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Inverse Galois Problem
Question of Hilbert:

Given a finite group G.
Is there a Galois extension K/Q such that

Gal(K/Q) ∼= G?
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Inverse Galois Problem
Question of Hilbert:

Given a finite group G.
Is there a Galois extension K/Q such that

Gal(K/Q) ∼= G?

In this talk focus on two cases:

The GL2-case: G = PSL2(Fℓd).

The GSp2n-case: G = PSp2n(Fℓd).
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Introduction: GL2-case
Consider a cuspidal modular form

f =
∑

∞

n=1 anq
n (q = e2πiz)

s.t. a1 = 1 (normalised), Hecke eigenform, no CM,
any weight, on Γ1(N), nebentype ψ : (Z/NZ)× → C×.
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Introduction: GL2-case
Consider a cuspidal modular form

f =
∑

∞

n=1 anq
n (q = e2πiz)

s.t. a1 = 1 (normalised), Hecke eigenform, no CM,
any weight, on Γ1(N), nebentype ψ : (Z/NZ)× → C×.

Theorem (Deligne, Shimura, Eichler, Igusa, Serre).

For each prime ℓ, ∃ Galois representation

ρproj
f,ℓ : GQ

ρf,ℓ

−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ)

unramified outside Nℓ such that for all p ∤ Nℓ
Tr(ρf,ℓ(Frobp)) ≡ ap ‘mod ℓ’.

One speaks of a compatible system.
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Introduction: GL2-case
For f =

∑
∞

n=1 anq
n and each prime ℓ, ∃ Galois rep.

ρproj
f,ℓ : GQ

ρf,ℓ

−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ).

Questions/Tasks:
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ρproj
f,ℓ : GQ

ρf,ℓ

−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ).
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(I) Smallest d such that ρproj
f,ℓ can be defined over Fℓd?
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ρproj
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−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ).

Questions/Tasks:

(I) Smallest d such that ρproj
f,ℓ can be defined over Fℓd?

(II) Image of ρproj
f,ℓ ?

Note: Gal(Q
ker(ρproj

f,ℓ )
/Q) ∼= ρproj

f,ℓ (GQ).
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Introduction: GL2-case
For f =

∑
∞

n=1 anq
n and each prime ℓ, ∃ Galois rep.

ρproj
f,ℓ : GQ

ρf,ℓ

−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ).

Questions/Tasks:

(I) Smallest d such that ρproj
f,ℓ can be defined over Fℓd?

(II) Image of ρproj
f,ℓ ?

Note: Gal(Q
ker(ρproj

f,ℓ )
/Q) ∼= ρproj

f,ℓ (GQ).

(III) Prove the existence of f such that for fixed ℓ, d:
ρproj
f,ℓ (GQ) ∼= PSL2(Fℓd),

i.e. realise PSL2(Fℓd) as Galois group over Q.
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Introduction: GL2-case
For f =

∑
∞

n=1 anq
n and each prime ℓ, ∃ Galois rep.

ρproj
f,ℓ : GQ

ρf,ℓ

−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ).

(I) Smallest d such that ρproj
f,ℓ can be defined over Fℓd?

Answer:

If ρf,ℓ is irreducible, then ρproj
f,ℓ can be defined over residue

field (above ℓ) of the global field Q(
a2

p

ψ(p) | p ∤ N)
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For f =
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Introduction: GL2-case
For f =

∑
∞

n=1 anq
n and each prime ℓ, ∃ Galois rep.

ρproj
f,ℓ : GQ

ρf,ℓ

−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ).

(II) Image of ρproj
f,ℓ ?

Answer:

From (I): ρproj
f,ℓ definable over Fℓd. By Dickson (∼ 1900):

ρproj
f,ℓ (GQ) is

• PSL2(Fℓd), PGL2(Fℓd)
• dihedral
• ⊆ ( ∗ ∗

0 ∗
)

• A4, S4, A5
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Introduction: GL2-case
For f =

∑
∞

n=1 anq
n and each prime ℓ, ∃ Galois rep.

ρproj
f,ℓ : GQ

ρf,ℓ

−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ).

(II) Image of ρproj
f,ℓ ?

Answer:

From (I): ρproj
f,ℓ definable over Fℓd. By Dickson (∼ 1900):

ρproj
f,ℓ (GQ) is

• PSL2(Fℓd), PGL2(Fℓd)
• dihedral
• ⊆ ( ∗ ∗

0 ∗
)

• A4, S4, A5

huge image
induced
reducible
exceptional
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Introduction: GL2-case
For f =

∑
∞

n=1 anq
n and each prime ℓ, ∃ Galois rep.

ρproj
f,ℓ : GQ

ρf,ℓ

−−→ GL2(Fℓ)
nat. proj.
−−−−→ PGL2(Fℓ).

(II) Image of ρproj
f,ℓ ?

Answer:

From (I): ρproj
f,ℓ definable over Fℓd. By Dickson (∼ 1900):

ρproj
f,ℓ (GQ) is

• PSL2(Fℓd), PGL2(Fℓd)
• dihedral
• ⊆ ( ∗ ∗

0 ∗
)

• A4, S4, A5

huge image
induced
reducible
exceptional

Ribet: For almost all ℓ: huge image.
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Introduction: GL2-case
(III) Prove the existence of f such that for fixed ℓ, d:

ρproj
f,ℓ (GQ) ∼= PSL2(Fℓd),

i.e. realise PSL2(Fℓd) as Galois group over Q.
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Introduction: GL2-case
(III) Prove the existence of f such that for fixed ℓ, d:

ρproj
f,ℓ (GQ) ∼= PSL2(Fℓd),

i.e. realise PSL2(Fℓd) as Galois group over Q.

Partial Answers:

Theorem A (W. 2008). Given ℓ, ∃ infinitely many d s.t. PSL2(Fℓd)

occurs as ρproj
f,ℓ (GQ) (for some f depending on d) with only ℓ

and one other prime (dep. on d) ramifying.
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Introduction: GL2-case
(III) Prove the existence of f such that for fixed ℓ, d:

ρproj
f,ℓ (GQ) ∼= PSL2(Fℓd),

i.e. realise PSL2(Fℓd) as Galois group over Q.

Partial Answers:

Theorem A (W. 2008). Given ℓ, ∃ infinitely many d s.t. PSL2(Fℓd)

occurs as ρproj
f,ℓ (GQ) (for some f depending on d) with only ℓ

and one other prime (dep. on d) ramifying.

Theorem B (Dieulefait, W. 2011). Given d, ∃ positive density set
of primes L s.t. ∀ ℓ ∈ L: PSL2(Fℓd) occurs as ρproj

f,ℓ (GQ) with
only ℓ and at most three other primes (not dep. on ℓ)
ramifying.
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Introduction: GL2-case
(III) Prove the existence of f such that for fixed ℓ, d:

ρproj
f,ℓ (GQ) ∼= PSL2(Fℓd),

i.e. realise PSL2(Fℓd) as Galois group over Q.

Partial Answers:

Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ℓ such that
PSL2(Fℓd) occurs as ρproj

f,ℓ (GQ) with only ℓ ramifying is 1.
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Introduction: GL2-case
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Introduction: GL2-case
Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ℓ such that
PSL2(Fℓd) occurs as ρproj

f,ℓ (GQ) with only ℓ ramifying is 1.

Maeda’s conjecture. Let f =
∑

∞

n=1 anq
n ∈ Sk(1) be a level 1

newform of any weight k. Let Qf := Q(a2, a3, a4, . . . ). Then
• [Qf : Q] = dimC Sk(1) =: dk and
• the Galois group of splitting field of Qf/Q is Symdk

.
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Introduction: GL2-case
Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ℓ such that
PSL2(Fℓd) occurs as ρproj

f,ℓ (GQ) with only ℓ ramifying is 1.

Maeda’s conjecture. Let f =
∑

∞

n=1 anq
n ∈ Sk(1) be a level 1

newform of any weight k. Let Qf := Q(a2, a3, a4, . . . ). Then
• [Qf : Q] = dimC Sk(1) =: dk and
• the Galois group of splitting field of Qf/Q is Symdk

.

The conjecture has been veried numerically for k ≤ 12000
(work of Ghitza and student).
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Introduction: GL2-case
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Introduction: GL2-case
Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ℓ such that
PSL2(Fℓd) occurs as ρproj

f,ℓ (GQ) with only ℓ ramifying is 1.

Maeda’s conjecture. Let f =
∑

∞

n=1 anq
n ∈ Sk(1) be a level 1

newform of any weight k. Let Qf := Q(a2, a3, a4, . . . ). Then
• [Qf : Q] = dimC Sk(1) =: dk and
• the Galois group of splitting field of Qf/Q is Symdk

.

Reasons behind the proof:
• K/Q, deg n > d, Galois gp Symn has subfields of deg d.
• If K and L two such (with Symm, Symn, m > n ≥ 5), then
K ∩ L at most quadratic (An simple!).
• Varying f , (almost) disj. of Qf  densities add up to 1.
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Introduction: GL2-case
Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ℓ such that
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f,ℓ (GQ) with only ℓ ramifying is 1.
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n ∈ Sk(1) be a level 1

newform of any weight k. Let Qf := Q(a2, a3, a4, . . . ). Then
• [Qf : Q] = dimC Sk(1) =: dk and
• the Galois group of splitting field of Qf/Q is Symdk

.

Reasons behind the proof:
• K/Q, deg n > d, Galois gp Symn has subfields of deg d.
• If K and L two such (with Symm, Symn, m > n ≥ 5), then
K ∩ L at most quadratic (An simple!).
• Varying f , (almost) disj. of Qf  densities add up to 1.
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Introduction: GSp2n-case
Generalisation to GSp2n any n:

Theorem A (Khare, Larsen, Savin, 2008).
Given ℓ, ∃ infinitely many d s.t. PSp2n(Fℓd) or PGSp2n(Fℓd)
occurs as image of the residual Galois representation
attached to a suitable automorphic form on GL2n over Q.
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Introduction: GSp2n-case
Generalisation to GSp2n any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

(I) Determine projective field of definition of compatible
system of symplectic Galois representations.
(DONE. Explain now.)
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Introduction: GSp2n-case
Generalisation to GSp2n any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

(I) Determine projective field of definition of compatible
system of symplectic Galois representations.
(DONE. Explain now.)

(II) Classify images of symplectic representations under
some constraint.
(DONE. Show result now.)
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Introduction: GSp2n-case
Generalisation to GSp2n any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

(I) Determine projective field of definition of compatible
system of symplectic Galois representations.
(DONE. Explain now.)

(II) Classify images of symplectic representations under
some constraint.
(DONE. Show result now.)

(III) Generalise Theorem B.
(ALMOST DONE, subject to a ‘promised theorem’ by
others).
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Inner twists
Let K be a field, K separable closure. Consider:

ρproj : GQ
ρ
−→ GSp2n(K)

nat. proj.
−−−−→ PGSp2n(K).
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Inner twists
Let K be a field, K separable closure. Consider:

ρproj : GQ
ρ
−→ GSp2n(K)

nat. proj.
−−−−→ PGSp2n(K).

Def.: ρproj
1 ∼ ρproj

2 if ∃M ∈ GSp2n(K) s.t.

ρproj
1 = (Mρ2M

−1)proj.
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Inner twists
Let K be a field, K separable closure. Consider:

ρproj : GQ
ρ
−→ GSp2n(K)

nat. proj.
−−−−→ PGSp2n(K).

Def.: ρproj
1 ∼ ρproj

2 if ∃M ∈ GSp2n(K) s.t.

ρproj
1 = (Mρ2M

−1)proj.

Qu.: Smallest L ⊆ K s.t. ρproj ∼ (GQ → PGSp2n(L))?
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Inner twists
Let K be a field, K separable closure. Consider:

ρproj : GQ
ρ
−→ GSp2n(K)

nat. proj.
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Def.: ρproj
1 ∼ ρproj

2 if ∃M ∈ GSp2n(K) s.t.

ρproj
1 = (Mρ2M

−1)proj.

Qu.: Smallest L ⊆ K s.t. ρproj ∼ (GQ → PGSp2n(L))?

Simple observations:

• Let ǫ : GQ → K
×

char. ⇒ (ρ⊗ ǫ)proj = ρproj.
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Inner twists
Let K be a field, K separable closure. Consider:

ρproj : GQ
ρ
−→ GSp2n(K)

nat. proj.
−−−−→ PGSp2n(K).

Def.: ρproj
1 ∼ ρproj

2 if ∃M ∈ GSp2n(K) s.t.

ρproj
1 = (Mρ2M

−1)proj.

Qu.: Smallest L ⊆ K s.t. ρproj ∼ (GQ → PGSp2n(L))?

Simple observations:

• Let ǫ : GQ → K
×

char. ⇒ (ρ⊗ ǫ)proj = ρproj.
• Suppose ρproj

1 ∼ ρproj
2 .

Put ǫ(g) := M−1ρ1(g)Mρ2(g)
−1 ∈ K

×

.

⇒ ρ1 ∼ ρ2 ⊗ ǫ.
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Inner twists
Qu.: Smallest L ⊆ K s.t. ρproj ∼ (GQ → PGSp2n(L))?

Galois action on coefficients: for σ ∈ GK consider
σρ : GQ

ρ
−→ GSp2n(K)

σ
−→ GSp2n(K).
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Inner twists
Qu.: Smallest L ⊆ K s.t. ρproj ∼ (GQ → PGSp2n(L))?

Galois action on coefficients: for σ ∈ GK consider
σρ : GQ

ρ
−→ GSp2n(K)

σ
−→ GSp2n(K).

Def.: A pair (σ, ǫ) with σ ∈ GK and ǫ : GQ → K
×

character is
called an inner twist if σρ ∼ ρ⊗ ǫ (⇔ (σρ)proj ∼ ρproj).
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Inner twists
Qu.: Smallest L ⊆ K s.t. ρproj ∼ (GQ → PGSp2n(L))?

Galois action on coefficients: for σ ∈ GK consider
σρ : GQ

ρ
−→ GSp2n(K)

σ
−→ GSp2n(K).

Def.: A pair (σ, ǫ) with σ ∈ GK and ǫ : GQ → K
×

character is
called an inner twist if σρ ∼ ρ⊗ ǫ (⇔ (σρ)proj ∼ ρproj).

ρ has complex multiplication (CM) if σ = id, ǫ 6= 1.
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Inner twists
Qu.: Smallest L ⊆ K s.t. ρproj ∼ (GQ → PGSp2n(L))?

Galois action on coefficients: for σ ∈ GK consider
σρ : GQ

ρ
−→ GSp2n(K)

σ
−→ GSp2n(K).

Def.: A pair (σ, ǫ) with σ ∈ GK and ǫ : GQ → K
×

character is
called an inner twist if σρ ∼ ρ⊗ ǫ (⇔ (σρ)proj ∼ ρproj).

ρ has complex multiplication (CM) if σ = id, ǫ 6= 1.

Suppose ρ is irreducible and has no CM. Then:
σρ ∼ ρ⊗ ǫ ⇔
σ(Tr(ρ(Frobp))) = Tr(ρ(Frobp))ǫ(Frobp) ∀ unramified p.
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Inner twists
Def.: Hρ :=

⋂
ǫ ker(ǫ)⊳GQ for ǫ occuring in an inner twists.

Γρ := {σ ∈ GK | σ occurs in an inner twist}.

Kρ := K
Γρ, called projective field of definition of ρ.
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Inner twists
Def.: Hρ :=

⋂
ǫ ker(ǫ)⊳GQ for ǫ occuring in an inner twists.

Γρ := {σ ∈ GK | σ occurs in an inner twist}.

Kρ := K
Γρ, called projective field of definition of ρ.

Theorem (Arias-de-Reyna, Dieulefait, W., 2012).
Suppose ρ|Hρ

is irreducible. Then:
(1) ∃ ρ′ such that ρ′proj ∼ ρproj and ρ′proj factors through Kρ.
(2) Kρ is the smallest subfield of K with this property.

Morale: The inner twists determine the smallest field over
which ρproj can be defined.
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Compatible systems

Let n ∈ N, L/Q Galois number field, N, k ∈ N, ψ : GQ → L×,
for all p ∤ N : Pp(X) = X2n − apX

2n−1 + · · · ∈ L[X].

A compatible system ρ• is:
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Compatible systems

Let n ∈ N, L/Q Galois number field, N, k ∈ N, ψ : GQ → L×,
for all p ∤ N : Pp(X) = X2n − apX

2n−1 + · · · ∈ L[X].

A compatible system ρ• is:
for each λ place of L a Galois representation

ρλ : GQ → GSp2n(Lλ) such that

• abs. irred., unramified outside Nℓ (for Λ | ℓ),
• ∀ p ∤ Nℓ : charpoly(ρλ(Frobp)) = Pp,
• similitude factor of ρλ is ψχkℓ (for χℓ cyclotomic char.).
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Compatible systems

Let n ∈ N, L/Q Galois number field, N, k ∈ N, ψ : GQ → L×,
for all p ∤ N : Pp(X) = X2n − apX

2n−1 + · · · ∈ L[X].

A compatible system ρ• is:
for each λ place of L a Galois representation

ρλ : GQ → GSp2n(Lλ) such that

• abs. irred., unramified outside Nℓ (for Λ | ℓ),
• ∀ p ∤ Nℓ : charpoly(ρλ(Frobp)) = Pp,
• similitude factor of ρλ is ψχkℓ (for χℓ cyclotomic char.).

Sources: algebraic, essentially conjugate self-dual cuspidal
automorphic representations for GL2n over Q.
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Compatible systems

Let n ∈ N, L/Q Galois number field, N, k ∈ N, ψ : GQ → L×,
for all p ∤ N : Pp(X) = X2n − apX

2n−1 + · · · ∈ L[X].

A compatible system ρ• is:
for each λ place of L a Galois representation

ρλ : GQ → GSp2n(Lλ) such that

• abs. irred., unramified outside Nℓ (for Λ | ℓ),
• ∀ p ∤ Nℓ : charpoly(ρλ(Frobp)) = Pp,
• similitude factor of ρλ is ψχkℓ (for χℓ cyclotomic char.).

Sources: algebraic, essentially conjugate self-dual cuspidal
automorphic representations for GL2n over Q.

We consider: ρλ (residual representation), ρproj
λ , and ρproj

λ .
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Compatible systems
Let ρ• be a compatible system.

Def.: (σ, ǫ) (with σ ∈ Gal(L/K) and ǫ : GQ → L×) inner twist of ρ• if
σ(ap) = ap · ǫ(Frobp) for all p ∤ N .
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Compatible systems
Let ρ• be a compatible system.

Def.: (σ, ǫ) (with σ ∈ Gal(L/K) and ǫ : GQ → L×) inner twist of ρ• if
σ(ap) = ap · ǫ(Frobp) for all p ∤ N .

Def.: Γρ• := {σ ∈ Gal(L/K) | σ occurs in an inner twist of ρ•}.
Kρ• := LΓρ• , called projective field of definition of ρ•.
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Compatible systems
Let ρ• be a compatible system.

Def.: (σ, ǫ) (with σ ∈ Gal(L/K) and ǫ : GQ → L×) inner twist of ρ• if
σ(ap) = ap · ǫ(Frobp) for all p ∤ N .

Def.: Γρ• := {σ ∈ Gal(L/K) | σ occurs in an inner twist of ρ•}.
Kρ• := LΓρ• , called projective field of definition of ρ•.

Theorem 1 (Arias-de-Reyna, Dieulefait, W., 2012).
Assume moreover: ρ• is strictly compatible with regular
Hodge-Tate weights and ρλ is absolutely irreducible for
almost all λ.
Then for almost all places λ of L, the residue field at λ of
Kρ• is Kρλ

.
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Compatible systems
Theorem 1 (Arias-de-Reyna, Dieulefait, W., 2012).
Assume moreover: ρ• is strictly compatible with regular
Hodge-Tate weights and ρλ is absolutely irreducible for
almost all λ.
Then for almost all places λ of L, the residue field at λ of
Kρ• is Kρλ

.

Morale: The global field Kρ• (depending only on the inner
twists) determines the projective field of definition of ρproj

λ .

This field is the GSp2n-replacement of Q(
a2

p

ψ(p) | p ∤ N).
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Classification result
Theorem 2 (Arias-de-Reyna, Dieulefait, W., 2012).

Let ℓ ≥ 5 and ρ : G→ GSp2n(Fℓ) be irreducible.
Assume: ρ(G) contains a non-trivial transvection.

Then either ρ(G) ⊇ PSp2n(Fℓ) (huge image)
or ρ is induced from a lower dimensional representation.
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Classification result
Theorem 2 (Arias-de-Reyna, Dieulefait, W., 2012).

Let ℓ ≥ 5 and ρ : G→ GSp2n(Fℓ) be irreducible.
Assume: ρ(G) contains a non-trivial transvection.

Then either ρ(G) ⊇ PSp2n(Fℓ) (huge image)
or ρ is induced from a lower dimensional representation.

Morale: Our replacement of Dickson’s theorem for GL2:

Recall: ρproj
f,ℓ (GQ) is

• PSL2(Fℓd), PGL2(Fℓd)
• dihedral
• ⊆ ( ∗ ∗

0 ∗
)

• A4, S4, A5

huge image
induced
reducible
exceptional
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Inverse Galois Problem
Theorem 3 (Arias-de-Reyna, Dieulefait, W., 2012).
Let ρ• be as in Theorem 1. Assume moreover:
• ρλ(GQ) contains a transvection for almost all λ.
• ‘Good dihedral prime’ (Khare, Wintenberger, Larsen, Savin):
∃ prime q, ∃ suitable character δ : GQq2n

→ L× of order 2t

(t prime), 2n | (t− 1) such that ρλ|GQq
∼ Ind

GQq

GQ
q2n

(δ).

Then for all d | t−1
2n , the set of places λ of L such that

PSp2n(Fℓd) or PGSp2n(Fℓd) equals ρproj
λ (GQ) has a positive

density.
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Inverse Galois Problem
Theorem 3 (Arias-de-Reyna, Dieulefait, W., 2012).
Let ρ• be as in Theorem 1. Assume moreover:
• ρλ(GQ) contains a transvection for almost all λ.
• ‘Good dihedral prime’ (Khare, Wintenberger, Larsen, Savin):
∃ prime q, ∃ suitable character δ : GQq2n

→ L× of order 2t

(t prime), 2n | (t− 1) such that ρλ|GQq
∼ Ind

GQq

GQ
q2n

(δ).

Then for all d | t−1
2n , the set of places λ of L such that

PSp2n(Fℓd) or PGSp2n(Fℓd) equals ρproj
λ (GQ) has a positive

density.

Morale: If such a ρ• exists, then we obtain the desired
application to the inverse Galois problem.
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Thank you for your attention.
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