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Plan

(I) Arithmetic of coefficient fields of families of modular
forms. Introduction.

(1I) Calculations (by Marcel Mohyla) and questions.

(111) Modular forms algorithms and implementations
- a wiki.
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Coefficient fields

Let f =Y., a,q" be a newform (today mostly of prime
level).

Coefficient field of f: Q= Q(a, | n € N).

INSTITUT FOR EXPERIMENTELLE MATHEMATIK Computing (with) Modular Forms — p.3/58



Coefficient fields

Let f =Y., a,q" be a newform (today mostly of prime
level).

Coefficient field of f: Q= Q(a, | n € N).

® Q¢ Is anumber field.
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Coefficient fields

Let f =Y., a,q" be a newform (today mostly of prime
level).

Coefficient field of f: Q= Q(a, | n € N).

® Q¢ Is a number field.

» |f the weight of f Is 2, let A; be the abelian variety
attached to f (by Shimura).

Then Qf = Q ®z EndQ(Af).
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Coefficient fields

Let f =Y., a,q" be a newform (today mostly of prime
level).

Coefficient field of f: Q= Q(a, | n € N).

® Q¢ Is a number field.

» |f the weight of f Is 2, let A; be the abelian variety
attached to f (by Shimura).

Then Qf = Q ®z EndQ(Af).

What about the arithmetic of Q,?
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Coefficient fields

What Is the arithmetic of:  Q; = Q(a, | n € N)?
We consider the coefficient field of f mod p:

Fp,f = Fp(%;n S N)

for a choice of Z — T, with a prime p.
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Coefficient fields

What Is the arithmetic of:  Q; = Q(a, | n € N)?
We consider the coefficient field of f mod p:

Fp,f — Fp(@;n c N)

for a choice of Z — T, with a prime p.

® |f ptindex of Z[a,, | n € N] In the integers of Q¢, then
I, ¢ Is Just a residue field of f for a prime above p.
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Coefficient fields

What is the arithmetic of:  Q; = Q(a,, | n € N)?
We consider the coefficient field of f mod p:

Fp’f — Fp(%;n c N)

for a choice of Z — T, with a prime p.
® |f ptindex of Z[a,, | n € N] In the integers of Q¢, then
I, ¢ Is Just a residue field of f for a prime above p.

o [, . only depends on the Gal(Fp/Fp)-conjugacy class |f]
of f. Write F,, (4.

Computing (with) Modular Forms — p.4/58

INSTITUT FOR EXPERIMENTELLE MATHEMATIK



Coefficient fields

What is the arithmetic of:  Q; = Q(a,, | n € N)?
We consider the coefficient field of f mod p:

Fp’f — Fp(%;n c N)

for a choice of Z — T, with a prime p.

® |f ptindex of Z[a,, | n € N] In the integers of Q¢, then
I, ¢ Is Just a residue field of f for a prime above p.

o [, . only depends on the Gal(Fp/Fp)-conjugacy class |f]
of f. Write F,, (4.

Why is F, ;) Important?
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Coefficient fields modp

Why is F, s Important?

# Shimura/Deligne: There is an odd Galois representation

pf - Gal(Q/Q) — GLa(F, 1)
whose arithmetic is encoded In [f].
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Coefficient fields modp

Why is F, s Important?

# Ribet: If f has no CM, then for almost all p there Is a
totally imaginary field K, with Gal(K;,/Q) equal to

PSLo (Fp,[f]) or PGL» (Fp,[f])'

The arithmetic of K¢, Is encoded In |f].
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Coefficient fields modp

Why is F, s Important?

# Ribet: If f has no CM, then for almost all p there Is a
totally imaginary field K, with Gal(K;,/Q) equal to

PSLo (]Fp,[f]) or PGL» (Fp,[f])'

The arithmetic of K¢, Is encoded in |f].
#® Serre’s modularity conjecture (Theorem of Khare,
Wintenberger, Kisin):

Every totally imaginary number field with Galois group
PSLy(IF) or PGLy(IF) for any finite field F arises in this
way.
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Coefficient fields modp

What do we know about Q; and F,, ;4?

# In concrete cases: easy to compute Q and F, (4.
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Coefficient fields modp

What do we know about Q; and F,, ;4?

# In concrete cases: easy to compute Q; and F,, .

# Not directly related to the level and the weight of f:

Just from level and weight, one cannot say much about
Qs and Fy, (-
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Coefficient fields modp

What do we know about Q; and F,, ;4?

# In concrete cases: easy to compute Q; and F,, .

# Not directly related to the level and the weight of f:

Just from level and weight, one cannot say much about
Qs and Fy, (-

Can one say something 'asymptotic’, when varying f?
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Coefficient fields modp

Can one say something 'asymptotic’, when varying f?

We will study:

® Sum of degrees [F, 4 : F,] for all |f] in a given level and
weight.

Degeneration of mod p Hecke algebras.
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Coefficient fields modp

Can one say something 'asymptotic’, when varying f?

We will study:

® Sum of degrees [F, 4 : F,] for all |f] in a given level and
weight.

Degeneration of mod p Hecke algebras.

» Average degree [F, ¢ : Fp| for all [f] in a given level and
weight.
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Coefficient fields modp

Can one say something 'asymptotic’, when varying f?
We will study:

® Sum of degrees [F, 4 : F,] for all |f] in a given level and
weight.

Degeneration of mod p Hecke algebras.

» Average degree [F, ¢ : Fp| for all [f] in a given level and
weight.

# Maximum degree [F,  : F,] among all |f] in a given
level and weight.
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Degeneration modp

We fix a (prime) level N and a weight k.

Define

dimg (N) = (number of newforms of level N and weight k).
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Degeneration modp

We fix a (prime) level N and a weight k.

Define

dimg (N) = (number of newforms of level N and weight k).

Consider the sum of residue degrees

degi” (N) = Y [F,.y1 : Fyl
/]

where [f] runs through the Gal(F,/F,)-conjugacy classes of

newforms of level N and weight k.
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Degeneration modp

def

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(the mod p Hecke algebra is non-degenerate) <
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Degeneration modp

def

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(the mod p Hecke algebra is non-degenerate) <

# there is no congruence modulo p between two
newforms of level N and weight k£ and
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Degeneration modp

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(the mod p Hecke algebra is non-degenerate) <

# there is no congruence modulo p between two
newforms of level N and weight k£ and

» the coefficient fields Q, are unramified at p for all
newforms f of level N and weight k£ and
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Degeneration modp

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(the mod p Hecke algebra is non-degenerate) <

# there is no congruence modulo p between two
newforms of level N and weight k£ and

» the coefficient fields Q, are unramified at p for all
newforms f of level N and weight k£ and

® prindex Z; = Zla,(f) | n € N] In integers of Q for all
newforms f of level N and weight k.
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Degeneration modp

Theorem. dimy (N) = degi” (N) £ 3 [F, 17 Fy

(the mod p Hecke algebra is non-degenerate) <

# there is no congruence modulo p between two
newforms of level N and weight k£ and

» the coefficient fields Q, are unramified at p for all
newforms f of level N and weight k£ and

® prindex Z; = Zla,(f) | n € N] In integers of Q for all
newforms f of level N and weight k.

One could expect that strict inequality dimg(N) > deg,ip)(N)
(degeneration modulo p) Is a rare phenomenon.

|s that true?
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Degeneration modp

Let us fix the prime p and the weight k.

Plot deg,ip)(N) as a function of dimy () for all prime levels
N <2000 (for k& = 2).

First, let p be odd.
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Degeneration modp
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Degeneration modp
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Degeneration modp
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Degeneration modp
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Degeneration modp
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Degeneration modp
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Degeneration modp
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Degeneration modp

X *0.994612
| | | | | | | | |
180 .
160 .
140 | s
2 -
9 +
S 120 |- |
[
g
© 100 | _
0
2
q5 80 I~ Mﬁ —
£
@
60 ﬁ/ i
P
40 | / -
) / —
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180

Dimension k=4,p=7

INSTITUT FOR EXPERIMENTELLE MATHEMATIK Computing (with) Modular Forms — p.19/58



Degeneration modp

Now p = 2.
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Degeneration modp
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Degeneration modp
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Degeneration modp
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Degeneration modp

Question: FIx a prime p > 2 and a weight £ > 2.
Arethere 0 < a<1and C > 0 s.t.

deg]({p)(]\f) > adimg(N) - C ?
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Degeneration modp

Question: FIx a prime p > 2 and a weight £ > 2.
Arethere 0 < a<1and C > 0 s.t.

deg!” (N) > adimy(N) — C 2

Question: FIx a prime p > 2 and a weight £ > 2.
Arethere0<a<g<land C,D > 0 s.t.

Bdimg(N) + D > deg\” (N) > ardimy(N) — C 2
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Degrees of coefficient fields

Theorem (Serre). Suppose N,, + k,, — oo for m — oc.
Then the set
{lQ : Q] | f newform of level N,,,, weight k,, some m}

IS unbounded.
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Degrees of coefficient fields

Theorem (Serre). Suppose N,, + k,, — oo for m — oc.
Then the set

{lQ : Q] | f newform of level N,,,, weight k,, some m}
IS unbounded.
In general, | do not know if the set

{[Fp, s : Fp] | f newform of level N,,, weight k,, some m}

IS bounded. The cases when the /,,, contain big enough
prime powers can be treated via ramification.
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Degrees of coefficient fields

Theorem (Serre). Suppose N,, + k,, — oo for m — oc.
Then the set

{lQ : Q] | f newform of level N,,,, weight k,, some m}
IS unbounded.

In general, | do not know if the set

{[Fp, s : Fp] | f newform of level N,,, weight k,, some m}

IS bounded. The cases when the /,,, contain big enough
prime powers can be treated via ramification.

How do the [F,, 4 : ;)| behave when £ is fixed and N runs
through the primes ?

INSTITUT FOR EXPERIMENTELLE MATHEMATIK

Computing (with) Modular Forms — p.25/58



Degrees of coefficient fields

Define:

F, e
X average,(f )( N) = Z[f]z[: [z%][fl] ]
f

average degree of the coefficient fields mod p,

9o maxlim (N) = max[f] [Fp,[f] : Fp]

maximum degree of the coefficient fields mod p.

Here, [f] runs through the Gal(F,/FF,)-conjugacy classes of
newforms in level N and weight .
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Degrees of coefficient fields

Define:

F, e
X average,(f )( N) = Z[f]z[: [z%][fl] ]
f

average degree of the coefficient fields mod p,

9o maxlim (N) = max[f] [Fp,[f] : Fp]

maximum degree of the coefficient fields mod p.

Here, [f] runs through the Gal(F,/FF,)-conjugacy classes of
newforms in level N and weight .

Can average,(f)(N ) and max,(f)(N ) be bounded by functions of
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Degrees of coefficient fields

Fix pand k£ = 2.
Guess a dependence of the form

averageggp)(N) ~ C(dimy(N))".

Plot log(average,(f)(N )) as a function of log(dimg(N)) for the
primes N < 2000.
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Degrees of coefficient fields
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Degrees of coefficient fields
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Degrees of coefficient fields

-0.336821 + x * 0.594906
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Degrees of coefficient fields

-0.364172 + x * 0.598658
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Degrees of coefficient fields

-0.553678 + x * 0.621457 ———
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Degrees of coefficient fields

-0.627437 + x* 0.649486
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Degrees of coefficient fields

Now k = 4.
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Degrees of coefficient fields
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Degrees of coefficient fields

-0.538789 + x * 0.513275
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Degrees of coefficient fields

-0.249085 + x * 0.572334 ——
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Degrees of coefficient fields

-0.568350 + x * 0.639568
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Degrees of coefficient fields

Now k = 6.
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Degrees of coefficient fields

-0.952081 + x * 0.465503
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Degrees of coefficient fields

-0.749259 + x * 0.498223
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Degrees of coefficient fields

Fix pand k£ = 2.
Guess a dependence of the form

max " (N) ~ C( dimg(N))".

Plot log(max'”’ (IV)) as a function of log(dimy(N)) for the
primes N < 2000.

INSTITUT FOR EXPERIMENTELLE MATHEMATIK Computing (with) Modular Forms — p.42/58



Degrees of coefficient fields

-0.567464 + x * 0.825435
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Degrees of coefficient fields

-0.205983 + x *0.833940
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Degrees of coefficient fields

Log(Maximum Residue Degree)

-0.404973 + x * 0.866407 ——
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Degrees of coefficient fields

-0.398383 + x * 0.868597
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Degrees of coefficient fields

-0.590970 + x * 0.906161 ——
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Degrees of coefficient fields

-0.608967 + x * 0.917626 ——
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Degrees of coefficient fields

Now k = 4.
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Degrees of coefficient fields

-1.281886 + x * 0.777429 ———
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Degrees of coefficient fields

-0.680725 + x * 0.776524 ———
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Degrees of coefficient fields

-0.267688 + x * 0.833341
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Degrees of coefficient fields

-0.585422 + x * 0.907441 ——
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Degrees of coefficient fields

Now k = 6.
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Degrees of coefficient fields

-1.249466 + x * 0.707720 ———
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Degrees of coefficient fields

-0.862598 + x * 0.721713 ———
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Degrees of coefficient fields

Question: FIX p and the weight £ > 2.
Arethere0<a<g@<land C,D > 0 s.t.

D dim(N)” > average,gp)(N) > C'dimg(N)* 2
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Degrees of coefficient fields

Question: FIX p and the weight £ > 2.
Arethere0<a<g@<land C,D > 0 s.t.

D dim(N)” > average,gp)(]\f) > C'dimg(N)® 2

Question: FIX p and the weight £ > 2.
Arethere0<a<g<land C,D > 0 s.t.

D dim(N)? > max\? (N) > C dimy,(N)* 2
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Now the Wiki!
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