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1. (4 points) Lep be a prime number. Show that the multiplicative gréip = Q, \ {0} is equal to the
direct productu,—1 x (1 + pZ,) x p%, wherepu,_; is the group ofp — 1)th roots of unity.

2. (4 points) Lep be a prime number. Consider the quotient gréip= Q /QX2, Where@;2 denotes
the subgroup of squares.

Show thatG is an elementary abeliaagroup, i.e. that is of the formCy x Cy x - - - x Cy. Moreover,

r—times

show thatr = 2if p > 2 and thatr = 3 if p = 2.

3. (4 points) Letp be a prime number and I@p be an algebraic closure &,. For f € N, let(; be a
primitive (p/ — 1)th root of unity inQ,,.
(a) Show that the serieE;’f;1 (fpf does not converge i@p.
(b) Show thatQ,, is not complete.

4. (4 points) In the lecture we proved the following corollary of Henselisrtea (Corollary 14.4): Lek
be a complete ultrametric field with valuation ridyy valuation ideaf3 and residue field := O/

and letf € O[X] be a monic polynomial and € F[X] its coefficient-wise reduction. i € F is a
simple zero off, then there ig8 € O with f(3) = 0 anda = 3 + P € F.

(&) Show by giving a counterexample that the assumption 'simple’ is negessa

(b) Show by giving a counterexample that the assumption 'complete’ is seges



