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1. (a) (2 points) Show that there exist infinitely many prime numpess—1 mod 3.

(b) (2 points) Leta, n € N with n > 2 such that™ — 1 is a prime number. Show that= 2 andn is
a prime number. Such primes are callddrsenne primes.

2. Let( be a root of the polynomiak? + X + 1 € Z[X] and consider the ringl := Z[¢]. Complex

conjugatiory is the only nontrivial Galois autormorphism@f¢) /Q and induces a ring automorphism
of A. One disposes of the norm
N:A—Z, a—a-o(a),

which is (obviously) a multiplicative function. Prove the following assertidnpdint each).

(@) The ringA is Euclidean with respect to the nori and is, hence, by a well-known theorem
factorial, i.e. a unique factorisation domain.

(b) The unit groupd* is equal to{+1, +¢, +¢?} and is cyclic of orde6.

(c) The elemenh = 1 — ¢ is a prime element inl and3 = —¢2)\2.

(d) The quotientd/(\) is equal taFs.

. Let B be a commutative integral domain addC B a subring. An elemenit € B is calledintegral

over A if there exists a monic polynomigl € A[X| such thatf(b) = 0.

Suppose thdl, ¢ € B are integral oved with polynomialsf, g € A[X] such thatf(b) = g(c) = 0.

(@) (2 points) Use the resultant to exhibit a monic polynomiiad A[X] such thatF'(b + ¢) = 0.

Hint: Recall that the resultant of two polynomials can be expressed in tertims differences of the
roots of the polynomials. Introduce an extra polynomial varidbland consider the polynomials
f(X)andg(Y — X).

(b) (2 points) Use the resultant to exhibit a monic polynonfiad A[X] such thatF'(bc) = 0.
Hint: Adapt the construction from (a).

. (4 points) Letd # 0, 1 be a squarefree integer and consider the f@l¢/d).

(a) Compute the minimal polynomial af+ bv/d with a, b € Q.

(b) Assumel = 2,3 mod 4 and leta + bv/d be an integral element ovér(see previous exercise for
the definition). Show that andb are integers.

(c) Assumed = 1 mod 4 and leta + bv/d be an integral element ovér. Show that the maximum
denominator of: andb (represented in lowest terms)ds



