
Modular Forms and the Inverse Galois Problem

Gabor Wiese

Université du Luxembourg

85. Arbeitstagung allgemeine Algebra

2 February 2013

Inverse Galois Problem

Question of Hilbert:

Given a finite group G .

Is there a Galois extension K/\mathbb{Q} such that

$$\text{Gal}(K/\mathbb{Q}) \cong G?$$

Inverse Galois Problem

Question of Hilbert:

Given a finite group G .

Is there a Galois extension K/\mathbb{Q} such that

$$\text{Gal}(K/\mathbb{Q}) \cong G?$$

In this talk focus on two cases:

- The GL_2 -case: $G = \text{PSL}_2(\mathbb{F}_{\ell^d})$.
- The GSp_{2n} -case: $G = \text{PSp}_{2n}(\mathbb{F}_{\ell^d})$.

Introduction: GL_2 -case

Consider a cuspidal modular form

$$f = \sum_{n=1}^{\infty} a_n q^n \quad (q = e^{2\pi iz})$$

s.t. $a_1 = 1$ (normalised), Hecke eigenform, no CM,
any weight, on $\Gamma_1(N)$, nebentype $\psi : (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$.

Introduction: GL_2 -case

Consider a cuspidal modular form

$$f = \sum_{n=1}^{\infty} a_n q^n \quad (q = e^{2\pi iz})$$

s.t. $a_1 = 1$ (normalised), Hecke eigenform, no CM, any weight, on $\Gamma_1(N)$, nebentype $\psi : (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$.

Theorem (Deligne, Shimura, Eichler, Igusa, Serre).

For each prime ℓ , \exists Galois representation

$$\bar{\rho}_{f,\ell}^{\mathrm{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \mathrm{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\mathrm{nat. \ proj.}} \mathrm{PGL}_2(\overline{\mathbb{F}}_{\ell})$$

unramified outside $N\ell$ such that for all $p \nmid N\ell$

$$\mathrm{Tr}(\bar{\rho}_{f,\ell}(\mathrm{Frob}_p)) \equiv a_p \pmod{\ell}.$$

One speaks of a compatible system.

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \text{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\text{nat. proj.}} \text{PGL}_2(\overline{\mathbb{F}}_{\ell}).$$

Questions/Tasks:

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \text{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\text{nat. proj.}} \text{PGL}_2(\overline{\mathbb{F}}_{\ell}).$$

Questions/Tasks:

(I) Smallest d such that $\bar{\rho}_{f,\ell}^{\text{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\overline{\rho}_{f,\ell}^{\mathrm{proj}} : G_{\mathbb{Q}} \xrightarrow{\overline{\rho}_{f,\ell}} \mathrm{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\mathrm{nat. proj.}} \mathrm{PGL}_2(\overline{\mathbb{F}}_{\ell}).$$

Questions/Tasks:

- (I) Smallest d such that $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?
- (II) Image of $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$?

Note: $\mathrm{Gal}(\overline{\mathbb{Q}}^{\mathrm{ker}(\overline{\rho}_{f,\ell}^{\mathrm{proj}})} / \mathbb{Q}) \cong \overline{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}}).$

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \text{GL}_2(\bar{\mathbb{F}}_{\ell}) \xrightarrow{\text{nat. proj.}} \text{PGL}_2(\bar{\mathbb{F}}_{\ell}).$$

Questions/Tasks:

- (I) Smallest d such that $\bar{\rho}_{f,\ell}^{\text{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?
- (II) Image of $\bar{\rho}_{f,\ell}^{\text{proj}}$?

Note: $\text{Gal}(\overline{\mathbb{Q}}^{\ker(\bar{\rho}_{f,\ell}^{\text{proj}})} / \mathbb{Q}) \cong \bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$.

- (III) Prove the existence of f such that for fixed ℓ, d :

$$\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}}) \cong \text{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\text{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\mathrm{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \mathrm{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\mathrm{nat. proj.}} \mathrm{PGL}_2(\overline{\mathbb{F}}_{\ell}).$$

(I) Smallest d such that $\bar{\rho}_{f,\ell}^{\mathrm{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \text{GL}_2(\bar{\mathbb{F}}_{\ell}) \xrightarrow{\text{nat. proj.}} \text{PGL}_2(\bar{\mathbb{F}}_{\ell}).$$

(I) Smallest d such that $\bar{\rho}_{f,\ell}^{\text{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?

Answer:

If $\bar{\rho}_{f,\ell}$ is irreducible, then $\bar{\rho}_{f,\ell}^{\text{proj}}$ can be defined over residue field (above ℓ) of the global field $\mathbb{Q}(\frac{a_p^2}{\psi(p)} \mid p \nmid N)$

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \text{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\text{nat. proj.}} \text{PGL}_2(\overline{\mathbb{F}}_{\ell}).$$

(II) Image of $\bar{\rho}_{f,\ell}^{\text{proj}}$?

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \text{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\text{nat. proj.}} \text{PGL}_2(\overline{\mathbb{F}}_{\ell}).$$

(II) Image of $\bar{\rho}_{f,\ell}^{\text{proj}}$?

Answer:

From (I): $\bar{\rho}_{f,\ell}^{\text{proj}}$ definable over \mathbb{F}_{ℓ^d} . By **Dickson** (~ 1900):

$\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ is

- $\text{PSL}_2(\mathbb{F}_{\ell^d}), \text{PGL}_2(\mathbb{F}_{\ell^d})$
- dihedral
- $\subseteq \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$
- A_4, S_4, A_5

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \text{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\text{nat. proj.}} \text{PGL}_2(\overline{\mathbb{F}}_{\ell}).$$

(II) Image of $\bar{\rho}_{f,\ell}^{\text{proj}}$?

Answer:

From (I): $\bar{\rho}_{f,\ell}^{\text{proj}}$ definable over \mathbb{F}_{ℓ^d} . By **Dickson** (~ 1900):

$\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ is

- $\text{PSL}_2(\mathbb{F}_{\ell^d})$, $\text{PGL}_2(\mathbb{F}_{\ell^d})$
- dihedral
- $\subseteq \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$
- A_4, S_4, A_5

huge image
induced
reducible
exceptional

Introduction: GL_2 -case

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\bar{\rho}_{f,\ell}^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\bar{\rho}_{f,\ell}} \text{GL}_2(\bar{\mathbb{F}}_{\ell}) \xrightarrow{\text{nat. proj.}} \text{PGL}_2(\bar{\mathbb{F}}_{\ell}).$$

(II) Image of $\bar{\rho}_{f,\ell}^{\text{proj}}$?

Answer:

From (I): $\bar{\rho}_{f,\ell}^{\text{proj}}$ definable over \mathbb{F}_{ℓ^d} . By **Dickson** (~ 1900):

$\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ is

- $\text{PSL}_2(\mathbb{F}_{\ell^d}), \text{PGL}_2(\mathbb{F}_{\ell^d})$ huge image
- dihedral
- $\subseteq \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$
- A_4, S_4, A_5 induced
reducible
exceptional

Ribet: For almost all ℓ : huge image.

Introduction: GL_2 -case

(III) Prove the existence of f such that for fixed ℓ, d :

$$\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}}) \cong \text{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\text{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

Introduction: GL_2 -case

(III) Prove the existence of f such that for fixed ℓ, d :

$$\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}}) \cong \text{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\text{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

Partial Answers:

Theorem A (W. 2008). Given ℓ , \exists infinitely many d s.t. $\text{PSL}_2(\mathbb{F}_{\ell^d})$ occurs as $\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ (for some f depending on d) with only ℓ and one other prime (dep. on d) ramifying.

Introduction: GL_2 -case

(III) Prove the existence of f such that for fixed ℓ, d :

$$\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}}) \cong \text{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\text{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

Partial Answers:

Theorem A (W. 2008). Given ℓ , \exists infinitely many d s.t. $\text{PSL}_2(\mathbb{F}_{\ell^d})$ occurs as $\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ (for some f depending on d) with only ℓ and one other prime (dep. on d) ramifying.

Theorem B (Dieulefait, W. 2011). Given d , \exists positive density set of primes \mathcal{L} s.t. $\forall \ell \in \mathcal{L}$: $\text{PSL}_2(\mathbb{F}_{\ell^d})$ occurs as $\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ with only ℓ and at most three other primes (not dep. on ℓ) ramifying.

Introduction: GL_2 -case

(III) Prove the existence of f such that for fixed ℓ, d :

$$\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}}) \cong \text{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\text{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

Partial Answers:

Theorem C (W. 2012). Given d even. Assume Maeda's conjecture. Then the density of the set of primes ℓ such that $\text{PSL}_2(\mathbb{F}_{\ell^d})$ occurs as $\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ with only ℓ ramifying is 1.

Introduction: GL_2 -case

Theorem C (W. 2012). Given d even. Assume Maeda's conjecture. Then the density of the set of primes ℓ such that $PSL_2(\mathbb{F}_{\ell^d})$ occurs as $\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ with only ℓ ramifying is 1.

Introduction: GL_2 -case

Theorem C (W. 2012). Given d even. Assume Maeda's conjecture. Then the density of the set of primes ℓ such that $PSL_2(\mathbb{F}_{\ell^d})$ occurs as $\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ with only ℓ ramifying is 1.

Maeda's conjecture. Let $f = \sum_{n=1}^{\infty} a_n q^n \in S_k(1)$ be a level 1 newform of any weight k . Let $\mathbb{Q}_f := \mathbb{Q}(a_2, a_3, a_4, \dots)$. Then

- $[\mathbb{Q}_f : \mathbb{Q}] = \dim_{\mathbb{C}} S_k(1) =: d_k$ and
- the Galois group of splitting field of \mathbb{Q}_f/\mathbb{Q} is Sym_{d_k} .

Introduction: GL_2 -case

Theorem C (W. 2012). Given d even. Assume Maeda's conjecture. Then the density of the set of primes ℓ such that $PSL_2(\mathbb{F}_{\ell^d})$ occurs as $\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ with only ℓ ramifying is 1.

Maeda's conjecture. Let $f = \sum_{n=1}^{\infty} a_n q^n \in S_k(1)$ be a level 1 newform of any weight k . Let $\mathbb{Q}_f := \mathbb{Q}(a_2, a_3, a_4, \dots)$. Then

- $[\mathbb{Q}_f : \mathbb{Q}] = \dim_{\mathbb{C}} S_k(1) =: d_k$ and
- the Galois group of splitting field of \mathbb{Q}_f/\mathbb{Q} is Sym_{d_k} .

The conjecture has been verified numerically for $k \leq 12000$ (work of Ghitza and student).

Introduction: GL_2 -case

Theorem C (W. 2012). Given d even. Assume Maeda's conjecture. Then the density of the set of primes ℓ such that $PSL_2(\mathbb{F}_{\ell^d})$ occurs as $\bar{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ with only ℓ ramifying is 1.

Maeda's conjecture. Let $f = \sum_{n=1}^{\infty} a_n q^n \in S_k(1)$ be a level 1 newform of any weight k . Let $\mathbb{Q}_f := \mathbb{Q}(a_2, a_3, a_4, \dots)$. Then

- $[\mathbb{Q}_f : \mathbb{Q}] = \dim_{\mathbb{C}} S_k(1) =: d_k$ and
- the Galois group of splitting field of \mathbb{Q}_f/\mathbb{Q} is Sym_{d_k} .

Introduction: GL_2 -case

Theorem C (W. 2012). Given d even. Assume Maeda's conjecture. Then the density of the set of primes ℓ such that $PSL_2(\mathbb{F}_{\ell^d})$ occurs as $\overline{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ with only ℓ ramifying is 1.

Maeda's conjecture. Let $f = \sum_{n=1}^{\infty} a_n q^n \in S_k(1)$ be a level 1 newform of any weight k . Let $\mathbb{Q}_f := \mathbb{Q}(a_2, a_3, a_4, \dots)$. Then

- $[\mathbb{Q}_f : \mathbb{Q}] = \dim_{\mathbb{C}} S_k(1) =: d_k$ and
- the Galois group of splitting field of \mathbb{Q}_f/\mathbb{Q} is Sym_{d_k} .

Reasons behind the proof:

- K/\mathbb{Q} , $\deg n > d$, Galois gp Sym_n has subfields of deg d .
- If K and L two such (with Sym_m , Sym_n , $m > n \geq 5$), then $K \cap L$ at most quadratic (A_n simple!).
- Varying f , (almost) disj. of $\mathbb{Q}_f \leadsto$ densities add up to 1.

Introduction: GL_2 -case

Theorem C (W. 2012). Given d even. Assume Maeda's conjecture. Then the density of the set of primes ℓ such that $PSL_2(\mathbb{F}_{\ell^d})$ occurs as $\overline{\rho}_{f,\ell}^{\text{proj}}(G_{\mathbb{Q}})$ with only ℓ ramifying is 1.

Maeda's conjecture. Let $f = \sum_{n=1}^{\infty} a_n q^n \in S_k(1)$ be a level 1 newform of any weight k . Let $\mathbb{Q}_f := \mathbb{Q}(a_2, a_3, a_4, \dots)$. Then

- $[\mathbb{Q}_f : \mathbb{Q}] = \dim_{\mathbb{C}} S_k(1) =: d_k$ and
- the Galois group of splitting field of \mathbb{Q}_f/\mathbb{Q} is Sym_{d_k} .

Reasons behind the proof:

- K/\mathbb{Q} , $\deg n > d$, Galois gp Sym_n has subfields of deg d .
- If K and L two such (with Sym_m , Sym_n , $m > n \geq 5$), then $K \cap L$ at most quadratic (A_n simple!).
- Varying f , (almost) disj. of $\mathbb{Q}_f \leadsto$ densities add up to 1.

Introduction: GSp_{2n} -case

Generalisation to GSp_{2n} any n :

Theorem A (Khare, Larsen, Savin, 2008).

Given ℓ , \exists infinitely many d s.t. $\mathrm{PSp}_{2n}(\mathbb{F}_{\ell^d})$ or $\mathrm{PGSp}_{2n}(\mathbb{F}_{\ell^d})$ occurs as image of the residual Galois representation attached to a suitable automorphic form on GL_{2n} over \mathbb{Q} .

Introduction: GSp_{2n} -case

Generalisation to GSp_{2n} any n :

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

- (I) Determine projective field of definition of compatible system of symplectic Galois representations.
(DONE. Explain now.)

Introduction: GSp_{2n} -case

Generalisation to GSp_{2n} any n :

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

- (I) Determine projective field of definition of compatible system of symplectic Galois representations.
(DONE. Explain now.)
- (II) Classify images of symplectic representations under some constraint.
(DONE. Show result now.)

Introduction: GSp_{2n} -case

Generalisation to GSp_{2n} any n :

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

- (I) Determine projective field of definition of compatible system of symplectic Galois representations.
(DONE. Explain now.)
- (II) Classify images of symplectic representations under some constraint.
(DONE. Show result now.)
- (III) Generalise Theorem B.
(ALMOST DONE, subject to a ‘promised theorem’ by others).

Inner twists

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\text{nat. proj.}} \text{PGSp}_{2n}(\overline{K}).$$

Inner twists

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\text{nat. proj.}} \text{PGSp}_{2n}(\overline{K}).$$

Def.: $\rho_1^{\text{proj}} \sim \rho_2^{\text{proj}}$ if $\exists M \in \text{GSp}_{2n}(\overline{K})$ s.t.

$$\rho_1^{\text{proj}} = (M\rho_2 M^{-1})^{\text{proj}}.$$

Inner twists

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\text{nat. proj.}} \text{PGSp}_{2n}(\overline{K}).$$

Def.: $\rho_1^{\text{proj}} \sim \rho_2^{\text{proj}}$ if $\exists M \in \text{GSp}_{2n}(\overline{K})$ s.t.

$$\rho_1^{\text{proj}} = (M\rho_2 M^{-1})^{\text{proj}}.$$

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\text{proj}} \sim (G_{\mathbb{Q}} \rightarrow \text{PGSp}_{2n}(L))$?

Inner twists

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\text{nat. proj.}} \text{PGSp}_{2n}(\overline{K}).$$

Def.: $\rho_1^{\text{proj}} \sim \rho_2^{\text{proj}}$ if $\exists M \in \text{GSp}_{2n}(\overline{K})$ s.t.

$$\rho_1^{\text{proj}} = (M\rho_2 M^{-1})^{\text{proj}}.$$

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\text{proj}} \sim (G_{\mathbb{Q}} \rightarrow \text{PGSp}_{2n}(L))$?

Simple observations:

- Let $\epsilon : G_{\mathbb{Q}} \rightarrow \overline{K}^{\times}$ char. $\Rightarrow (\rho \otimes \epsilon)^{\text{proj}} = \rho^{\text{proj}}.$

Inner twists

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\text{proj}} : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\text{nat. proj.}} \text{PGSp}_{2n}(\overline{K}).$$

Def.: $\rho_1^{\text{proj}} \sim \rho_2^{\text{proj}}$ if $\exists M \in \text{GSp}_{2n}(\overline{K})$ s.t.

$$\rho_1^{\text{proj}} = (M\rho_2 M^{-1})^{\text{proj}}.$$

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\text{proj}} \sim (G_{\mathbb{Q}} \rightarrow \text{PGSp}_{2n}(L))$?

Simple observations:

- Let $\epsilon : G_{\mathbb{Q}} \rightarrow \overline{K}^{\times}$ char. $\Rightarrow (\rho \otimes \epsilon)^{\text{proj}} = \rho^{\text{proj}}$.
- Suppose $\rho_1^{\text{proj}} \sim \rho_2^{\text{proj}}$.

$$\text{Put } \epsilon(g) := M^{-1}\rho_1(g)M\rho_2(g)^{-1} \in \overline{K}^{\times}.$$

$$\Rightarrow \rho_1 \sim \rho_2 \otimes \epsilon.$$

Inner twists

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\text{proj}} \sim (G_{\mathbb{Q}} \rightarrow \text{PGSp}_{2n}(L))$?

Galois action on coefficients: for $\sigma \in G_K$ consider

$${}^{\sigma}\rho : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\sigma} \text{GSp}_{2n}(\overline{K}).$$

Inner twists

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\text{proj}} \sim (G_{\mathbb{Q}} \rightarrow \text{PGSp}_{2n}(L))$?

Galois action on coefficients: for $\sigma \in G_K$ consider

$${}^{\sigma}\rho : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\sigma} \text{GSp}_{2n}(\overline{K}).$$

Def.: A pair (σ, ϵ) with $\sigma \in G_K$ and $\epsilon : G_{\mathbb{Q}} \rightarrow \overline{K}^{\times}$ character is called an **inner twist** if ${}^{\sigma}\rho \sim \rho \otimes \epsilon$ ($\Leftrightarrow ({}^{\sigma}\rho)^{\text{proj}} \sim \rho^{\text{proj}}$).

Inner twists

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\text{proj}} \sim (G_{\mathbb{Q}} \rightarrow \text{PGSp}_{2n}(L))$?

Galois action on coefficients: for $\sigma \in G_K$ consider

$${}^{\sigma}\rho : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\sigma} \text{GSp}_{2n}(\overline{K}).$$

Def.: A pair (σ, ϵ) with $\sigma \in G_K$ and $\epsilon : G_{\mathbb{Q}} \rightarrow \overline{K}^{\times}$ character is called an **inner twist** if ${}^{\sigma}\rho \sim \rho \otimes \epsilon$ ($\Leftrightarrow ({}^{\sigma}\rho)^{\text{proj}} \sim \rho^{\text{proj}}$).

ρ has complex multiplication (CM) if $\sigma = \text{id}$, $\epsilon \neq 1$.

Inner twists

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\text{proj}} \sim (G_{\mathbb{Q}} \rightarrow \text{PGSp}_{2n}(L))$?

Galois action on coefficients: for $\sigma \in G_K$ consider

$${}^{\sigma}\rho : G_{\mathbb{Q}} \xrightarrow{\rho} \text{GSp}_{2n}(\overline{K}) \xrightarrow{\sigma} \text{GSp}_{2n}(\overline{K}).$$

Def.: A pair (σ, ϵ) with $\sigma \in G_K$ and $\epsilon : G_{\mathbb{Q}} \rightarrow \overline{K}^{\times}$ character is called an **inner twist** if ${}^{\sigma}\rho \sim \rho \otimes \epsilon$ ($\Leftrightarrow ({}^{\sigma}\rho)^{\text{proj}} \sim \rho^{\text{proj}}$).

ρ has complex multiplication (CM) if $\sigma = \text{id}$, $\epsilon \neq 1$.

Suppose ρ is irreducible and has no CM. Then:

$${}^{\sigma}\rho \sim \rho \otimes \epsilon \Leftrightarrow$$

$$\sigma(\text{Tr}(\rho(\text{Frob}_p))) = \text{Tr}(\rho(\text{Frob}_p))\epsilon(\text{Frob}_p) \quad \forall \text{ unramified } p.$$

Inner twists

Def.: $H_\rho := \bigcap_\epsilon \ker(\epsilon) \triangleleft G_{\mathbb{Q}}$ for ϵ occurring in an inner twists.
 $\Gamma_\rho := \{\sigma \in G_K \mid \sigma \text{ occurs in an inner twist}\}.$
 $K_\rho := \overline{K}^{\Gamma_\rho}$, called **projective field of definition of ρ** .

Inner twists

Def.: $H_\rho := \bigcap_\epsilon \ker(\epsilon) \triangleleft G_{\mathbb{Q}}$ for ϵ occurring in an inner twists.
 $\Gamma_\rho := \{\sigma \in G_K \mid \sigma \text{ occurs in an inner twist}\}.$
 $K_\rho := \overline{K}^{\Gamma_\rho}$, called **projective field of definition of ρ** .

Theorem (Arias-de-Reyna, Dieulefait, W., 2012).

Suppose $\rho|_{H_\rho}$ is irreducible. Then:

- (1) $\exists \rho'$ such that $\rho'^{\text{proj}} \sim \rho^{\text{proj}}$ and ρ'^{proj} factors through K_ρ .
- (2) K_ρ is the smallest subfield of \overline{K} with this property.

Morale: The inner twists determine the smallest field over which ρ^{proj} can be defined.

Compatible systems

Let $n \in \mathbb{N}$, L/\mathbb{Q} Galois number field, $N, k \in \mathbb{N}$, $\psi : G_{\mathbb{Q}} \rightarrow L^{\times}$, for all $p \nmid N$: $P_p(X) = X^{2n} - a_p X^{2n-1} + \cdots \in L[X]$.

A **compatible system** ρ_{\bullet} is:

Compatible systems

Let $n \in \mathbb{N}$, L/\mathbb{Q} Galois number field, $N, k \in \mathbb{N}$, $\psi : G_{\mathbb{Q}} \rightarrow L^{\times}$, for all $p \nmid N$: $P_p(X) = X^{2n} - a_p X^{2n-1} + \cdots \in L[X]$.

A **compatible system** ρ_{\bullet} is:

for each λ place of L a Galois representation

$\rho_{\lambda} : G_{\mathbb{Q}} \rightarrow \mathrm{GSp}_{2n}(L_{\lambda})$ such that

- abs. irred., unramified outside $N\ell$ (for $\Lambda \mid \ell$),
- $\forall p \nmid N\ell : \mathrm{charpoly}(\rho_{\lambda}(\mathrm{Frob}_p)) = P_p$,
- similitude factor of ρ_{λ} is $\psi \chi_{\ell}^k$ (for χ_{ℓ} cyclotomic char.).

Compatible systems

Let $n \in \mathbb{N}$, L/\mathbb{Q} Galois number field, $N, k \in \mathbb{N}$, $\psi : G_{\mathbb{Q}} \rightarrow L^{\times}$, for all $p \nmid N$: $P_p(X) = X^{2n} - a_p X^{2n-1} + \cdots \in L[X]$.

A **compatible system** ρ_{\bullet} is:

for each λ place of L a Galois representation

$\rho_{\lambda} : G_{\mathbb{Q}} \rightarrow \mathrm{GSp}_{2n}(L_{\lambda})$ such that

- abs. irred., unramified outside $N\ell$ (for $\Lambda \mid \ell$),
- $\forall p \nmid N\ell$: $\mathrm{charpoly}(\rho_{\lambda}(\mathrm{Frob}_p)) = P_p$,
- similitude factor of ρ_{λ} is $\psi \chi_{\ell}^k$ (for χ_{ℓ} cyclotomic char.).

Sources: *algebraic, essentially conjugate self-dual cuspidal automorphic representations* for GL_{2n} over \mathbb{Q} .

Compatible systems

Let $n \in \mathbb{N}$, L/\mathbb{Q} Galois number field, $N, k \in \mathbb{N}$, $\psi : G_{\mathbb{Q}} \rightarrow L^{\times}$, for all $p \nmid N$: $P_p(X) = X^{2n} - a_p X^{2n-1} + \dots \in L[X]$.

A **compatible system** ρ_{\bullet} is:

for each λ place of L a Galois representation

$\rho_{\lambda} : G_{\mathbb{Q}} \rightarrow \mathrm{GSp}_{2n}(L_{\lambda})$ such that

- abs. irred., unramified outside $N\ell$ (for $\Lambda \mid \ell$),
- $\forall p \nmid N\ell : \mathrm{charpoly}(\rho_{\lambda}(\mathrm{Frob}_p)) = P_p$,
- similitude factor of ρ_{λ} is $\psi \chi_{\ell}^k$ (for χ_{ℓ} cyclotomic char.).

Sources: *algebraic, essentially conjugate self-dual cuspidal automorphic representations* for GL_{2n} over \mathbb{Q} .

We consider: $\bar{\rho}_{\lambda}$ (residual representation), $\rho_{\lambda}^{\mathrm{proj}}$, and $\bar{\rho}_{\lambda}^{\mathrm{proj}}$.

Compatible systems

Let ρ_\bullet be a compatible system.

Def.: (σ, ϵ) (with $\sigma \in \text{Gal}(L/K)$ and $\epsilon : G_{\mathbb{Q}} \rightarrow L^\times$) **inner twist** of ρ_\bullet if $\sigma(a_p) = a_p \cdot \epsilon(\text{Frob}_p)$ for all $p \nmid N$.

Compatible systems

Let ρ_\bullet be a compatible system.

Def.: (σ, ϵ) (with $\sigma \in \text{Gal}(L/K)$ and $\epsilon : G_{\mathbb{Q}} \rightarrow L^\times$) **inner twist** of ρ_\bullet if $\sigma(a_p) = a_p \cdot \epsilon(\text{Frob}_p)$ for all $p \nmid N$.

Def.: $\Gamma_{\rho_\bullet} := \{\sigma \in \text{Gal}(L/K) \mid \sigma \text{ occurs in an inner twist of } \rho_\bullet\}$.
 $K_{\rho_\bullet} := L^{\Gamma_{\rho_\bullet}}$, called **projective field of definition** of ρ_\bullet .

Compatible systems

Let ρ_\bullet be a compatible system.

Def.: (σ, ϵ) (with $\sigma \in \text{Gal}(L/K)$ and $\epsilon : G_{\mathbb{Q}} \rightarrow L^\times$) **inner twist** of ρ_\bullet if $\sigma(a_p) = a_p \cdot \epsilon(\text{Frob}_p)$ for all $p \nmid N$.

Def.: $\Gamma_{\rho_\bullet} := \{\sigma \in \text{Gal}(L/K) \mid \sigma \text{ occurs in an inner twist of } \rho_\bullet\}$.
 $K_{\rho_\bullet} := L^{\Gamma_{\rho_\bullet}}$, called **projective field of definition** of ρ_\bullet .

Theorem 1 (Arias-de-Reyna, Dieulefait, W., 2012).

Assume moreover: ρ_\bullet is *strictly compatible with regular Hodge-Tate weights* and $\bar{\rho}_\lambda$ is absolutely irreducible for almost all λ .

Then for almost all places λ of L , the residue field at λ of K_{ρ_\bullet} is $K_{\bar{\rho}_\lambda}$.

Compatible systems

Theorem 1 (Arias-de-Reyna, Dieulefait, W., 2012).

Assume moreover: ρ_\bullet is *strictly compatible with regular Hodge-Tate weights* and $\bar{\rho}_\lambda$ is absolutely irreducible for almost all λ .

Then for almost all places λ of L , the residue field at λ of K_{ρ_\bullet} is $K_{\bar{\rho}_\lambda}$.

Morale: The global field K_{ρ_\bullet} (depending only on the inner twists) determines the projective field of definition of $\bar{\rho}_\lambda^{\text{proj}}$.

This field is the GSp_{2n} -replacement of $\mathbb{Q}(\frac{a_p^2}{\psi(p)} \mid p \nmid N)$.

Classification result

Theorem 2 (Arias-de-Reyna, Dieulefait, W., 2012).

Let $\ell \geq 5$ and $\bar{\rho} : G \rightarrow \mathrm{GSp}_{2n}(\overline{\mathbb{F}}_\ell)$ be irreducible.

Assume: $\bar{\rho}(G)$ contains a non-trivial transvection.

Then either $\bar{\rho}(G) \supseteq \mathrm{PSp}_{2n}(\mathbb{F}_\ell)$ (huge image)

or $\bar{\rho}$ is induced from a lower dimensional representation.

Classification result

Theorem 2 (Arias-de-Reyna, Dieulefait, W., 2012).

Let $\ell \geq 5$ and $\bar{\rho} : G \rightarrow \mathrm{GSp}_{2n}(\overline{\mathbb{F}}_\ell)$ be irreducible.

Assume: $\bar{\rho}(G)$ contains a non-trivial transvection.

Then either $\bar{\rho}(G) \supseteq \mathrm{PSp}_{2n}(\mathbb{F}_\ell)$ (huge image)

or $\bar{\rho}$ is induced from a lower dimensional representation.

Morale: Our replacement of Dickson's theorem for GL_2 :

Recall: $\bar{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}})$ is

- $\mathrm{PSL}_2(\mathbb{F}_{\ell^d}), \mathrm{PGL}_2(\mathbb{F}_{\ell^d})$ huge image
- dihedral induced
- $\subseteq \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ reducible
- A_4, S_4, A_5 exceptional

Inverse Galois Problem

Theorem 3 (Arias-de-Reyna, Dieulefait, W., 2012).

Let ρ_\bullet be as in Theorem 1. Assume moreover:

- $\bar{\rho}_\lambda(G_{\mathbb{Q}})$ contains a transvection for almost all λ .
- ‘Good dihedral prime’ (Khare, Wintenberger, Larsen, Savin):
 \exists prime q , \exists suitable character $\delta : G_{\mathbb{Q}_{q^{2n}}} \rightarrow L^\times$ of order $2t$ (t prime), $2n \mid (t - 1)$ such that $\bar{\rho}_\lambda|_{G_{\mathbb{Q}_q}} \sim \text{Ind}_{G_{\mathbb{Q}_{q^{2n}}}}^{G_{\mathbb{Q}_q}}(\delta)$.

Then for all $d \mid \frac{t-1}{2n}$, the set of places λ of L such that $\text{PSp}_{2n}(\mathbb{F}_{\ell^d})$ or $\text{PGSp}_{2n}(\mathbb{F}_{\ell^d})$ equals $\bar{\rho}_\lambda^{\text{proj}}(G_{\mathbb{Q}})$ has a positive density.

Inverse Galois Problem

Theorem 3 (Arias-de-Reyna, Dieulefait, W., 2012).

Let ρ_\bullet be as in Theorem 1. Assume moreover:

- $\bar{\rho}_\lambda(G_{\mathbb{Q}})$ contains a transvection for almost all λ .
- ‘Good dihedral prime’ (Khare, Wintenberger, Larsen, Savin):
 \exists prime q , \exists suitable character $\delta : G_{\mathbb{Q}_{q^{2n}}} \rightarrow L^\times$ of order $2t$ (t prime), $2n \mid (t - 1)$ such that $\bar{\rho}_\lambda|_{G_{\mathbb{Q}_q}} \sim \text{Ind}_{G_{\mathbb{Q}_{q^{2n}}}}^{G_{\mathbb{Q}_q}}(\delta)$.

Then for all $d \mid \frac{t-1}{2n}$, the set of places λ of L such that $\text{PSp}_{2n}(\mathbb{F}_{\ell^d})$ or $\text{PGSp}_{2n}(\mathbb{F}_{\ell^d})$ equals $\bar{\rho}_\lambda^{\text{proj}}(G_{\mathbb{Q}})$ has a positive density.

Morale: If such a ρ_\bullet exists, then we obtain the desired application to the inverse Galois problem.

Thank you for your attention.