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Plan of the talk

Created MAGMA functions for the
computation of Katz cusp forms

of weight 1 for Mg(N) over Fo.

In this talk I want to tell you:

e how we compute them,

(theorem by Bas Edixhoven)

e why we compute them and

(Galois representations)

e Wwhat we got so far.

(You'll see some numbers.)



Modular forms

Cusp forms of weight kK > 1 and level N > 5:

analytic/classical

algebro-geometric

SE(ri(N),C)

SpA(M1(N), R)
for Z[1/N]-alg. R

f:H — C hol. s.t.
% <Z Z)Gl_l(N):
I =
(er 4+ d)Ff(7)

-+ cond. on cusps

global sections of
some sheaf of
differentials
on Y1(N)g

+ cond. on cusps



Modular forms

In both settings one has a

g-expansion at co: f =73 ,>1an(f)q"

SN, Z):={f=) and"|an€Z}
n>1

SFHri(N), R) :=S{ (M (N),Z) ®z R

“Classical setting = Katz setting” if
(i) k>2 or
(ii) R flat over Z (in part.:. R C C)

In general: ‘classical’ C “Katz”

= weight 1 over finite fields is speciall




Modular forms

Diamond operators < a > for a € (Z/N)*

= group action by (Z/N)*

For a character e : (Z/N)* — R set
Sp(M(N),e, R) :={f]| <a>f=¢(a)f Va}.
Si(Mo(N),R) = S, (M1 (), trivial, R)

Hecke operators 71;, for n € N

For a prime [, set

_ raln(f) (L] N)
an(Tif) = <\aln(f) + lk_lan/l(< [>f) ({N)
Tyrg1 = <rTl o1y (L] N)
e \TlOTlr—lk_1<l>OTl7"—l (L1 N)
Tonm =1Inolm ((n’m) - 1)

In particular:

a1(Tnf) = an(f)




Hecke algebra

Tw(Z) : Z-alg. gen. by T, € End¢(S,(C)),
T, (F) : F-alg. gen. by T, € Endp(S,(IF)).

They are free of finite rank, commutative

and generated by the T, as modules.

Isom. of Ty(Z)-modules
Sp(Z) = Homy(Tk(Z),Z)
fr—= (Th— a1(Thf) = an(f)).

f € S,.(Fp,) Hecke eigenform

= a1(Tnf) = Ana1(f) = an(f)

f normalised eigenform < Ty, f = an(f)f Vn

Coeff. of norm. eigenforms =

eigenvalues of Hecke operators




Hecke algebra

e S{I(M1 (), Q) has a basis of normalized

eigenforms if N is prime.

e For S;,(F,) wrong in general: f € Z[X] prime
can have multiple roots mod p.

o T(Fp) =11 T; with T; local IFp-algebras
oT; @F, = H;.”i T; ; with T; ; local Fp-algebras

e Each T j corresponds to an eigenform with

coefficients in T;/m; = F,m; (m; = max.id.)

e For fixed 7, these eigenforms are conjugate
via G]FpmﬂFp'

e I define UPO(T;) = min {n | (m;)"™ = (0) }.



Computing the Hecke algebra

k> 2

Isomorphisms of Hecke modules:

Hpgar(T1(N), F(©)) (€)

Y

Cuspidal modular symbols, (M1 (N),e, C)

Y

Sg'(l_l(N), e,C) ® Sg'(l_l(N), e, C)

MAGMA provides functions to compute the
T, on cuspidal modular symbols for M1 (N)
with character in weight k£ > 2.

k=1 is different!




Computing eigenforms of weight 1

N > 5, F|F, finite extension,

e : (Z/N)* — F* character

Frobenius:

F: S{AZ(M(N), e, F) — SPFa2(T1(N), €, F)

any(F) (0| n)

ol FF) = {o (p1n)

Proposition.
o 2 1
B = P2 N Ty n prime(1 + 7).

Let f e SKZ(IM1(N),¢,F).

f € Image(F) <

an(f) =0Vn < B,ptn




Computing eigenforms of weight 1

T := TS(M1(N), Z)

f SKAtZ(r(N), ¢, F)
F
SKAZ(r{(N), €, F)

(sﬁat%r:(zv),m)(e)
(wﬂrwgz»®M@>
«Hom2512>®w)@>
(T ®AIJFL)VF(6)

¢ (TRF)VF|le(a)- <a> |ac (Z/N)*|

cnp(f) (Im))

¢ZC&®1H{O (ptn)



Computing eigenforms of weight 1

Theorem (Edixhoven).

Isomorphism of Hecke modules

SKAZ(M 1 (N), ¢, F) 2 ((T®F)/R) "

with R <T®F the sub-F-v.s. gener. by
T, Vn<B,pfn and
ec(l)—<l>VIe(Z/N)*.

T; corresponds to T; (I # p prime),

T, corresponds to T, + <p > F.

= Know TX3Z(I{(N),e,F).
= Can compute weight 1 eigenforms.

Problem: Computation of T very slow!




Computing eigenforms of weight 1

e = trivial character, F|F5,

T = TS(r;(N),Z) for i € { 0,1}

(TW/(1-<1>)),  =TO

free

Get injection of Hecke modules:

¢ ((TOQF) /(T | 21 1))V — SKAZ(Io(N),F)

Proposition:
If d¢ prime s.t. ¢| N and ¢ =3 (4),

then ¢ above is an isomorphism.

We calculate Hecke operators on
(TO)@F)/(Tn | 21 n,n < B).




Galois representations

Theorem (Deligne).
Let f € SKA2(I1(N),,Fp) an eigenform.
= d! contin., semi-simple, odd repres.
pr: Gg — GLo(Fp) such that
e pr unramified outside pN,
o Tr(ps(Frob;)) = a;(f) and

Det(ps(Frob;)) = e()I*~1 V1 { Np.
f is reduction of a char. 0 form of weight 1,
= py is the reduction of a rep. over C.

I call the group Im(ps) C GLo(Fp)

the group of p; (resp. f).



Galois representations

Let p: Gg — GLo(FFp) a contin., irreducible,
odd representation, unramified at p.
= DetopzepoXNp

for unique ¢, : (Z/N,)* — F,", where

N, Artin conductor, XN, cyclotomic char.

Serre-Conjecture (15t version 1987).
3 eigenform f € SF2(I1(N,), €p, Fp)

such that p = py.

Theorem (many people).
p # 2 and p = pg for some eigenform g

= p = py With f as in conjecture.

p = 2 unknown, exceptional case




Galois representations

Let p: Gg — SLa(F) = PSLy(Fo).
Some facts:
- #SLo(For) = (2" - 1)2"(2" 4+ 1)
- SLy(For) simple if r > 1
- subgroups of SL>(FF>r) are (up to conj.)
e SL,(IFps) with s | r (= p irreducible)
e dihedral groups D»,, with
n|2"—1orn|2"4+ 1 (= p irreducible)
e cyclic groups of order n with
n|2"—1orn|2"4+1 (= p reducible)
e subgroups of upper triang. matrices
(order | 2"(2" — 1)) (= p reducible)
- can often distinguish elements of different

order by their traces



Galois representations

Theorem (essentially Hecke).
Serre's conjecture is true for

representations with dihedral image.

Let NV € N square-free.

Q(vV/N) if N =1(4)
Q(+/=N) if N=3(4).

Take Q C K C L C Hy, with

LetK:{

[L : K] =: v maximal odd.
= 3(u — 1) non-trivial x : G — Fa'.

= Jd(u — 1) /2 irreducible dihedral repres.
G _
IndGi:gx . Grjg — SLa(F2)

(Artin conductor = N)

= 3 %1 dihedral eigenforms of
weight 1, level N, trivial character




Some data

First calculations done by Mestre in 1987(!).
Written down in a letter to Serre.

Verified them nearly completely.

We did (can do much more):
e prime levels 5 < N < 2100,

e 0dd levels 5 < N <1000

Results in prime levels:
e all representation irreducible,
e all Hecke algebras locally Fom[z]/(x™)

In non-prime level some non-Gorenstein cases.

Today focus on eigenforms for
e dihedral group,
e SLo(Fy2) = As,
o SLo(Fs3).



Some data - a dihedral example

e Example N = 2063: prime, N =3 (4)

o dimSKZ(ro(N),Fz) =26
o K :=Q(+/—2063), CLx =7%/45
e 22 = (45 — 1) /2 dihedral reps; concretely:

- p(45)/2 = 12 with group Dgg over Fs12,

©(15)/2 = 4 with group D3g over Foq4,
- ¢(9)/2 = 3 with group Djg over [F53,
- ¢(5)/2 = 2 with group Djig over Fy»,
- p(3)/2 = 1 with group Dg over F».
e Find T =[]>_, T; over Fy with:
-Tq:dim=12, UPO =1, 12 max. ideals,
- To: dim=4, UPO =1, 4 max. ideals,
- T3z :dim=3, UPO =1, 3 max. ideals,
- Tyqg: dim=6, UPO = 3, 2 max. ideals,

- Tg:dim=1, UPO =1, 1 max. ideal.



Some data - Ag-fields

p = 2 allows also totally real fields.
Prime levels with an Ag-eigenform:
653,1061,1381,1553,1733, 2029,

2053, 2083

Example N = 2083: prime, N =3 (4)

dim SKAtZ(ry(N),Fo) =7

K := Q(+/-2083), CLg =7Z/7

Expect 3 = (7 — 1)/2 dihedral reps.

Find T =T x Ty over [F» with:

- Ty :dim=3, UPO =1, 3 max. ideals,
corresponds to Dy (p(7)/2 = 3),

- T : dim=4, UPO = 2, 2 max. ideals,

corresponds to As.



Some data - SL,(IFg)-fields

e SLo(Fg) € GL2(C)
= SL(FFg)-eigenforms are not reductions

from char. 0O, i.e. “Katz # classical’.

e Prime levels with an SL»(Fg)-eigenform:

1429, 1567,1613,1693,1997,2017, 2089



Some data - SL,(IFg)-fields

Example N = 1567: prime, N =3 (4)

dim SKatZ(ry(N),Fp) = 13

K := Q(+/—1567), CLyx = 7Z/15

Expect 7 = (15 — 1)/2 dihedral reps.

Find T = [[#_, T; over Fx with:

-Tq:dim=4, UPO =1, 4 max. ideals,
corresponds to D3g (¢(15)/2 = 4),

- To:dim=2, UPO =1, 2 max. ideals,
corresponds to Dig (¢(5)/2 = 2),

- Tg:dim=1, UPO =1, 1 max. ideal,
corresponds to Dg (p(3)/2 =1),

- T4 : dim =6, UPO = 2, 3 max. ideals,

corresponds to SL»(Fg)



