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Selmer and Thate-Shafarevich groups

Let E be an elliptic curve over a number field K and v a prime in K.
Consider the commutative diagram below obtain by using Kummer
sequences.

0 — E(K) @ (Q/Z) —> H'(K, E(K)tors) —— H'(K, E(K)) — 0

0 — E(Ky) ® (Q/Z) —=> H'(Ky, E(Ky )tors) —— H'(K,, E(K,)) —= 0
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Selmer and Thate-Shafarevich groups

The Selmer group is defined by

v

Selg(K) = ker (H‘ (K, E(K)tors) — [[(H' (Kv E(K.)tors) /im(nv))> .
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Selmer and Thate-Shafarevich groups

The Selmer group is defined by

Selg(K) = ker (H‘ (K, E(K)tors) — [[(H' (Kv E(K.)tors) /im(nv))> .

v

The Tate-Shafarevich group is defined by

g(K) = ker <H1(K E(K)) — HH1 (K, E KV))>.
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Selmer and Thate-Shafarevich groups

The Selmer group is defined by

Selg(K) = ker (H‘ (K, E(K)tors) — [[(H' (Kv E(K.)tors) /im(mv))> .

v

The Tate-Shafarevich group is defined by
£ (K) = ker <H1(K E(K)) — HH (K,, E KV))> .
They fit into the exact sequence

0 — E(K) ® (Q/Z) — Selg(K) — 1Ig(K) — 0.
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Selmer and Thate-Shafarevich groups

@ The p-primary part of E(K) ® (Q/Z) is simply E(K) ® (Qp/Zp).
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Selmer and Thate-Shafarevich groups

@ The p-primary part of E(K) ® (Q/Z) is simply E(K) ® (Qp/Zp).
@ And the p-primary part of Selg(K) is

Selg(K)p = ker <H1 (K, Elp>D) — [(H' (v, E[P“]))ﬁﬂl(ﬁv))) :

v
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Selmer and Thate-Shafarevich groups

@ The p-primary part of E(K) ® (Q/Z) is simply E(K) ® (Qp/Zp).
@ And the p-primary part of Selg(K) is

Selg(K)p = ker <H1 (K, Elp™])) = [[(H" (K., E[p“]))/im(ﬁv))> :
"4
One natural question that arises in the arithmetic of elliptic curves is
understanding the growth of the Mordell-Weil group. Which in light of
the exact sequence above is the same as understanding the growth of
the Selmer and Tate-Shafaverich groups of such curves.
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The structure theorems of A-modules

Let A = Zp[[T]], and m = (p, T) the maximal ideal.

Theorem (Structure Theorem)

Let X be a finitely generated N-module. Then, there exists a A\-module
homomorphism

t
p: X =N x [[MEHTD)
i=1
with finite kernel and cokernel, wherer > 0, fi(T), ..., (T) are
irreducible elements of A, and e, ..., e; are positive integers. The
parameter r, the prime ideals (f;(T)) and their corresponding
exponents e; are uniquely determined by X.
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The structure theorems of A-modules

Theorem (Nakayama)
Let X be and abelian pro-p group on which I acts continuously. We
endow X with the resulting A-module structure. Then
Q X=0 < X/TX=0 < X/mX =0.
© X is finitely generated as a A-module if and only if X /mX is a finite
dimensional IF,-vectore space. The minimum number of
generators of X as a A-module is dimg,(X/mX).

© If X/TX is finite, then X is a torsion A-module.
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Corollaries to Mazur’s control theorem

In the rest of this talk, we make the following notations.
Notations.

@ Fis a number field.

@ E is an elliptic curve over F

@ Fo =, Fnis aZp-extension.
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Corollaries to Mazur’s control theorem

In the rest of this talk, we make the following notations.
Notations.

@ Fis a number field.

@ E is an elliptic curve over F

@ F =, Fnis aZp-extension.

Theorem (Mazur)

Let p be a prime and assume that for every place v | p in F, E has
good ordinary reduction at v. Then the natural maps

have finite kernels and cokernels. Their orders are bounded as n tends
to oco.

v
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Corollaries to Mazur’s control theorem

Corollary

Let E be an elliptic curve defined over F. Let p be a prime and assume
that for every place v | p in F, E has good ordinary reduction at v.
Assume that Selg(F),, is finite. Then Selg(F)p is A-cotorsion.
Consequently, rankz(E(Fp)) is bounded as n varies.

Ingredients of the proof.
@ Mazur’s control theorem.
@ Structure Theorem of A-modules.
@ Nakayama’s Lemma for A-modules.
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Corollaries to Mazur’s control theorem

Proof. The hypotheses of Mazur’s control theorem (Theorem 4.1)
imply that Selg(Fx)p, is finite.
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Corollaries to Mazur’s control theorem

Proof. The hypotheses of Mazur’s control theorem (Theorem 4.1)
imply that Selg(Fx)p, is finite.

Let X = Hom(Selg(Fx)p, Qp/Zp). We can view it as a A-module (see
Eduardo’s talk). Consider the quotient X/ TX.
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Corollaries to Mazur’s control theorem

Proof. The hypotheses of Mazur’s control theorem (Theorem 4.1)
imply that Selg(F ), is finite.

Let X = Hom(Selg(Fx)p, Qp/Zp). We can view it as a A-module (see
Eduardo’s talk). Consider the quotient X/ TX.

Then, by construction, X/ TX is the maximal quotient of X on which I
acts trivially. So, by previous talks (Eduardo), it is the Pontryagin dual
of SelE(Foo);. Hence, it is finite.
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Corollaries to Mazur’s control theorem

Proof. The hypotheses of Mazur’s control theorem (Theorem 4.1)
imply that Selg(F ), is finite.

Let X = Hom(Selg(Fx)p, Qp/Zp). We can view it as a A-module (see
Eduardo’s talk). Consider the quotient X/ TX.

Then, by construction, X/ TX is the maximal quotient of X on which I
acts trivially. So, by previous talks (Eduardo), it is the Pontryagin dual
of SelE(FOO);. Hence, it is finite.

By the Nakayama’s Lemma for A-module (Theorem 3.9), it follows that
X is a finitely generated torsion A-module. Same as saying that
Selg(Foo)p is @ cotorsion A-module.
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Corollaries to Mazur’s control theorem

Proof (cont’d). By the structure theorem of A-modules (Theorem 3.1),
we see that X/ Xz, = Zg for some A > 0. And so

(Sele(Foo)p) giy = (Qo/Zp)*.
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Corollaries to Mazur’s control theorem

Proof (cont’d). By the structure theorem of A-modules (Theorem 3.1),
we see that X/ Xz, = Zg for some A > 0. And so

(Sele(Foo)p) giv = (Qp/Zp).

Now, since the kernels of the maps in Theorem 4.1 are finite, it follows
that

(Sele(Fn)p) gy = (Qp/Zp)",
for some integer t, < A.
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Corollaries to Mazur’s control theorem

Proof (cont’d). By the structure theorem of A-modules (Theorem 3.1),
we see that X/ Xz, = Zg for some A > 0. And so

(Sele(Foo)p) giv = (Qp/Zp).

Now, since the kernels of the maps in Theorem 4.1 are finite, it follows
that

(Sele(Fn)p) gy = (Qp/Zp)",
for some integer t, < A.

By recalling that
E(Fn) @ (Qp/Zp)™" &)

is a subgroup of (Selg(Fn)p);,» We obtain that rankz(E,) < A for all
n>0. O
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Corollaries to Mazur’s control theorem

The second corollary of the Mazur control theorem.

Corollary

Let E be an elliptic curve defined over F. Let p be a prime and assume
that for every place v | p in F, E has good ordinary reduction at v.
Assume that both E(F) and Il1g(F)p are finite. Let F./F be a
Zp-extension. Then rankz(E(Fp)) is bounded for n > 0.
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Corollaries to Mazur’s control theorem

The second corollary of the Mazur control theorem.

Corollary

Let E be an elliptic curve defined over F. Let p be a prime and assume
that for every place v | p in F, E has good ordinary reduction at v.
Assume that both E(F) and Il1g(F)p are finite. Let F./F be a
Zp-extension. Then rankz(E(Fp)) is bounded for n > 0.

Proof. This follows from the first corollary and the fact that finiteness of
of E(F) and Il1g(F)p is equivalent to that of Selg(F)p. O
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Corollaries to Mazur’s control theorem

The Tate-Shafarevich group is conjectured to be finite. Assuming this,
the corollary below explains how it order grows in a Zp-extension.

Corollary

Let E be an elliptic curve defined over F. Let p be a prime and assume
that for every place v | p in F, E has good ordinary reduction at v. Let
Fw/F be a Zy-extension. Assume that both Selg(Fp)p and lg(Fp) are
finite for all n. Then there exist integers A\, u > 0 depending only on E
and F,/F such that

MIg(Fy)| = prm#P™ 00 asn — oo.
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Corollaries to Mazur’s control theorem

The following result is more refine than our first corollary. It explains
that not only rankz(E,) can be unbounded in a Zy-extension, but that
the growth is controlled by the p-primary part of the Selmer group.

Corollary

Let E be an elliptic curve defined over F. Let p be a prime and assume

that for every place v | p in F, E has good ordinary reduction at v. Let
Fw/F be a Zp-extension. Let r = coranka(Selg(Fx)p). Then

corankz, (Selg(Fp)p) = ro" + O(1),
as n — oo. In particular, if 1g(Fn)p is finite for all n, then

rankz(E(Fp)) = rp" + O(1), asn — .
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