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Plan

(I) Arithmetic of coefficient fields of families of modular
forms. Introduction.

(II) Calculations (by Marcel Mohyla) and questions.

(III) Modular forms algorithms and implementations
- a wiki.
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Coefficient fields
Let f =

∑

∞

n=1 an qn be a newform (today mostly of prime
level).

Coefficient field of f : Qf = Q(an | n ∈ N).
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n=1 an qn be a newform (today mostly of prime
level).
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Qf is a number field.

If the weight of f is 2, let Af be the abelian variety
attached to f (by Shimura).
Then Qf = Q ⊗Z EndQ(Af ).

Computing (with) Modular Forms – p.3/58



Coefficient fields
Let f =

∑

∞

n=1 an qn be a newform (today mostly of prime
level).

Coefficient field of f : Qf = Q(an | n ∈ N).

Qf is a number field.

If the weight of f is 2, let Af be the abelian variety
attached to f (by Shimura).
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Coefficient fields
What is the arithmetic of: Qf = Q(an | n ∈ N)?

We consider the coefficient field of f mod p:

Fp,f = Fp(an; n ∈ N)

for a choice of Z
x7→x
։ Fp with a prime p.
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Fp,f = Fp(an; n ∈ N)

for a choice of Z
x7→x
։ Fp with a prime p.

If p ∤ index of Z[an | n ∈ N] in the integers of Qf , then
Fp,f is just a residue field of f for a prime above p.

Fp,f only depends on the Gal(Fp/Fp)-conjugacy class [f ]

of f . Write Fp,[f ].
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Coefficient fields
What is the arithmetic of: Qf = Q(an | n ∈ N)?

We consider the coefficient field of f mod p:

Fp,f = Fp(an; n ∈ N)

for a choice of Z
x7→x
։ Fp with a prime p.

If p ∤ index of Z[an | n ∈ N] in the integers of Qf , then
Fp,f is just a residue field of f for a prime above p.

Fp,f only depends on the Gal(Fp/Fp)-conjugacy class [f ]

of f . Write Fp,[f ].

Why is Fp,[f ] important?
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Coefficient fields modp

Why is Fp,[f ] important?

Shimura/Deligne: There is an odd Galois representation

ρ[f ] : Gal(Q/Q) → GL2(Fp,[f ])

whose arithmetic is encoded in [f ].

Computing (with) Modular Forms – p.5/58



Coefficient fields modp

Why is Fp,[f ] important?

Ribet: If f has no CM, then for almost all p there is a
totally imaginary field Kf,p with Gal(Kf,p/Q) equal to
PSL2(Fp,[f ]) or PGL2(Fp,[f ]).

The arithmetic of Kf,p is encoded in [f ].
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Coefficient fields modp

Why is Fp,[f ] important?

Ribet: If f has no CM, then for almost all p there is a
totally imaginary field Kf,p with Gal(Kf,p/Q) equal to
PSL2(Fp,[f ]) or PGL2(Fp,[f ]).

The arithmetic of Kf,p is encoded in [f ].

Serre’s modularity conjecture (Theorem of Khare,
Wintenberger, Kisin):

Every totally imaginary number field with Galois group
PSL2(F) or PGL2(F) for any finite field F arises in this
way.

Computing (with) Modular Forms – p.6/58



Coefficient fields modp

What do we know about Qf and Fp,[f ]?

In concrete cases: easy to compute Qf and Fp,[f ].
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What do we know about Qf and Fp,[f ]?

In concrete cases: easy to compute Qf and Fp,[f ].

Not directly related to the level and the weight of f :

Just from level and weight, one cannot say much about
Qf and Fp,[f ].

Can one say something ’asymptotic’, when varying f?
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Coefficient fields modp

Can one say something ’asymptotic’, when varying f?

We will study:

Sum of degrees [Fp,[f ] : Fp] for all [f ] in a given level and
weight.

Degeneration of mod p Hecke algebras.
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Coefficient fields modp

Can one say something ’asymptotic’, when varying f?

We will study:

Sum of degrees [Fp,[f ] : Fp] for all [f ] in a given level and
weight.

Degeneration of mod p Hecke algebras.

Average degree [Fp,[f ] : Fp] for all [f ] in a given level and
weight.

Maximum degree [Fp,[f ] : Fp] among all [f ] in a given
level and weight.
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Degeneration modp
We fix a (prime) level N and a weight k.

Define

dimk(N) = (number of newforms of level N and weight k).
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Degeneration modp
We fix a (prime) level N and a weight k.

Define

dimk(N) = (number of newforms of level N and weight k).

Consider the sum of residue degrees

deg
(p)
k (N) =

∑

[f ]

[Fp,[f ] : Fp]

where [f ] runs through the Gal(Fp/Fp)-conjugacy classes of

newforms of level N and weight k.
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Degeneration modp

Theorem. dimk(N) = deg
(p)
k (N)

def
=

∑

[f ][Fp,[f ] : Fp]

(the mod p Hecke algebra is non-degenerate) ⇔

Computing (with) Modular Forms – p.10/58



Degeneration modp

Theorem. dimk(N) = deg
(p)
k (N)

def
=

∑

[f ][Fp,[f ] : Fp]

(the mod p Hecke algebra is non-degenerate) ⇔

there is no congruence modulo p between two
newforms of level N and weight k and

Computing (with) Modular Forms – p.10/58



Degeneration modp

Theorem. dimk(N) = deg
(p)
k (N)

def
=

∑

[f ][Fp,[f ] : Fp]

(the mod p Hecke algebra is non-degenerate) ⇔

there is no congruence modulo p between two
newforms of level N and weight k and

the coefficient fields Qf are unramified at p for all
newforms f of level N and weight k and

Computing (with) Modular Forms – p.10/58



Degeneration modp

Theorem. dimk(N) = deg
(p)
k (N)

def
=

∑

[f ][Fp,[f ] : Fp]

(the mod p Hecke algebra is non-degenerate) ⇔

there is no congruence modulo p between two
newforms of level N and weight k and

the coefficient fields Qf are unramified at p for all
newforms f of level N and weight k and
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Degeneration modp

Theorem. dimk(N) = deg
(p)
k (N)

def
=

∑

[f ][Fp,[f ] : Fp]

(the mod p Hecke algebra is non-degenerate) ⇔

there is no congruence modulo p between two
newforms of level N and weight k and

the coefficient fields Qf are unramified at p for all
newforms f of level N and weight k and

p ∤ index Zf = Z[an(f) | n ∈ N] in integers of Qf for all
newforms f of level N and weight k.

One could expect that strict inequality dimk(N) > deg
(p)
k (N)

(degeneration modulo p) is a rare phenomenon.

Is that true?
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Degeneration modp
Let us fix the prime p and the weight k.

Plot deg
(p)
k (N) as a function of dimk(N) for all prime levels

N ≤ 2000 (for k = 2).

First, let p be odd.
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Degeneration modp

Now p = 2.

Computing (with) Modular Forms – p.20/58



Degeneration modp

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140  160

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 2

x * 0.521382

Computing (with) Modular Forms – p.21/58



Degeneration modp

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 4, p = 2

x * 0.409027

Computing (with) Modular Forms – p.22/58



Degeneration modp
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Degeneration modp
Question: Fix a prime p > 2 and a weight k ≥ 2.

Are there 0 < α ≤ 1 and C > 0 s.t.

deg
(p)
k (N) ≥ α dimk(N) − C ?
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Degeneration modp
Question: Fix a prime p > 2 and a weight k ≥ 2.

Are there 0 < α ≤ 1 and C > 0 s.t.

deg
(p)
k (N) ≥ α dimk(N) − C ?

Question: Fix a prime p > 2 and a weight k ≥ 2.

Are there 0 < α ≤ β < 1 and C,D > 0 s.t.

β dimk(N) + D ≥ deg
(2)
k (N) ≥ α dimk(N) − C ?
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Degrees of coefficient fields
Theorem (Serre). Suppose Nm + km → ∞ for m → ∞.

Then the set

{[Qf : Q] | f newform of level Nm, weight km some m}

is unbounded.
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Degrees of coefficient fields
Theorem (Serre). Suppose Nm + km → ∞ for m → ∞.

Then the set

{[Qf : Q] | f newform of level Nm, weight km some m}

is unbounded.

In general, I do not know if the set

{[Fp,[f ] : Fp] | f newform of level Nm, weight km some m}

is bounded. The cases when the Nm contain big enough
prime powers can be treated via ramification.
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Degrees of coefficient fields
Theorem (Serre). Suppose Nm + km → ∞ for m → ∞.

Then the set

{[Qf : Q] | f newform of level Nm, weight km some m}

is unbounded.

In general, I do not know if the set

{[Fp,[f ] : Fp] | f newform of level Nm, weight km some m}

is bounded. The cases when the Nm contain big enough
prime powers can be treated via ramification.

How do the [Fp,[f ] : Fp] behave when k is fixed and N runs
through the primes ?
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Degrees of coefficient fields
Define:

average
(p)
k (N) :=

P

[f ][Fp,[f ]:Fp]
P

[f ] 1

average degree of the coefficient fields mod p,

max
(p)
k (N) := max[f ][Fp,[f ] : Fp]

maximum degree of the coefficient fields mod p.

Here, [f ] runs through the Gal(Fp/Fp)-conjugacy classes of
newforms in level N and weight k.
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Degrees of coefficient fields
Define:

average
(p)
k (N) :=

P

[f ][Fp,[f ]:Fp]
P

[f ] 1

average degree of the coefficient fields mod p,

max
(p)
k (N) := max[f ][Fp,[f ] : Fp]

maximum degree of the coefficient fields mod p.

Here, [f ] runs through the Gal(Fp/Fp)-conjugacy classes of
newforms in level N and weight k.

Can average
(p)
k (N) and max

(p)
k (N) be bounded by functions of

dimk(N)?
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Degrees of coefficient fields
Fix p and k = 2.

Guess a dependence of the form

average
(p)
k (N) ∼ C

(

dimk(N)
)α.

Plot log(average
(p)
k (N)) as a function of log(dimk(N)) for the

primes N ≤ 2000.
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Degrees of coefficient fields
Now k = 4.
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Degrees of coefficient fields
Now k = 6.
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Degrees of coefficient fields
Fix p and k = 2.

Guess a dependence of the form

max
(p)
k (N) ∼ C

(

dimk(N)
)α.

Plot log(max
(p)
k (N)) as a function of log(dimk(N)) for the

primes N ≤ 2000.
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Degrees of coefficient fields
Now k = 4.
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-0.585422 + x * 0.907441
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Degrees of coefficient fields
Now k = 6.
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Degrees of coefficient fields
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-0.862598 + x * 0.721713
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Degrees of coefficient fields
Question: Fix p and the weight k ≥ 2.

Are there 0 < α ≤ β < 1 and C,D > 0 s.t.

D dimk(N)β ≥ average
(p)
k (N) ≥ C dimk(N)α ?
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Degrees of coefficient fields
Question: Fix p and the weight k ≥ 2.

Are there 0 < α ≤ β < 1 and C,D > 0 s.t.

D dimk(N)β ≥ average
(p)
k (N) ≥ C dimk(N)α ?

Question: Fix p and the weight k ≥ 2.

Are there 0 < α ≤ β < 1 and C,D > 0 s.t.

D dimk(N)β ≥ max
(p)
k (N) ≥ C dimk(N)α ?

Computing (with) Modular Forms – p.57/58



Now the Wiki!
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