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Inverse Galois Problem

Question of Hilbert:

Given a finite group G.
Is there a Galois extension K/Q such that

Gal(K/Q) = G?
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Inverse Galois Problem

Question of Hilbert:

Given a finite group G.
Is there a Galois extension K/Q such that

Gal(K/Q) = G?

In this talk focus on two cases:
® The GLs-case: G = PSLa(Fa).
® The GSpy,-case: G = PSp,,, (Fs).

UUUUUUUUUUUU .
UUUUUUUUUU Modular Forms and the Inverse Galois Problem — p.2/21



Introduction: GlL,-case

Consider a cuspidal modular form

f=>n=1and" (q = e*™?)
s.t. a; = 1 (normalised), Hecke eigenform, no CM,
any weight, on I'y(N), nebentype ¢ : (Z/NZ)* — C*.
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Introduction: GlL,-case

Consider a cuspidal modular form

f=>n=1and" (q = e*™?)
s.t. a; = 1 (normalised), Hecke eigenform, no CM,
any weight, on I'y(N), nebentype ¢ : (Z/NZ)* — C*.

Theorem (Deligne, Shimura, Eichler, Igusa, Serre).
For each prime ¢, 3 Galois representation

_pro p

P G =5 GLy(Fy) =2 PGLay(Fy)
unramified outside N/ such that for all p 1 N/

Tr(py¢(Froby)) = ap ‘mod £

nat. prOJ

One speaks of a compatible system.
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.
ro p
Py G =5 GLy(Fy) =22 PGLy(Fy).

nat. pI‘OJ

Questions/Tasks:
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.

ﬁf,e nat. proj.

P G —25 GLa(Fy) =2 PGLy(Fy).
Questions/Tasks:

() Smallest d such that p?‘fj can be defined over F.?
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.

P PGLy(F)).

Py G =5 GLy(Fy) ==

nat. pl’Oj

Questions/Tasks:

() Smallest d such that p?rjj can be defined over F.?

(1) Image of p —pmJ?

prOJ

Note: Gal(Q ker 720 1) = (G,
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.
_pro p
iy Gg =5 GLy(Fy) == PGLay(F).

nat. pl’Oj

Questions/Tasks:

() Smallest d such that p?rl?*] can be defined over F.?

(1N Image of p —prOJ’)

prOJ

Note: Gal(Q ker 720 1) = (G,

(111) Prove the existence of f such that for fixed ¢, d:
P (Gg) = PSLy(Fpu),
l.e. realise PSLy(IF,q) as Galois group over Q.
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.

ﬁf,e nat. proj.

P G —25 GLa(Fy) =2 PGLy(Fy).
(1) Smallest d such that p?rjj can be defined over F.?
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.

2 G 25 GLy(Fy) ™% PGLy(Fy).

(1) Smallest d such that pf;r;j can be defined over F.?

Answer:;

If 5., is irreducible, then 2% can be defined over residue
P .l

field (above () of the global field Q(,%2; | pf )
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.

P PGLy(F)).

Py G =5 GLo(Fy) =5
(1) Image of prOJ’?

nat. pI‘OJ
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.
Py Go == ity GLy(Fy) ™%, PALy(Fy).
(1) Image of prOJ’?

nat. pl’Oj

Answer:
From (1): p —prOJ definable over F,.. By Dickson (~ 1900):

Py J(G@) S
o PSLy(Fya), PGLo(F )
e dihedral
*C ()
o Ay, S4, A5
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.
Py Go == ity GLy(Fy) ™%, PALy(Fy).
(1) Image of prOJ’?

nat. pl’Oj

Answer:
From (1): p —prOJ definable over F,.. By Dickson (~ 1900):

Py J(G@) S

o PSIy(Fya), PGLo(Fya) huge image
e dihedral Induced
e C (1) reducible

o Ay, Sy, As exceptional
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Introduction: GlL,-case

For f => ", ang™ and each prime ¢, 3 Galois rep.

P PGLy(F)).

P G 25 GLy(Fy) =2
(1) Image of prOJ’?

nat. pl’Oj

Answer:
From (1): p —prOJ definable over F,.. By Dickson (~ 1900):

Py J(G@) S

o PSIy(Fya), PGLo(Fya) huge image
e dihedral iInduced

e C (¥ reducible

o Ay, Sy, As exceptional

Ribet: For almost all /: huge image.
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Introduction: GlL,-case

(111) Prove the existence of f such that for fixed /, d.
P2 (Gg) 22 PSLy(Fpa),
l.e. realise PSLy(F,.) as Galois group over Q.
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Introduction: GlL,-case

(111) Prove the existence of f such that for fixed /, d.
P2 (Gg) 22 PSLy(Fpa),
l.e. realise PSLy(F,) as Galois group over Q.

Partial Answers:

Theorem A (W. 2008). Given /, 3 infinitely many d s.t. PSLy(FFa)
OCCUrS as p?ng(G@) (for some f depending on d) with only ¢
and one other prime (dep. on d) ramifying.
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Introduction: GlL,-case

(111) Prove the existence of f such that for fixed /, d.
P2 (Gg) 22 PSLy(Fpa),
l.e. realise PSLy(F,) as Galois group over Q.

Partial Answers:

Theorem A (W. 2008). Given /, 3 infinitely many d s.t. PSLy(FFa)
OCCUrS as p?ffJ(G@) (for some f depending on d) with only ¢
and one other prime (dep. on d) ramifying.

Theorem B (Dieulefait, W. 2011). Given d, 3 positive density set
of primes L s.t. V/ € L: PSLy(F,.) occurs as p " (Gg) with

only ¢ and at most three other primes (not dep. on /)
ramifying.
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Introduction: GlL,-case

(111) Prove the existence of f such that for fixed /, d.
P2 (Gg) 22 PSLy(Fpa),
l.e. realise PSLy(F,) as Galois group over Q.

Partial Answers:

Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ¢ such that

PSLy(Fya) occurs as 7} (Gg) with only ¢ ramifying is 1.
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Introduction: GlL,-case

Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ¢ such that

PSLy(Fy) occurs as 7}, (Gg) with only ¢ ramifying is 1.
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Introduction: GlL,-case

Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ¢ such that

PSLy(Fy) occurs as 7}, (Gg) with only ¢ ramifying is 1.

Maeda’s conjecture. Let f = >, a,q" € Sk(1) be a level 1
newform of any weight £. Let Q¢ := Q(a2, a3, a4, ...). Then
° [@f : Q] = dimg Sk(l) =: d;, and

o the Galois group of splitting field of Q¢/Q Is Sym,, .
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Introduction: GlL,-case

Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ¢ such that

PSLy(Fy) occurs as 7}, (Gg) with only ¢ ramifying is 1.

Maeda’s conjecture. Let f = >, a,q" € Sk(1) be a level 1
newform of any weight £. Let Q¢ := Q(a2, a3, a4, ...). Then
° [@f : @] = dimg Sk(l) =: d;, and

o the Galois group of splitting field of Q¢/Q Is Sym,, .

The conjecture has been veried numerically for &£ < 12000
(work of Ghitza and student).
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Introduction: GlL,-case

Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ¢ such that

PSLy(Fy) occurs as 7}, (Gg) with only ¢ ramifying is 1.

Maeda’s conjecture. Let f = >, a,q" € Sk(1) be a level 1
newform of any weight £. Let Q¢ := Q(a2, a3, a4, ...). Then
° [@f : Q] = dimg Sk(l) =: d;, and

o the Galois group of splitting field of Q¢/Q Is Sym,, .
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Introduction: GlL,-case

Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ¢ such that

PSLy(Fy) occurs as 7}, (Gg) with only ¢ ramifying is 1.

Maeda’s conjecture. Let f = >, a,q" € Sk(1) be a level 1
newform of any weight £. Let Q¢ := Q(a2, a3, a4, ...). Then
o [@f : @] = dimg Sk(l) =: d;, and

o the Galois group of splitting field of Q¢/Q Is Sym,, .

Reasons behind the proof:
e {/Q, deg n > d, Galois gp Sym,, has subfields of deg d.

e If K and L two such (with Sym,, Sym,, m > n > 5), then
K N L at most quadratic (A,, simple!).

e Varying f, (almost) disj. of Q¢ ~» densities add up to 1.
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Introduction: GlL,-case

Theorem C (W. 2012). Given d even. Assume Maeda’s
conjecture. Then the density of the set of primes ¢ such that

PSLy(Fy) occurs as 7}, (Gg) with only ¢ ramifying is 1.

Maeda’s conjecture. Let f = >, a,q" € Sk(1) be a level 1
newform of any weight £. Let Q¢ := Q(a2, a3, a4, ...). Then
o [@f : @] = dimg Sk(l) =: d;, and

o the Galois group of splitting field of Q¢/Q Is Sym,, .

Reasons behind the proof:
e {/Q, deg n > d, Galois gp Sym,, has subfields of deg d.

e If K and L two such (with Sym,, Sym,, m > n > 5), then
K N L at most quadratic (A,, simple!).

e Varying f, (almost) disj. of Q¢ ~» densities add up to 1.
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Introduction: GSp,, -case

Generalisation to GSps,, any n:

Theorem A (Khare, Larsen, Savin, 2008).

Given /¢, 3 infinitely many d s.t. PSps,, (IFya) or PGSps,, (Fya)
occurs as image of the residual Galois representation
attached to a suitable automorphic form on GLsy,, over Q.
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Introduction: GSp,, -case

Generalisation to GSps,, any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

(I) Determine projective field of definition of compatible
system of symplectic Galois representations.
(DONE. Explain now.)
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Introduction: GSp,, -case

Generalisation to GSps,, any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

(I) Determine projective field of definition of compatible
system of symplectic Galois representations.
(DONE. Explain now.)

(1I) Classify images of symplectic representations under
some constraint.
(DONE. Show result now.)
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Introduction: GSp,, -case

Generalisation to GSps,, any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

(I) Determine projective field of definition of compatible
system of symplectic Galois representations.
(DONE. Explain now.)

(1I) Classify images of symplectic representations under
some constraint.

(DONE. Show result now.)

(l11) Generalise Theorem B.

(ALMOST DONE, subject to a ‘promised theorem’ by
others).
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Inner twists

Let K be afield, K separable closure. Consider:
pproj : GQ & GSpZn( ) = prOJ PGSan( )
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Inner twists

Let K be afield, K separable closure. Consider:

nat. pI’Oj

pproj : GQ & GSan( ) PGSan( )

f2 g7~ B if 3 M € GSpy, () it
Pl = (MppM 1P,
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Inner twists

Let K be afield, K separable closure. Consider:
pproj : GQ & GSan( ) = prOJ PGSan( )

2 pP"00 o PO if AL € GSpy, (K) Sit.
PO = (M pp M ~L)Pred,

Qu.: Smallest L C K s.t. pP*% ~ (Gg — PGSpy,,(L))?
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Inner twists

Let K be afield, K separable closure. Consider:
pproj : GQ & GSan( ) = prOJ PGSan( )

2 pP"00 o PO if AL € GSpy, (K) Sit.
PO = (M pp M ~L)Pred,

Qu.: Smallest L C K s.t. pP*% ~ (Gg — PGSpy,,(L))?

Simple observations:

elete: Gy — K char. = p® €)Prol = pProj,
Q
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Inner twists

Let K be afield, K separable closure. Consider:
pproj : GQ & GSan( ) = prOJ PGSan( )

2 P~ pP7T if 3 M € GSpy, (K) Sit.
P = (Mpy M~ 1yprol,
Qu.: Smallest L C K s.t. pP*% ~ (Gg — PGSpy,,(L))?

Simple observations:
e lete: Gg — K char. = (p® e)Proi = pproi,
e Suppose pP" ~ Pt

Put e(g) :== M p1(g)Mpa(g) L € K.

= P1 ~ P2 D E.
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Inner twists

Qu.. Smallest L C K s.t. pP* ~ (Gg — PGSpy,,(L))?

Galois action on coefficients: for o € Gx consider
7p : Gg = GSpy,(K) % GSpy,(K).
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Inner twists

Qu.. Smallest L C K s.t. pP* ~ (Gg — PGSpy,,(L))?

Galois action on coefficients: for o € Gx consider
7p : Gg = GSpy,(K) % GSpy,(K).

Def.: A pair (o,€) with o € G and e : Gy — K character is
called an inner twistif 7p ~ p@e€ (& ()P ~ pProl),
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Inner twists

Qu.. Smallest L C K s.t. pP* ~ (Gg — PGSpy,,(L))?
Galois action on coefficients: for o € Gx consider
7p : Gg = GSpy,(K) % GSpy,(K).

Def.: A pair (o,€) with o € G and e : Gy — K character is
called an inner twistif 7p ~ p@e€ (& ()P ~ pProl),

p has complex multiplication (CM) if o =id, € # 1.
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Inner twists

Qu.. Smallest L C K s.t. pP* ~ (Gg — PGSpy,,(L))?
Galois action on coefficients: for o € Gx consider

7p : Gg = GSpy,(K) % GSpy,(K).

Def.: A pair (o,€) with o € G and e : Gy — K character is
called an inner twistif p ~ p® e (& (9p)Prol ~ pProl),

p has complex multiplication (CM) if o =id, € # 1.

Suppose p is irreducible and has no CM. Then:
P~ pRes
o(Tr(p(Froby))) = Tr(p(Froby,))e(Frob,) V unramified p.

UNIVERSITE DU

LLLLLLLL Modular Forms and the Inverse Galois Problem — p.14/21



Inner twists

Def.. H, := (), ker(e) < G for e occuring in an inner twists.
') := {0 € Gk | o occurs in an inner twist}.

K, = FF”, called projective field of definition of p.

UUUUUUUUUUUU .
UUUUUUUUUU Modular Forms and the Inverse Galois Problem — p.15/21



Inner twists

Def.. H, := (), ker(e) < G for e occuring in an inner twists.
') := {0 € Gk | o occurs in an inner twist}.

K, = FFP, called projective field of definition of p.

Theorem (Arias-de-Reyna, Dieulefait, W., 2012).
Suppose p|g, Is irreducible. Then:

(1) 3’ such that p'P™) ~ pPro) and p'Pr) factors through K.
(2) K, is the smallest subfield of K with this property.

Morale: The Inner twists determine the smallest field over
which pP™) can be defined.

UUUUUUUUUUUU .
UUUUUUUUUU Modular Forms and the Inverse Galois Problem — p.15/21



Compatible systems

Let n € N, L/Q Galois number field, N,k € N, ¢ : Gg — L*,
forall pt N: Py(X) = X?" —q, X% 1 +... ¢ L[X].

A compatible system p, IS:
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Compatible systems

Let n € N, L/Q Galois number field, N,k € N, ¢ : Gg — L*,
forallpt N: Py(X) = X* — g, X*" 1 ... € LIX].
A compatible system p, ISs:
for each )\ place of L a Galois representation
px : Gg — GSpy, (L)) such that

e abs. irred., unramified outside N/ (for A | ¢),
e V p 1 N/{: charpoly(py(Frob,)) = P,

e similitude factor of p, is ¥x% (for x, cyclotomic char.).
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Compatible systems

Let n € N, L/Q Galois number field, N,k € N, ¢ : Gg — L*,
forallpt N: Py(X) = X* — g, X*" 1 ... € LIX].
A compatible system p, ISs:
for each )\ place of L a Galois representation
px : Gg — GSpy, (L)) such that

e abs. irred., unramified outside N/ (for A | ¢),
e V p 1 N/{: charpoly(py(Frob,)) = P,

e similitude factor of p, is ¥x% (for x, cyclotomic char.).

Sources: algebraic, essentially conjugate self-dual cuspidal
automorphic representations for GL»,, over Q.
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Compatible systems

Let n € N, L/Q Galois number field, N,k € N, ¢ : Gg — L*,
forall pt N: Py(X) = X?" —q, X% 1 +... ¢ L[X].
A compatible system p, ISs:
for each )\ place of L a Galois representation
px : Gg — GSpy, (L)) such that

e abs. irred., unramified outside N/ (for A | ¢),
oV piNI: Charpoly(p)\(Frob ) = Py,

e similitude factor of p, is ¥x% (for x, cyclotomic char.).

Sources: algebraic, essentially conjugate self-dual cuspidal
automorphic representations for GL»,, over Q.

We consider: 7, (residual representation), p&’“” and —prOJ.
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Compatible systems

Let po De a compatible system.

Def.. (0, €) (with o € Gal(L/K) and ¢ : Gg — L*) INNEr twist of p, If
o(ap) = ap - €(Froby) for all p 1 N.
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Compatible systems

Let po De a compatible system.

Def.. (0, €) (with o € Gal(L/K) and ¢ : Gg — L*) INNEr twist of p, If
o(ap) = ap - €(Froby) for all p 1 N.

Def.: I', := {0 € Gal(L/K) | o occurs in an inner twist of p, }.
K,, := L'», called projective field of definition of p,.
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Compatible systems

Let po De a compatible system.

Def.. (0, €) (with o € Gal(L/K) and ¢ : Gg — L*) INNEr twist of p, If
o(ap) = ap - €(Froby) for all p 1 N.

Def.: I', := {0 € Gal(L/K) | o occurs in an inner twist of p, }.
K,, := L'», called projective field of definition of p,.

Theorem 1 (Arias-de-Reyna, Dieulefait, W., 2012).

Assume moreover: p, IS strictly compatible with regular
Hodge-Tate weights and p, is absolutely irreducible for
almost all .

Then for almost all places X of L, the residue field at A of
K,, I1s K5, .
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Compatible systems

Theorem 1 (Arias-de-Reyna, Dieulefait, W., 2012).

Assume moreover: p, IS strictly compatible with regular
Hodge-Tate weights and p, is absolutely irreducible for
almost all .

Then for almost all places X of L, the residue field at X of
K, Is K5, .

Morale: The global field K,, (depending only on the inner
twists) determines the projective field of definition of —pmj.

This field is the GSp,,,-replacement of @( ] ptN).
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Classification result

Theorem 2 (Arias-de-Reyna, Dieulefait, W., 2012).
Let/ > 5and p: G — GSp,,(Fy) be irreducible.
Assume: p(G) contains a non-trivial transvection.

Then either p(G) D PSp,,, (Fy) (huge image)
or p Is induced from a lower dimensional representation.
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Classification result

Theorem 2 (Arias-de-Reyna, Dieulefait, W., 2012).
Let/ > 5and p: G — GSp,,(Fy) be irreducible.
Assume: p(G) contains a non-trivial transvection.

Then either p(G) D PSp,,, (Fy) (huge image)
or p Is induced from a lower dimensional representation.

Morale: Our replacement of Dickson’s theorem for GLs:
Recall: 717 (Gg) is

e PSLy(FFpa), PGLo(IFya) huge image
e dihedral iInduced
e C ({1 reducible

o Ay, Sy, As exceptional
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Inverse Galois Problem

Theorem 3 (Arias-de-Reyna, Dieulefait, W., 2012).

Let po be as in Theorem 1. Assume moreover:

¢ 0, (Gp) contains a transvection for almost all ).

e ‘Good dihedral prime’ (Khare, Wintenberger, Larsen, Savin):
J prime ¢, 3 suitable character ¢ : Gg_,, — L™ of order 2t
(t prime), 2n | (t — 1) such that 7,|c,, ~ Indg™ (9).

q2n

Then for all d | =, the set of places A of L such that

PSps,, (Fya) OF PGSan(Ing) equals pprOJ(GQ) has a positive
density.
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Inverse Galois Problem

Theorem 3 (Arias-de-Reyna, Dieulefait, W., 2012).

Let po be as in Theorem 1. Assume moreover:

¢ 0, (Gp) contains a transvection for almost all ).

e ‘Good dihedral prime’ (Khare, Wintenberger, Larsen, Savin):
J prime ¢, 3 suitable character ¢ : Gg_,, — L™ of order 2t
(t prime), 2n | (t — 1) such that 7,|c,, ~ Indg™ (9).

q2n

Then for all d | =, the set of places A of L such that

PSps,, (Fya) OF PGSan(IFEd) equals pprOJ(GQ) has a positive
density.

Morale: If such a p, exists, then we obtain the desired
application to the inverse Galois problem.
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Thank you for your attention.
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