

Computations of weight 1 modular forms over finite fields

Gabor Wiese*

(Institut de Recherche Mathématique de Rennes)
(Universiteit Leiden)

Intercity Number Theory Seminar

Utrecht, 7 March 2003

* Supported by the European Research Training Network “Arithmetic Algebraic Geometry”.

Plan of the talk

Created MAGMA functions for the computation of Katz cusp forms of weight 1 for $\Gamma_0(N)$ over $\overline{\mathbb{F}_2}$.

In this talk I want to tell you:

- *how* we compute them,
(theorem by Bas Edixhoven)
- *why* we compute them and
(Galois representations)
- *what* we got so far.
(You'll see some numbers.)

Modular forms

Cusp forms of weight $k \geq 1$ and level $N \geq 5$:

analytic/classical	algebro-geometric
$S_k^{\text{cl}}(\Gamma_1(N), \mathbb{C})$	$S_k^{\text{Katz}}(\Gamma_1(N), R)$ for $\mathbb{Z}[1/N]$ -alg. R
$f : \mathbb{H} \rightarrow \mathbb{C}$ hol. s.t. $\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1(N) :$ $f\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^k f(\tau)$ + cond. on cusps	global sections of some sheaf of differentials on $Y_1(N)_R$ + cond. on cusps

Modular forms

In both settings one has a

q -expansion at ∞ : $f = \sum_{n \geq 1} a_n(f)q^n$

$$\mathcal{S}_k^{\text{cl}}(\Gamma_1(N), \mathbb{Z}) := \{ f = \sum_{n \geq 1} a_n q^n \mid a_n \in \mathbb{Z} \}$$

$$\mathcal{S}_k^{\text{cl}}(\Gamma_1(N), R) := \mathcal{S}_k^{\text{cl}}(\Gamma_1(N), \mathbb{Z}) \otimes_{\mathbb{Z}} R$$

“Classical setting = Katz setting” if

- (i) $k \geq 2$ or
- (ii) R flat over \mathbb{Z} (in part.: $R \subseteq \mathbb{C}$)

In general: “classical” \subseteq “Katz”

\Rightarrow weight 1 over finite fields is special!

Modular forms

Diamond operators $\langle a \rangle$ for $a \in (\mathbb{Z}/N)^*$

\Rightarrow group action by $(\mathbb{Z}/N)^*$

For a character $\epsilon : (\mathbb{Z}/N)^* \rightarrow R$ set

$$\mathcal{S}_k(\Gamma_1(N), \epsilon, R) := \{ f \mid \langle a \rangle f = \epsilon(a)f \ \forall a \}.$$

$$\mathcal{S}_k(\Gamma_0(N), R) = \mathcal{S}_k(\Gamma_1(N), \text{trivial}, R)$$

Hecke operators T_n for $n \in \mathbb{N}$

For a prime l , set

$$a_n(T_l f) = \begin{cases} a_{ln}(f) & (l \mid N) \\ a_{ln}(f) + l^{k-1} a_{n/l}(\langle l \rangle f) & (l \nmid N) \end{cases}$$
$$T_{l^{r+1}} = \begin{cases} T_l \circ T_{l^r} & (l \mid N) \\ T_l \circ T_{l^r} - l^{k-1} \langle l \rangle \circ T_{l^r-1} & (l \nmid N) \end{cases}$$
$$T_{nm} = T_n \circ T_m \quad ((n, m) = 1)$$

In particular:

$$a_1(T_n f) = a_n(f)$$

Hecke algebra

$\mathbb{T}_k(\mathbb{Z})$: \mathbb{Z} -alg. gen. by $T_n \in \text{End}_{\mathbb{C}}(\mathcal{S}_k(\mathbb{C}))$,

$\mathbb{T}_k(\mathbb{F})$: \mathbb{F} -alg. gen. by $T_n \in \text{End}_{\mathbb{F}}(\mathcal{S}_k(\mathbb{F}))$.

They are free of finite rank, commutative and generated by the T_n as modules.

Isom. of $\mathbb{T}_k(\mathbb{Z})$ -modules

$$\mathcal{S}_k(\mathbb{Z}) \cong \text{Hom}_{\mathbb{Z}}(\mathbb{T}_k(\mathbb{Z}), \mathbb{Z})$$

$$f \mapsto (T_n \mapsto a_1(T_n f) = a_n(f)).$$

$f \in \mathcal{S}_k(\overline{\mathbb{F}_p})$ Hecke eigenform

$$\Rightarrow a_1(T_n f) = \lambda_n a_1(f) = a_n(f)$$

f normalised eigenform $\Leftrightarrow T_n f = a_n(f) f \ \forall n$

Coeff. of norm. eigenforms =

eigenvalues of Hecke operators

Hecke algebra

- $\mathcal{S}_k^{\text{cl}}(\Gamma_1(N), \overline{\mathbb{Q}})$ has a basis of normalized eigenforms if N is prime.
- For $\mathcal{S}_k(\overline{\mathbb{F}_p})$ wrong in general: $f \in \mathbb{Z}[X]$ prime can have multiple roots mod p .
- $\mathbb{T}_k(\mathbb{F}_p) = \prod_i^n \mathbb{T}_i$ with \mathbb{T}_i local \mathbb{F}_p -algebras
- $\mathbb{T}_i \otimes \overline{\mathbb{F}_p} = \prod_j^{m_i} \mathbb{T}_{i,j}$ with $\mathbb{T}_{i,j}$ local $\overline{\mathbb{F}_p}$ -algebras
- Each $T_{i,j}$ corresponds to an eigenform with coefficients in $\mathbb{T}_i/\mathfrak{m}_i = \mathbb{F}_{p^{m_i}}$ ($\mathfrak{m}_i = \text{max.id.}$)
- For fixed i , these eigenforms are conjugate via $G_{\mathbb{F}_{p^{m_i}}|\mathbb{F}_p}$.
- I define $\text{UPO}(\mathbb{T}_i) = \min \{ n \mid (\mathfrak{m}_i)^n = (0) \}$.

Computing the Hecke algebra

$$k \geq 2$$

Isomorphisms of Hecke modules:

$$\begin{array}{c} H^1_{\text{par}}(\Gamma_1(N), \mathcal{F}_k(\mathbb{C}))(\epsilon) \\ \downarrow \sim \\ \text{Cuspidal modular symbols}_k(\Gamma_1(N), \epsilon, \mathbb{C}) \\ \downarrow \sim \\ \mathcal{S}_k^{\text{cl}}(\Gamma_1(N), \epsilon, \mathbb{C}) \oplus \overline{\mathcal{S}_k^{\text{cl}}(\Gamma_1(N), \epsilon, \mathbb{C})} \end{array}$$

MAGMA provides functions to compute the T_n on cuspidal modular symbols for $\Gamma_1(N)$ with character in weight $k \geq 2$.

$$k = 1 \text{ is different!}$$

Computing eigenforms of weight 1

$N \geq 5$, \mathbb{F}/\mathbb{F}_p finite extension,

$\epsilon : (\mathbb{Z}/N)^* \rightarrow \mathbb{F}^*$ character

Frobenius:

$F : \mathcal{S}_1^{\text{Katz}}(\Gamma_1(N), \epsilon, \mathbb{F}) \rightarrow \mathcal{S}_p^{\text{Katz}}(\Gamma_1(N), \epsilon, \mathbb{F})$

$$a_n(Ff) = \begin{cases} a_{n/p}(f) & (p \mid n) \\ 0 & (p \nmid n) \end{cases}$$

Proposition.

$$B := \frac{p+2}{12}N \prod_{l \mid N, \text{prime}} (1 + \frac{1}{l}).$$

Let $f \in \mathcal{S}_p^{\text{Katz}}(\Gamma_1(N), \epsilon, \mathbb{F})$.

$$f \in \text{Image}(F) \Leftrightarrow$$

$$a_n(f) = 0 \quad \forall n \leq B, p \nmid n$$

Computing eigenforms of weight 1

$$\mathbb{T} := \mathbb{T}_p^{\text{cl}}(\Gamma_1(N), \mathbb{Z})$$

$$\begin{array}{ccc}
 f & & \mathcal{S}_1^{\text{Katz}}(\Gamma_1(N), \epsilon, \mathbb{F}) \\
 \downarrow & & \downarrow F \\
 & & \mathcal{S}_p^{\text{Katz}}(\Gamma_1(N), \epsilon, \mathbb{F}) \\
 & & \downarrow \sim \\
 & & (\mathcal{S}_p^{\text{Katz}}(\Gamma_1(N), \mathbb{F}))(\epsilon) \\
 & & \downarrow \sim \\
 & & ((\mathcal{S}_p^{\text{cl}}(\Gamma_1(N), \mathbb{Z})) \otimes \mathbb{F})(\epsilon) \\
 & & \downarrow \sim \\
 & & ((\text{Hom}_{\mathbb{Z}}(\mathbb{T}, \mathbb{Z}) \otimes \mathbb{F})(\epsilon) \\
 & & \downarrow \sim \\
 & & (\mathbb{T} \otimes \mathbb{F})^{\vee_{\mathbb{F}}}(\epsilon) \\
 & & \parallel \\
 \phi & & (\mathbb{T} \otimes \mathbb{F})^{\vee_{\mathbb{F}}} \left[\epsilon(a) - \langle a \rangle \mid a \in (\mathbb{Z}/N)^* \right]
 \end{array}$$

$$\phi = (T_n \otimes 1 \mapsto \begin{cases} a_{n/p}(f) & (p \mid n) \\ 0 & (p \nmid n) \end{cases})$$

Computing eigenforms of weight 1

Theorem (Edixhoven).

Isomorphism of Hecke modules

$$S_1^{\text{Katz}}(\Gamma_1(N), \epsilon, \mathbb{F}) \cong \left((\mathbb{T} \otimes \mathbb{F}) / \mathcal{R} \right)^{\vee_{\mathbb{F}}}$$

with $\mathcal{R} \leq \mathbb{T} \otimes \mathbb{F}$ the sub- \mathbb{F} -v.s. gener. by

- $T_n \quad \forall n \leq B, p \nmid n$ and
- $\epsilon(l) - \langle l \rangle \quad \forall l \in (\mathbb{Z}/N)^*$.

T_l corresponds to T_l ($l \neq p$ prime),

T_p corresponds to $T_p + \langle p \rangle F$.

⇒ Know $\mathbb{T}_1^{\text{Katz}}(\Gamma_1(N), \epsilon, \mathbb{F})$.
⇒ Can compute weight 1 eigenforms.

Problem: Computation of \mathbb{T} very slow!

Computing eigenforms of weight 1

$\epsilon = \text{trivial character, } \mathbb{F}|\mathbb{F}_2,$

$\mathbb{T}^{(i)} := \mathbb{T}_2^{\text{cl}}(\Gamma_i(N), \mathbb{Z}) \text{ for } i \in \{0, 1\}$

$$\left(\mathbb{T}^{(1)}/(1 - \langle l \rangle)\right)_{\text{free}} \cong \mathbb{T}^{(0)}$$

Get injection of Hecke modules:

$$\phi : ((\mathbb{T}^{(0)} \otimes \mathbb{F})/(T_n \mid 2 \nmid n))^{\vee} \hookrightarrow S_1^{\text{Katz}}(\Gamma_0(N), \mathbb{F})$$

Proposition:

If $\exists q \text{ prime s.t. } q \mid N \text{ and } q \equiv 3 \pmod{4}$,

then ϕ above is an isomorphism.

We calculate Hecke operators on
 $(\mathbb{T}^{(0)} \otimes \mathbb{F})/(T_n \mid 2 \nmid n, n \leq B).$

Galois representations

Theorem (Deligne).

Let $f \in \mathcal{S}_k^{\text{Katz}}(\Gamma_1(N), \epsilon, \overline{\mathbb{F}_p})$ an eigenform.

$\Rightarrow \exists!$ contin., semi-simple, odd repres.

$\rho_f : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\overline{\mathbb{F}_p})$ such that

- ρ_f unramified outside pN ,
- $\text{Tr}(\rho_f(\text{Frob}_l)) = a_l(f)$ and

$\text{Det}(\rho_f(\text{Frob}_l)) = \epsilon(l)l^{k-1} \forall l \nmid Np$.

f is reduction of a char. 0 form of weight 1,

$\Rightarrow \rho_f$ is the reduction of a rep. over \mathbb{C} .

I call the group $\text{Im}(\rho_f) \subset \text{GL}_2(\overline{\mathbb{F}_p})$

the *group of* ρ_f (resp. f).

Galois representations

Let $\rho : G_{\mathbb{Q}} \rightarrow \mathrm{GL}_2(\overline{\mathbb{F}_p})$ a contin., irreducible, odd representation, unramified at p .

$$\Rightarrow \mathrm{Det} \circ \rho = \epsilon_{\rho} \circ \chi_{N_{\rho}}$$

for unique $\epsilon_{\rho} : (\mathbb{Z}/N_{\rho})^* \rightarrow \overline{\mathbb{F}_p}^*$, where

N_{ρ} Artin conductor, $\chi_{N_{\rho}}$ cyclotomic char.

Serre-Conjecture (1st version 1987).

\exists eigenform $f \in \mathcal{S}_1^{\mathrm{Katz}}(\Gamma_1(N_{\rho}), \epsilon_{\rho}, \overline{\mathbb{F}_p})$

such that $\rho = \rho_f$.

Theorem (many people).

$p \neq 2$ and $\rho = \rho_g$ for some eigenform g

$\Rightarrow \rho = \rho_f$ with f as in conjecture.

$p = 2$ unknown, exceptional case

Galois representations

Let $\rho : G_{\mathbb{Q}} \rightarrow \mathrm{SL}_2(\overline{\mathbb{F}_2}) = \mathrm{PSL}_2(\overline{\mathbb{F}_2})$.

Some facts:

- $\#\mathrm{SL}_2(\mathbb{F}_{2^r}) = (2^r - 1)2^r(2^r + 1)$
- $\mathrm{SL}_2(\mathbb{F}_{2^r})$ simple if $r > 1$
- subgroups of $\mathrm{SL}_2(\mathbb{F}_{2^r})$ are (up to conj.)
 - $\mathrm{SL}_2(\mathbb{F}_{2^s})$ with $s \mid r$ ($\Rightarrow \rho$ irreducible)
 - dihedral groups D_{2n} with $n \mid 2^r - 1$ or $n \mid 2^r + 1$ ($\Rightarrow \rho$ irreducible)
 - cyclic groups of order n with $n \mid 2^r - 1$ or $n \mid 2^r + 1$ ($\Rightarrow \rho$ reducible)
 - subgroups of upper triang. matrices (order $\mid 2^r(2^r - 1)$) ($\Rightarrow \rho$ reducible)
- can often distinguish elements of different order by their traces

Galois representations

Theorem (essentially Hecke).

Serre's conjecture is true for representations with dihedral image.

Let $N \in \mathbb{N}$ square-free.

$$\text{Let } K = \begin{cases} \mathbb{Q}(\sqrt{N}) & \text{if } N \equiv 1(4) \\ \mathbb{Q}(\sqrt{-N}) & \text{if } N \equiv 3(4). \end{cases}$$

Take $\mathbb{Q} \subset K \subseteq L \subseteq H_K$, with

$[L : K] =: u$ maximal odd.

$\Rightarrow \exists (u-1)$ non-trivial $\chi : G_{L|K} \rightarrow \overline{\mathbb{F}_2}^*$.

$\Rightarrow \exists (u-1)/2$ irreducible dihedral repres.

$$\text{Ind}_{G_{L|K}}^{G_{L|\mathbb{Q}}} \chi : G_{L|\mathbb{Q}} \rightarrow \text{SL}_2(\overline{\mathbb{F}_2})$$

(Artin conductor = N)

$\Rightarrow \exists \frac{u-1}{2}$ dihedral eigenforms of weight 1, level N , trivial character

Some data

First calculations done by Mestre in 1987(!).

Written down in a letter to Serre.

Verified them nearly completely.

We did (can do much more):

- prime levels $5 \leq N < 2100$,
- odd levels $5 \leq N < 1000$

Results in prime levels:

- all representation irreducible,
- all Hecke algebras locally $\mathbb{F}_{2^m}[x]/(x^n)$

In non-prime level some non-Gorenstein cases.

Today focus on eigenforms for

- dihedral group,
- $\mathrm{SL}_2(\mathbb{F}_{2^2}) \cong A_5$,
- $\mathrm{SL}_2(\mathbb{F}_{2^3})$.

Some data - a dihedral example

- Example $N = 2063$: prime, $N \equiv 3 \pmod{4}$
- $\dim \mathcal{S}_1^{\text{Katz}}(\Gamma_0(N), \overline{\mathbb{F}_2}) = 26$
- $K := \mathbb{Q}(\sqrt{-2063})$, $\text{CL}_K = \mathbb{Z}/45$
- $22 = (45 - 1)/2$ dihedral reps; concretely:
 - $\varphi(45)/2 = 12$ with group D_{90} over $\mathbb{F}_{2^{12}}$,
 - $\varphi(15)/2 = 4$ with group D_{30} over \mathbb{F}_{2^4} ,
 - $\varphi(9)/2 = 3$ with group D_{18} over \mathbb{F}_{2^3} ,
 - $\varphi(5)/2 = 2$ with group D_{10} over \mathbb{F}_{2^2} ,
 - $\varphi(3)/2 = 1$ with group D_6 over \mathbb{F}_2 .
- Find $\mathbb{T} = \prod_{i=1}^5 \mathbb{T}_i$ over \mathbb{F}_2 with:
 - \mathbb{T}_1 : $\dim = 12$, UPO = 1, 12 max. ideals,
 - \mathbb{T}_2 : $\dim = 4$, UPO = 1, 4 max. ideals,
 - \mathbb{T}_3 : $\dim = 3$, UPO = 1, 3 max. ideals,
 - \mathbb{T}_4 : $\dim = 6$, UPO = 3, 2 max. ideals,
 - \mathbb{T}_5 : $\dim = 1$, UPO = 1, 1 max. ideal.

Some data - A_5 -fields

- $p = 2$ allows also totally real fields.
- Prime levels with an A_5 -eigenform:
653, 1061, 1381, 1553, 1733, 2029,
2053, 2083
- Example $N = 2083$: prime, $N \equiv 3 \pmod{4}$
- $\dim \mathcal{S}_1^{\text{Katz}}(\Gamma_0(N), \overline{\mathbb{F}_2}) = 7$
- $K := \mathbb{Q}(\sqrt{-2083})$, $\text{CL}_K = \mathbb{Z}/7$
- Expect $3 = (7 - 1)/2$ dihedral reps.
- Find $\mathbb{T} = \mathbb{T}_1 \times \mathbb{T}_2$ over \mathbb{F}_2 with:
 - \mathbb{T}_1 : dim = 3, UPO = 1, 3 max. ideals,
corresponds to D_{14} ($\varphi(7)/2 = 3$),
 - \mathbb{T}_2 : dim = 4, UPO = 2, 2 max. ideals,
corresponds to A_5 .

Some data - $SL_2(\mathbb{F}_8)$ -fields

- $SL_2(\mathbb{F}_8) \not\subseteq GL_2(\mathbb{C})$
⇒ $SL_2(\mathbb{F}_8)$ -eigenforms are not reductions from char. 0, i.e. “Katz ≠ classical”.
- Prime levels with an $SL_2(\mathbb{F}_8)$ -eigenform:
1429, 1567, 1613, 1693, 1997, 2017, 2089

Some data - $SL_2(\mathbb{F}_8)$ -fields

- Example $N = 1567$: prime, $N \equiv 3 \pmod{4}$
- $\dim S_1^{\text{Katz}}(\Gamma_0(N), \overline{\mathbb{F}_2}) = 13$
- $K := \mathbb{Q}(\sqrt{-1567})$, $\text{CL}_K = \mathbb{Z}/15$
- Expect $7 = (15 - 1)/2$ dihedral reps.
- Find $\mathbb{T} = \prod_{i=1}^4 \mathbb{T}_i$ over \mathbb{F}_2 with:
 - \mathbb{T}_1 : $\dim = 4$, $\text{UPO} = 1$, 4 max. ideals,
corresponds to D_{30} ($\varphi(15)/2 = 4$),
 - \mathbb{T}_2 : $\dim = 2$, $\text{UPO} = 1$, 2 max. ideals,
corresponds to D_{10} ($\varphi(5)/2 = 2$),
 - \mathbb{T}_3 : $\dim = 1$, $\text{UPO} = 1$, 1 max. ideal,
corresponds to D_6 ($\varphi(3)/2 = 1$),
 - \mathbb{T}_4 : $\dim = 6$, $\text{UPO} = 2$, 3 max. ideals,
corresponds to $SL_2(\mathbb{F}_8)$