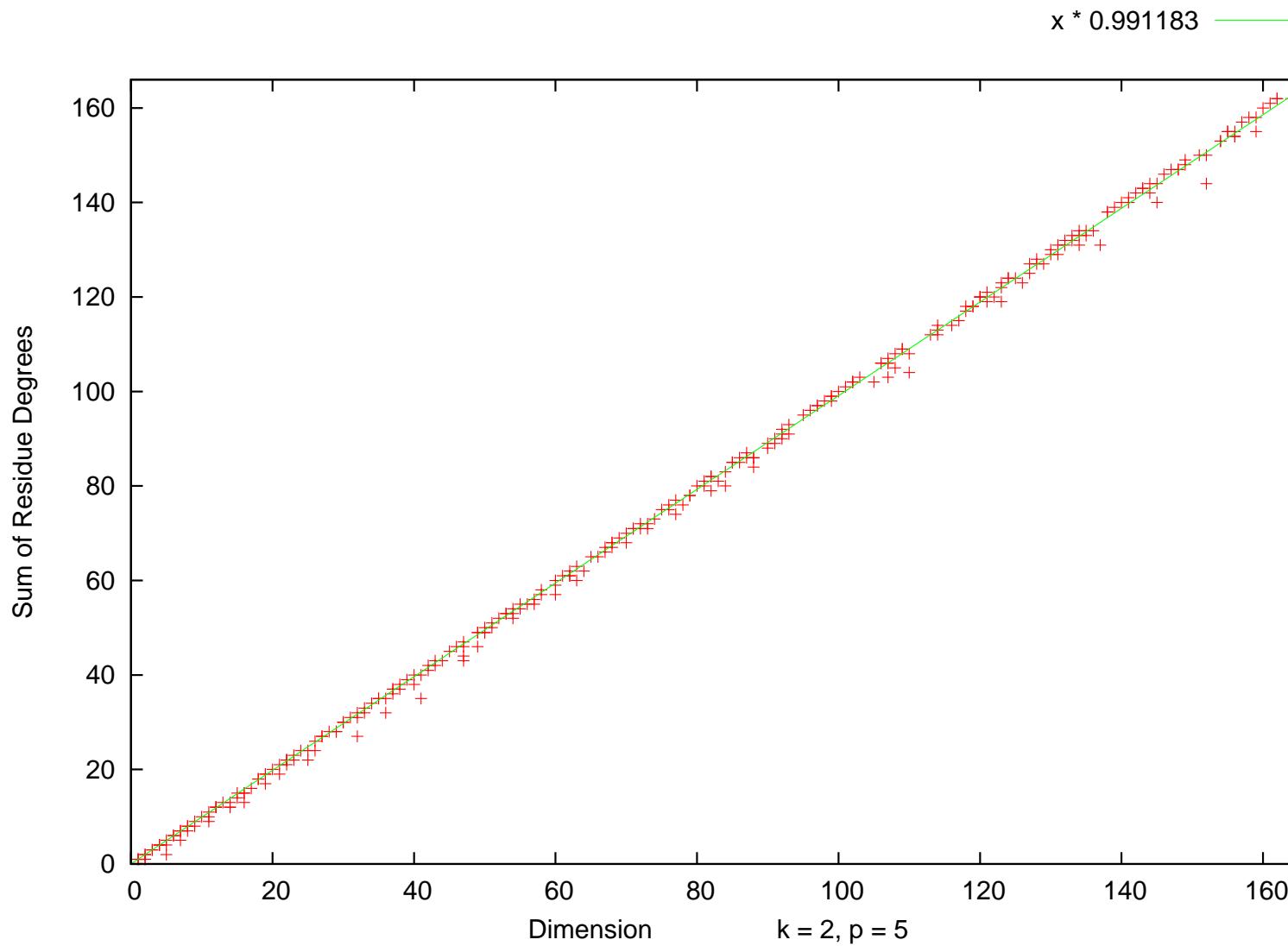
Plot $\deg_k^{(p)}(N)$ as a function of $\dim_k(N)$ for all prime levels $N \leq 2000$ (for $k = 2$).

First, let p be odd.

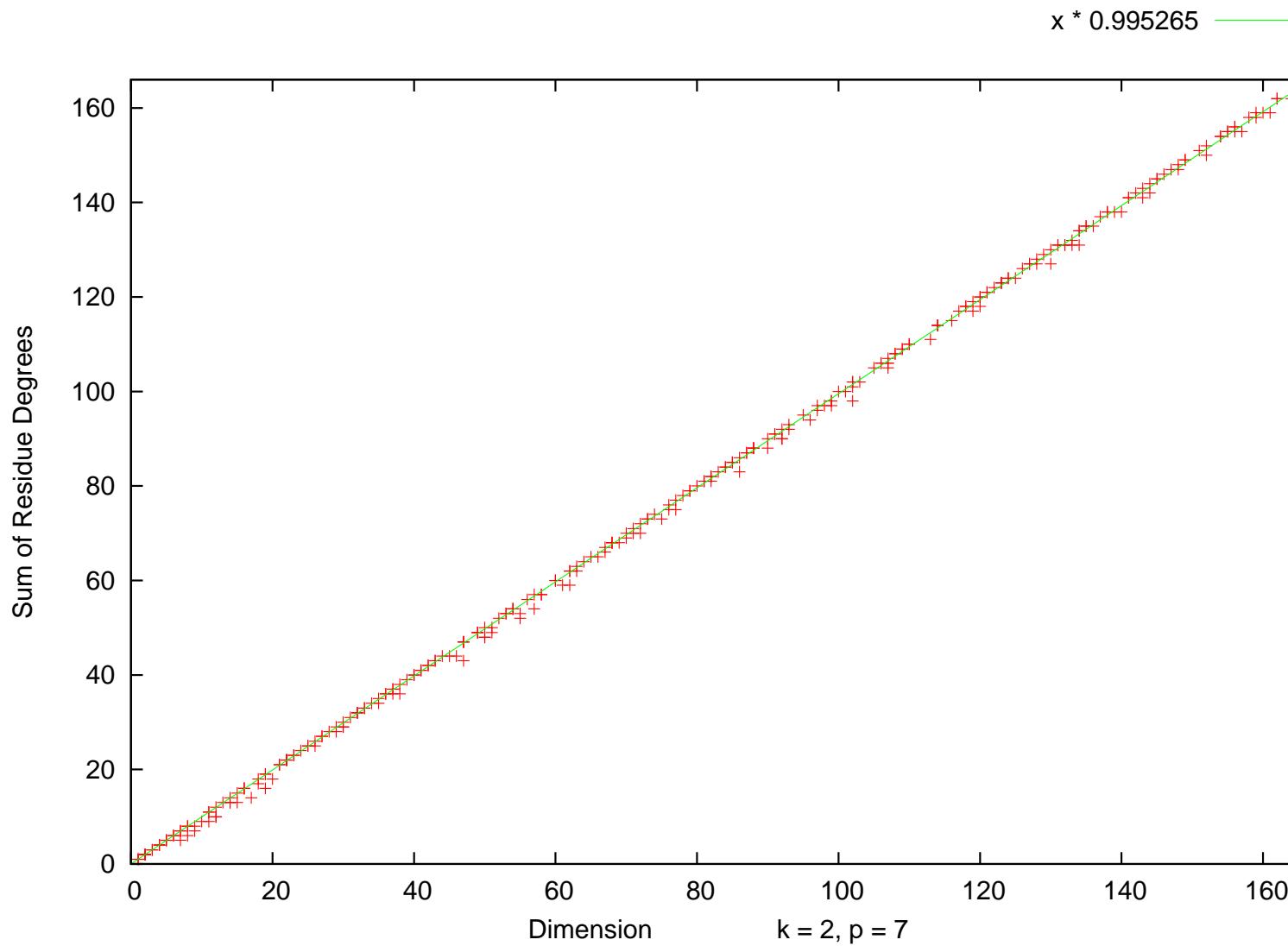
Degeneration mod p



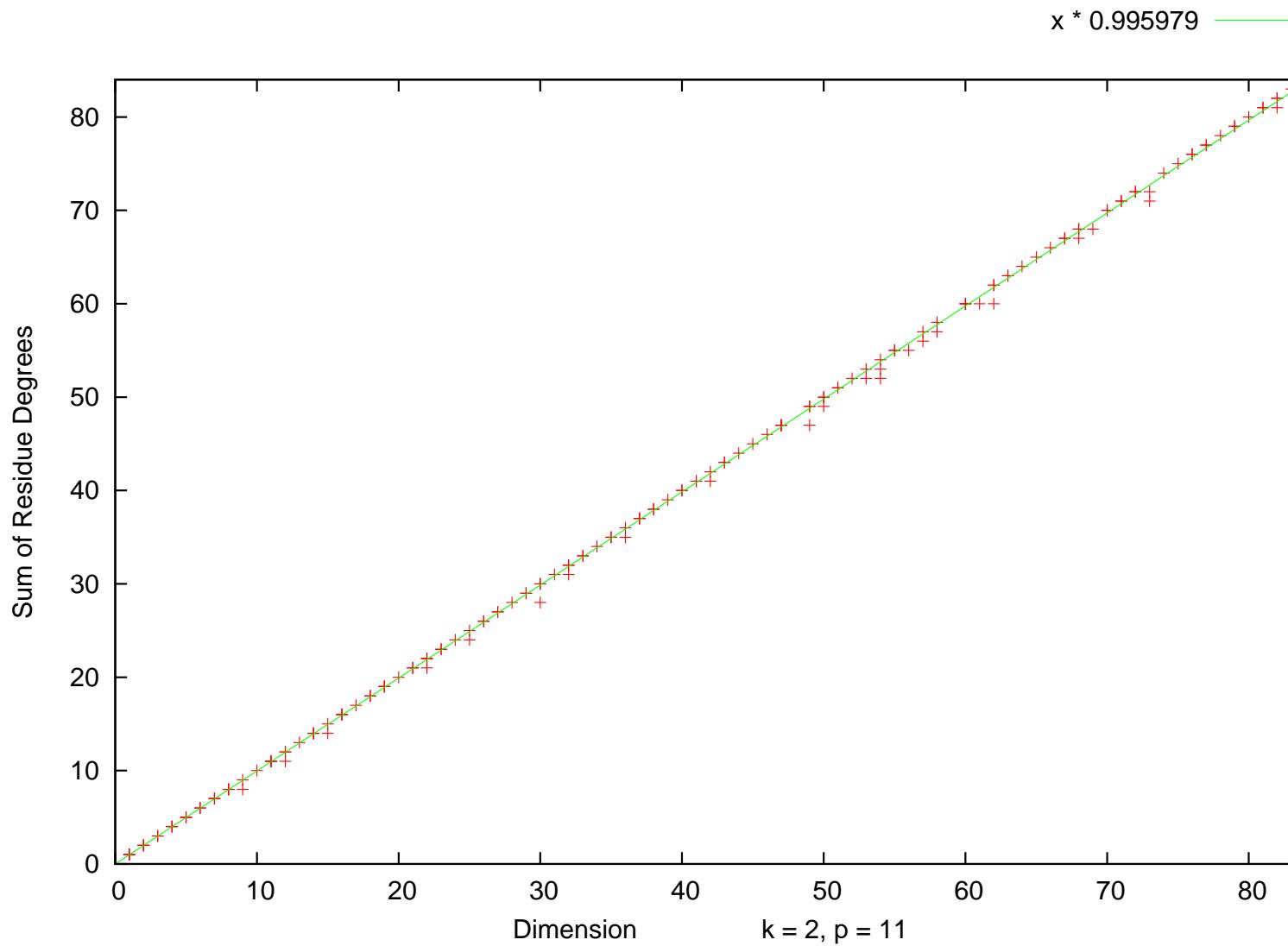
Degeneration mod p



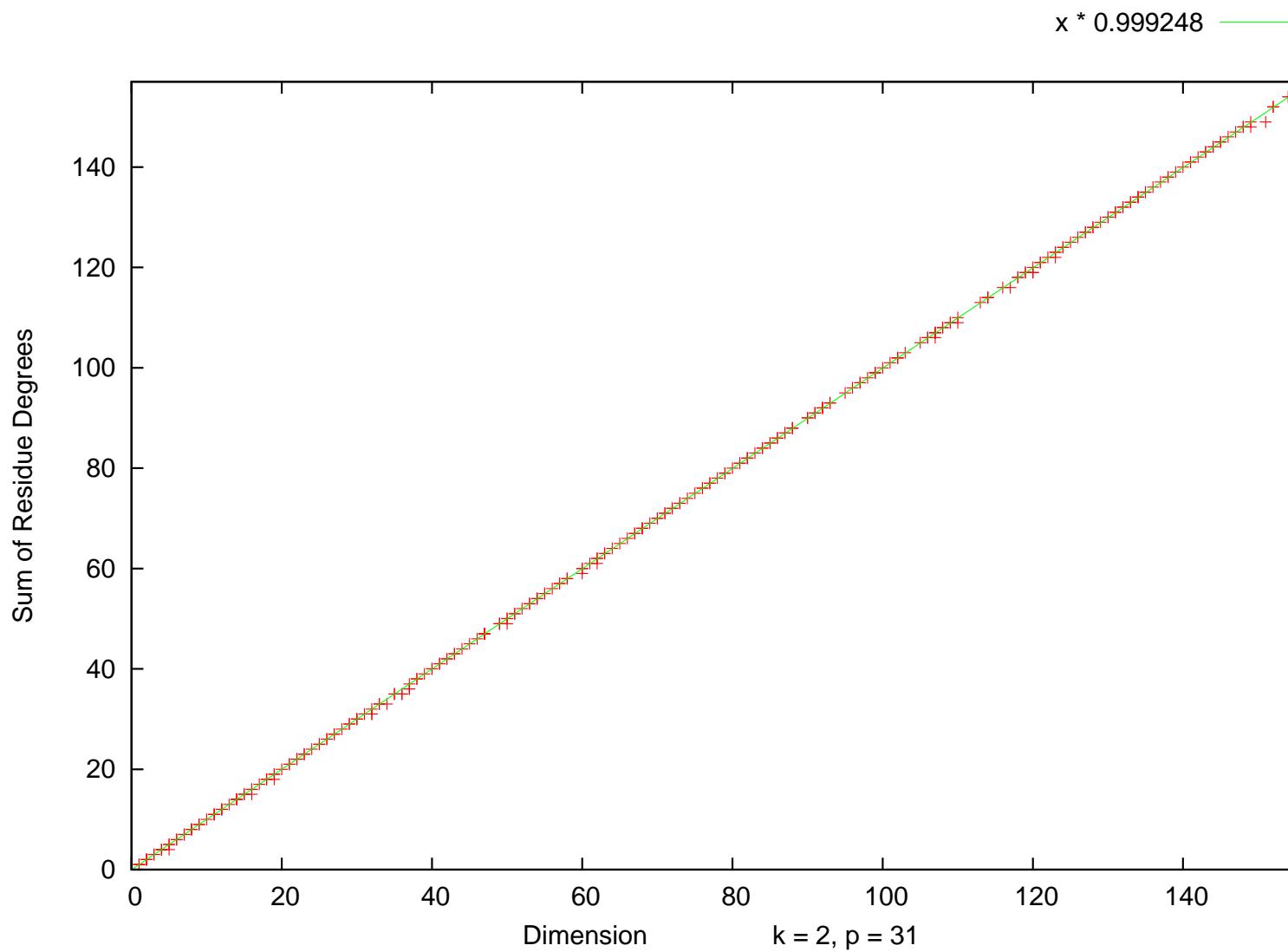
Degeneration mod p



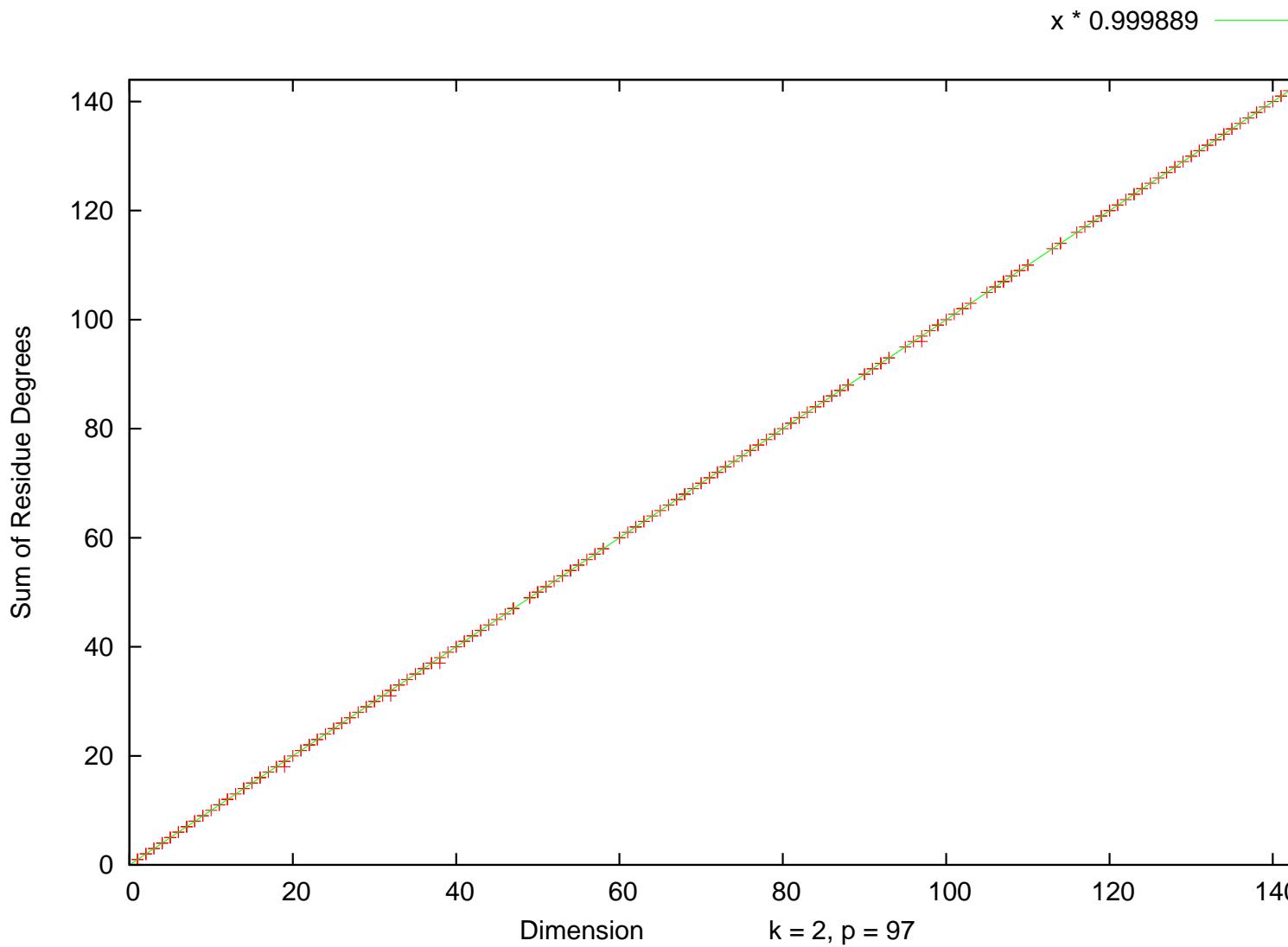
Degeneration mod p



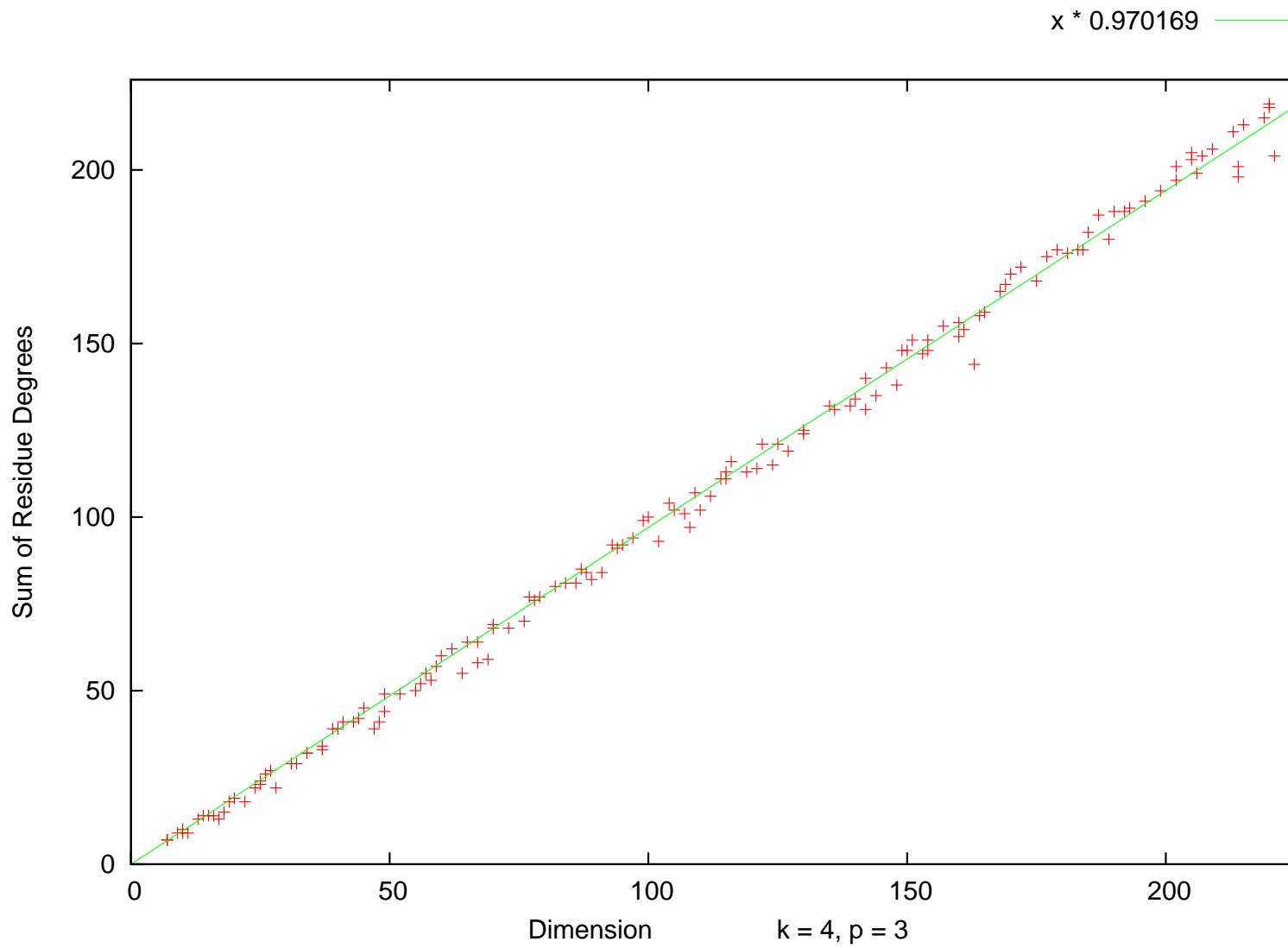
Degeneration mod p



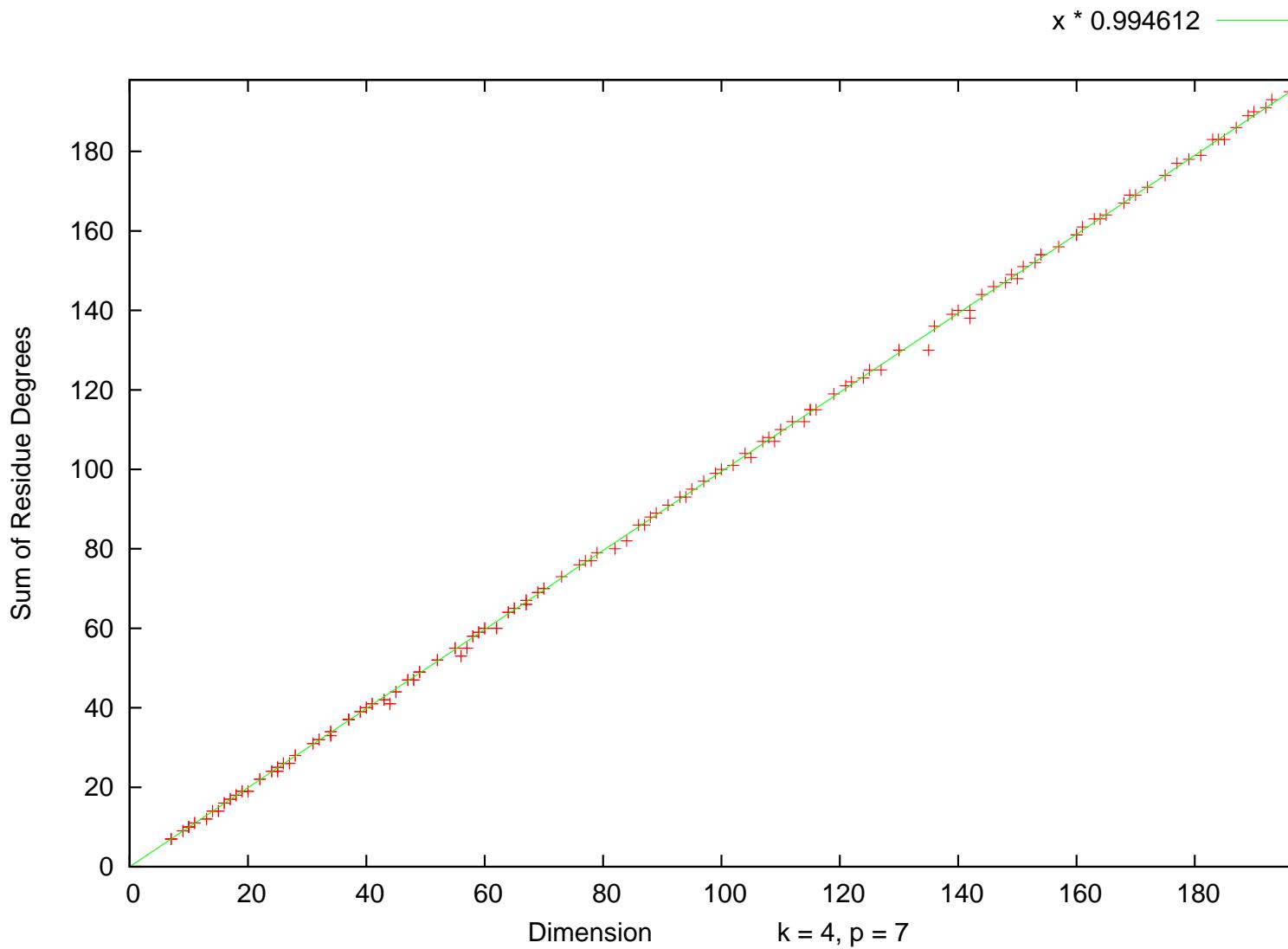
Degeneration mod p



Degeneration mod p



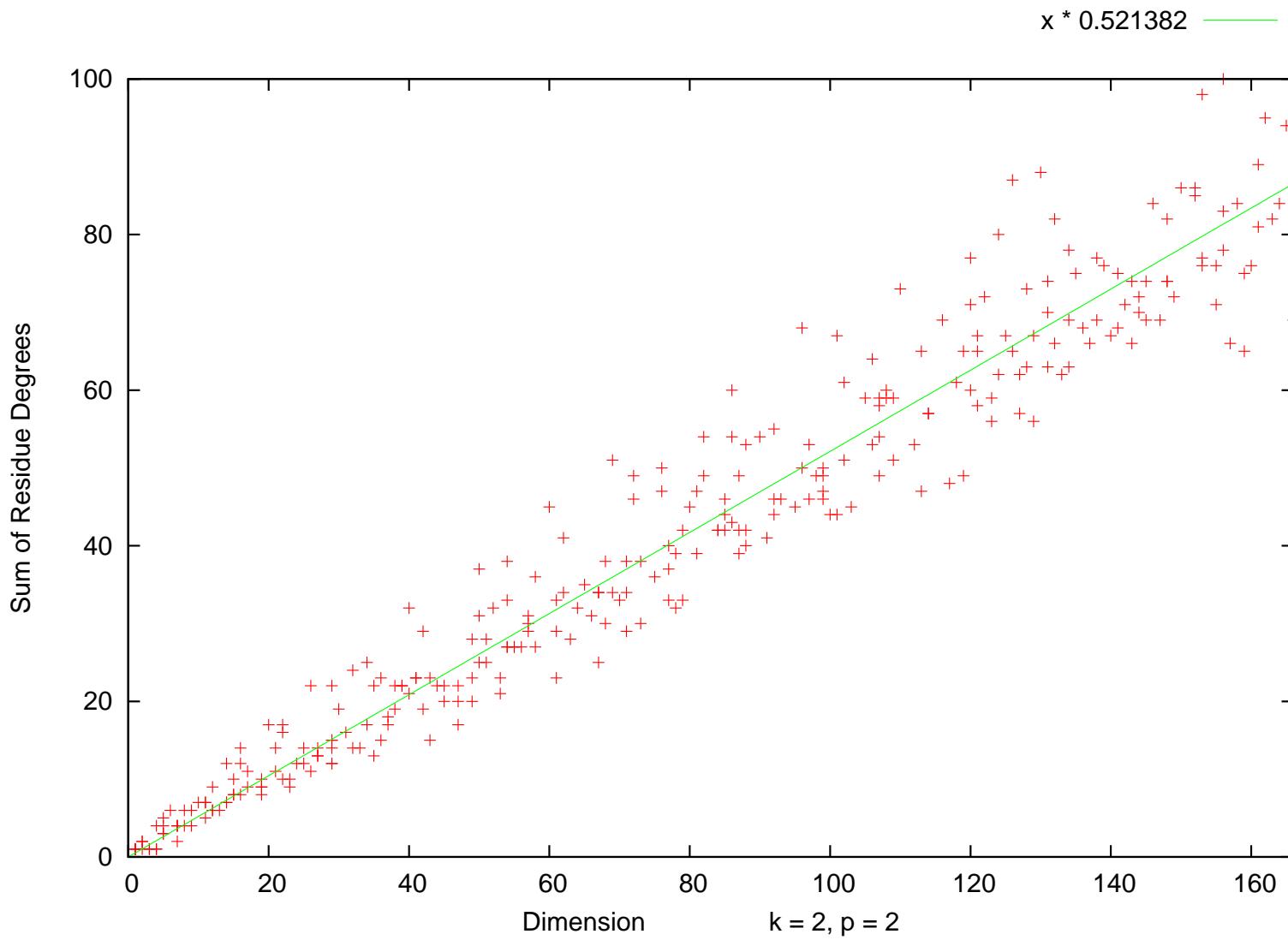
Degeneration mod p



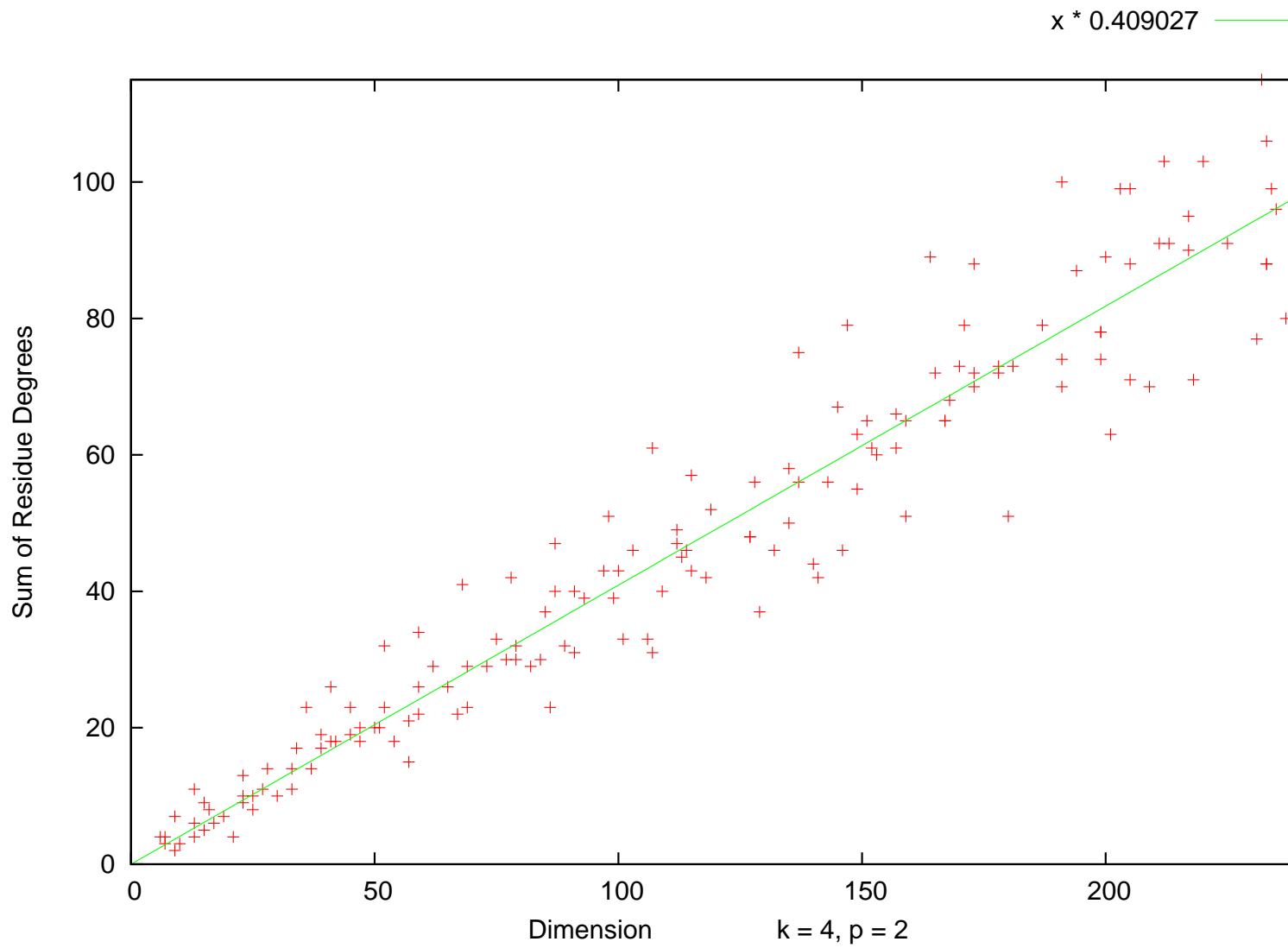
Degeneration mod p

Now $p = 2$.

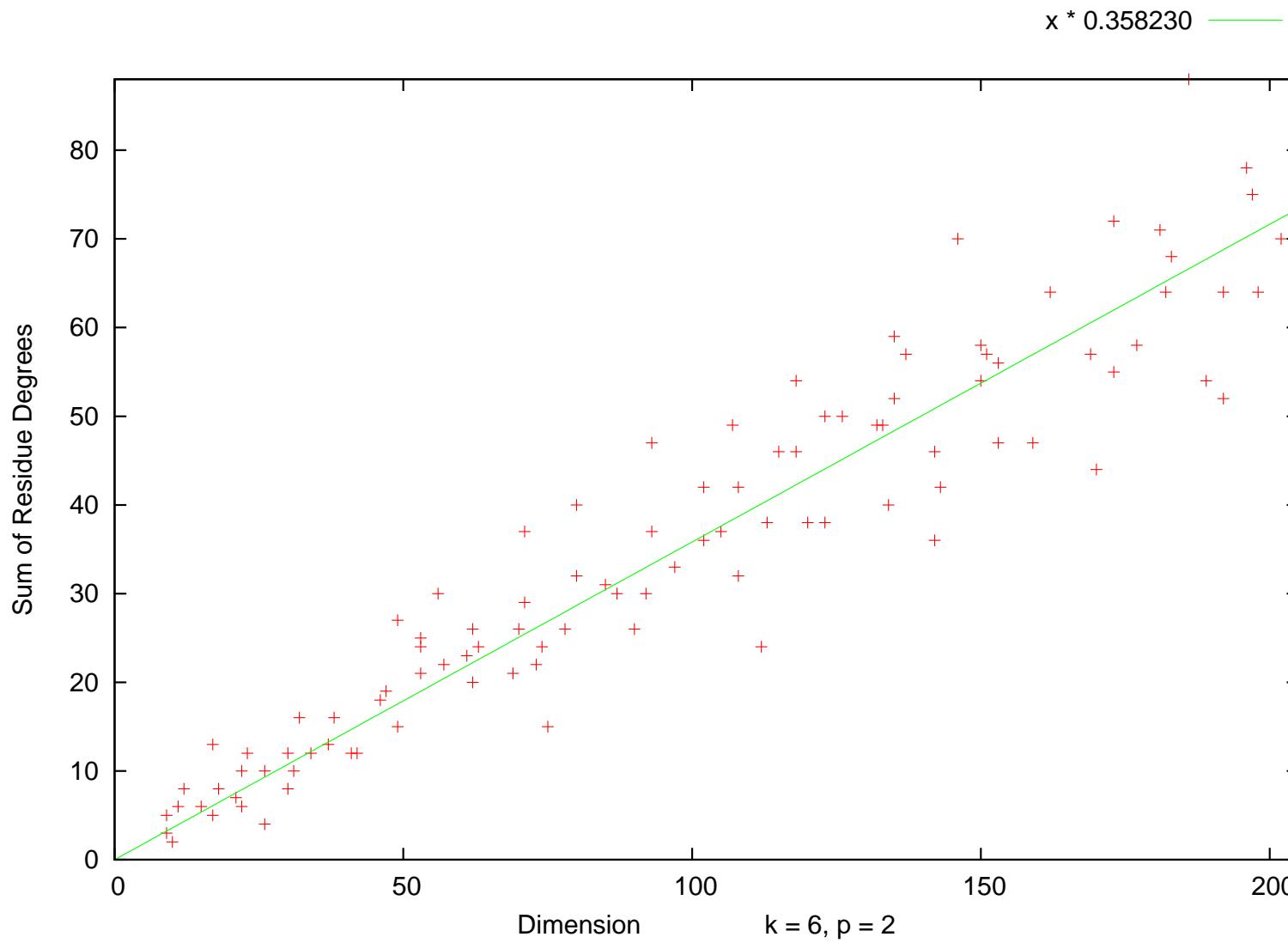
Degeneration mod p



Degeneration mod p



Degeneration mod p



Degeneration mod p

Question: Fix a prime $p > 2$ and a weight $k \geq 2$.

Are there $0 < \alpha \leq 1$ and $C > 0$ s.t.

$$\deg_k^{(p)}(N) \geq \alpha \dim_k(N) - C \quad ?$$

Degeneration mod p

Question: Fix a prime $p > 2$ and a weight $k \geq 2$.

Are there $0 < \alpha \leq 1$ and $C > 0$ s.t.

$$\deg_k^{(p)}(N) \geq \alpha \dim_k(N) - C \quad ?$$

Question: Fix a prime $p > 2$ and a weight $k \geq 2$.

Are there $0 < \alpha \leq \beta < 1$ and $C, D > 0$ s.t.

$$\beta \dim_k(N) + D \geq \deg_k^{(2)}(N) \geq \alpha \dim_k(N) - C \quad ?$$

Degrees of coefficient fields

Theorem (Serre). Suppose $N_m + k_m \rightarrow \infty$ for $m \rightarrow \infty$.

Then the set

$$\{[\mathbb{Q}_f : \mathbb{Q}] \mid f \text{ newform of level } N_m, \text{ weight } k_m \text{ some } m\}$$

is unbounded.

Degrees of coefficient fields

Theorem (Serre). Suppose $N_m + k_m \rightarrow \infty$ for $m \rightarrow \infty$.

Then the set

$$\{[\mathbb{Q}_f : \mathbb{Q}] \mid f \text{ newform of level } N_m, \text{ weight } k_m \text{ some } m\}$$

is unbounded.

In general, I do not know if the set

$$\{[\mathbb{F}_{p,[f]} : \mathbb{F}_p] \mid f \text{ newform of level } N_m, \text{ weight } k_m \text{ some } m\}$$

is bounded. The cases when the N_m contain big enough prime powers can be treated via ramification.

Degrees of coefficient fields

Theorem (Serre). Suppose $N_m + k_m \rightarrow \infty$ for $m \rightarrow \infty$.

Then the set

$$\{[\mathbb{Q}_f : \mathbb{Q}] \mid f \text{ newform of level } N_m, \text{ weight } k_m \text{ some } m\}$$

is unbounded.

In general, I do not know if the set

$$\{[\mathbb{F}_{p,[f]} : \mathbb{F}_p] \mid f \text{ newform of level } N_m, \text{ weight } k_m \text{ some } m\}$$

is bounded. The cases when the N_m contain big enough prime powers can be treated via ramification.

How do the $[\mathbb{F}_{p,[f]} : \mathbb{F}_p]$ behave when k is fixed and N runs through the primes ?

Degrees of coefficient fields

Define:

- $\text{average}_k^{(p)}(N) := \frac{\sum_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]}{\sum_{[f]} 1}$

average degree of the coefficient fields mod p ,

- $\max_k^{(p)}(N) := \max_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]$

maximum degree of the coefficient fields mod p .

Here, $[f]$ runs through the $\text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ -conjugacy classes of newforms in level N and weight k .

Degrees of coefficient fields

Define:

- $\text{average}_k^{(p)}(N) := \frac{\sum_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]}{\sum_{[f]} 1}$

average degree of the coefficient fields mod p ,

- $\max_k^{(p)}(N) := \max_{[f]} [\mathbb{F}_{p,[f]} : \mathbb{F}_p]$

maximum degree of the coefficient fields mod p .

Here, $[f]$ runs through the $\text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ -conjugacy classes of newforms in level N and weight k .

Can $\text{average}_k^{(p)}(N)$ and $\max_k^{(p)}(N)$ be bounded by functions of $\dim_k(N)$?

Degrees of coefficient fields

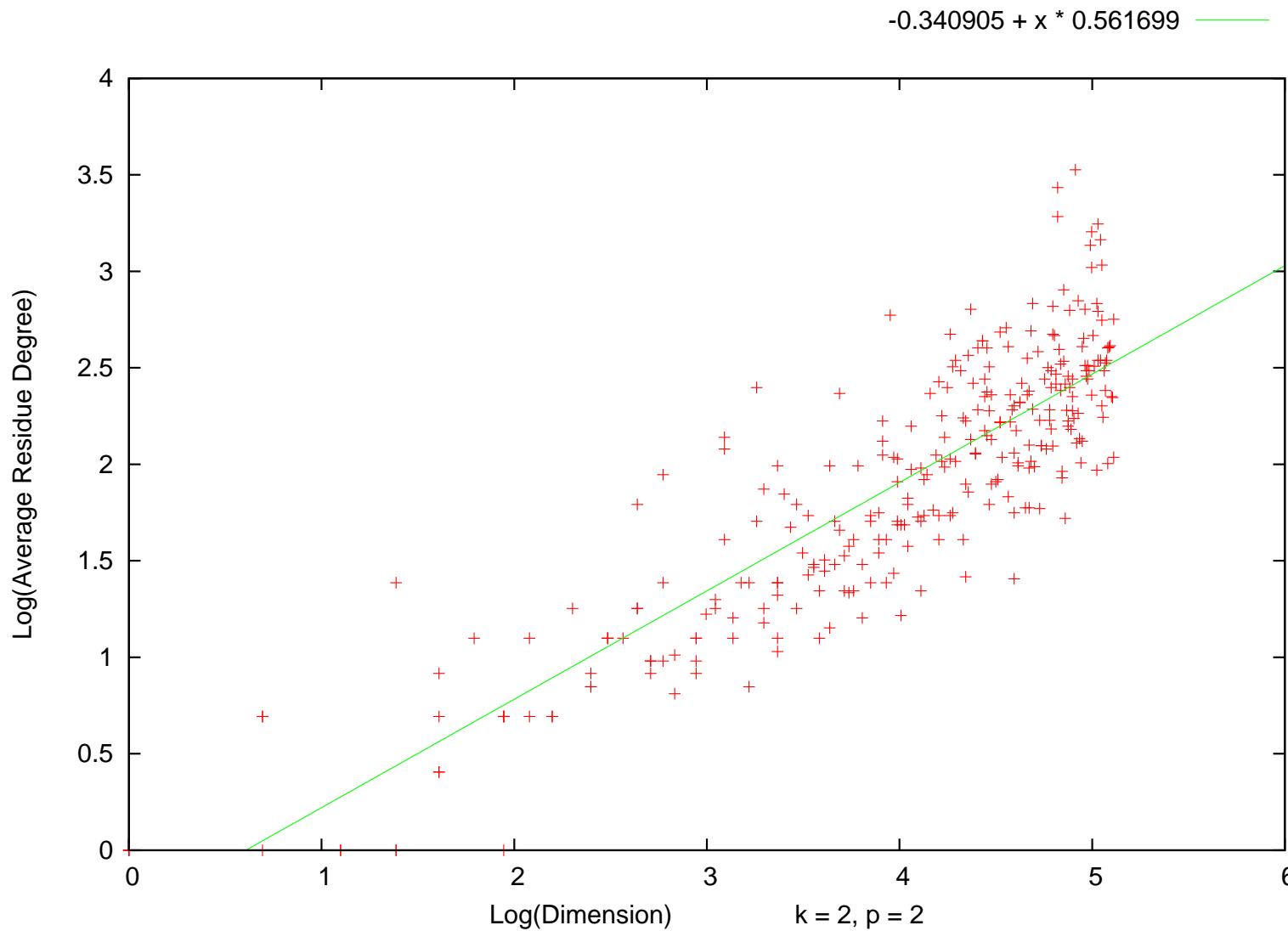
Fix p and $k = 2$.

Guess a dependence of the form

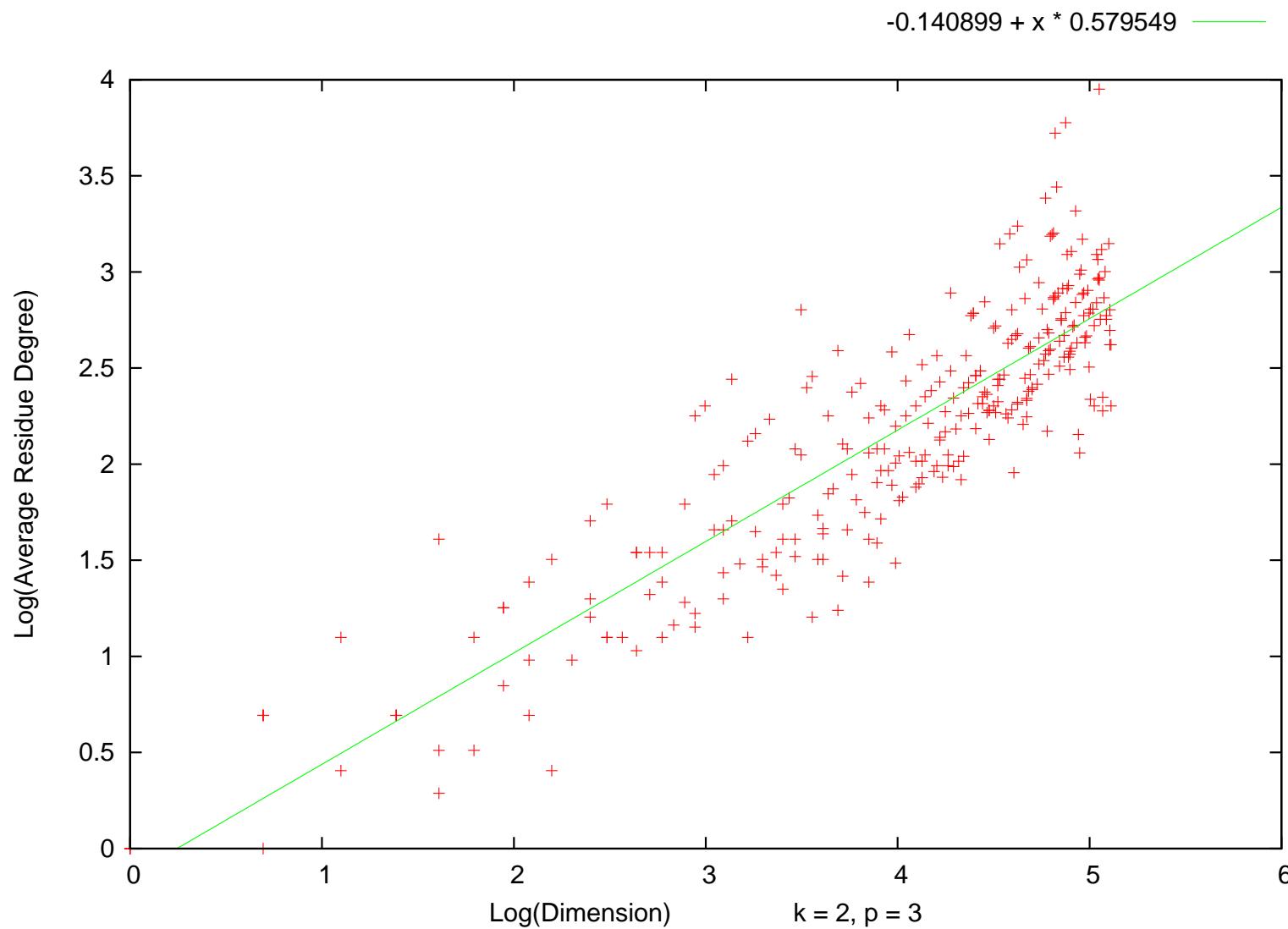
$$\text{average}_k^{(p)}(N) \sim C(\dim_k(N))^\alpha.$$

Plot $\log(\text{average}_k^{(p)}(N))$ as a function of $\log(\dim_k(N))$ for the primes $N \leq 2000$.

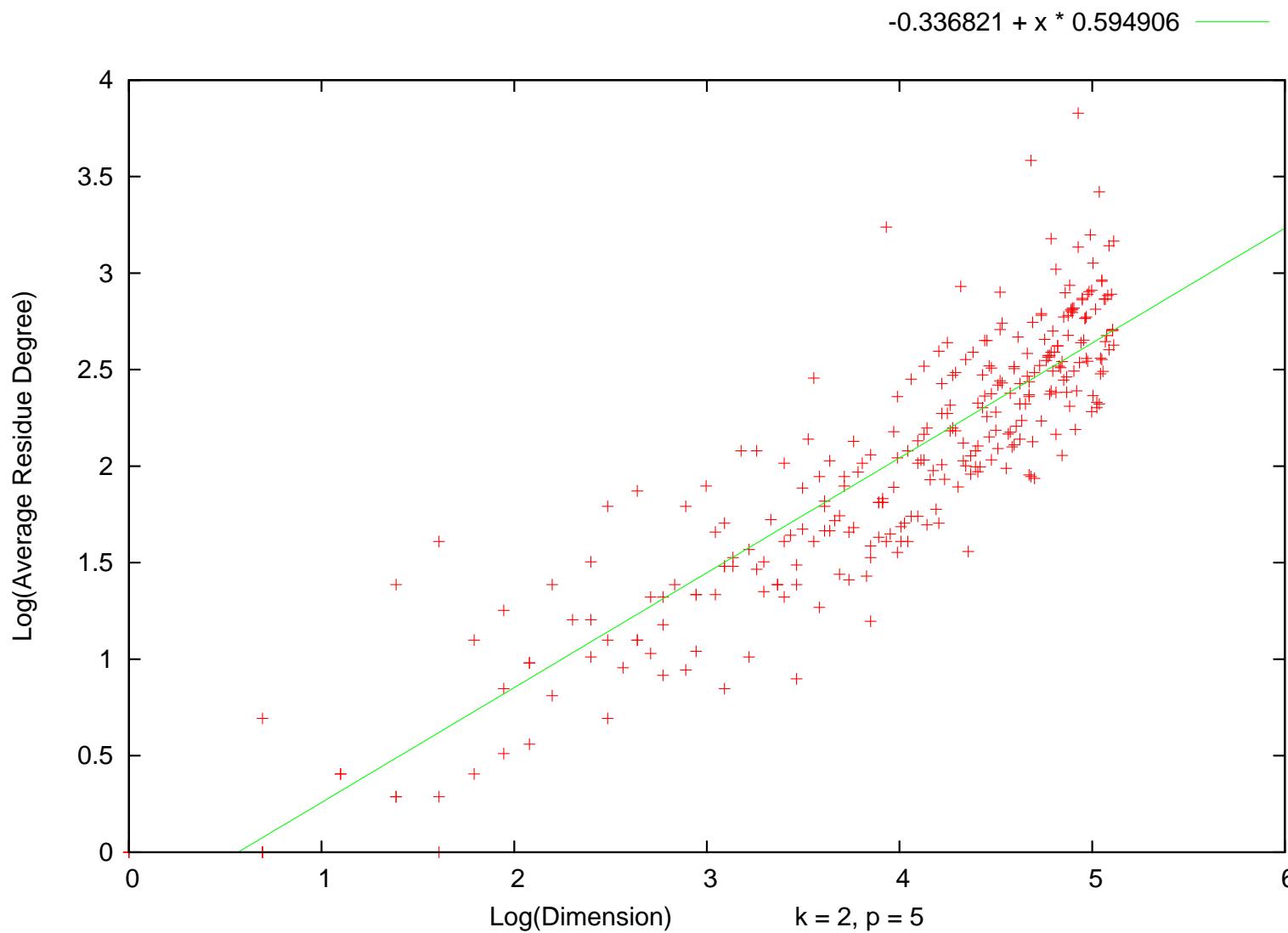
Degrees of coefficient fields



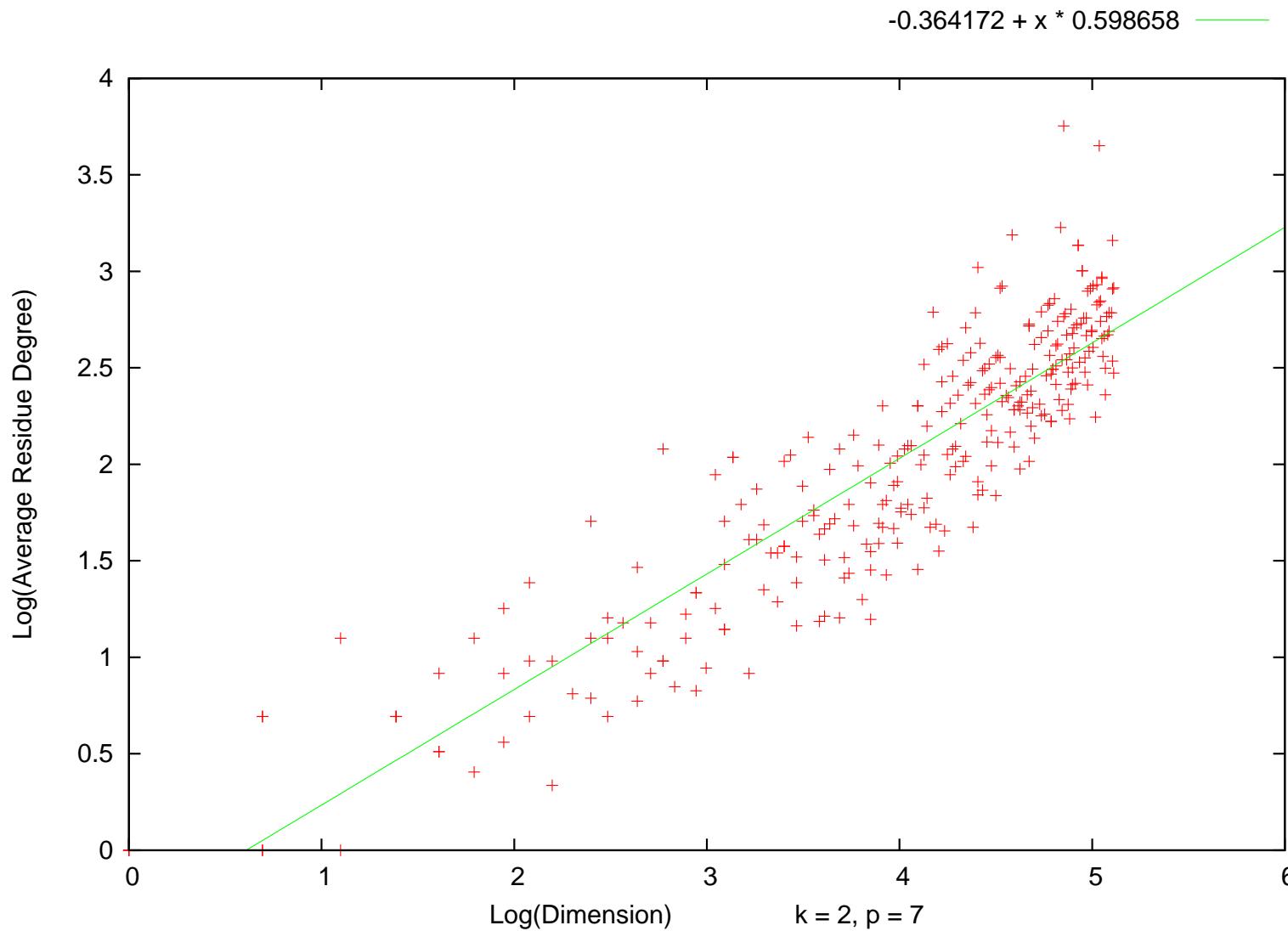
Degrees of coefficient fields



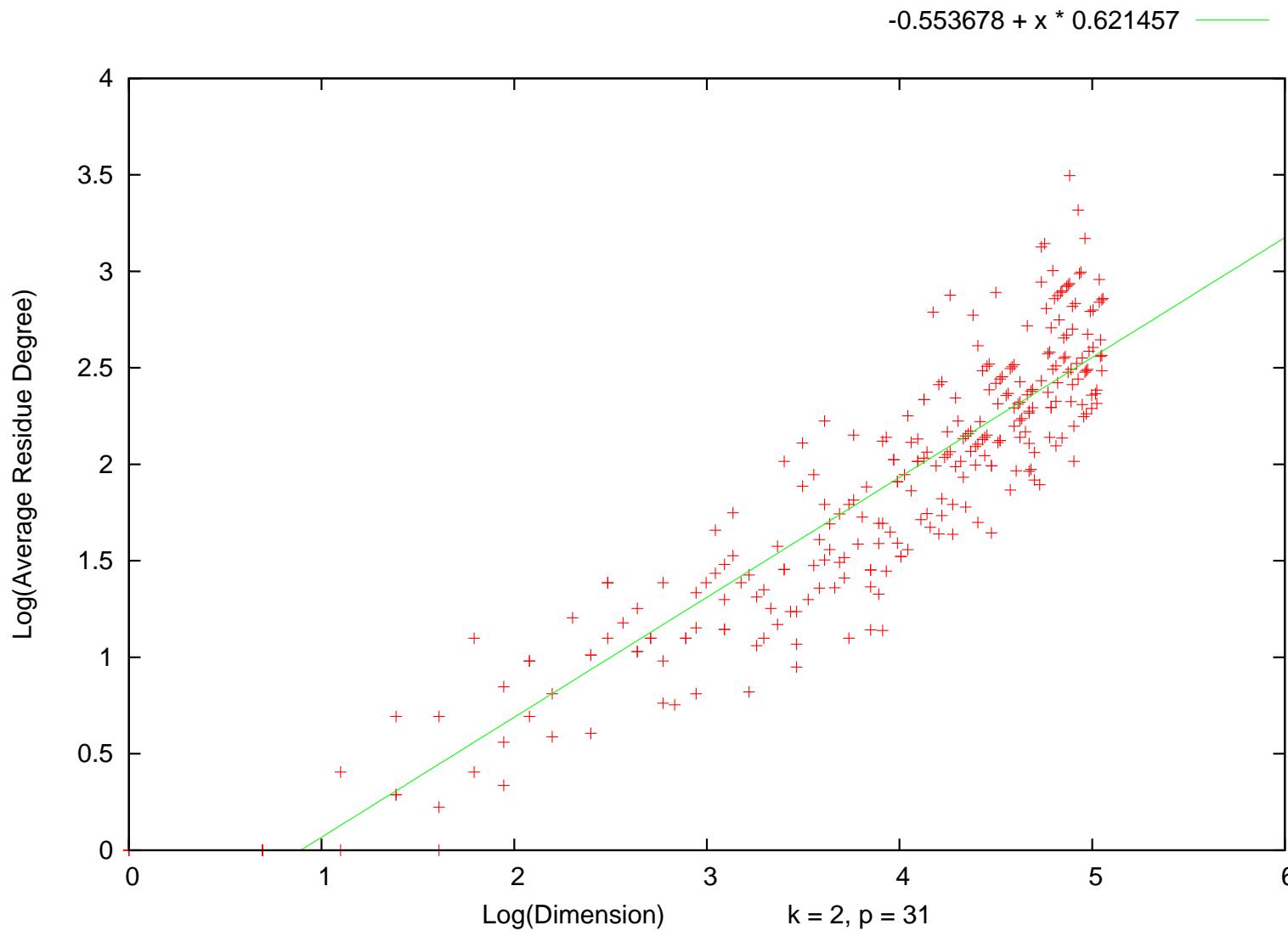
Degrees of coefficient fields



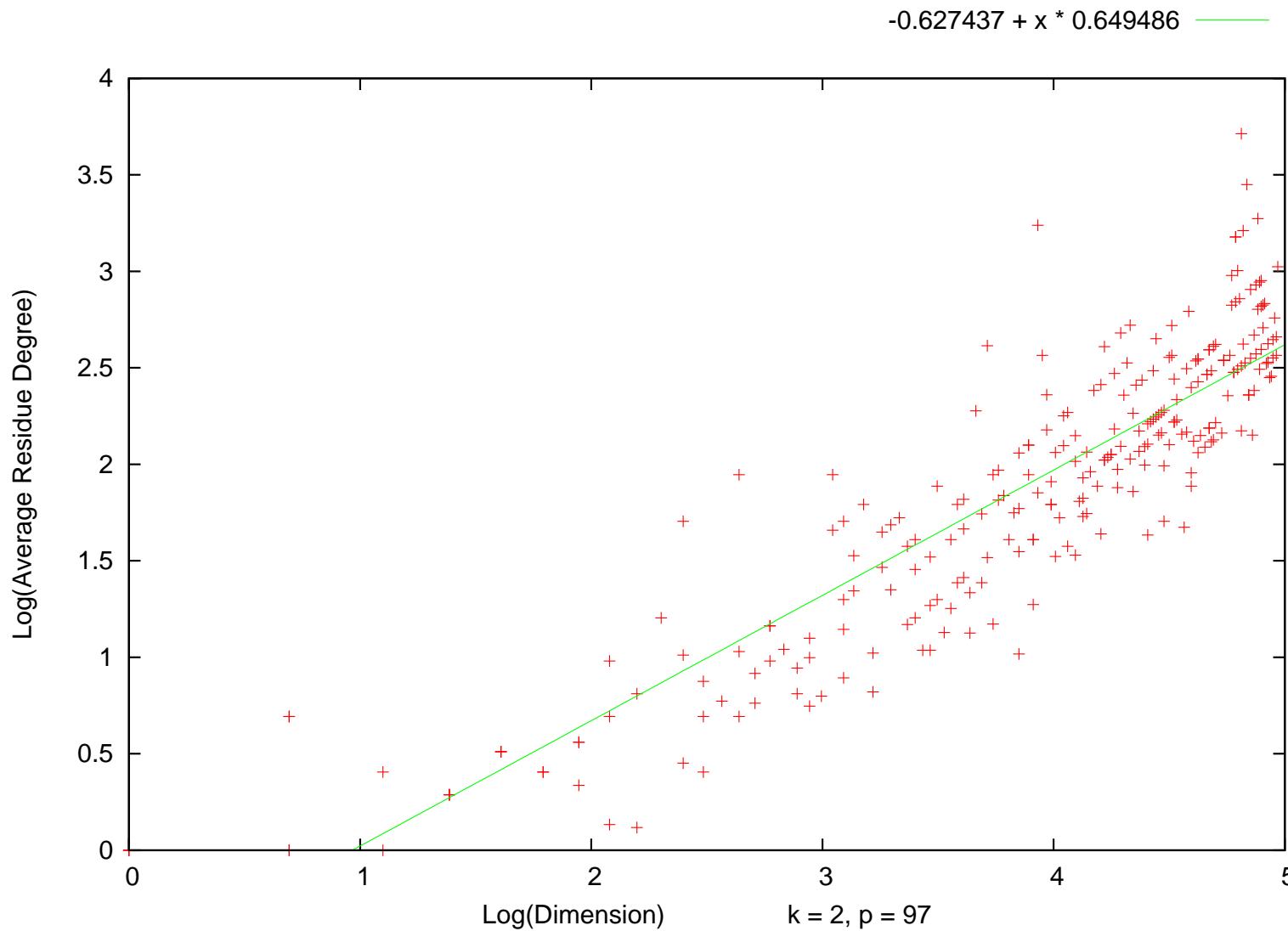
Degrees of coefficient fields



Degrees of coefficient fields



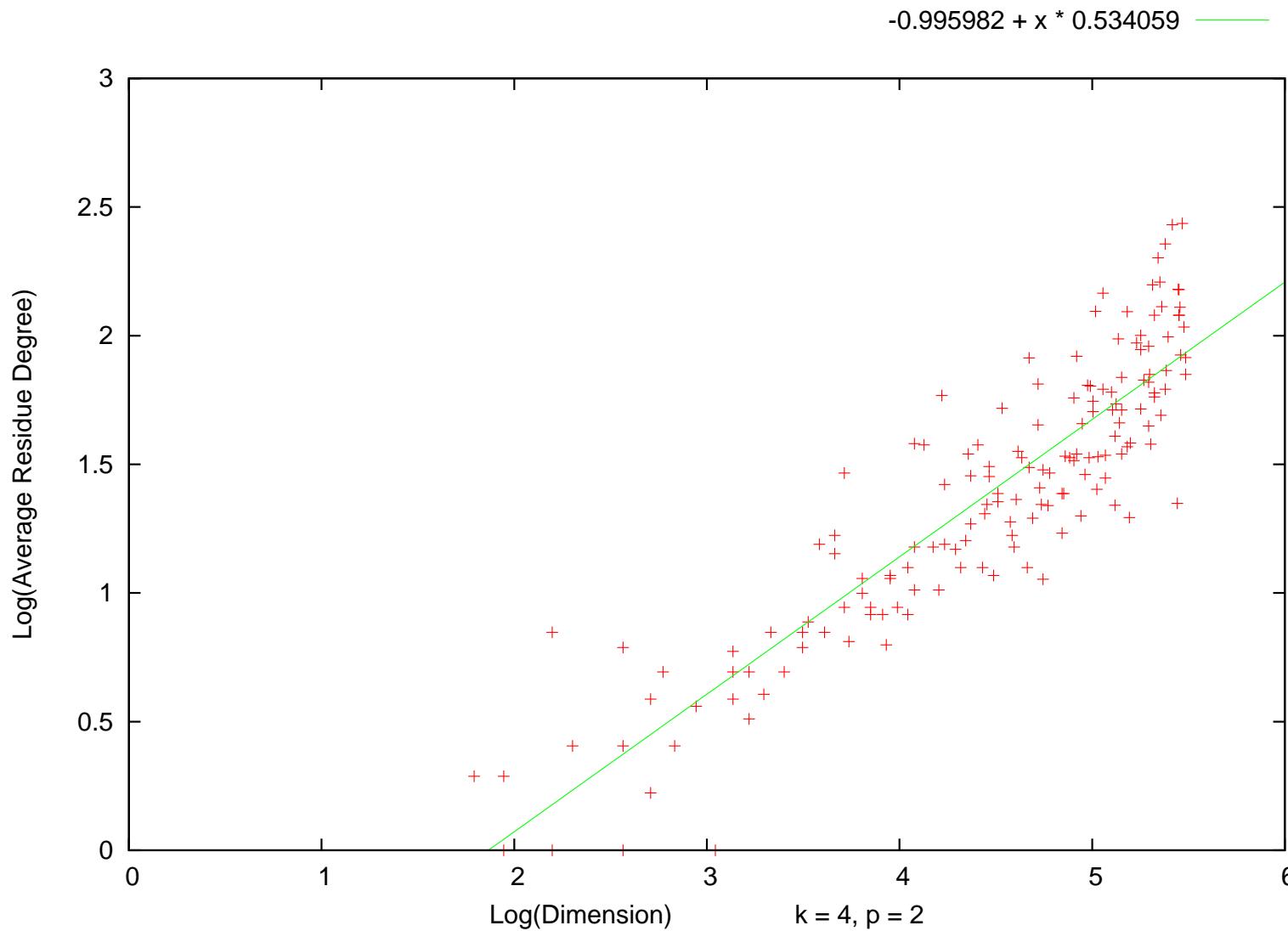
Degrees of coefficient fields



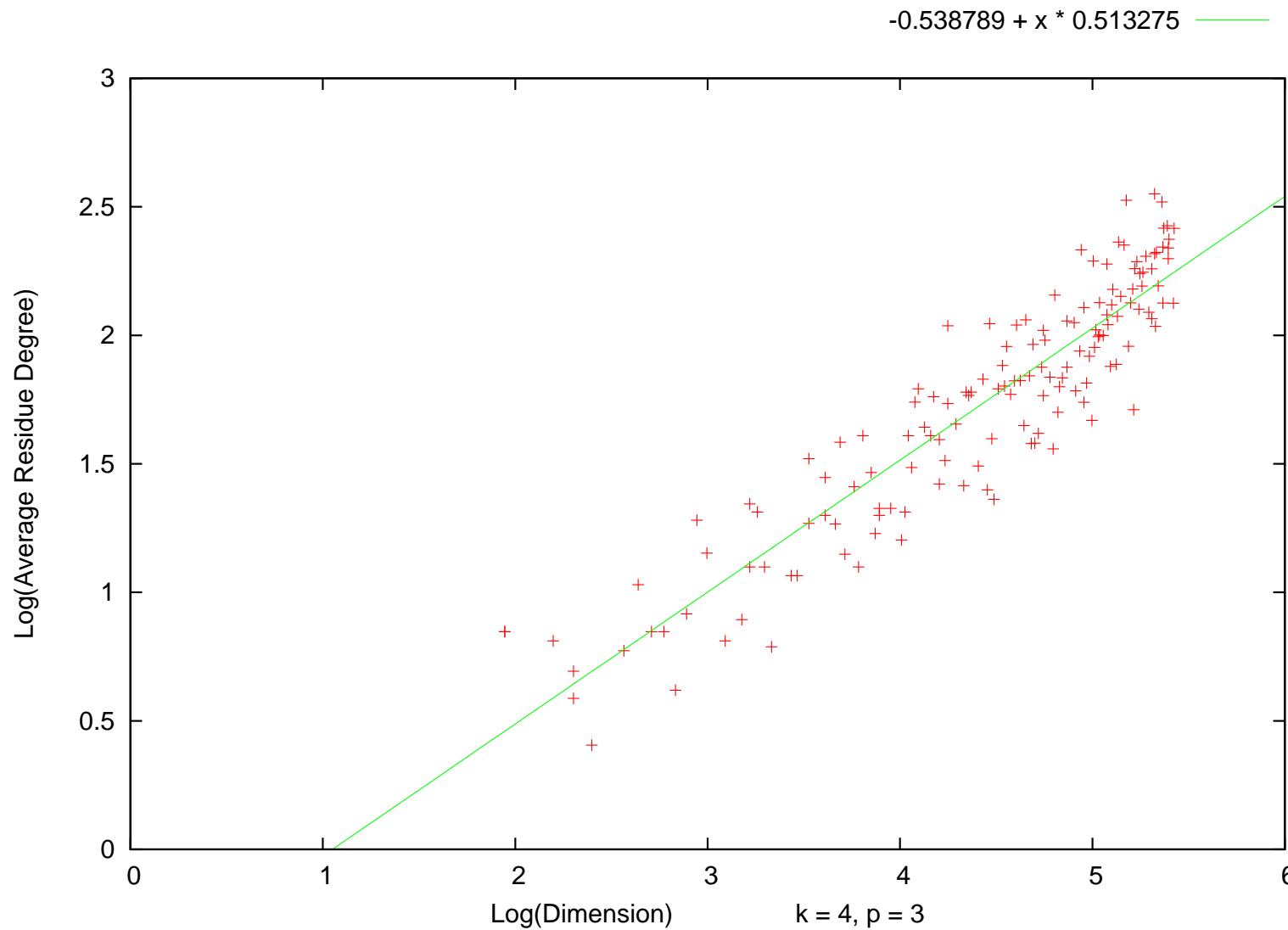
Degrees of coefficient fields

Now $k = 4$.

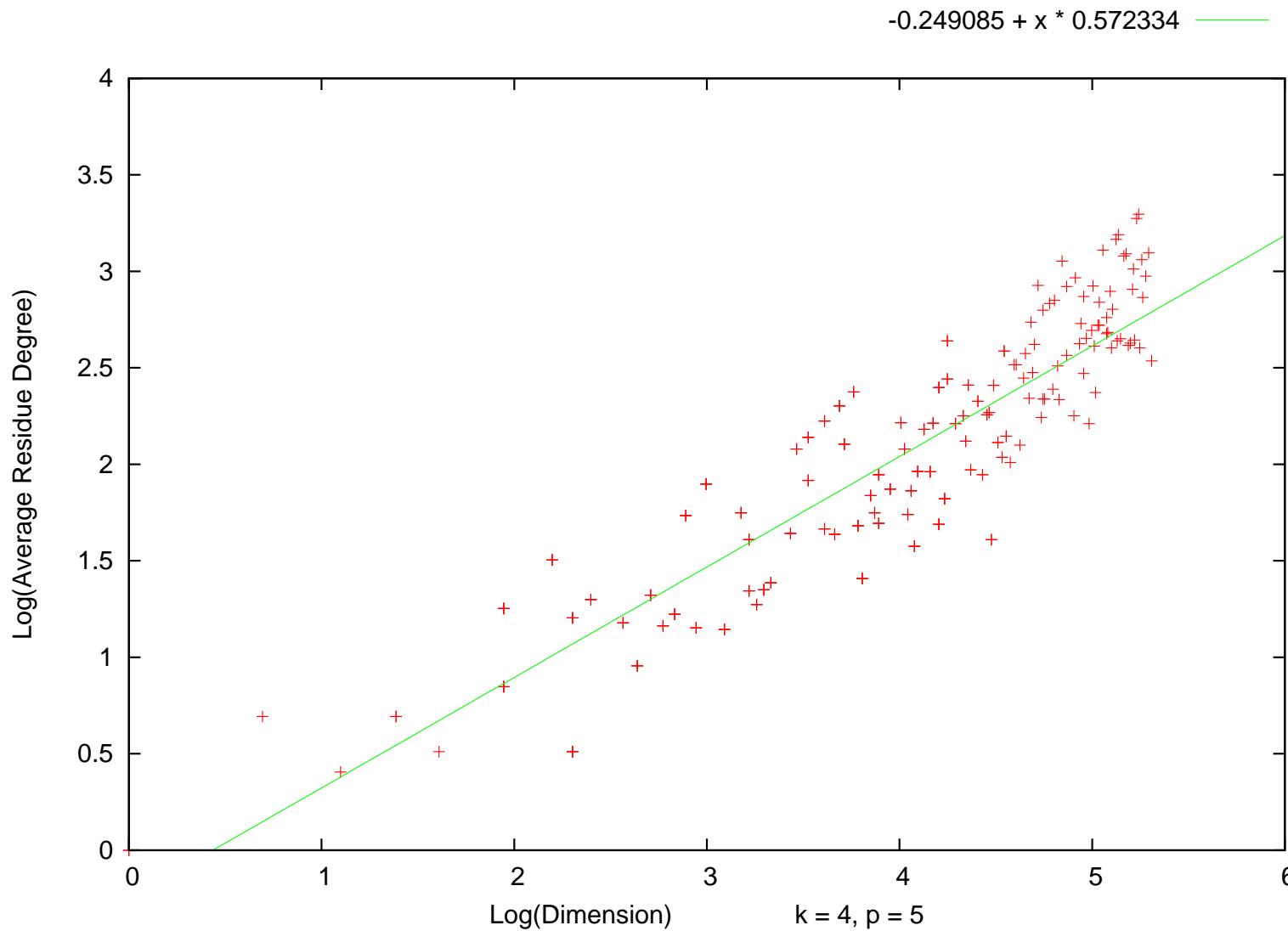
Degrees of coefficient fields



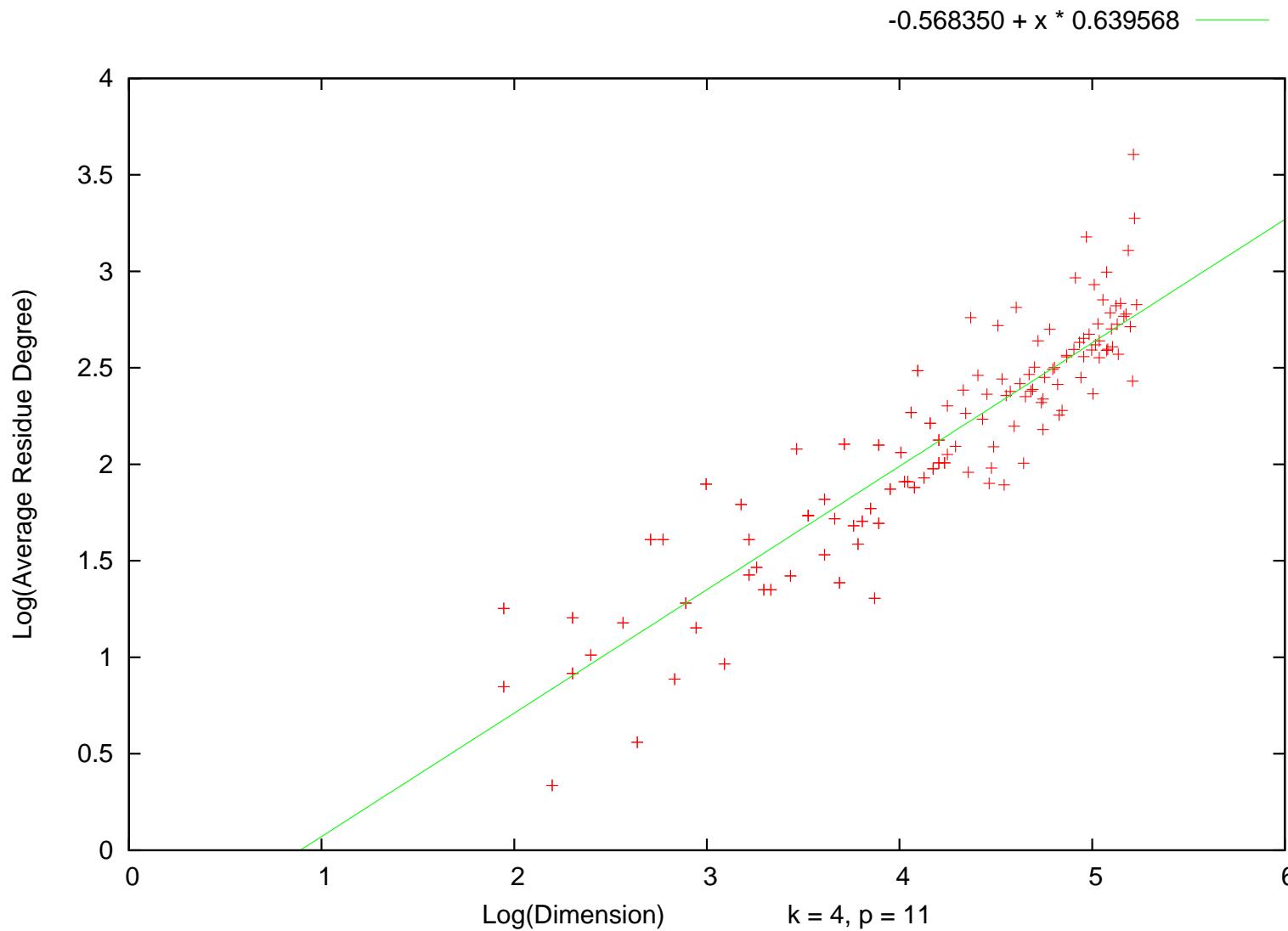
Degrees of coefficient fields



Degrees of coefficient fields



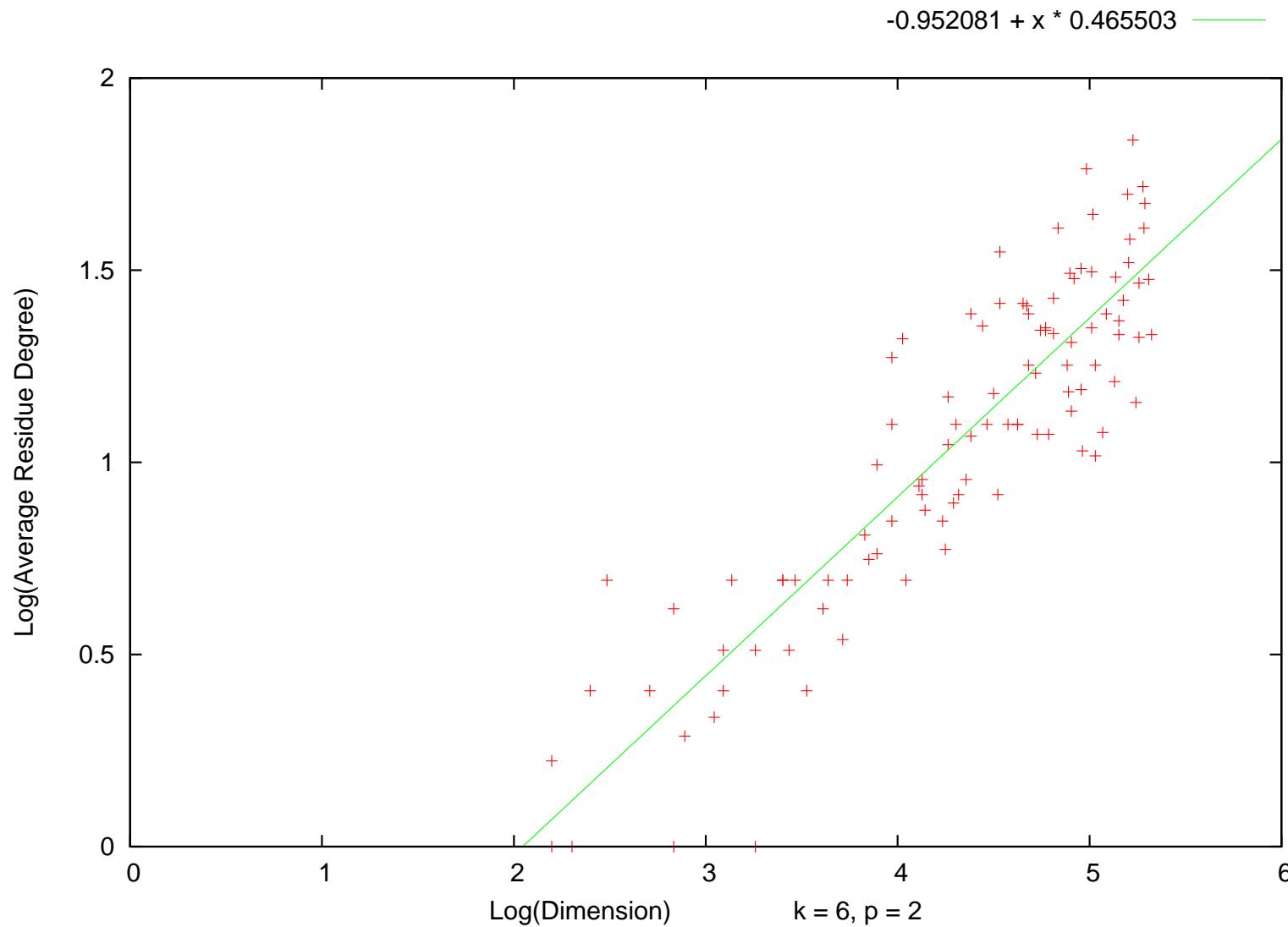
Degrees of coefficient fields



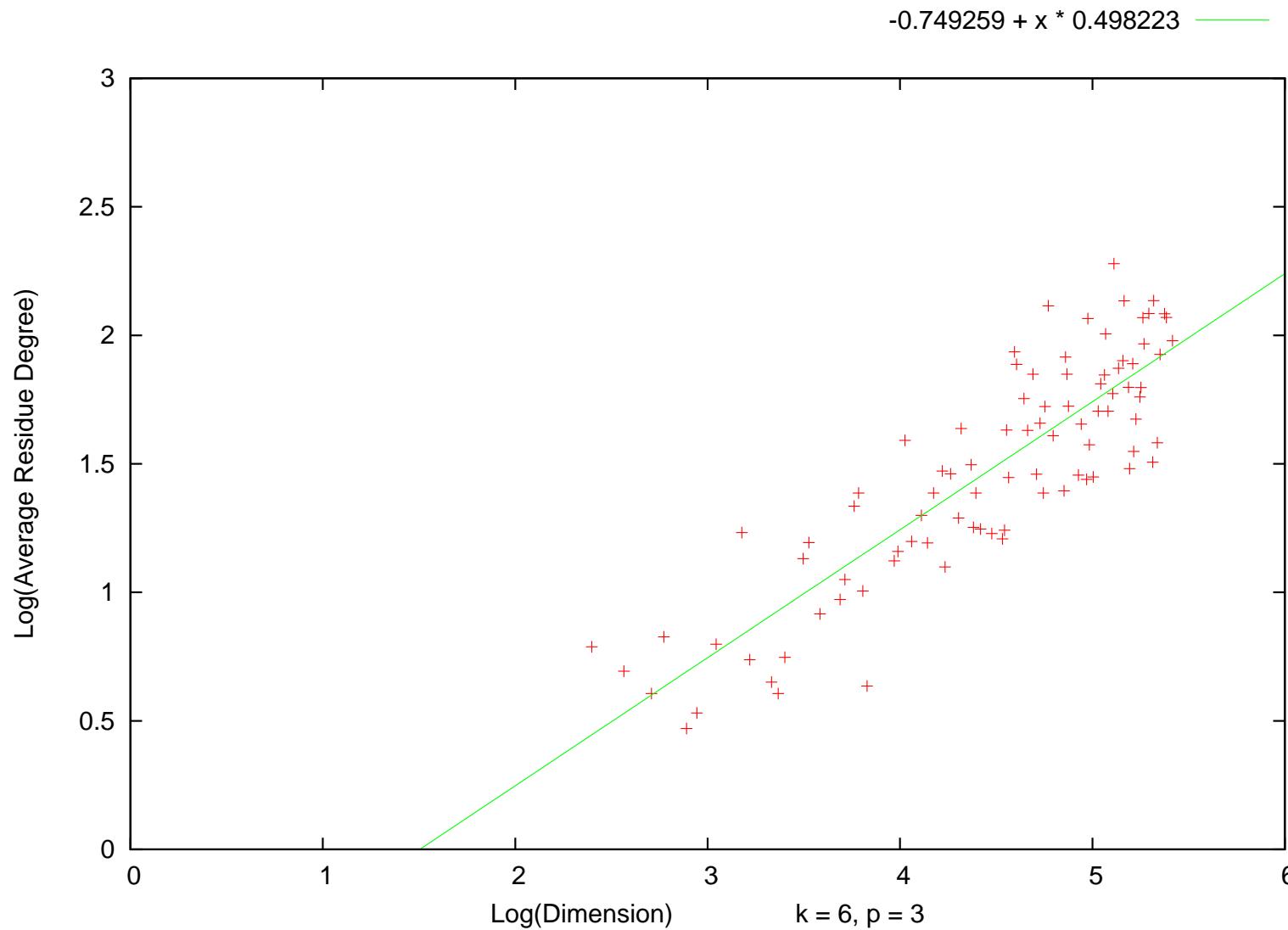
Degrees of coefficient fields

Now $k = 6$.

Degrees of coefficient fields



Degrees of coefficient fields



Degrees of coefficient fields

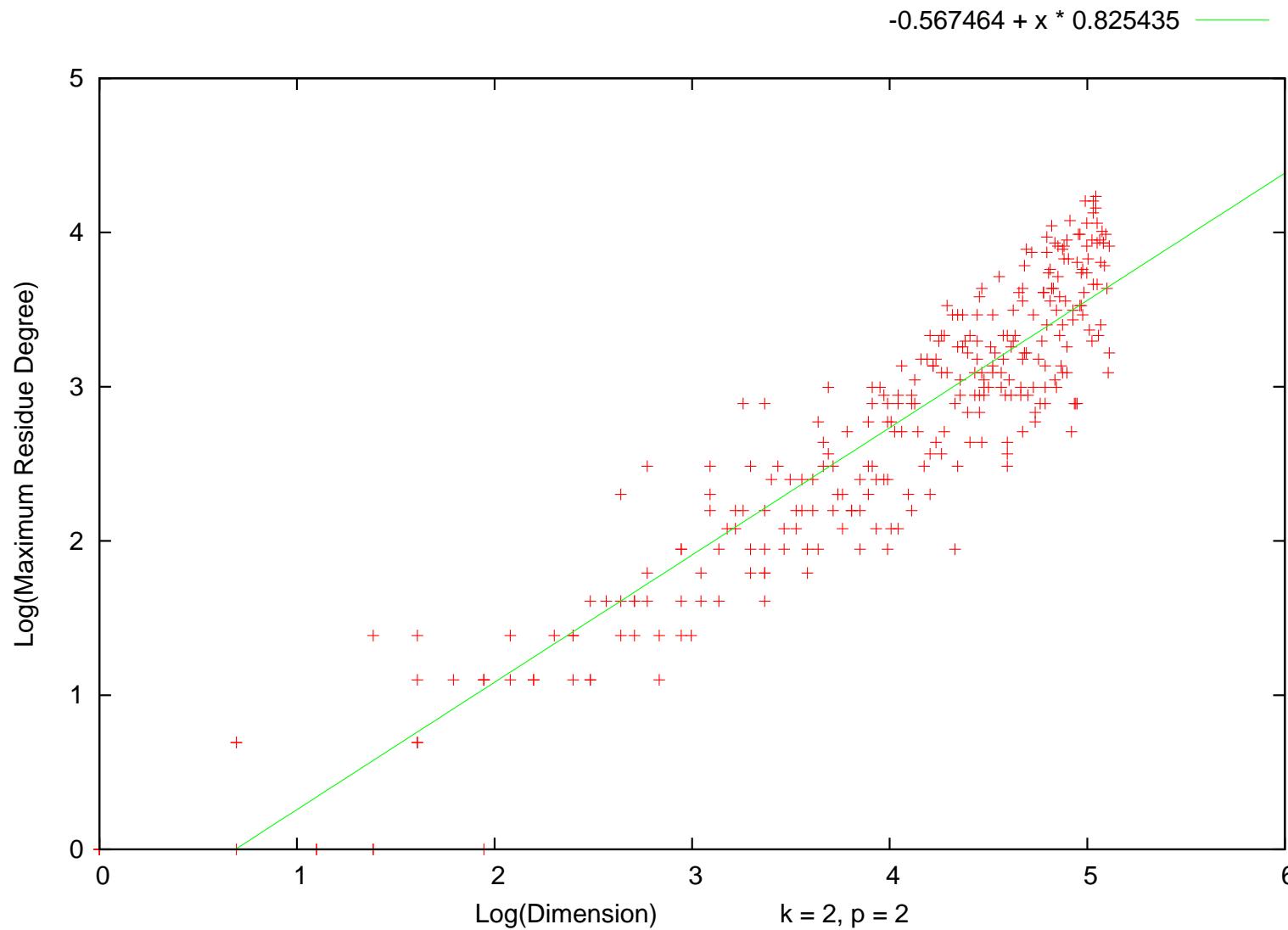
Fix p and $k = 2$.

Guess a dependence of the form

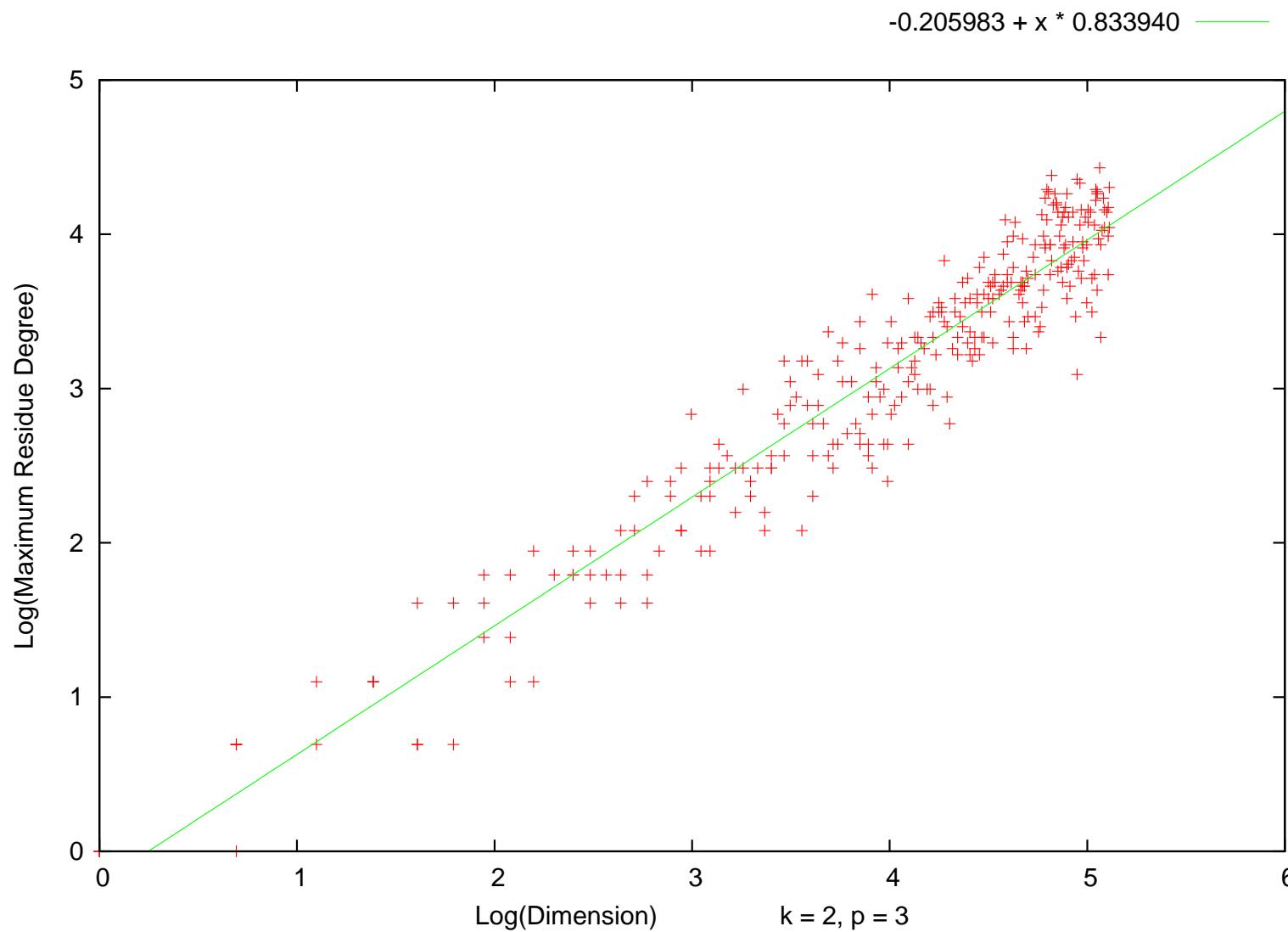
$$\max_k^{(p)}(N) \sim C(\dim_k(N))^\alpha.$$

Plot $\log(\max_k^{(p)}(N))$ as a function of $\log(\dim_k(N))$ for the primes $N \leq 2000$.

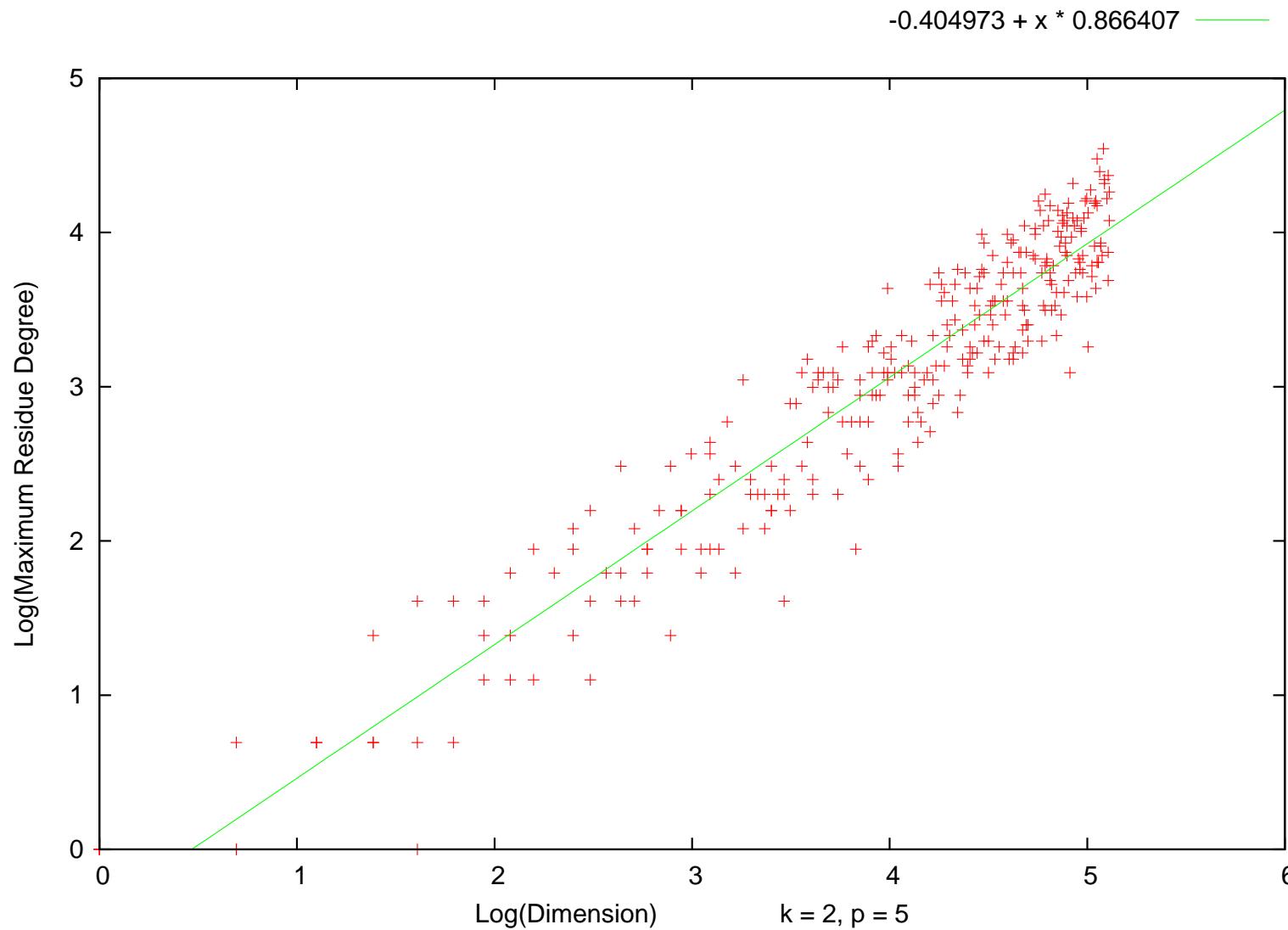
Degrees of coefficient fields



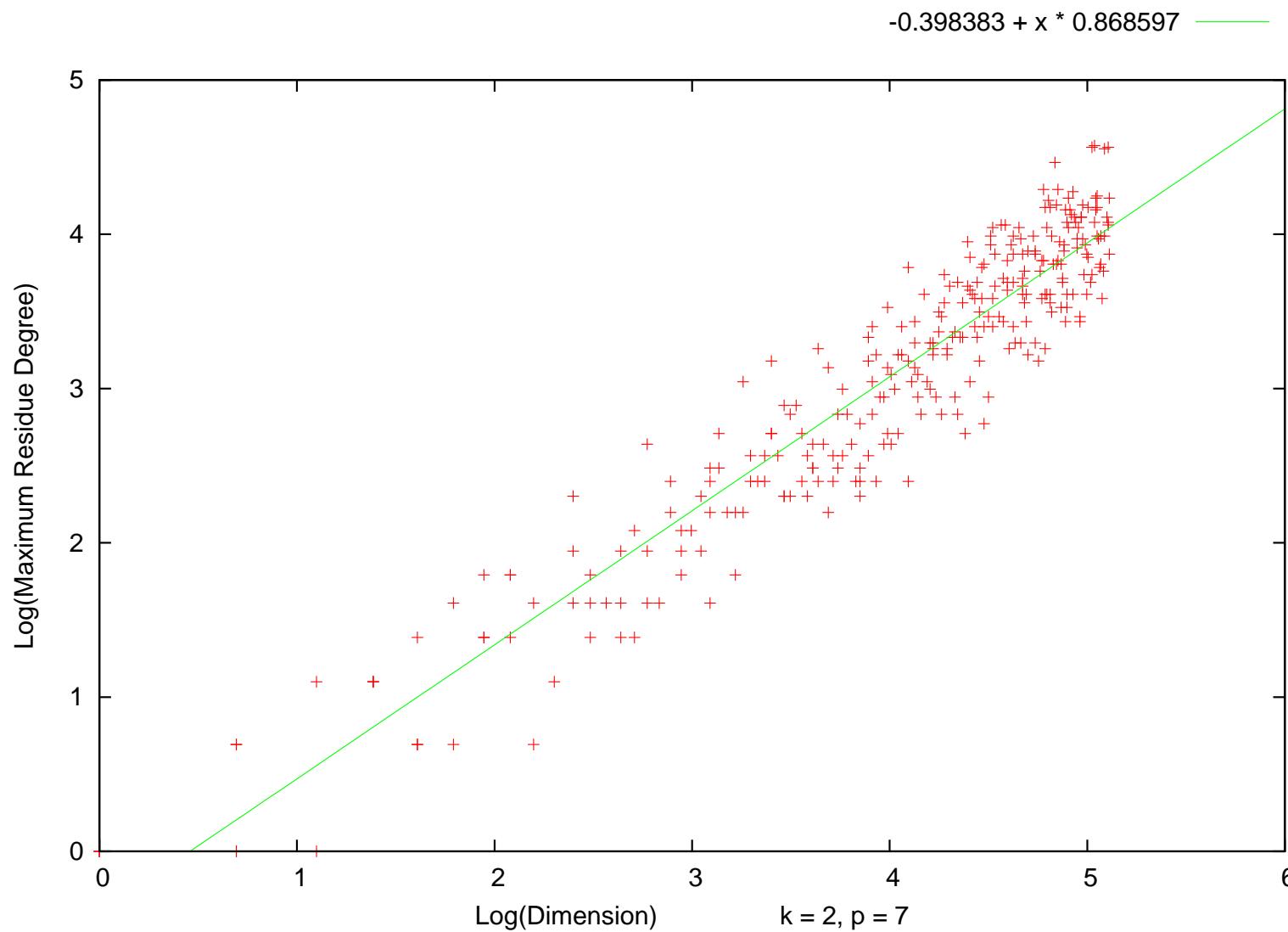
Degrees of coefficient fields



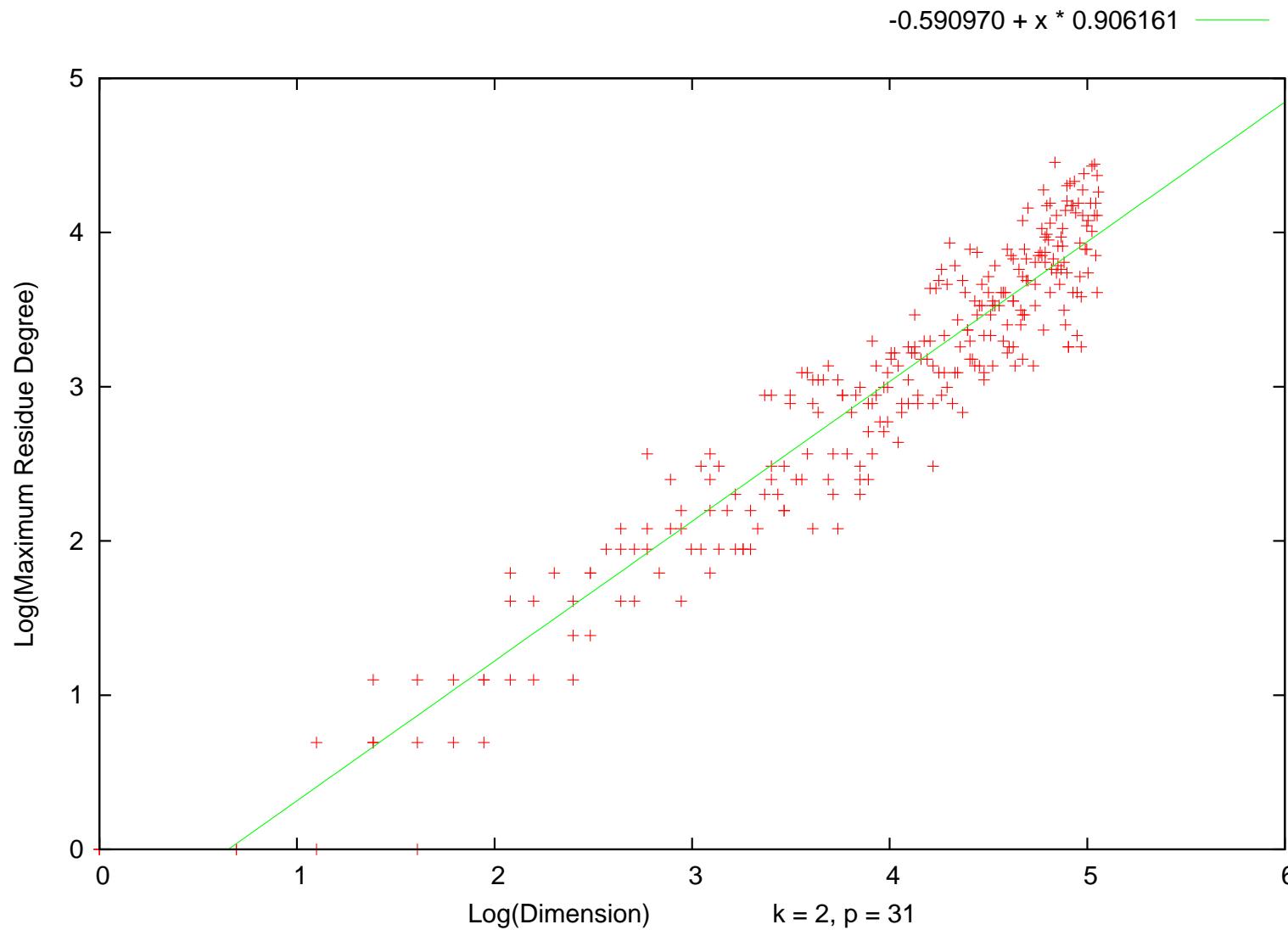
Degrees of coefficient fields



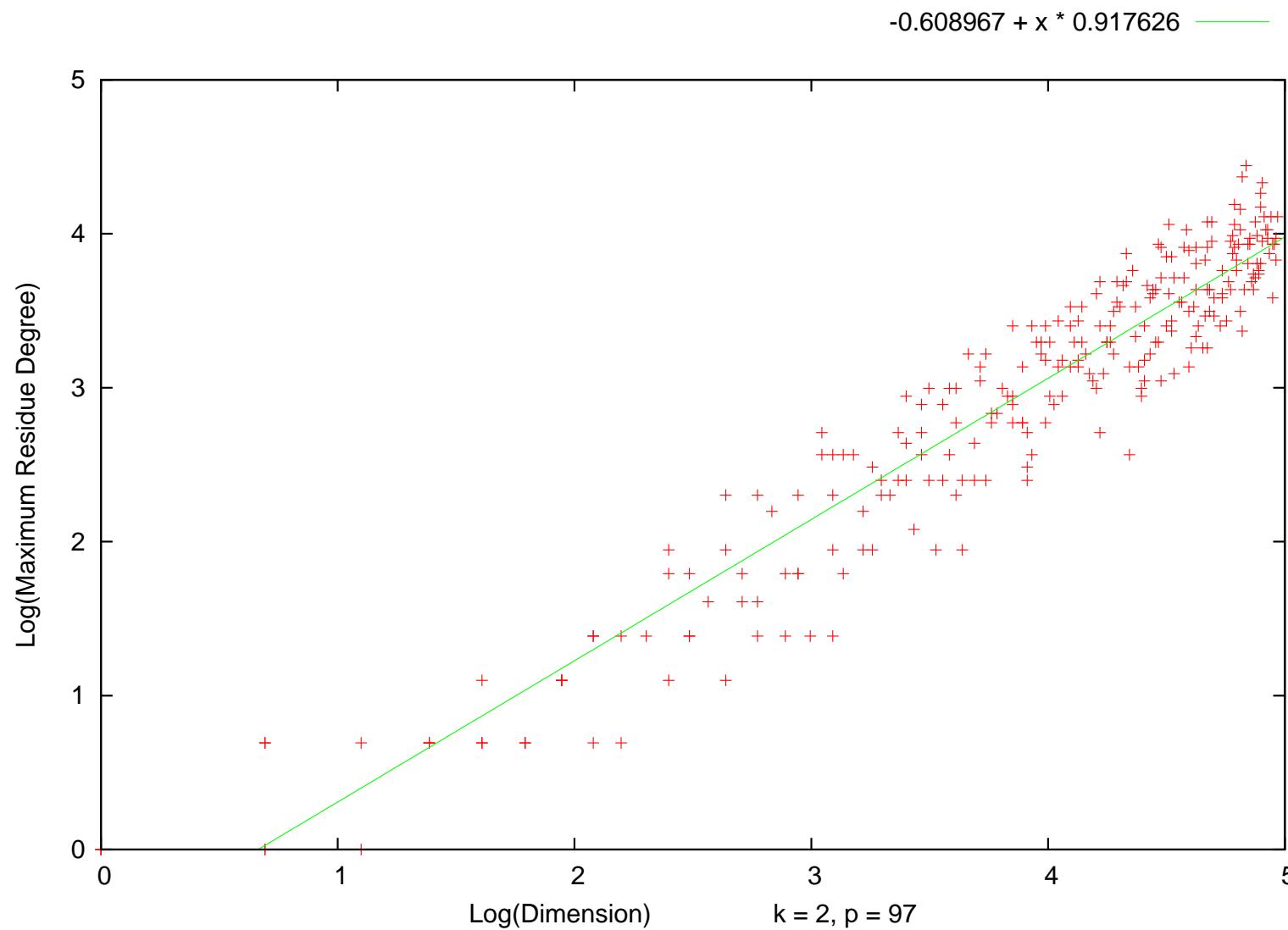
Degrees of coefficient fields



Degrees of coefficient fields



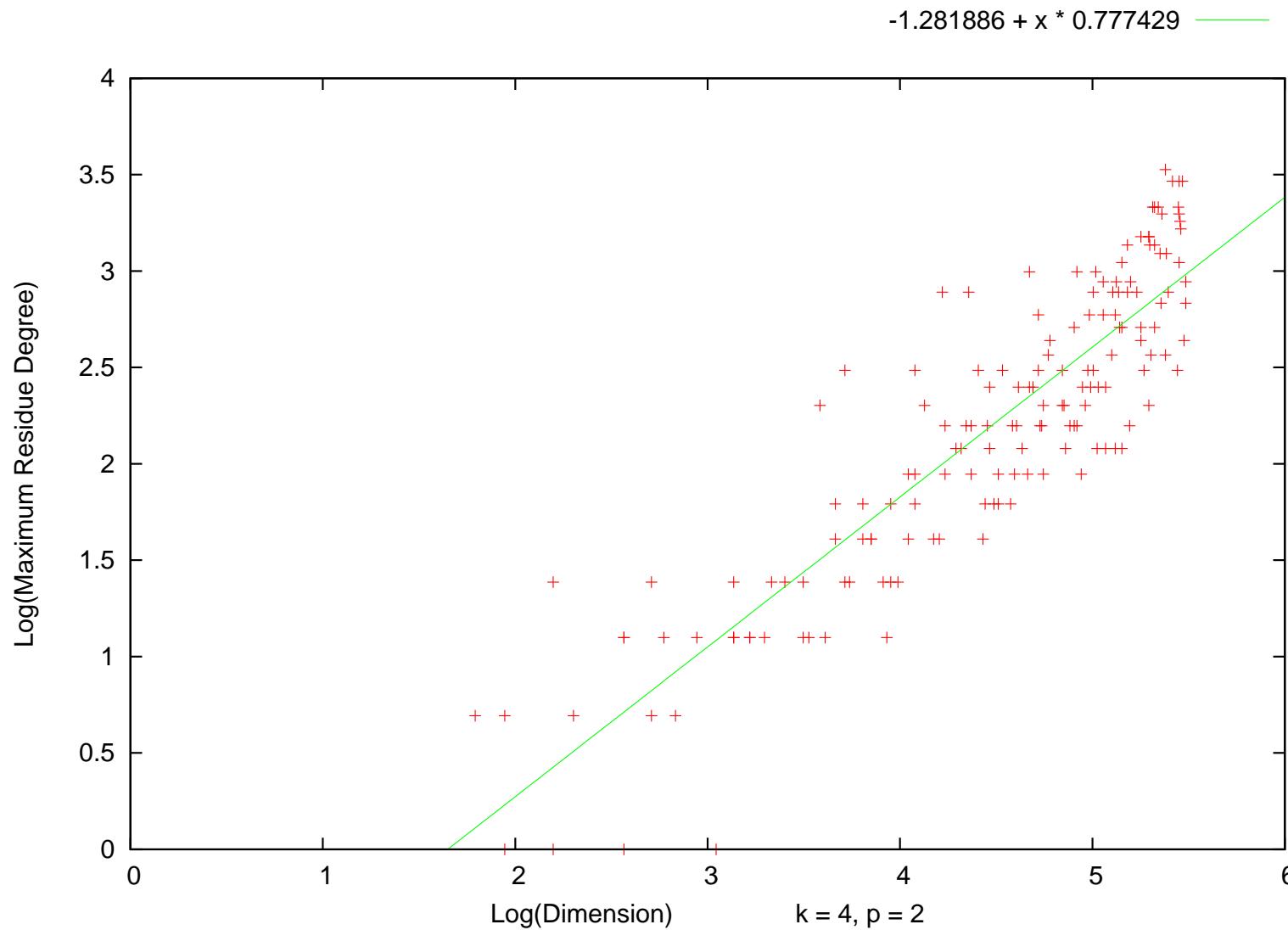
Degrees of coefficient fields



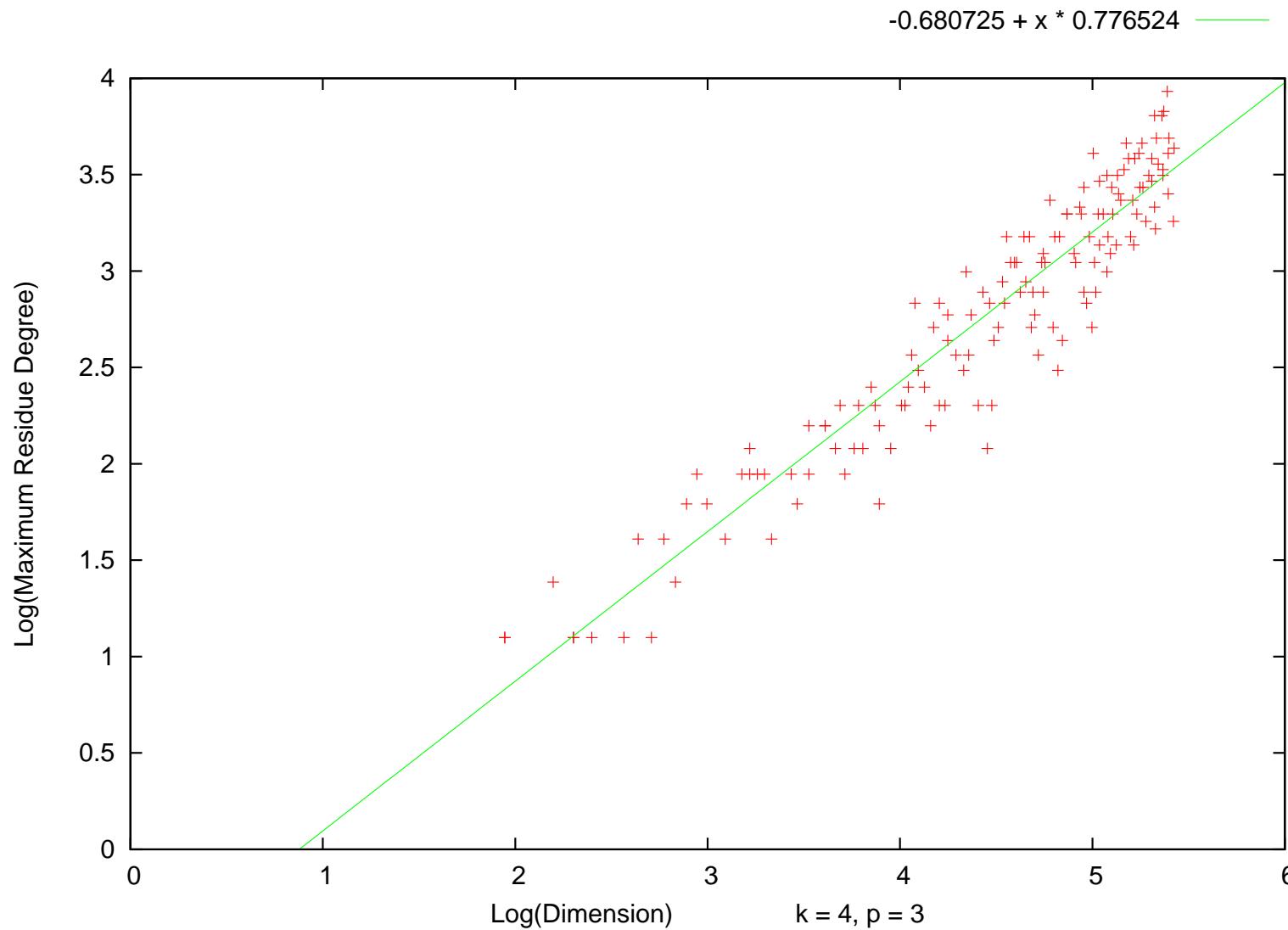
Degrees of coefficient fields

Now $k = 4$.

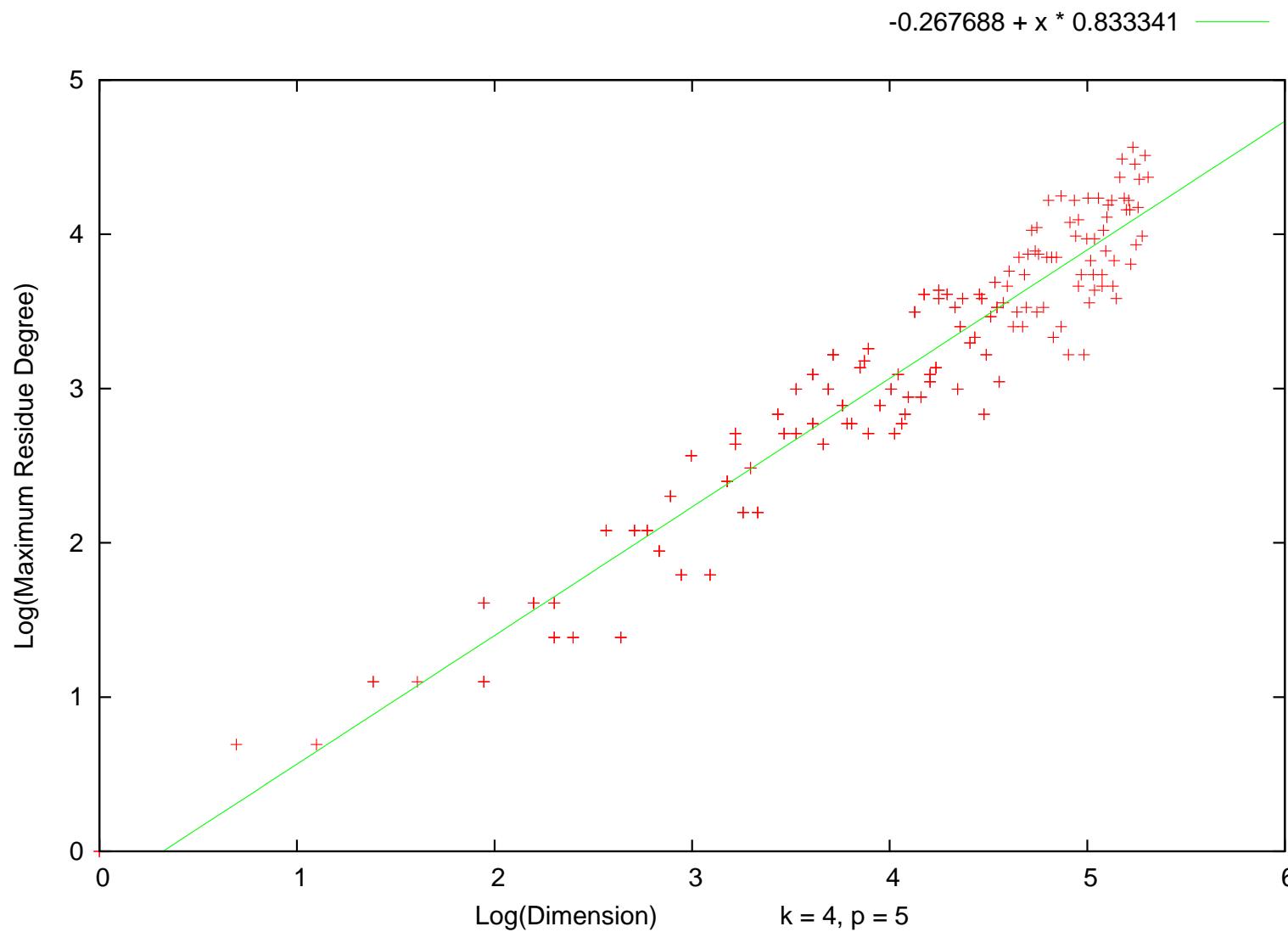
Degrees of coefficient fields



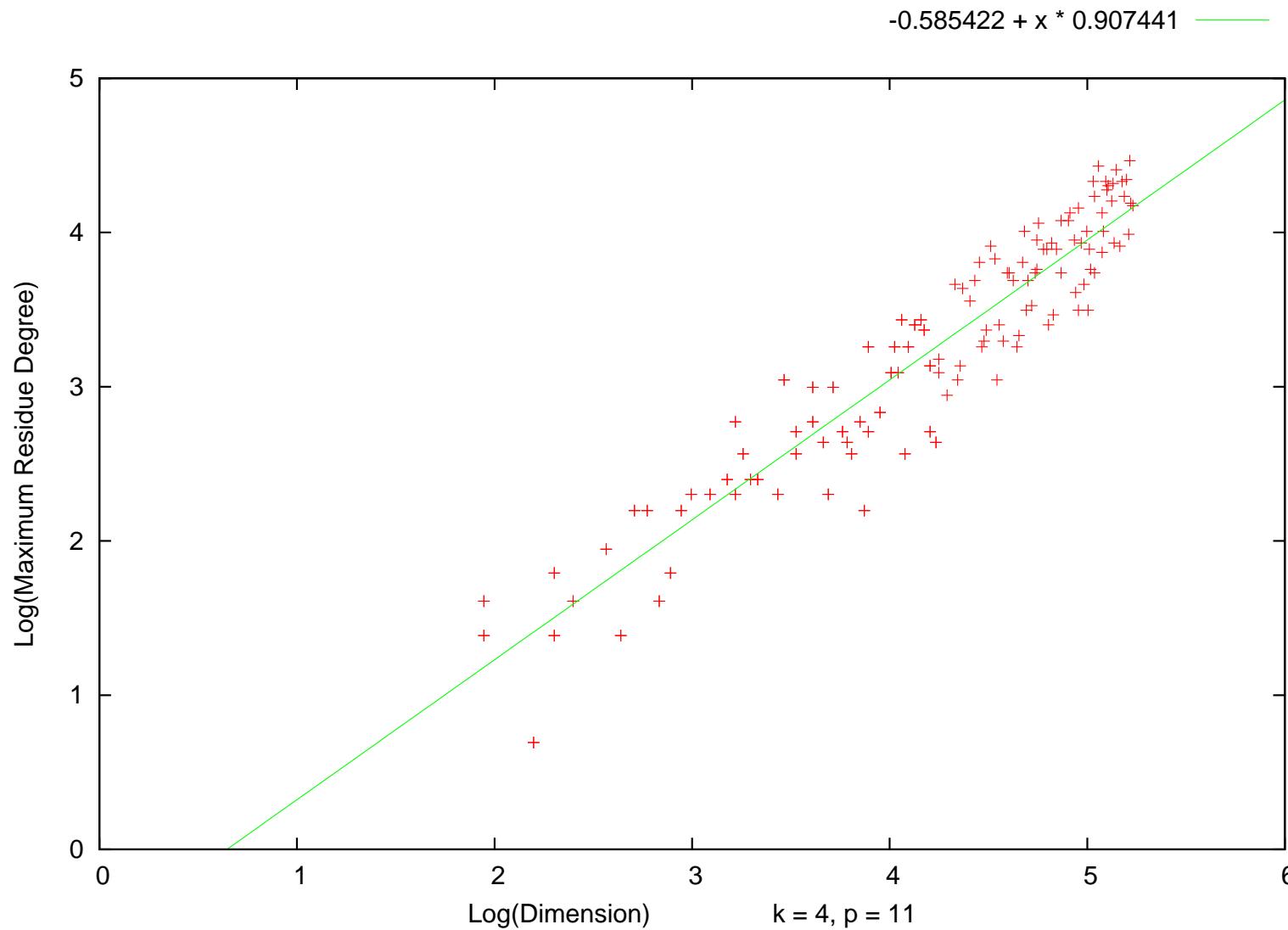
Degrees of coefficient fields



Degrees of coefficient fields



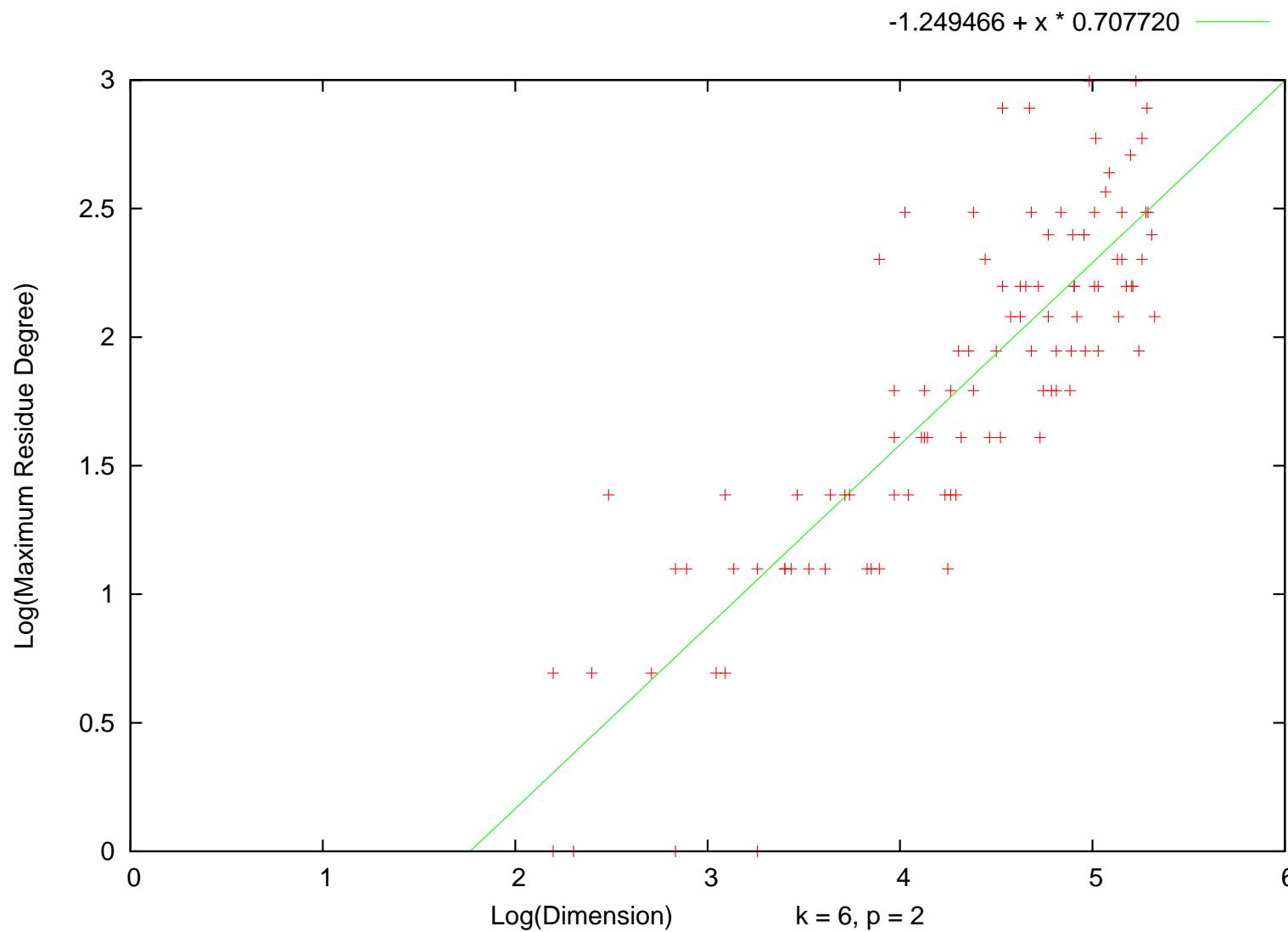
Degrees of coefficient fields



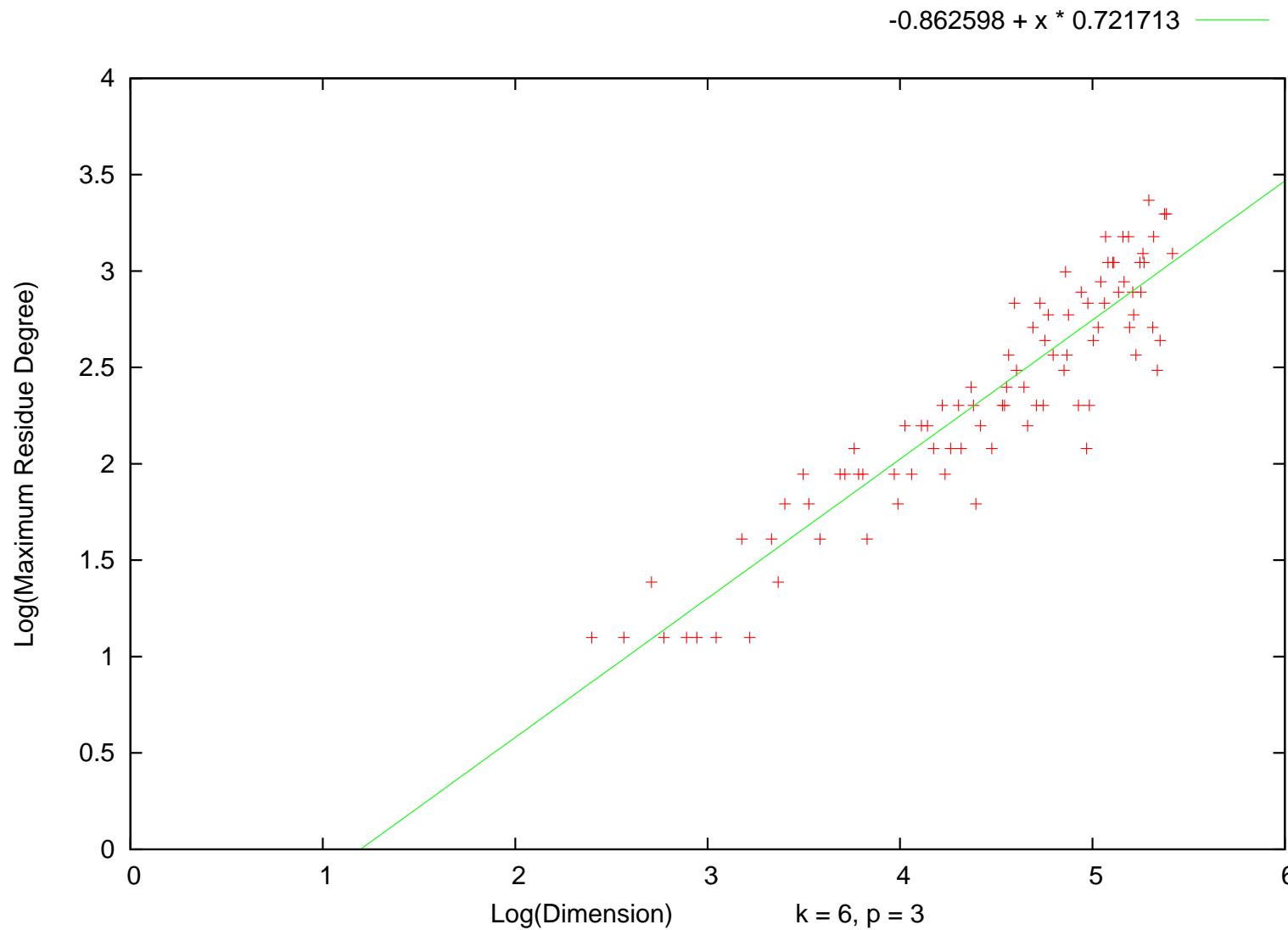
Degrees of coefficient fields

Now $k = 6$.

Degrees of coefficient fields



Degrees of coefficient fields



Degrees of coefficient fields

Question: Fix p and the weight $k \geq 2$.

Are there $0 < \alpha \leq \beta < 1$ and $C, D > 0$ s.t.

$$D \dim_k(N)^\beta \geq \text{average}_k^{(p)}(N) \geq C \dim_k(N)^\alpha \quad ?$$

Degrees of coefficient fields

Question: Fix p and the weight $k \geq 2$.

Are there $0 < \alpha \leq \beta < 1$ and $C, D > 0$ s.t.

$$D \dim_k(N)^\beta \geq \text{average}_k^{(p)}(N) \geq C \dim_k(N)^\alpha \quad ?$$

Question: Fix p and the weight $k \geq 2$.

Are there $0 < \alpha \leq \beta < 1$ and $C, D > 0$ s.t.

$$D \dim_k(N)^\beta \geq \text{max}_k^{(p)}(N) \geq C \dim_k(N)^\alpha \quad ?$$

Now the Wiki!