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1 Introduction

The aim of this talk is to give a geometric description of the Lie algebra attached to an algebraic
group. We will first give a rather naive intuitive idea, which we will later make precise.

In this introduction the reader will neither find precise definitions, nor satisfactory explana-
tions for the calculations performed. In this spirit we shall say:

Definition 1.0.1 (Naive idea of a Lie algebra) The Lie algebra Lie(G) = g attached to an al-
gebraic group G is
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• seen as a vector space equal to the tangent space at the unit element TG(1), i.e. the first
order approximation of G, and it is

• equipped with a natural bracket reflecting a second order effect coming from a group com-
mutator.

We shall now try to illustrate this by considering some important examples.

• General linear group GLn:

We regard GLn as a subspace of the set Mn of all n× n-matrices Mn. As GLn is the com-
plement of the hypersurface defined by det = 0 it is an open subset of Mn. Consequently,
its tangent space is all of it: gln = Mn = TGLn

(1).

There seems to be just one “canonical” choice for the Lie bracket, namely

[A, B] := AB − BA.

• Special linear group SLn:

We also consider SLn as a subset, this time closed, of Mn. Very naively, the tangent
space of SLn at 1 consists of those matrices A ∈ Mn such that 1 + εA ∈ SLn for ε

“infinitesimally” small. Thus we get:

sln = TSLn
(1) = { A ∈ Mn | 1 = det(1 + εA) = 1 + ε Tr(A) + ε2 . . . }

= { A ∈ Mn | Tr(A) = 0 },

neglecting the terms εr for r ≥ 2. There is again one canonical way to define the Lie
bracket, namely the same as for the general linear group. We only have this choice, if we
want that a Lie algebra of a closed subgroup is also a sub Lie algebra. This will indeed be
the case. The dimension of the Lie algebra is n2 − 1.

Now we illustrate what the Lie bracket has to do with second order effects and group
commutators. Take two tangent vectors 1 + ε1A and 1 + ε2B and calculate their group
commutator (modulo ε2

1 and ε2
2)

(1 + ε1A)(1 + ε2B)(1 + ε1A)−1(1 + ε2B)−1

≡(1 + ε1A)(1 + ε2B)(1 − ε1A)(1 − ε2B)

≡1 + ε1ε2(AB − BA) = 1 + ε1ε2[A, B].
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• Orthogonal group On:

We recall the definition of the orthogonal group (and assume that the characteristic is not
2):

On = { A ∈ GLn | AT A = 1 }

In other words, the orthogonal group consists of those matrices respecting the standard
bilinear form.

In order to determine the tangent vectors, we need to calculate all matrices A such that
1 + εA ∈ On, i.e.

1 = (1 + εA)T (1 + εA) = 1 + ε(AT + A) + ε2AT A.

Since we neglect the ε2-term, we arrive at

on = TOn
(1) = { A ∈ Mn | AT + A = 0 },

the skew-symmetric matrices. Hence the dimension is n2
−n
2

.

The Lie bracket is again the standard one, for the same reasons as above.

• Symplectic group SP2n:

Let M be the 2n × 2n-matrix

(

0 1

−1 0

)

. The symplectic group is defined as

SP2n = {A ∈ GL2n | AT MA = M}.

In other words, it consists of those matrices respecting the standard skew-symmetric bilin-
ear form.

Lets write A =

(

A1 A2

A3 A4

)

. Then the tangent condition is

(

0 1

−1 0

)

= (1 + ε

(

A1 A2

A3 A4

)

)T

(

0 1

−1 0

)

(1 + ε

(

A1 A2

A3 A4

)

)

=

(

0 1

−1 0

)

+ ε
(

(

−AT
3 AT

1

−AT
4 AT

2

)

+

(

A3 A4

−A1 −A2

)

)

+ ε2 . . .

Consequently, we find

sp2n = TSP2n
(1) = {

(

A1 A2

A3 A4

)

∈ GL2n | A1 = −AT
4 , A2 = AT

2 , A3 = AT
3 }.

Thus the dimension is n2 + n + n2 = 2n2 + n.
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We have seen that with our naive point of view, we have obtained interesting, and also the
most important Lie algebras, without any effort.

Maybe, this is a good point to complement the picture with the Lie algebras of Gm and Ga,
since we have looked a lot at those groups before. Both are immediately seen to be 1-dimensional
(and smooth); in fact they are a hyperbola resp. a line. Hence, their tangent spaces are 1-
dimensional. But there is just one one-dimensional Lie algebra. Its bracket satisfies [x, y] = 0

for all x, y. So it is by definition an abelian Lie algebra.
More generally we can say that abelian subgroups of GLn always give abelian Lie algebras,

because group commutators are trivial.

2 Tangent spaces

We are now going define the tangent space at a k-rational point of a scheme over k in different
manners.

2.1 Concept of points

Since the concept of points of (affine) schemes will be of central interest to us, we shall recall it
briefly (however not in utmost generality).

Let k be a field and X a scheme over Spec k, by which we mean that there is a morphism
of schemes X → Spec k. Given a k-algebra R, we define the set of R-points to be the set
X(R) = MorSpec k(Spec R, X), which by definition consists of the morphisms of schemes satis-
fying the commutative diagram

Spec R P //

%%KKKKKKKKK
X

||xxxxxxxx

Spec k

If X = Spec A is an affine scheme, then an R-point is equivalent to giving a commutative
diagram of k-algebras

R oo P ∗

__

??
??

??
? A??

��
��

��
�

k

An important special case is that of k-rational points. They are precisely the sections

X //
ee

P

Spec k.

4



By looking at the stalk at P of the structure sheaf, we obtain an exact sequence

0 → mP → OX(P ) → k → 0.

The local ring OX(P ) can be thought of as the ring of quotients f/g of two polynomials over k

defined in a neighbourhood of P such that g(P ) 6= 0. Then the map P ∗ is precisely the evaluation
of this function at P and consequently the maximal ideal mP consists of those functions vanishing
at P . We illustrate this by looking at the affine case X = Spec A, where A is k[X1, . . . , Xn]/I .
Then giving a k-rational point means precisely giving a point P = (p1, . . . , pn) in the affine
n-space. This point is uniquely determined by pi = P ∗(Xi), i.e. by the exact sequence

0 → pP → k[X1, . . . , Xn]/I → k → 0.

The last map can now be seen as evaluation at a point P = (p1, . . . , pn).
The concept of a point has already frequently been used in this seminar, when defining, what

we do again here, an affine group scheme over k as a functor

G : { k-algebras } → { groups }

such that { k-algebras } G
−→ { groups }

forget
−−−→ { sets } is representable by a k-algebra A of finite

type. This, however, means precisely that the set of R-points of the affine scheme G := Spec A

for each R form a group, namely G(R), and that a homomorphism R → S gives us a group
homomorphism G(R) → G(S).

2.2 Tangent space in affine setting

The tangent space should become a local object, so we can define it in an affine setting. However,
we wish to illustrate the definition by beginning with the special case X = Spec k[X], where
k[X] = k[X1, . . . , Xn]/I . In other words, we consider X to be embedded into affine n-space
over k. Let us fix a k-rational point P = (p1, . . . , pn) ∈ X .

A tangent through P should be a line “touching” X at P , i.e. intersecting it with multiplicity
greater equal 2.

Let a tangent be given by the points P + tv for t ∈ k, where v = (v1, . . . , vn) ∈ kn, the slope
of the tangent. Now we intersect it with X , i.e. we want to know the t, where f(P + tv) is zero.
For this we expand the expression as a polynomial in t (now considered as a formal parameter)

f(P + tv) = f(P ) + t < J(f), v > +t2(·) + t3(·) + . . . ,

where J(f) denotes the column vector consisting of ∂f

∂Xi

(P ) and < a, b >=
∑

i aibi. Obviously,
t = 0 is a zero.
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We now say that v is the slope of a tangent at P if t = 0 is at least a double zero for all f ∈ I ,
by which we mean that

< J(f), v >= 0 for all f ∈ I.

We define the tangent space at P , denoted TX(P ), (in the currently considered setting) as the set
of all the slopes v.

Remark 2.2.1 If I = (f1, . . . , fm), then it is enough to check < J(fi), v >= 0 for the generators
fi. Let us define a matrix consisting of the columns J(f1), J(f2), . . . , J(fm). Denote by J the
transpose of this matrix. It is called the Jacobian matrix. Then by definition the tangent space at
P is the kernel of J . Thus, its dimension is n minus the rank of J .

We notice that the function

k[X] → k, f 7→ < J(f), v >

makes sense for all v ∈ TX(P ). An easy calculation shows that it defines a k-derivation
k[X] → k, where k is a k[X]-module by f.x = f(P )x. We briefly recall what that means.

Definition 2.2.2 Let R be an k-algebra and M an R-module. Then the set Derk(R, M) of k-
derivations R → M consists of the maps D : R → M satisfying

(i) D(r1 + r2) = D(r1) + D(r2) for all r1, r2 ∈ R,

(ii) D(x) = 0 for all x ∈ k and

(iii) D(r1r2) = r1.D(r2) + r2.D(r1) for all r1, r2 ∈ R.

2.3 Tangent space at P as the set of k[ε]-points over P

Let us for a moment stay in the setting from the previous section. We shall now give a very
elegant description of the tangent space as the set of certain points lying over P .

Recall that we chose P ∈ X(k) to be a k-rational point. We define the k-algebra
k[ε] = k[X]/(X2) and a k-algebra homomorphism k[ε] → k by mapping ε to 0. The latter
gives us a map X(k[ε]) → X(k).

We want to prove the equality

TX(P ) = { Q ∈ X(k[ε]) | Q 7→ P }.
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For that we consider the following commutative diagram.

pP
�

�

//

d·ε

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

k[X]
P ∗

// //

Q∗

""EE
EE

EE
EE

k

k[ε]

?? ??��������

k · ε
-




<<xxxxxxxx

We can always write Q∗(f) = f(P ) + εd(f) and take this equality as the definition of d. A
straightforward calculation shows that d is a derivation, more precisely d ∈ Derk(k[X], k), where
again k is considered as a k[X]-module via evaluation at P . Conversely, if we are given such
a derivation d, then we can define a k-algebra homomorphism Q∗ : k[X] → k[ε] by setting
Q∗(f) = f(P ) + εd(f).

Hence, we receive

Derk(k[X], k) = { Q ∈ X(k[ε]) | Q 7→ P }.

Yet another description of these objects is easily obtained. First, we note that Q∗ is uniquely
determined by its values on pP , because Q∗(f) = f(P ) + εd(f) = f(P ) + εd(f − f(P )) as R∗

is a derivation. Next, it is straightforward that Q∗ factors through p2
P . On the other hand, any

k-linear map φ : pP/p2
P → k defines a valid Q∗ by setting Q∗(f) = f(P ) + εφ(f). This yields

the equality

(pP/p2
P )∨ = Homk−v.s.(pP /p2

P , k) = { Q ∈ X(k[ε]) | Q 7→ P }.

We associated to an element v ∈ TX(P ) a derivation f 7→< J(f), v >. Following the
maps described above, we find an injection TX(P ) → (pP /p2

P )∨ sending a tangent slope v to
f 7→< J(f), v >, which by duality of vector spaces corresponds to the surjective homomorphism

pP /p2
P → (TX(P ))∨, f 7→ (v 7→ < J(f), v >).

However, it is easy to see that it is in fact an isomorphism. This is immediate from the fact that
p2

P = { f ∈ pP | J(f) = 0 }.
Hence we have finished proving all the boxed equalities.
In order to get rid of the assumption that X is embedded in affine n-space we note that via

localization at the maximal ideal pP we receive an isomorphism pP /p2
P
∼= mP /m2

P , where mP is
the maximal ideal of OX(P ).
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Let X now be any scheme over k and P ∈ X(k) a k-rational point. Then we define the
tangent space of X at P as

TX(P ) = (mP /m2
P )∨ = Derk(OX(P ), k) = { Q ∈ X(k[ε]) | Q 7→ P }.

Here again, k is considered as a OX(P )-module via P ∗. The isomorphisms are seen by exactly
the same arguments as above.

We can state various facts arising directly from the various equivalent definitions.

(i) The tangent space is a local object and, in particular, does not depend on an embedding into
affine space.

(ii) The tangent space is a k-vector space.

(iii) A morphism of schemes φ : X → Y induces a homomorphism of tangent spaces:
TX(P ) → TY (φ(P )) (e.g. consider the definition by k[ε]-points).

(iv) A closed immersion of k-schemes X → Y induces an injective homomorphism
TX(P ) → TY (φ(P )). Closed immersion means that the map on the stalks of the struc-
ture sheaves is surjective implying that the map between the spaces of derivations is an
injection.

(v) For products we have TX×kY ((P, Q)) = TX(P ) ⊕ TY (Q).

3 The Lie algebra of a group scheme

We illustrate the use of k[ε]-points in the case of a closed subgroup G of some GLn. It can hence
be described by equations defining an ideal I = (f1, . . . , fm). We have

A ∈ TG(1) ⇔< J(fi), A >= 0 ∀i ⇔ fi(1 + εA) = 0 ∀i ⇔ 1 + εA ∈ G(k[ε]),

where the fi are now polynomials in k[ε][X]. We know how to multiply two such points 1 + εA

and 1 + εB, namely by multiplying out. We had also seen that the group commutator of those
gives us the Lie bracket as the term of ε1ε2.

Let G now be a group scheme over a field k. We recall that as a k-vector space we define the
Lie algebra as

g = Lie(G) = TG(1) = Ker(G(k[ε]) → G(k)) = { Q ∈ G(k[ε]) | Q 7→ P }.

Consequently, it carries a group structure, which can be shown to be the vector space addition.
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Now we define the Lie bracket. Let P1, P2 ∈ TG(1) be given. Consider them as elements
P1 ∈ G(k[ε1]) resp. P2 ∈ G(k[ε2]). For i = 1, 2 we consider the natural k-algebra homomor-
phisms k[εi] → k[ε1, ε2]. They allow us to consider P1 and P2 as elements P ′

1, P
′

2 ∈ G(k[ε1, ε2]).
Denote by Q the group commutator P1P2P

−1
1 P−1

2 ∈ G(k[ε1, ε2]). Under the natural maps
G(k[ε1, ε2]) → G(k[εi]) the point Q is mapped to 1. We can illustrate the points by the fol-
lowing commutative diagram.

Spec(k[ε1])

((QQQQQQQQQQQQ
1

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Spec(k)

88pppppppppp

&&NNNNNNNNNN
Spec(k[ε1, ε2])

Q // G

Spec(k[ε2])

66mmmmmmmmmmmm 1

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

This shows that the point Q factors as

Spec(k[ε1, ε2])
natural
−−−→ Spec(k[ε1 · ε2])

R
−→ G.

We define the Lie bracket [P1, P2] to be this point R. From the diagram above it also follows that
it lies over 1. Hence [P1, P2] is again an element of the tangent space TG(1).

We had seen that closed immersions give rise to injections on the tangent spaces. The above
construction shows moreover that in the case of a closed subgroup scheme H ≤ G the Lie
brackets agree, yielding Lie(H) ≤ Lie(G). More generally, a morphism of group schemes
H → G gives us for the same reasons a Lie algebra homomorphsim on the Lie algebras.

We still have to check that the Lie bracket satisfies the Jacobi identity and so on. I did not
see a direct way to do that from the definition. As we are concerned with affine group schemes,
which can be embedded into some GLn, the properties needed result from those on GLn, which
are trivially true.

4 Relation with left invariant derivations for affine group
schemes

Intuitively the situation is as follows. A tangent vector at 1 can be carried to a tangent vector
at g by group translation. This gives us a global derivation, which is clearly left invariant. On
the other hand given such a left invariant derivation, it uniquely determines a tangent vector at 1.
I have not worked that out in detail. A proof based on calculations in the Hopf algebra can be
found in Waterhouse’s book.
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One should also prove that the Lie bracket of two global derivations A, B corresponds to
A ◦ B − B ◦ A. This is also done in the afore mentioned book.
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