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Résumé

Le but de cet exposé est de présenter les idées de base pour le calcul de formes modu-
laires & I’aide de symboles modulaires. Pour simplifier, on se restreint aux formes de poids
deux.

On explique comment symboles modulaires et formes modulaires sont liés et démontre
la description de symboles modulaires comme symboles de Manin par des moyens de la
cohomologie des groupes. Cette description se déduit de fagon trés simple d’une propriété
du groupe modulaire.

1 Algébres de Hecke

Dans tout ’exposé N sera un entier positif. Dénotons par So(N) les formes modulaires
paraboliques de poids 2 pour le groupe I'g(N). Rappelons qu’on dispose d’un ¢-développement,

c. & d. une injection de C-espaces vectoriels

Sa(N) = Cllall, f(7) =Y an(f)d"

n>1

avec ¢ = €™, On a ’action des opérateurs de Hecke 7T}, des deux cétés. La formule générale
pour l'action de T;, sur les g-développement n’est pas importante dans notre contexte. Il suffit

que les opérateurs commutent et que I'on a le cas spécial suivant :

al(Tnf) = an(f)

1.1 Définition. Définissons T = Tz = Tyz(N) comme le sous-anneau (Z-algébre) de
Endc(S2(N)) engendré par les T,, pour n € N (il suffit de prendre T, avec p premier). On
appelle T Valgébre de Hecke de S2(N). On dénotera Tc(N) = Tz(N) ®z C.

Définissons le g-accouplement comme
T(C(N) X S2(N) - C’ (T’ f) = al(Tf)

1.2 Lemme. Le g-accouplement satisfait (TT, f)= (T, Tf) et il est parfait.



Preuve. La formule est triviale. Il suffit de démontrer que ’accouplement est non-dégéneré.
Supposons que a1 (T f) = 0 pour tout 7' € T, alors, en particulier, a;(T,, f) = a,(f) = 0 pour
tout n. A cause du g-développement f est zéro. Soit maintenant a1 (7'f) = 0 pour tout f, en
particulier, a1 (T(T,,f)) = a1(T,Tf) = an(Tf) = 0 pour tout f et tout n. Cela revient & dire

que T agit comme zéro sur So(NN). Mais, de la définition il suit que T est zéro. O

Nous avons alors l’isomorphisme de C-espaces vectoriels :

Sa(N) — Homg(T¢, C), f = an(f)g" — (Tn — an(f)).

n>1

En fait, plus est vrai. Si on fait de Home(T¢, C) un Te-module en posant (T.¢)(T) := ¢(T'T),

alors, cet isomorphisme est compatible avec ’action de T¢. L’inverse est

Homg(Tc, C) — So(N), ¢ — > ¢(T,
n>1
Appellons f € So(N) une forme propre si elle correspond & un élément ¢ de Home_,14(Tc, C).
Cela revient a dire que f est normalisée (¢(T1) = a1(f) = 1; Th est le 1 dans Tg¢) et
(T, T) = &(T)p(Th,), alors,

T Y d(T)g" = d(TnTn)q" = 6(Tw) > $(T0)q"

n>1 n>1 n>1

On retrouve alors la définition standard de forme propre.

1.3 Proposition. Soit K un corps et A une K-algébre de dimension finie : une algébre
d’Artin. Chaque idéal premier est mazimal, parce que chaque élément non-nul du quotient
a un polyéome minimal dont le coefficient constant n’est pas zéro. Il n’y a qu’un nombre fini
d’idéaur mazimauz (la chaine m; D my Nmg D my Nmg Nmg... s’arréte). Pour chaque idéal

r+1

mazimal m il y a un r t.g. m" =m" = m*> (@ cause de la dimension). Le théoréeme chinois

donne la décomposition en facteurs locauz

Az J[ Amc= [ A

meSpec(A) meSpec(A)

Preuve. L’intersection () m ne contient que d’éléments nilpotents, alors on a

meSpec(A)
ﬂmespec( 4y m> = {0}. En conséquence, la premiére fleche est injective.

Posons I =) m>.Ona I = A. Car, supposons le contraire. Comme / est un idéal, il est
contenu dans un idéal maximal, disons m;. En particulier, chaque m* C m;. Soit z € my —m;.
Alors, il existe r t.q. " € my, mais, comme m; est un idéal premier, on a x € my, ce qui est
une contradiction.

L’égalité I = A montre la surjectivité de la premiére fleche. Le raisonnement ci-dessus a
aussi donné que le seul idéal maximal contenant m*> est m. En conséquence, A/m* est locale.

Cela établit le deuxiéme isomorphisme. O



1.4 Corollaire. Les formes propres et normalisées de So(N) sont en bijection avec Spec(T¢)
(prend le noyeau de I’homomorphisme d’algébres correspondant).
St [ est une forme propre et normalisée qui correspond a l’idéal maximal m, on dit que

Tc,m est le facteur local de Hecke associé & f.

Résumons le contenu de ce paragraphe on disant que la connaissance de 1’algebre de Hecke
équivaut a la connaissance de So(NN), et la connaissance des facteurs locaux donne la connais-
sance des formes propres et normalisées (si on se restreint aux formes nouvelles, la derniére

assertion est aussi une équivalence).

2 Symboles modulaires
Rappelons la définition des courbes modulaires Xo(N) :
Xo(N) = To(N)\HUTH(N)\P"(Q).

On appellera I'g(N)\P!(Q) les pointes de Xo(N). Posons H = HUP(Q) et Yo(N) = T'o(N)\H.
Les symboles modulaires sont inspirées par la homologie de courbes modulaires. Malheu-

reusement, il y a des petites différences a cause de torsion. Dans cette exposé on utilise des

coefficients dans un corps de caractéristique zéro, C pour étre précis, et on a 1’égalité.
Regardons comme motivation le diagramme commutatif (pour I' = T'o(NV))

A C[Xo(N)] C[chemins dans X (V)] C[faces dans Xo(V)]
B : C[PY(Q)]r C[p-chemins dans H]r Cl[p-faces dans H]r
C: CIPY(Q)lr =—— Cl{e, B}|a, B € PLQ)]Ir Cl{e, B} +{8.7} + {7, a}lIr

Il faut lire “chemin” comme “1-simplex” et “face” comme “2-simplex”. Comme cela n’est qu’une
motivation de la définition, on n’est pas trop précis. Par p-chemins je dessigne les chemins
qui ont leurs deux points extrémes dans les pointes. Une p-face est une face dont le bord
consiste de p-chemins. Les applications de bord sont les usuelles pour A et B. L’application
de gauche pour C est donnée par {«, 5} — [ — a. L’application de droite est la naturelle. On
a Hi(A) = Hi(Xo(V),C). En outre,

H1(C) = ker ((C[{e, B}, B € PH(Q)]/{{ex, B} + {87} + {7, a}))r — C[T\P1(Q)]).

Nous appellons cet espace l'espace des symboles modulaires paraboliques pour I'o(N) et le
dénotons par CMa(N).



Les applications verticales de B dans A sont les naturelles. L’application de C; dans B
envoie {«, 3} sur le chemin géodésic de o & 3, ceci un demi-cercle qui a « et § comme points
sur le diamétre. Ainsi, I’élément {«, 5} + {5,7} + {7, a} de C2 est envoyé a la face ayant les
géodétes de v & (3, de B & v et de v & o comme bords. Pour que cela soit bien defini, il faut

vérifier que v € SLy(Z) envoie une géodéte sur une autre, ce qui est vrai.
2.1 Proposition. Nous avons Hy(C) = H1(B) = H1(A). En particulier, cela donne
CMs(N) = Hi(Xo(N),C).

Une démonstration sera donnée dans la prochaine section. On peut essayer de calculer ces
isomorphisme directement, mais il faut se méfier parce que avec Z au lieu de C, on n’a que
des surjections H(C) - Hi(B) — Hi(A) ol les noyeaux sont de torsion. Cette torsion vient

de lexistence de stabilisateurs non-triviaux pour ’action de I'g(N) sur H.

2.2 Remarque. Nous avons Hi(B) — Hi(A) par un argument direct.

Preuve. L’idée est que les éléments dans le noyeau de A; — Ag sont des lacets et qu’on
peut toujours composer un lacet avec un autre qui passe par une pointe et est contractible.

Soit z = >, 24¢ dans le noyeau de l'application de bord (les ¢ sont des chemins). Alors,
0=1>",726(¢(0) — ¢(1)) dont il suit que pour chaque a € Xo(IN) on a

0= Z 2p — Z 2y
¢,6(0)=a Yp(l)=a
Cela implique
0= Z zp{00,a} — Z zp{00,a} = Z zp{o0,a} + Z zp{a, oo},
¢,¢(0)=a Yp(l)=a ¢,0(0)=a Yp(l)=a

ou {00, a} signifie un chemin de co (vue dans Xo(N)) & a. On en déduit :

p= > (D ot D>, wb— D> zm)

a€Xo(N) ¢,¢(0)=a P(l)=a n,n(0)=n(1)=a
= > (Y zd+{ca)+ D 2+ {a 00}
a€Xo(N) ¢,¢(0)=a ¥,(1)=a

— Y (4 {oo,a) + {a,00}).

n,n(0)=n(1)=a

En composant les chemins, on voit que maintenant tous les chemins utilisés ont leurs bords
dans les pointes (en fait, égale & I'image de o). Si on reléve ces chemins dans H, on obtient

la surjectivité demandée. O

Pourquoi calcule-t-on Hq(Xo(N),C)? Parce que 'on a un isomorphisme, l'isomorphisme

de FEichler-Shimura, de son dual avec les formes modulaires holomorphes et anti-holomorphes!



2.3 Proposition. L’application

So(NV) & Sa (M) — Hi(Xo(N), )Y, (fog) > (7o / f(2)dz + / o(2)dz)

est un isomorphisme. Avec les identifications ci-dessus, on peut remplacer Hy(Xo(N),C)V par
CMso(N)Y. Lapplication devient alors

B B
(F.9) = (e = [ fG)az+ [ gl2)a2)
ot le chemin d’intégration est le long de la géodéte de o vers 3.

Preuve. La preuve moderne marche avec la cohomologie et utilise la decomposition de
Hodge :

H(Xo(N),C)Y = H' (Xp(N), C) = Hy(Xo(N)) = HO(Xo(N), 28 ) & Qitichel).

Une preuve dans le language des surfaces de Riemann se trouve dans plusieurs livres. O

Rappelons pour f € Sy(N) et M = (g Z) € PGL2(Q) que (f|M)(z) = f(Mz) Eici(r%)g.

2.4 Définition. Soit p un nombre premier. Nous posons

Rpy={(55)1r=01,....p =13 U{(29)},
sipt N, et sinon
R :{((1)2)|7“=0,1,...,p_1}_

On définie Uopérateur de Hecke T), pour f € Sa(N) comme

(Tpf)(2) = > (fIM)(2)

MER,

et sur CMao(N) par

T{a, B} = > M{e,8} = Y {Ma,Mp}

MEeR, MeR,

ce qu’on étend linéairement.

2.5 Proposition. Les opérateurs de Hecke sont compatibles avec l’isomorphisme de la propo-

sition [Z3.

Preuve. Soit v le chemin géodésic de o & 5. On a pour M = (‘Z Z)

dz = [ (f|M)(z)dz,
7

B B = B det(M)
[, sz = [ roumans = [ sor) g2

d’ou le résultat. O



2.6 Corollaire. L’algébre de Hecke Tz(N) (de So(N)) est isomorphe au sous-anneau de
Endc(CM3(N)) qui est engendré par les opérateurs T, pour p premier.

Ce corollaire veut dire que le probléme du calcul de 'algébre de Hecke est resolu si on
peut calculer les operateurs de Hecke sur CM3(C). C’est juste de 1’algébre linéaire, comme on
verra plus clairement dans la prochaine section. On fait, il suffit de calculer les opérateurs 7T},
pour tout

p<S I 0-p

{|N premier

2.7 Corollaire. Le polynome caractéristique de chaque opérateur de Hecke est dans Z[X]. En

particulier, les coéfficients de formes propres sont des entiers algébriques.

Preuve. On peut remplacer C par Z dans la définition de CMa(N). Pour ce Z-module on
utilise la notation CMso(N,Z). 1 est évident que CMy(N,Z) @7z C = CMa(N). La définition
des opérateurs de Hecke est déja valable sur CMy (N, Z), d’ou le résultat. O

3 Cohomologie des groupes et symboles de Manin

Les symboles de Manin donnent la description simple des symboles modulaires en termes
d’algébre linéaire promise avant. Il y a des gens qui pour cela aiment faire de calculs diffi-
ciles avec ’homologie. Moi, j’aime bien la cohomologie des groupes, dont on peut déduire les
résultats facilement.

Comme je ne suppose pas la connaissance de la cohomologie des groupes, je donne une
définition “ad hoc” et je cite de techniques bien connues. Mentionnons quand-méme la “vraie”
définition. Soit G' un groupe. On a le foncteur M +— MY qui prend des G-invariants d’un
G-module M. Ce foncteur est exacte & gauche. La cohomologie de la dérivée de ce foncteur

est la cohomologie de G.

3.1 Définition. Soit G un groupe et M un G-module. On pose

ZNG, M) ={f : G— M| f(gh) = g.f(h) + f(9) Vg, h € G},
BYG,M)={f:G—M|3ImecM: flg)=(1—-g)mVgeG},
HYG,M) = ZYG,M)/BY(G,M).

3.2 Définition. Pour I' =T'4(N) on définit la cohomologie parabolique comme

HL (T, M) =ker (H(T,M)— [ H'T.M),
cel\PH(Q)

ot I est le stabilisateur de la pointe ¢ (ici, on fait un choiz qui ne change rien pour Héar),
alors, si ¢ = 000 pour o € SLo(Z) on a T. = (o £ (1) o™Y). Lapplication est la restriction

naturelle.



3.3 Proposition. Soit I' =T'o(N). Dans le diagramme commutatif

0—= H1(Xo(N),C)" = H'(Xo(N),C) —= H (Yp(N),C) — [Leer\pr(q) H ' (Ue, C)

- - -

0 H}%ar(r’ C) Hl(r’ (C) HcEF\]P’l (Q) Hl (Fca C)

les rangées sont de suites exactes. La notation U, signifie un petit disque pointu autour de c.

En particulier, on a
H;ar(r’c) = (CMQ(N))V

On ne démontre pas cette proposition. Elle est située dans la théorie des surfaces de
Riemann. Alors, elle n’utilise rien de particulier sur les courbes modulaires. On voit que la
cohomologie dérivée du foncteur H%(Xo(N),-) est la méme que la cohomologie du foncteur
prenant les G-invariants. Aussi ici il faut se méfier. Les applications verticales ne sont pas
d’isomorphismes en général (seulement des surjections), & cause de possible torsion. Comme

nos coefficients sont dans C il n’y a pas de probléme.
3.4 Proposition. On peut décrire l'isomorphisme CMy(N)Y = Héar(F,C) explicitement.

L’application est la suivante :
CMa(N)Y > f = (v = f({700,00})) € Hpy(T, C).
Preuve. Notons d’abord la formule
{a, B} + {87} = {a,7}.

Vérifions maintenant que I'application est bien définie, alors, que I'image est dans Z!(T",C) et

s’annulle sur les pointes. On a
f({ghoo,00})) = f({ghoo, goo} + {goo, 00}))) = f({hoo, 00}) + f({goo, o0}),
alors, la premiére assertion est vraie. Soit 7= (}1). On a
{o£T 0 00,00} = {0 £ T"0 000,000} = {0 £ T" 00,000} = {500,000} = 0
impliquant la deuxiéme assertion. Nous avons utilisé la formule
{Ma,a} = {Ma, Moo} + {Moo,a} = {a,00} + {Moo,a} = {Moo,o0}.

Montrons mainenant que chaque z € CM3o(N) a une représentation de la forme
> ai{gioo,00} pour a; € C et g; € I'. Stein appelle cela la transportabilité des symboles
modulaires paraboliques. Choisissons un systéme de représentants des pointes I'\P}(Q), dé-
noté par R. Il est clair qu’on peut écrire (utilisant {«, 3} = {a, 00} — {3, 00})

:c:z Z ac{yc,00}.

c€ER~vel' /T,

7



Alors,
T = Z oo {00, 00} + Z Z Ay ({700, 00} + {v¢,y00}),

T'/Two c€R—{o0}yel'/T.
mais,
Z Z ac{yc, Y00} = Z Z ac{c,00} =0,
c€ER—{o0} y€l'/T. c€ER—{o0}y€l'/T.

parce que autrement x ne serait pas dans le noyeau de l'application de bord. Cela montre
I’assertion concernant la représentation.

Sachant ceci, il est évident que notre homomorphisme de la proposition est injective : Si
f est dans le noyeau, on a f({yoo,00}) = 0 pour tout ~, alors, f(z) = 0 pour tout x.

Encore une fois, la surjectivité n’est pas vraie avec de coefficients quelconques. Etant sur

C, on peut comparer les dimensions. Comme on a
n
el (& J— . .
{2 o0, 00} = E ei{vioo, 00}
i=1

et pour g € H,.(T',C)

n

gy ) =Y eif ()

i=1
les dimension de deux cotés sont égales au nombre maximal d’éléments dans I'*P qui ne
satisfont & aucune rélation entre eux. Ce nombre est en fait égal & deux fois le genre de
Xo(IV) et égal a la dimension de Hi(Xo(N),C) qui est égal au rang de I’abélianisé du groupe

fondamental. O

Notons que nous avons démontré la proposition EZIl modulo la proposition Une autre
facon pour démontrer cet isomorphisme est d’utiliser la suite exacte de Mayer-Vietoris pour

la (co-)homologie de groupes.

On calculera maintenant le groupe Héar(Fo(N ), C) explicitement. Pour cela on pose

S:(—Ol(l))’ T:((lj%)) U:ST:(_Ol_ll)

Par les mémes symboles on dénote aussi leurs classes dans PSLy(Z).

On utilisera la propriété suivante.

3.5 Proposition. Le groupe PSLy(Z) est le produit libre des groupes (S) et (U) qui ont
Uordre 2 et 3. Autrement dit, PSLa(Z) est engendré par S et U et les seules relations sont
§2=U°=1.

Preuve. (Esquisse.) Soit F le domaine fondamental standard. Il est facile de voir que
chaque point dans H peut étre transporté dans F par une combinaison de S et 7. Cela
montre que S et T engendrent PSLy(Z). Alors, S et U I'engendrent aussi.

Je ne connait pas de fagon simple de démontrer la liberté. O



3.6 Proposition. (Lemme de Shapiro) Soit IndIF:SLQ(Z) := Homp(C[PSL2(Z)],C). Alors,

on a
H, (T, C) = Hy,, (PSLy(Z), Indy ™),
3.7 Proposition. On a la suite exacte

m—(1-S)m
_—

0— H (,C) — M/(MS + M)y

par

M/(1-T)M,
ot M = Tnd.>>®).
Preuve. Une vérification élémentaire donne qu’il suffit de démontrer
H'(PSLy(Z), M) = M /(M) + MUY,
Nous déterminons f € ZY(T', M). A part de f(1) =0, on a

0= f(5%) = Sf(S)+ f(S) = (1+9)f(S5)
et
0=f(U%)=---=1+U+Uf().

Comme il n’y a pas d’autres relations dans PSLy(Z), f € Z1(I', M) est uniquement donné par
f(S) €ker(1+S) et f(U)€ker(1+U +U?).

Mais, on a
ker(14+S) =im(1 —S) et ker(l1+U +U?) =im(1 —U),

car 2 et 3 sont inversible (on est sur C). (C’est un calcul élémentaire qu’on peut aussi remplacer
par Ho((S), M) = Ho(({U), M) = 0.) Les éléments dans B'(PSLy(Z), M) sont de la forme
g — (1 —g)m pour un m € M.

Ecrivons une application :
¢: M — HYPSLy(Z), M), m (S — (1 —8)m,U s 0).

Elle est surjective. Car, soit f € Z'(PSLy(Z, M)) avec f(S) = (1 — S)met f(U) = (1—U)n
pour n,m € M. Prenons g : a — (1 —a)n € BY(PSLy(Z), M). Alors, (f — g)(U) = 0 et
(f—9)(S) = (1—5)(m —n), ce qui montre la surjectivité.

Le noyeau de ¢ est donné par
ker(1 — S) 4 ker(1 — U) = M 4 M),

Supposons alors que f avec f(S) = (1 —S)m et f(U) = 0 est un bord, alors il existe n t.q.
(1-=Sm=(1-S)net (1 —-U)n=0.Cela veut dire n € ker(1 —U) et m —n € ker(1 — 5)
dont il suit que m € ker(1 — S) + ker(1 — U), donnant I'isomorphisme recherché. O



Si l’on choisi un systéme de représentants de PSLy(Z)/Tg(IV) (ce qui est facile), on a
maintenant une description en termes d’algébre linéaire. On appelle les éléments de 1’espace
ker (M /(M) + MUY — M/(1 - T)M) symboles de Manin paraboliques. Merel a donné une
description explicite des opérateurs de Hecke sur cet espace. Mais on pourrait aussi faire des

aller-retours entre les symboles modulaires et les symboles de Manin.

Mentionnons encore une autre approche, plus élégante, venant de la théorie de cohomo-
logie des groupes, qui est basée sur la suite exacte de Mayer-Vietoris. Aussi la preuve de la
proposition B4l peut en étre déduite. Cette approche était prise dans ma prépublication On

modular symbols and the cohomology of Hecke triangle surfaces.

3.8 Proposition. (Suite de Mayer-Vietoris) Soit M un PSLy(Z)-module qui est aussi un
espace vectoriel. Comme PSLy(Z) est le produit libre de (S) et (U), on a la suite ezacte

0 — H(PSLy(Z), M) — H°((S), M) & H((U), M) — M
— HY(PSLy(Z), M) — H'((S), M) & H'((U), M)

qui est explicitement donnée (si M est un C-espace vectoriel) par
0 — MPSL2@ At g MU — M — HY(PSLy(Z), M) — 0.
On a aussi la suite exacte

0 — Z[PSLy(Z)] — Z[PSLy(Z)/(S)] @ Z[PSL2(2)/{U)] — Z — 0.
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