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Introduction

The absolute Galois group G of the field of rational numbers is arguably the central object
of algebraic number theory, as it governs all number fields and their arithmetic. However, its
structure remains very mysterious. A natural approach is to study its linear representations,
i.e. continuous homomorphisms Gg — GL,,(K) for some integer n > 1, where K is
a topological field. Among other things, the Langlands program describes the case of
complex representations, i.e. those with K = C, via automorphic representations. Only for
n = 1 all complex Galois representations are known explicitly, as they are described by the
Kronecker-Weber theorem resp. by class field theory, when Q is replaced by an arbitrary
number field.

One of the aims of this thesis is to study and develop methods for computing explicitly
with odd semi-simple continuous representations of dimension n = 2 over E for a prime p,
ie.

p:Go — GLa(Fp)

where F_p is equipped with the discrete topology. Odd means that the image of any complex
conjugation has determinant —1. For both complex representations and representations over
F,, continuity implies that the image is a finite group. However, in GL(C) there are relatively
few finite subgroups up to conjugation, whereas the theory is much richer over F,.

Odd semi-simple 2-dimensional continuous Galois representations over F,, arise from
certain modular forms by a theorem of Deligne, Deligne-Serre and Shimura. The arithmetic
of such a modular representation is closely connected with the coefficients of the modular
form it comes from. A conjecture by Serre (henceforth simply the Serre conjecture) claims a
converse, namely, that the irreducible among those representations can be obtained from pre-
cisely described modular forms. Thus, the irreducible odd 2-dimensional Galois representa-
tions with coefficients in E are believed to be completely governed by modular forms. As
modular forms are very accessible for explicit computations, the Serre conjecture provides us
also with a tentative computational approach to all such 2-dimensional representations of Gg
over ..

The modular forms used in the original version of the Serre conjecture were classical
Hecke eigenforms, that is, they are holomorphic functions from the upper half plane to the
complex numbers, satisfying certain transformation and growth properties and they are eigen-
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iv Modular Forms of Weight One Over Finite Fields

forms for the so-called Hecke operators. These conditions imply that after a suitable normal-
isation these forms have a Fourier series at 700 of the form ¢ + 3~ -, a,¢™ with ¢ = e2mir
where the a,, are algebraic integers. The associated Galois represeﬁtation over E only de-
pends on the reduction of the a,, modulo a chosen prime above p. So, it is natural in the
context of the Serre conjecture to try to define modular forms directly over finite fields.

A good theory of modular forms over any ring in which the level is invertible was set
up by Katz in terms of the algebraic geometry of modular curves. It is this theory that we
will be using in this thesis. For weight at least 2 when working with the group 'y (V) for
N > 5 the Katz forms over F,, coincide with the reductions of the forms described in the
previous paragraph. The case of forms of weight one, however, plays a special rdle, as then
the Katz theory is much richer than the classical one. One can extend the Serre conjecture to
include weight one Katz forms over E, which ought to correspond to Galois representations
unramified at p. This aspect was discussed by Edixhoven in [[EdixWeight]].

In view of their number theoretic significance it is essential to be able to compute (Katz)
modular forms over finite fields explicitly. One aim of this thesis is to establish methods
for computing the associated Hecke algebra with fast methods, preferably in terms of linear
algebra over finite fields. Using work by Eichler and Shimura, one can compute classical
modular forms of weight at least 2 with linear algebra methods over the integers by using
integral modular symbols or integral group cohomology. Hence, reduction modulo a prime
above p yields a method for computing (Katz) modular forms over F—p. However, the theory of
modular symbols and group cohomology also makes sense over IF),. So, a natural question to
ask is whether one can compute modular forms over E directly with linear algebra methods
over IF,. More precisely, the question arises in which cases the Hecke algebra over [, of
(Katz) modular forms over E coincides with the one of modular symbols over IF,,.

The relationships between the ob-

jects described is illustrated in the fig-
Modular symbols
ure. The modular curves can be seen as

the unifying element of the objects con- \
cerned. Considering the modular curves Modular curves
as Riemann surfaces, analytic cohomol- @
ogy for a certain sheaf gives rise to the =
modular symbols. The étale cohomol-
T Ty W

ogy of the modular curve over Q for a
similarly defined étale sheaf leads to the
Galois representation. Finally, global

odd 2—dim. s.s. Galois
representations
sections of a certain invertible sheaf on

the modular curve base changed to I, yield the Katz modular forms over F,,.

Katz modular forms

We now give an overview of the thesis and mention important results.
Chapter[llis a reprinting of the article “Dihedral Galois Representations and Katz Modular
Forms” ([[W-Dihl)). In that article we prove the extended form of the Serre conjecture for
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dihedral Galois representations. More precisely, the principal result is the following theorem

(cf. Theorem [[T.T.T)).

Theorem. Let p be a prime and p : Gg — GLa (IF_,,) an irreducible odd Galois represen-

tation such that the image of Gg LN GL2(F,) g PGLy(F,) is a dihedral group D,, for
some n. As in [Serrell] define N, to be the conductor of p and €, to be the prime-to-p part
of det op (that is the restriction to (Z/N,Z)* when det op is considered as a character of
(Z/(N,p)Z)*). Define the minimal weight k(p) as in [[EdixWeighi)].

Then there exists a normalised Katz eigenform f € Sy (I'1(N,), e, F,) (i.e. it has
level N,, weight k(p) and character €,) such that its associated Galois representation
ps : Go — GLa(F,) is isomorphic to p.

The modularity of dihedral representations was apparently already known to Hecke, at
least for p > 2. So the question is whether the weight and the level of the modular form can
be chosen as predicted. For modular, irreducible, but not necessarily dihedral representations
this is known if p > 3 by the work of many mathematicians, but for p = 2 there are open
exceptional cases. Our result hence shows that this is also true for p = 2, at least when the
representation is dihedral. The proof relies on the use of Katz modular forms and does not
work when one only uses reductions of holomorphic modular forms.

Chapters [, [ and [Vl concern the computation of the Hecke algebra of Katz modular
forms over finite fields. In other words, we need a faithful module for that Hecke algebra
which can be easily described and calculated. The one used in the Magma implementations is
the module of modular symbols, but also a certain group cohomology group can be employed.

In Chapter [l we study this group cohomology group and modular symbols (for their def-
inition see by relating them to certain cohomology groups of modular curves. From
a geometric point of view the cohomology groups of modular curves are the natural object to
consider. However, they are a priori not very accessible. But for modular curves that are ob-
tained as quotients of the upper half plane by groups like I' = I"; (V) with N > 5, they agree
with certain group cohomology groups for I', which have an elementary description. For
more general groups I' < SLy(7Z) there are differences. The usefulness of modular symbols
(or rather the modular symbols formalism) stems from the fact that a good implementation (in
Magma by William Stein) exists. Besides the modular curves, which we consider as Riemann
surfaces, we also use - in slight generalisation - analytic stacks, called modular stacks. The
latter notion only differs from the former, when the modular curve in question is obtained
as the quotient of the upper half plane by a non-freely acting subgroup I' < PSLy(Z) of
finite index. In the stack setting the cohomology groups under consideration also naturally
arise in the theory of group cohomology, whereas for modular curves geometric methods
such as Poincaré duality are available. Using both points of view allows us to establish an
explicit description of the first cohomology group of any modular curve and the push-forward
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of any locally constant sheaf of R-modules on the modular stack for an arbitrary ring R (cf.

Theorem [[Z.4.6)).

Theorem. For any ring R, any congruence subgroup I' < PSLo(Z) and any R|T)-module V
with associated locally constant sheaf V on the analytic stack [['\H], we have

HYD\H, 7.V) = M/ (M + M)

with M = Coind?SLz(Z)(V), o= (93", 7= (17") and 7 the natural projection map
from the stack [['\H] to the modular curve T\H, seen as a Riemann surface.

We can precisely describe the difference between the objects in question, which yields
the following criterion for them to be equal (cf. Theorem [[2.6.T)). For the precise definitions
see Chapter [l

Theorem. Let R be a ring, I' < SLo(Z) be a congruence subgroup and k > 2 an integer.
Suppose that the orders of all stabilisors for the action of T'/T N (—1) on the upper half
plane H are invertible in R.

Then the module of modular symbols over R for T' of weight k is isomorphic with the
group cohomology group over R for I' of weight k and the cohomology group over R of
weight k of the modular curve T\H. Similar results also hold for the respective parabolic
and the boundary subspaces.

We are also able to describe the torsion of the modules in question over the integers (see
Proposition [[2.4.8)). Finally, a study of these objects for I'; (V) as a (Z/NZ)*-module is
carried out, which will be necessary in order to pass to characters in Chapter [Tl

The principal aim of Chapter [l is to compare the Hecke algebra of modular forms
over F), for I'y (V) with p { N to the Hecke algebra defined on the parabolic group cohomol-
ogy group H}, (T'1(N), Vi_2(F,)), where Vj,_o(F,,) is the F,[T'1 (V)]-module of homoge-
neous polynomials of degree k£ — 2 in two variables. The main idea is to work in weight 2
with level Np which forces us to restrict to weights 2 < k < p + 1.

We introduce the following notation. Let M be any [F,,-vector space on which the Hecke
operators T} and the p-part of the diamond operators (-),, act. By M [k — 2] we mean M with
the action of the Hecke operator T “twisted” to be 15=2T} (in particular 7T}, acts as zero).
Furthermore, by M (k — 2) be denote the subspace on which (1), acts as [¥~2.

For 3 < k < p there is the following proposition by Serre (cf. Proposition [[3.3.8)).

Proposition. (Serre) Letp be aprime, N > 5and3 < k < pintegers such thatp { N. More-
over, let L denote the Z,[(,]-module consisting of the modular forms in S2(I'1 (Np), Qu(¢p))
all of whose q-expansions are integral. Let L = L ® F,.

Then there is an isomorphism

L(k —2) = Sp(P1(N),Fp) @ Spra—(T1(N), Fp)[k — 2],

which respects the Hecke action.
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We establish a parallel result on group cohomology (cf. Proposition [(3.2.5)), which for
the non-parabolic spaces is already present in [[Ash-Stevens].

Proposition. Let p be a prime, N > 5 and 3 < k < p integers such that pt N.
We have the exact sequence

0— le)ar(rl(N)v Vk*Q(FP)) - H;ar(rl(Np)an)(k - 2)
— Hpo(C1(N), Voys——2(Fp)) [k — 2] — 0,

par
in which the Hecke action is respected.

Via the Jacobian one can obtain a connection between Katz modular forms over I,
and the corresponding group cohomology group, following the strategy of the proof of
[EdixJussieul], Theorem 5.2. In that way we are able to prove the following result (cf. Corol-

lary [3.3.14).

Theorem. Let p be a prime, N > 5 and k € {2,...,p + 1} integers such that p t N.
Let B be a maximal ideal of the F,-Hecke algebra T of Si(I'1(N),F,) corresponding to
a normalised cuspidal eigenform f which is ordinary, i.e. the p-th coefficient a,(f) of the
standard q-expansion of f is non-zero.

Then H}, (T1(N), Vi_o(F,))gp is a faithful module for Tgp.

par

Studying S (I'1(IV), Fp) as a (Z/NZ)*-module this result can be extended to characters
(cf. Proposition[(3.3.20)). It should be mentioned that methods from p-adic Hodge theory (cf.
Corollary [(3:3.7) and [EdixJussieul], Theorem 5.2) show that the ordinariness assumption is
not necessary when k < p.

In Chapter[[¥] we explain how the methods from Chapters [l and [Tl can be used algorith-
mically. Using a method from [[EdixJussieu] we obtain the following corollary of the case
k = p of the preceding theorem (cf. Corollary [4.5.5)).

Corollary. The Hecke algebra of weight one Katz modular forms for T'1(N) over E with
p 1 N can be computed using cuspidal modular symbols over I,

Chapter M reports on computer calculations performed with the algorithms from Chap-
ter[[Vl One result is the following (cf. Theorem [[5.1.1)).

Theorem. All groups SLa(Far) occur as Galois groups over Q for r from 1 up to 7.

This extends computations by Mestre, who covered r < 16.

Chapters [l and [V are independent of any other chapter. Chapters [l [Tl and [Vl build on
each other.
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Notations and Conventions

Let R be a ring which is commutative and has a unit element. All base rings in this thesis are
assumed to satisfy these properties.

If M is a left R[G]-module for a group G, we denote the (left) coinvariants by
cM = M/IGM7

with the augmentation ideal I defined by the exact sequence

0— Ig — R[G] 5 R — 0.
The augmentation ideal is the ideal of R[G] generated by all elements of the form (1 — g) for
g € G. If M is aright R[G]-module, we denote the (right) coinvariants by

Mg = M/MIg.

For the right resp. left invariants we use the notation M < resp. ¢ M.

If g is an element of finite order n in GG, we define the norm of g as the element
Ny =1+g+ -+ g¢""in R[G]. Similarly, if G is a finite group we mean by N¢ the
formal sum over the group elements of G inside R[G].

If ¢ is an endomorphism of M, respecting the submodule N C M, the notation ker y (¢)
means the kernel of ¢ considered as an endomorphism of N.

We let Mato(Z)o denote the monoid of 2 x 2-matrices with entries in Z and non-zero
determinant. We have the following important matrices in Mato(Z)o:

T=(1), o=(13"), 7:=To=(1 '),

Fora 2 x 2-matrix M = (%) over aring R one defines Shimura’s main involution

M =Tr(M) - M = (% ).

—Cc a

If M has invertible determinant, we have M* = M ~! det(M). The matrix M* is also called
the adjoint matrix. Moreover, we have the identity M* = (0~ 'Mo)T.

We consider the standard subgroups I'(NV), 'y (N) and T'o(N) of SLy(Z) consisting of
those matrices in SLo(Z) which reduce to (3 ¢) resp. to (§ 1) resp. to ({, =) modulo N.

If G is a subgroup of SL2(Z), we denote by G = G/({—1) N G) the corresponding
subgroup of PSLy(Z).

If ' < SLy(Z) is a congruence subgroup, i.e. contains some I'(V), then throughout this
thesis the notation Sy (T", R) means Katz modular forms of weight k for the group I" over the
Z[1/N]-algebra R (see e.g. [EdixBostonl]). A similar notation is used with a character.



Chapter I

Dihedral Galois Representations
and Katz Modular Forms

This chapter has appeared as [[W-Dihl]. All changes to the published version are indicated by
footnotes. The notation slightly differs from the one used in the other chapters of this thesis.

We show that any two-dimensional odd dihedral representation p over a finite
field of characteristic p > 0 of the absolute Galois group of the rational numbers
can be obtained from a Katz modular form of level IV, character € and weight &,
where N is the conductor, € is the prime-to-p part of the determinant and & is the
so-called minimal weight of p. In particular, £ = 1 if and only if p is unramified
at p. Direct arguments are used in the exceptional cases, where general results
on weight and level lowering are not available.

1.1. Introduction

In [Serrell] Serre conjectured that any odd irreducible continuous Galois representation
p:Gg — GLQ(IF_p) for a prime p comes from a modular form in characteristic p of a certain
level IV, weight k, > 2 and character ¢,. Later Edixhoven discussed in [EdixWeight] a
slightly modified definition of weight, the so-called minimal weight, denoted k(p), by invok-
ing Katz’ theory of modular forms. In particular, one has that k(p) = 1 if and only if p is
unramified at p.

The present note contains a proof of this conjecture for dihedral representations. We
define those to be the continuous irreducible Galois representations that are induced from
a character of the absolute Galois group of a quadratic number field. Let us mention that

this is equivalent to imposing that the representation is irreducible and its projective image is
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isomorphic to a dihedral group D,, for some nﬂ

(1.1.1) Theorem. Let p be a prime and p : Gg — GLQ( p) an odd dihedral representation.
As in [Serrel\] define N, to be the conductor of p and €, to be the prime-to-p part of det op
(considered as a character of (Z/(N E Define k(p) as in [[EdixWeighi].

Then there exists a normalised Katz elgenform € Sk T1(N,), €ps Fp)Katzy Whose
associated Galois representation py is isomorphic to p.

We will on the one hand show directly that p comes from a Katz modular form of level N,
character €, and minimal weight k(p) = 1, if p is unramified at p. If on the other hand p is
ramified at p, we will finish the proof by applying the fundamental work by Ribet, Edixhoven,
Diamond, Buzzard and others on “weight and level lowering” (see Theorem [T.4.2)).

Let us recall that in weight at least 2 every Katz modular form on F1E is classical, i.e. a
reduction from a characteristic zero form of the same level and weight. Hence multiplying
by the Hasse invariant, if necessary, it follows from Theorem that every odd dihedral
representation as above also comes from a classical modular form of level N, and Serre’s
weight k,. However, if one also wants the character to be ¢,, one has to exclude in case
p = 2 that p is induced from Q() and in case p = 3 that p is induced from Q(v/—3) (see
[Buzzard], Corollary 2.7, and [[Diamond], Corollary 1.2).

Edixhoven’s theorem on weight lowering ([EdixWeight], Theorem 4.5) states that mod-
ularity in level N, and the modified weight k(p) follows from modularity in level N,
and Serre’s weight k,, unless one is in a so-called exceptional case. A representation
p: Gg — GLy(F, ») is called exceptional if the semi-simplification of its restriction to a
decomposition group at p is the sum of two copies of an unramified character. Because of
work by Coleman and Voloch the only open case left is that of characteristic 2 (see the intro-
duction of [[EdixWeight]).

Exceptionality at 2 is a common phenomenon for mod 2 dihedral representations. One
way to construct examples is to consider the Hilbert class field H of a quadratic field K that is
unramified at 2 and has a non-trivial class group. One lets p x be the dihedral representation
obtained by induction to G of a mod 2 character of the Galois group of H|K. If the prime 2
stays inert in O, then 20k splits completely in H and the order of px (Frobs) is 2, where
Frob, is a Frobenius element at 2. Consequently, px is exceptional. An example for this
behaviour is provided by K = Q(1/229). If the prime 2 splits in O and the primes of O
lying above 2 are principal, then p x (Frobs) is the identity and hence px is exceptional. This
happens for example for K = Q(+/2089).

Let us point out that some of the weight one forms that we obtain cannot be lifted to
characteristic zero forms of weight one and the same level, so that the theory of modular
forms by Katz becomes necessary. Namely, if p = 2 and the dihedral representation in

A small mistake concerning n = 2 has been corrected (pointed out by K. Buzzard).
2By the prime-to-p part we mean the restriction to (Z/N,Z)*.
3More precisely: T'1 (N) with N > 5.
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question has odd conductor N and is induced from a real quadratic field K of discriminant N,
whose fundamental units have norm —1, then there does not exist an odd characteristic zero
representation with conductor dividing N that reduces to p. The representation coming from
the quadratic field Q(+/229) used above, can also here serve as an example

The fact that dihedral representations come from some modular form is well-known (ap-
parently already due to Heckeﬁ). So the subtle issue is to adjust the level, character and
weight. It should be noted that Rohrlich and Tunnell solved many cases for p = 2 with Serre’s
weight k, by rather elementary means in [[R-T]], however, with the more restrictive definition
of a dihedral representation to be such that its image in GL3(F2), and not in PGLy(F2), is
isomorphic to a dihedral group.

Let us also mention that it is possible to do computations of weight one forms in positive
characteristic on a computer (see [[W-Appl||) and thus to collect evidence for Serre’s conjecture
in some cases.

This note is organised as follows. The number theoretic ingredients on dihedral repre-
sentations are provided in Section 2. In Section 3 some results on oldforms, also in positive
characteristic, are collected. Section 4 is devoted to the proof of Theorem Finally, in
Section 5 we include a result on the irreducibility of certain mod p representations.

I wish to thank Peter Stevenhagen for helpful discussions and comments and especially
Bas Edixhoven for invaluable explanations and his constant support.

1.2. Dihedral representations

We shall first recall some facts on Galois representations. Let p : Gg — GL(V) be a
continuous representation with V' a 2-dimensional vector space over an algebraically closed
discrete field k.

Let L be the number field such that Ker(p) = G, (by the notation G;, we always mean
the absolute Galois group of L). Given a prime A of L dividing the rational prime [, we
denote by Ga ; the i-th ramification group in lower numbering of the local extension L A |Q;.
Furthermore, one sets

. Gas
niip) = 3 SV ),
(Gpo:Gai)

i>0

This number is an integer, which is independent of the choice of the prime A above [. With
this one defines the conductor of p to be f(p) = [[,1™”), where the product runs over all
primes ! different from the characteristic of k. If k is the field of complex numbers, f(p)
coincides with the Artin conductor.

It was pointed out by Frank Calegari that the form in question does come from a holomorphic eigenform of
weight one and level 229. The projective image of its complex representation is S4 and thus not dihedral. This
phenomenon cannot happen when the class number of the real quadratic field is at least 5.

SHecke probably knew this for odd p. The case p = 2 can be dealt with by Serre’s trick (see Lemma [T.2.1))
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Let p be a dihedral representation. Then p is induced from a character x : Gx — k*
for a quadratic number field K such that y # x7, with x(g) = x(0~lgo) forall g € Gk,
where o is a lift to Gig of the non-trivial element of G g |q. For a suitable choice of basis
we then have the following explicit description of p: If an unramified prime ! splits in K as

Ao (M), then p(Frob;) = (X(FrOObA) < (onbA) ) . Moreover, p(o) is represented by the matrix

(X(gz) é) As p is continuous, its image is a finite group, say, of order m.
(1.2.1) Lemma. Let p : Gg — GLo (F_p) be an odd dihedral representation that is unrami-
fied at p. Define K, x, o and m as above. Let N be the conductor of p. Let (,, a primitive
m-th root of unity and B a prime of Q((,, ) above p.

Then one of the following two statements holds.

(a) There exists an odd dihedral representation p : Gg — GL2(Z[(y]), which has Artin
conductor N and reduces to p modulo 3.

(b) One has that p = 2 and K is real quadratic. Moreover, there is an infinite set S of primes
such that for each | € S the trace of p(Froby;) is zero, and there exists an odd dihedral
representation p : Gg — GL2(Z[(y,]), which has Artin conductor N1 and reduces to p
modulo P.

Proof. Suppose that the quadratic field K equals Q(+/D) with D square-free. The char-
acter ¥ : Gx — k* can be uniquely lifted to a character ¥ : Gx — Z[(y]* of the same
order, which reduces to y modulo 3. Denote by p the continuous representation Indgi X-
For the choice of basis discussed above the matrices representing p can be lifted to matrices
representing p, whose non-zero entries are in the m-th roots of unity. Then for a subgroup
H of the image p(Gg), one has that (IE‘_p2)H is isomorphic to (Z[¢,]?)¥ ® F,. Hence the
conductor of p equals the Artin conductor of p, as p is unramified at p. Alternatively, one
can first remark that the conductor of x equals the conductor of ¥ and then use the formulae
f(p) = Norm g o(f(x))D and f(p) = Normg o (f(X))D.

Thus condition (a) is satisfied if p is odd. Let us now consider the case when p is even.
This immediately implies p = 2 and that the quadratic field K is real, as is the number field
L whose absolute Galois group G'1, equals the kernel of p, and hence also the kernel of x. We
shall now adapt “Serre’s trick” from [[R=T]], p. 307, to our situation.

Let f be the conductor of . As L is totally real, f is a finite ideal of Ok. Via class field
theory, X can be identified with a complex character of C1l., the ray class group modulo f.
Let 001, 002 be the infinite places of K. Consider the class

¢ =[{(\) € CI3PT*">2 | Norm(\) < 0,A = 1 mod 4Df}]

in the ray class group of K modulo 4 Dfoco;005. By Cebotarev’s density theorem the primes
of Ok are uniformly distributed over the conjugacy classes of Cl}l(D foe1202 ‘Hence, there are
infinitely many primes A of degree 1 in the class c. Take S to be the set of rational primes
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lying under them. Let a prime A from the class ¢ be given. It is principal, say A = (\),
and coprime to 4Df. By construction we have ¢? = [A%] = 1. As leK is a quotient of
C1377°91°°> the class of A in Cl}, has order 1 or 2. Since p = 2, the character y has odd
order and we conclude that x(A) = 1.

We have A = 1 mod 4Df and Norm(\) = —[ for some odd prime [. Hence, the ex-
tension K (v/)\) has two real and two complex embeddings and is unramified at 2 and at the
primes dividing Df. We represent K (v/)) by the quadratic character & : Gy — {+1}.
For the complex conjugation, the “infinite Frobenius element”, Frob.,,, we have that
&(Frobeo, )€7 (Frobes,) = —1. We now consider the representation p obtained by induc-
tion from the character ¥ = Y¢. Using the same basis as in the discussion at the beginning
of this section, an element g of G is represented by the matrix (%(g )Og(g ) %g(g;) £ (g) ) In
particular, we obtain that the determinant of Frob,, over Q equals —1, whence p is odd.
Moreover, as [ splits in K, one has that p(Frob;) is the identity matrix, so that the trace of
p(Froby) is zero.

The reduction of p equals p, as £ is trivial in characteristic 2. Moreover, outside A the
conductor of ¥ equals the conductor of x. At the prime A the local conductor of X is A, as
the ramification is tame. Consequently, the Artin conductor of p equals N1. a

Also without the condition that it is unramified at p, one can lift a dihedral representation
to characteristic zero, however, losing control of the Artin conductor.

(1.2.2) Lemma. Let p : Gg — GLo(F,) be an odd dihedral representation. Define K, ¥,
m, Gy and B as in the previous lemma.

There exists an odd dihedral representation p : Gg — GL2(Z[(x]), whose reduction
modulo B is isomorphic to p.

Proof. We proceed as in the preceding lemma for the definitions of X and p. If p is
even, then p = 2 and K is real. In that case we choose some A\ € O — Z, which sat-
isfies Norm(\) < 0. The field K (v/\) then has signature (2,1) and gives a character
¢ : Gg — Z[¢n]*. As in the proof of the preceding lemma one obtains that the repre-
sentation p = Indg‘f{ X€ is odd and reduces to p modulo . a

1.3. On oldforms

In this section we collect some results on oldforms. We try to stay as much as possible in the
characteristic zero setting. However, we also need a result on Katz modular forms.

(1.3.1) Proposition. Let N, k,r be positive integers, p a prime and € a Dirichlet character
of modulus N. The homomorphism

r+1

;)Sk(rl(NpT)aev(C)a (f()vfla' "afT) = th(qpl)

1=0

¢ (Sk(T1(N),€,C))
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is compatible with all Hecke operators T,, with (n,p) = 1.

Let f € Si(T'1(N), €, C) be a normalised eigenform for all Hecke operators. Then the
forms f(q), f(q”z)7 ..., f(¢”") in the image of ¢ZZ,\£ are linearly independent, and on their
span the action of the operator T}, in level Np" is given by the matrix

ap(f) 1 00 ... 0
—6pFLe(p) 0 1 0
0 0 0 1 0
0 00 0 1
0 00 0 0

where 6 = 1if pt N and § = 0 otherwise.

Proof. The embedding map and its compatibility with the Hecke action away from p
is explained in [[DiamondIml, Section 6.1. The linear independence can be checked on g-
expansions. Finally, the matrix can be elementarily computed. o

(1.3.2) Corollary. Let p be a prime, v > 0 some integer and f € Si(I'1(Np"),¢,C) an
eigenform for all Hecke operators. Then there exists an eigenform for all Hecke operators

f € Si(D1(Np™*2),€,C), which satisfies a;(f) = ai(f) for all primes | # p and a,(f) = 0.

Proof. One computes the characteristic polynomial of the operator T}, of Proposition
and sees that it has 0 as a root if the dimension of the matrix is at least 3. Hence one
can choose the desired eigenform f in the image of ¢;Vf . a

As explained in the introduction, Katz’ theory of modular forms ought to be used in the
study of Serre’s conjecture. Following [[EdixBostonl], we briefly recall this concept, which
was introduced by Katz in [[Katz]. However, we shall use a “non-compactified” version.

Let N > 1 be an integer and R aring, in which N is invertible. One defines the category
[['1(N)]r, whose objects are pairs (E/S/R, «), where S is an R-scheme, F/S an elliptic
curve (i.e. a proper smooth morphism of R-schemes, whose geometric fibres are connected
smooth curves of genus one, together with a section, the “zero section”, 0 : S — FE) and
a : (Z/NZ)s — E[N], the level structure, is an embedding of S-group schemes. The
morphisms in the category are cartesian diagrams

E—F
N
Slﬁsv

which are compatible with the zero sections and the level structures. For every such elliptic
curve E/S/R we let wp, g = 0" /g. For every morphism 7 : E'/S’/R — E/S/R the
induced map wp, /g — T'wp /g is an isomorphism.
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A Katz cusp form f € Sp(I'1(N), R)katz assigns to every object (E/S/R,«) of
[[1(N)]r an element f(E/S/R,«) € g%l/“s(S), compatibly for the morphisms in the cate-
gory, subject to the condition that all g-expansions (which one obtains by adjoining all N-th
roots of unity and plugging in a suitable Tate curve) only have positive terms.

For the following definition let us remark that if m > 1 is coprime to IV and is invertible
in R, then any morphism of group schemes of the form ¢ n., : (Z/NmZ)s — E[Nm] canbe
uniquely written as ¢n X g ¢, With ¢ : (Z/NZ)s — E[N] and ¢y, : (Z/mZ)s — E[m)].

(1.3.3) Definition. A Katz modular form f € Si(T'1(Nm), R)Katz is called indepen-
dent of m if for all elliptic curves E/S/R, all ¢ : (Z/N)s — EI[N]| and all
Gms Ol (Z/m)s — E[m] one has the equality

f(E/S/R, N X5 ém) = f(E/S/R, n X5 ¢,) € Q%?S(S)-

(1.3.4) Proposition. Let N, m be coprime positive integers and R a ring, which contains
the Nm-th roots of unity and N—lm A Katz modular form f € Sk (T'1(Nm), R)Kat, s inde-
pendent of m if and only if there exists a Katz modular form g € Si,(T1(N), R)kat, such
that

f(E/S/R7 (bNm) = g(E/S/R, ONm © Qb)
(

for all elliptic curves E/S/R and all ¢ N, : (Z/NmZ)s — E[Nm]. Here 1 denotes the
canonical embedding (Z/N7Z)s — (Z/NmZ)s of S-group schemes. In that case, f and g
have the same q-expansion at co.

Proof. If m = 1, there is nothing to do. If necessary replacing m by m?, we can hence
assume that m is at least 3.

Let us now consider the category [['1(IN;m)]g, whose objects are triples
(E/S/R, ¢n,%m), where S'is an R scheme, E//S an elliptic curve, ¢ : (Z/NZ)s — E[N]
an embedding of group schemes and v, : (Z/mZ)% = E[m]| an isomorphism of group
schemes. The morphisms are cartesian diagrams compatible with the zero sections, the ¢
and the 1, as before.

We can pull back the form f € Si(T'1(Nm), R)Katz to a Katz form h on [I'1 (N;m)|r as
follows. First let 3 : (Z/mZ)s — (Z/mZ)?% be the embedding of S-group schemes defined
by mapping onto the first factor. Using this, f gives rise to h by setting

h(E/S/R,¢n,¥m)) = f(E/S/R, ¢n,Ym © B)) € wis(S).

As f is independent of m, it is clear that h is independent of v,,, and thus invariant under the
natural GL2(Z/mZ)-action.

As m > 3, one knows that the category [[';(N;m)]r has a final object
(E"™Y /Y1 (N;m)r/R,a"Y). In other words, h is an GLo(Z/mZ)-invariant global sec-

tion of g%ff,,iv/yl(N;m)R. Since this R-module is equal to Si(T'1(N), R)kats (see e.g.
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Equation 1.2 of [EdixBoston|], p. 210), we find some g € Sg(I'1(N), R)Kkat» such that
f(E/S/R,¢Nm) = g(E/S/R, dNm o) forall (E/S/R, pnm)-

Plugging in the Tate curve, one sees that the standard g-expansions of f and g coincide.

a

(1.3.5) Corollary. Let N, m be coprime positive integers, p a prime not dividing Nm and
€:(Z/NZ)* — F, a character. Let f € Sg(I'1(Nm), €, Fp)Katz be a Katz cuspidal eigen-
form for all Hecke operators.

If f is independent of m, then there exists an eigenform for all Hecke operators
g € Sk(T1(N),€,Fp)Kkats such that the associated Galois representations py and p, are
isomorphic.

Proof. From the preceding proposition we get a modular form g € S, (T'1 (IV), €, F_p)KatZ,
noting that the character is automatically good. Because of the compatibility of the embed-
ding map with the operators 7} for primes [ { m, we find that g is an eigenform for these
operators. As the operators 7} for primes [ 1 m commute with the others, we can choose a
form of the desired type. a

1.4. Proof of the principal result

We first cover the weight one case.
(1.4.1) Theorem. Let p be a prime and p : Gg — GLq (F_p) an odd dihedral representation
of conductor N, which is unramified at p. Let € denote the character det op.

Then there exists a Katz eigenform f in S1(T'1(N), €, IF_p)Katz, whose associated Galois
representation is isomorphic to p.

Proof. Assume first that part (a) of LemmalT.Z.T)applies to p, and let p be a lift provided
by that lemma. A theorem by Weil-Langlands (Theorem 1 of [Serre?l]) implies the existence
of a newform g in &1 (T'1 (NV), det op, C), whose associated Galois representation is isomor-
phic to p. Now reduction modulo a suitable prime above p yields the desired modular form.
In particular, one does not need Katz’ theory in this case.

If part (a) of Lemmal[(T.2Z.T)]does not apply, then part (b) does, and we let S be the infinite
set of primes provided. For each [ € S the theorem of Weil-Langlands yields a newform ()
in 81 (T'1 (N1), C), whose associated Galois representation reduces to p modulo 3, where 3
is the ideal from the lemma. Moreover, the congruence ag(f 1) = 0 mod P holds for all
primes g € S different from /.

From Corollary we obtain Hecke eigenforms f() € &;(I'y(NI3),C) such that
a(f®) = 0 and aq(f(l)) = ay(f®) = 0 mod P for all primes ¢ € S, ¢ # . Reducing
modulo the prime ideal B, we get eigenforms gV € S;(I';(NI?), ¢, F,), whose associated
Galois representations are isomorphic to p. One also has aq(g(l)) =0forallq € S.
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The coefficients a,( f () for all primes q | N appear in the L-series of the complex repre-
sentation p ;) associated to f® . As the image of p ¢ is isomorphic to a fixed finite group G,
not depending on /, there are only finitely many possibilities for the value of a4 (f (l)). Hence
the same holds for the ¢(Y). Consequently, there are two forms g; = ¢{'*) and g, = ¢(*2)
for Iy # lo that have the same coefficients at all primes ¢ | N. For primes ¢ 1 Nlylo
one has that the trace of pa,)(Froby) is congruent to the trace of p;a,) (Frob,), whence
aq(g1) = aq(g2). Let us point out that this includes the case ¢ = p = 2, as the complex
representation is unramified at p.

In the next step we embed g1 and g into S (1 (NI313), €, F, ) katz Via the method in the
statement of Proposition As the g-expansions coincide, g; and g are mapped to the
same form h. But as h comes from go, it is independent of [; and analogously also of I5.
Since pj, = p, Theorem [[T.4.T) follows immediately from Corollary [1.3.5} O

We will deduce the cases of weight at least two from general results. The current state of
the art in “level and weight lowering” seems to be the following theorem.

(1.4.2) Theorem. (Ribet, Edixhoven, Diamond, Buzzard,...) Let p be a prime and
p : Go — GL2(F,) a continuous irreducible representation, which is assumed to come
from some modular form. Define k, and N, as in [Serrell]. If p = 2, additionally assume
either (i) that the restriction of p to a decomposition group at 2 is not contained within the
scalar matrices or (ii) that p is ramified at 2.

Then there exists a normalised eigenform f € S, (I'1(N,),[F,) giving rise to p.

Proof. The case p # 2 is Theorem 1.1 of [[Diamond], and the case p = 2 with condition (i)
follows from Propositions 1.3 and 2.4 and Theorem 3.2 of [Buzzard], multiplying by the
Hasse invariant if necessary.

We now show that if p = 2 and p restricted to a decomposition group Gg, at 2 is contained
within the scalar matrices, then p is unramified at 2. Let ¢ : Gg — F_Q* be the character such
that ? = det op. As ¢ has odd order, it is unramified at 2 because of the Kronecker-Weber
theorem. If p restricted to G, is contained within the scalar matrices, then we have that

. ¢|G@2 0 . .
p|G@2 is < 0 dlag, )’ whence p is unramified at 2. O

Proof of theorem [[T.I.T}} Let p be the dihedral representation from the assertion. If p is
unramified at p, one has k(p) = 1, and Theorem follows from Theorem [T.4.T)

If p is ramified at p, then let p be a characteristic zero representation lifting p, as pro-
vided by Lemma [T.2.Z} The theorem by Weil-Langlands already used above (Theorem 1
of [Serre?]]) implies the existence of a newform in weight one and characteristic zero giving
rise to p. So from Theorem [T.4.2Z)] we obtain that p comes from a modular form of Serre’s
weight k, and level N,,. Let us note that using Katz modular forms the character is automat-
ically the conjectured one €.

The weights &, and k(p) only differ in two cases (see [[EdixWeight], Remark 4.4). The
first case is when k(p) = 1. The other case is when p = 2 and p is not finite at 2. Then
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one has k(p) = 3 and k, = 4. In that case one applies Theorem 3.4 of [[EdixWeigh] to
obtain an eigenform of the same level and character in weight 3, or one applies Theorem 3.2
of [Buzzard] directly. O

1.5. An irreducibility result

We first study the relation between the level of an eigenform in characteristic p and the con-
ductor of the associated Galois representation.

(1.5.1) Lemma. Let p : Gg — GLq (IF_,,) be a continuous representation of conductor N,
and let k be a positive integer. If f € Si(T'1(M), €, Fp)Kats is a Hecke eigenform giving rise
to p, then N divides M.

Proof. By multiplying with the Hasse invariant, if necessary, we can assume that
the weight is at least 2. Hence the form f can be lifted to characteristic zero (see e.g.
[Diamondlm{, Theorem 12.3.2) in the same level. Thus there exists a newform g, say of
level L, whose Galois representation p, reduces to p. Now Proposition 0.1 of [[Livné] yields
that NV divides L. As L divides M, the lemma follows. d

We can derive the following proposition, which is of independent interest.
(1.5.2) Proposition. Ler f € Sk(FO(N),IF_p)KatZ be a normalised Hecke eigenform for a
square-free level N with p{ N in some weight k > 1.

(a) If p = 2, the associated Galois representation is either irreducible or trivial.

(b) For any prime p the associated Galois representation is either irreducible or corresponds

to a direct sum o X];’lofl, where X, is the mod p cyclotomic character and « is a

character factoring through G(Q(¢p)|Q) for a primitive p-th root of unity (.

Proof. Let us assume that the representation p associated to f is reducible. Since p is
semi-simple, it is isomorphic to the direct sum of two characters a. @ 3. As the determinant is
the (k—1)-th power of the mod p cyclotomic character x,,, we have that 5 = Xﬁ_lofl. Since
the conductor of X’;’l is 1, it follows that the conductor of « equals that of 3. Consequently,
the conductor of p is the square of the conductor of . Lemma implies that the
conductor of p divides IN. As we have assumed this number to be square-free, we have that
p can only ramify at p.

The number field L with G, = Ker(p) is abelian. As only p can be ramified, it follows
that L is contained in Q({p» ) for some p™-th root of unity. Since the order of « is prime to p,
we conclude that o factors through G(Q((,)|Q). In characteristic p = 2 this implies that p is

the trivial representation, as s is the trivial character. O



Chapter 11
Modular Symbols Over Rings

The Eichler-Shimura-Theorem (Theorem establishes an isomorphism between the
direct sum of two copies of the space of holomorphic cusp forms for a congruence subgroup
I' < SLy(Z) of finite index and the parabolic subspace of the analytic cohomology of the
associated modular curve Xt for a certain sheaf of C-vector spaces. In this setting the Hecke
algebra defined on the cohomology group coincides with the usual one on cusp forms, so that
the knowledge of the Hecke operators on the cohomology group determines the cusp forms
completely. One of the principal themes of this thesis is to obtain similar results over finite
fields in certain cases.

This chapter is concerned with the analytic cohomology groups used in the Eichler-
Shimura theorem, but over general rings. Whereas from a geometric point of view the co-
homology of modular curves is the most natural object to study, it only becomes explicitly
accessible via the natural comparison with group cohomology. Another explicit approach is
provided by the modular symbols formalism. It is of practical interest, as it has been imple-
mented by William Stein into Magma. We compute the differences between these objects for
general congruence subgroups of SLy(Z) and give a criterion when they agree.

A link with the theory of modular forms will be established in Chapter [Tl

We start this chapter by introducing modular curves as Riemann surfaces, analytic mod-
ular stacks and the sheaves and some of their properties to be used in the sequel. We begin
our study with the cohomology of modular stacks and relate it to group cohomology. Next,
we derive an explicit description of the cohomology of modular curves for the push-forward
of any locally constant sheaf on the modular stack by comparing it via the Leray spectral se-
quence to stack cohomology and using the Mayer-Vietoris sequence for group cohomology.
Moreover, torsion properties are discussed. The following section is devoted to introducing
the modular symbols formalism and to prove an explicit description in terms of the so-called
Manin symbols. Next, we will be able to give a precise description of when the spaces in
question agree, resp. what their differences are. The final section treats modular symbols for

11
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I'1(N) asa (Z/NZ)*-module and a slight generalisation to some other subgroups.

(2.0.3) Notation. Recall that for a subgroup H of SLo(7Z) we denote H = H/({—1) N H),
which we consider as a subgroup of PSLa(Z).
Throughout this chapter we let T and G be congruence subgroups of SLa(Z) such that

I'<a G <SLy(Z).
For a ring R and an integer k > 2 we let
Vi—2(R) := Sym"~*(R?)
which carries the natural left SLo(Z)-action. Moreover, we will use a character of the form

e:GpiZJF\GHR*
and denote by R° the R[G]-module which is defined to be a copy of R with G-action
through €1, Also define
Vii_o(R) := Vi—2(R) ®p R°

for the diagonal G-action. In case that G contains the matrix —1, we will always assume

that (—1) = (—=1)*, so that Vi¢_,(R) is an R[G|]-module.

2.1. Modular curves and modular stacks

We assume Notation as we do in all this chapter. The group I' acts from the left on
the extended upper half plane H = H U P!(Q) by fractional linear transformations. We can
associate to it the compact Riemann surface Xp := I'\H U I'\PP!(Q). It contains the open
Riemann surface Y1 := I'\H. Both Xt and Y1 are called the modular curve of I'. We denote
the inclusion by jr : Y1 — Xpr. We remark that —1 acts trivially, so that we could have used
T in the definitions.

Analogously, we also define the analytic Deligne-Mumford stacks [X] and [YF] as the
stacks obtained by taking the quotient for the I'/I'(IV')-action on X () resp. Yr(y), when
I'(N) < T with N > 3. These stacks will be referred to as the modular stacks of T'. Again
we have the open embedding jir : [Y5] — [XF].

Moreover, there are natural projections 7p : [Xp] — Xp and 7p @ [Y5| — Yr. These
commute with the embeddings jr and jjr. If the group T acts freely on H and if the stabiliser
subgroup of I for any cusp only contains unipotent elements, then both 7 are isomorphisms.

(2.1.1) Remark. Analytic Deligne-Mumford stacks have e.g. been defined in [[loenl], Defini-
tion 5.2, building on the definition of the analytic site (loc. cit. p. 171). Moreover, it is stated
that quotient stacks of analytic spaces by finite groups are analytic Deligne-Mumford stacks,
which implies that the [Y5| and [ X) above are.
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In the category of sheaves on the analytic site there are enough injectives (see e.g.
[Milne|], Proposition Il1.1.1), so that a derived functor cohomology exists. This cohomol-
0gy coincides with the derived functor cohomology on analytic spaces, if the analytic stack
is an analytic space (for a discussion see [Milnel], p. 118). As we will use the Leray spectral
sequence, we point out that it is a formal consequence, as the direct image of an injective
sheaf is injective and both the direct image functor and the global sections functor are left
exact (see e.g. [[Milnéel], Theorem B.1).

There is a category equivalence between the locally constant sheaves of R-modules

on [Yg5| and R[T'|-modules, given by the functor
F = H°(H, f*F),

where [ : H iy [Yr]| is the quotient morphism. As H is simply connected, the sheaf f*F is
constant and consequently H(H, f*F) = (f*F), = Fy(y) for any point y € H. It follows
that _

(HO(H, f*F))" = H([Yg), 7).
As stack cohomology is the derived functor cohomology of H°([Yg], -) and group cohomology
for R[f]-modules is the derived functor cohomology of taking T -invariants, we obtain

HY([YF],F)= H'(T,H(H, f*F)) =2 H'(T, F,)

forany i > 0, F a locally constant sheaf of R-modules on [Yr] and x € [Y5]. We say that
HO(H, f*F) = F, is the R[[']-module associated to the locally constant sheaf F and vice
versa.

2.2. The module V¢ ,(R) and the sheaf V¢ ,(R)

In Notation [Z:0.3) we have defined Vj,_2(R) and V}¢_,(R). Via the correspondence outlined
in Remark [Z.I.1) the T-module Vi_5(R) corresponds to a locally constant sheaf on [Yx]
which we denote by V, , =(R). Similarly, we write szz,E(R) for the locally constant
sheaf on [Yz] corresponding to the G-module V¢, (R). We will usually drop I and G from
the notation.

(2.2.1) Remark. Let us assume that —1 ¢ T'. Then we define the universal elliptic curve
UiV []Fr;ni"] — Y], as the stack obtained by taking the T-quotient of E in the exact
sequence

((n,m),7)—(nT+m,r)

0—>7Z?xH

CxH E — 0,

where all spaces are equipped with the natural projection to H and C x H carries the T-

action (¢4 .(2,7) = (g, EL). Alternatively, [ES™] can also be obtained as the quo-

tient stack for the group T /T (N) of the universal elliptic curve EF‘(‘}% over Yp(n), when
I'N)<Tand N > 3.
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When k > 2 is an integer, the sheaf V,_, +(R) on the modular stack [Y5| agrees with
Symk_Q(leE“iVR[Egmv] ), where Rguniv) denotes the constant sheaf R on []E%“i"].
Iy r
Replacing 72 by 7.2 @7 Z¢ and C by C®z Z¢ one can also make a universal elliptic curve

over Yé’ when € is a quadratic character of G with kernel T'.

In the sequel we will often use the following different description of Vj,_2(R).

(2.2.2) Lemma. Let R[X,Y], denote the R-module of homogeneous polynomials of de-
gree n in the variables X and Y over R. The map

Sym™(R?) — R[X,Y]n, (§)@- - @ (") = (@X +bY)...(anX +b,Y)
defines an isomorphism of left Mats(Z)o-modules, when we equip the polynomials with the
action (M.P)(X,Y) = P((X,Y)M).

Proof. The map is well defined and every monomial is obviously hit. As Sym™(R?2) is
freely generated by the classes of ({) ® -+ @ () ®@ (¥) @ -+ ® (}), the map is in fact an
isomorphism. a

(2.2.3) Remark. The polynomials of degree n are often equipped with a slightly different left
Matg (Z)o-action, namely by

a - a L _ dX—-bY
(CZ)P(()Xg)) _P((cg) ()Xg))_P((—cX-‘raY))
This action is considered e.g. in [MerelUniversal|] and the Magma implementation of modular

symbols. These two actions are isomorphic due to the identity (z,y)(M*) " = (z,y)o ™' Mo.

(2.2.4) Proposition. Suppose that n! is invertible in R. Then there is a perfect pairing
Vn(R) X Vo(R) — R of R-modules, which induces an isomorphism V,(R) — V,(R)Y
of R[Mats(Z)o]-modules, if we equip V,,(R)" with the left action (M.¢)(w) = ¢(M'w).
When M is invertible, we have (M.¢)(w) = det(M)"¢(M ~1w).

Proof. One defines the perfect pairing on V,,(R) by first constructing a perfect pairing on
R?, which we consider as column vectors. We set

R?> x R*> > R, (v, w) = det(v|w) = viwe — Vaws.

If M is a matrix in Mats(Z)»o, one checks easily that (Mv, w) = (v, M*w). This pairing
extends to a pairing on the n-th tensor power of R? by letting

<’U1®"'®’Un,’w1®"'®wn>:<’U1,’LU1>""'<Un,’LUn>.

Due to our assumption on the invertibility of n!, we may view Sym™(R?) as a submodule
in the n-th tensor power, and hence obtain the desired pairing. Consequently, one has the
isomorphism of R-modules

Vo(R) — Vi (R)Y, v (w+— {v,w)),

which is Mats(Z).o-equivariant for the actions considered. a
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(2.2.5) Lemma. Let n > 1 be an integer. We suppose that n!N is not a zero divisor in R.
The left t-invariants are VV,(R) = (X™) for t = (} ) and the left t'-invariants are
CIVu(R) = (Y") fort = (4 9).

Proof. The action of ¢ gives t.(X""'Y*%) = X" {(NX + Y)’ and consequently
(t —1).(X"Y?) = Z; o7y X" IY7 with 7 ; = N9 (1), which is not a zero divi-
sor by assumption. For z = ZZ 0@ X" 'Y we have

n—1 n
(t—l)x: ZX”iJY]( Z airi7j).
3=0 i=j+1

If (¢t — 1).2 = 0, we conclude for j = n — 1 that a,, = 0. Next, for j = n — 2 it follows
that a,,—; = 0, and so on, until a; = 0. This proves the first part. The second follows from
symmetry. 0O

(2.2.6) Proposition. Let n > 1 be an integer.

(a) Ifn\N is not a zero divisor in R, then the R-module of left T'(N)-invariants "™V, (R)
is zero.

(b) Ifn! is invertible in R and N is not a zero divisor in R, then the R-module of left T'(N)-
coinvariants r(nyVy (R) is zero.

(¢) Suppose that T is a subgroup of SLa(Z) such that reduction modulo p defines a surjection
' — SLo(F)). Suppose moreover thatl < n < pifp > 2, andn = 1ifp = 2. Then
one has 'V, (Fp) = 0 = pV,,(F,).

Proof. As I'(N) contains the matrices ¢ and ¢, Lemma [[2.2.5) already finishes Part (a).
Under the assumptions of Part (b) Proposition[[Z.Z.4)|implies a self-duality, so that (b) follows
from (a). The only part of (c) that is not yet covered is when the degree is n = p > 2. In that
case we have an exact sequence of I'(N')-modules

0—-" (Fp) - V;)(Fp) - p—Q(Fp) — 0.

In fact, V,,(IF,) is naturally isomorphic with the space U; considered on p. B so one can
proceed as there. It suffices to take (co-)invariants to obtain the desired result. O

‘We also have a character version of this.

(2.2.7) Proposition. In Notation we assume that R is an integral domain and we let
N > 1 be an integer which is non-zero in R.

(a) If n = 0 and € is non-trivial, or if n > 0 and n! # 0 in R, then the R-module of left
G-invariants V¢ (R) is zero.
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(b) If n = 0, € is non-trivial and R is a field, or if n > 0 and n! is invertible in R, then the
R-module of left G-coinvariants ¢ V.S (R) is zero.

Proof. If n > 0, this follows directly from Proposition by taking I'-invariants.
If n = 0, we only have to remark that the G-invariants of R€ are zero, if the character is
non-trivial. The same holds for the coinvariants in the case of a field. O

2.3. Cohomology of modular stacks and group cohomology

Parabolic and boundary spaces

Let F be a sheaf on [Y5]. We apply the Leray spectral sequence to j = jry : [Y5] — [XFl.
The first four terms of its associated five term exact sequence are

0— Hl([Xf]aj*}—) - Hl([Yf]af) - H()([Xf]lej*j:) - HQ([XFLJ*}—)
In analogy with the result of Proposition [2.4.1) we call

Hp, ([Ye], F) = H([Xg], 5. F)
the parabolic stack cohomology group (for [Yz] and F). Furthermore, H°([XF], R'j. F) is
called the boundary stack cohomology group.

IfF =V, _,5(R) (resp. F = V¢, =(R) on [Y5]), then we speak of the (parabolic resp.
boundary) stack cohomology group of w%zight k over R for T (resp. for G with character €).

Comparison with group cohomology

Let now V be a locally constant sheaf of R-modules on [Y5] which corresponds to an R[I']-
module V. Then we have by Remark [[Z.1.1)

We define the parabolic group cohomology group as the left hand term and the boundary
group cohomology group as the right hand term in the exact sequence

0— H ([T, V)— H'(T,V) = P H' T NngUg™ " Resg, 7,1 V),
geT\PSLy(Z)/U

where U = (T'). We notice that I' N gU g~ is the stabiliser in I" of goo.

Again, if V = Vj_2(R), then we speak about the (parabolic/boundary) group cohomol-
ogy group of weight k over R for I' and similarly in the case where I is replaced by G with a
character e.
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(2.3.1) Proposition. For V a locally constant sheaf of R-modules on [Yfy| corresponding
to an R[T)-module V, the stack cohomology group for V and [Yz| agrees with the group
cohomology group for V and T. This result also holds for the parabolic and the boundary
spaces.

Proof. As we have already seen that the “full” spaces agree, it suffices to prove that the
boundary spaces coincide, i.e. that

H([ X, R'.V)= @ H'(TngUg V).
g€T\PSLy(Z)/U

The sheaf R!'j,V is a skyscraper sheaf, whose support lies on the cusps, whence one has
HY([X%), R'j.V) = @,(R'j.V)., where the sum runs over the cusps of [Xy]. However,
these cusps are in bijective correspondence with the double cosets I'\PSL2(Z)/U under the
mapping g — goo. Moreover, we have that (R'5, V), equals H'(T' NgUg~!, V), if the cusp
c is obtained from g under the mapping just described. a

Computing group cohomology

In order to compute the group cohomology for T, it suffices to compute the cohomology
of PSLy(Z)-modules because of Shapiro’s Lemma, which for any R[[']-module V gives an
isomorphism

H'(PSLa(Z), CoindL""* V) = H'(T, V).

An elementary proof of the fact that Shapiro’s Lemma respects the parabolic subspace was
communicated to me by Adriaan Herremans. Here, however, I shall use the representation
theoretic machinery, more precisely Mackey’s formula.

(2.3.2) Proposition. Let V be a left R[T]-module for a subgroup T < PSLy(Z) of finite

index. The group H;m (T, V) is isomorphic under the isomorphism of Shapiro’s Lemma to

le)ar (PSLQ (Z), COind;SL2 (Z) V)

Proof. It suffices to show that H*(U, ResIF}SLﬂZ)Coind;SLQ(Z)V) is equal to the direct
sum D 7\ psi, (z) /v HY(TngUg™!, Res%mgUg,1 V). Applying Mackey’s formula (see e.g.
[Brownl], Proposition I11.5.6(b))

ResIF}SLﬂZ)Coind;SLQ(Z)V = @ CoindY ,19Res;m

Unglyg V’
g€U\PSL2(Z)/T

g~ 1Ug

the isomorphism
HY (UNgTg 1, 9V) =2 HY (g 'UgNT,V)

and sending g to g~ ! the proposition follows from Shapiro’s Lemma . O
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(2.3.3) Corollary. The boundary space H([Xg|, R'j.'V) has the group cohomological de-

scription H((T), Coindgsh(z) (V). .

We now explicitly compute the first group cohomology of R[PSLs(Z)]-modules. A first,
however, not complete description is provided by the Mayer-Vietoris sequence, using that
PSLy(Z) is the free product of the cyclic group of order 2 generated by the class of o and
the cyclic group of order 3 generated by the class of 7. The result will be important for the
sequel and we record it in the following proposition.

(2.3.4) Proposition. Let M be a left R[PSLa(Z)]-module. Then the Mayer-Vietoris sequence
gives the exact sequence

me— fm
e

0 ->MPSL2@) _, pplo) o pr<T) M
HY(PSLy(Z), M) — H'((0), M) ® H*((1), M) — 0,

where the 1-cocycle f, uniquely given by f,,(c) = (1 — o)m and fn,(7) = 0, and for all
1 > 2 isomorphisms

H(PSLs(Z), M) = H'((6), M) & H'((r), M).

Proof. Let us write G := PSLy(Z), G1 := (o) and G5 := (7). By [Brownl, I1.8.8, we
have the split exact sequence of R[G]-modules

0 — R[G] — R[G/G:1] & R[G/G2] — R — 0.
Application of the functor Homp(-, M) gives rise to the exact sequence of R[G]-modules
0 — M — Homgjg,|(R[G], M) ®© Hom g, (R[G], M) — Hompg(R[G], M) — 0.

The central terms, as well as the term on the right, can be identified with coinduced modules.
Hence, the statements follow by taking the long exact sequence of cohomology and invoking
Shapiro’s Lemma. O

We now derive an explicit description of the group cohomology of PSL4(Z).
(2.3.5) Proposition. Let M be a left R[PSLy(Z)]-module. Then we have the exact sequence
0 — MPSL2) M kerp (1 + 0) x kerpr (14 7+ 72) — HY(PSLy(Z), M) — 0.
Proof. We determine the 1-cocycles of M. Apart from f(1) = 0, they must satisfy
0= f(0%) =0f(0) + f(0) = (1 +0)f(o) and

0=f(r") = =(Q+7+7)f(7).
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Since these are the only relations in PSL3(Z), a cocycle is uniquely given by the choices
f(o) € kerpr(1 + o) and f(7) € kerps (1 + 7+ 72).

The 1-coboundaries are precisely those cocycles f which satisfy f(o) = (1 — o)m and
f(7) = (1 — 7)m for some m € M, which proves

H'(PSLy(Z), M) = kerps(1+0) x kerps (1 +7+72)/(((1 = o)m, (1 —7)m) |m € M).
Rewriting yields the proposition. m|
(2.3.6) Remark. As U = (T') < PSLq(Z) is an infinite cyclic group, one has
HY(U,Res&, M) = M/(1 — T)M.
An explicit presentation of the parabolic group cohomology is the following.

(2.3.7) Proposition. The parabolic group cohomology group sits in the exact sequence

0 — M /MPS®)  kerp (14 o) Nkeras (147 +72) & HL (PSLy(Z), M) — 0,
where ¢ maps an element m to the 1-cocycle f uniquely determined by f (o) = f(17) = m.
Proof. Using Proposition[[Z.3.5)] we have the exact commutative diagram

M /PS5 U ker N, 0y ker Ny ——— H},, (PSLa(Z), M)

0,71

M/MPS@5 T N ker Ny —— HY(PSLa(Z), M)

(1-T)o (a,b)—b—a
(1-T)M M HY(U, M).
As the bottom left vertical arrow is surjective, the claim follows from the snake lemma. O

2.4. Cohomology of modular curves

Parabolic and boundary spaces

Let F be a sheaf on Y. We proceed exactly as for stacks, now with j = jr instead of jjr
and get the exact sequence

0 — HY(Xr,j.F) — H (Yr,F) — H°(Xr, R'j,.F)
- H2(XF7]*~7:) - H2(Yp,f) - 07
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since R%j,F = 0 and H'(Xr, R'j.F) = 0.
We consider the exact sequence of sheaves on X

0— nF —j.F—C—Q0,

in which the last term is defined as the cokernel. The parabolic cohomology group (for Yt and
F) is image of the map H!(Yr, F) — H'(Yr, F). Itis denoted by H', (Y, F). Moreover,

par

we call H(Xt, R'j,.F) the boundary cohomology group (for Yr and F).

(2.4.1) Proposition. We have H}, (Yr, F) = H'(Xr, j.F).

par

Proof. The sheaf C' is a skyscraper sheaf, as it is only supported on the cusps. Hence,
HY(Xr,C) = 0 and the long exact sequence associated to the short exact sequence of
sheaves above yields that the upper map is surjective in the commutative diagram

HY(Yr, F) == H'(Xr, j. F)

T~

HY(Yr,F),

in which the vertical map comes from the Leray sequence above. As it is injective, the
proposition follows. a

Explicit description of the cohomology

Let V be some R[[]-module. Via Remark associated to it we have a locally con-
stant sheaf V on the stack Y], which we can push forward under the projection 7 = 7 :
[YF] — Yo 4 .

The spaces H'(Yr, m.V,_, 7(R)), H),,(Yr, 7.V, _, ), H(Xr, R'j.(m.V, _, 7)) are
called the (parabolic/boundary) cohomology group of weight k over R for Yr. We make a
similar definition with the sheaf V' 2’5(1%) on [Ygz].

(2.4.2) Proposition. The boundary cohomology group for Yr and 7.V equals the boundary
stack cohomology group for [Yr| and V.

Proof. We only need to show that

1, ~ (Pl
(R'j.V) = (R j*(W*V))ﬂ_(x)

for z in [Xy] — [V, That is clear, since Xr and [Xg] do not differ in a (suitably small)

neighbourhood of the cusp x, when z is taken out. a

Considering the Leray spectral sequence in order to compare the cohomology of modular
curves with group cohomology was suggested by Bas Edixhoven. Indeed, it even allows us to
give a simple description of the cohomology of modular curves. We shall first prove a result
on some second cohomology group.
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(2.4.3) Lemma. Let V be a locally constant sheaf on [Yg]. Denote by Y{ the analytic sub-
space of Yr obtained as the quotient by I of the upper half plane minus all non-trivially
stabilised points (for T'). Denote by j° the embedding YP < Yr.

Then the sheaf (§°).(j°)* 7.V is a locally constant sheaf on Yr.

Proof. Write j = ;O for short. Let 2 € YT, which we may assume to lie in the comple-
ment of Y} and take y € [Y] with w(y) = 2. As V is locally constant, we can choose an open
set V' C [Y5] containing y such that V|- is constant. The quotient map  is open (universally
submersive, see e.g. [Toenl], p. 31, for algebraic stacks). So W = «(V) is an open neigh-
bourhood in Yr containing z. For W; C W open with x € W7 and V; = w‘l(Wl), we have
G m V(W) = (m.V)(Wh — {z}) = V(Vi — n~1({z})), since 7 is a local isomorphism
outside the points z resp. 7~ ({x}). Our assumption on V hence implies that j, j*m. V| is
constant. ]

(2.4.4) Proposition. Let V be a locally constant sheaf on [Yr|.
(a) We have H*(Yr, m. V) = 0.
(b) We have H?(Yr,m.V) = HO([Yg], VV)V.

(c) Foralli > 2 we have H:(Yr,m.V) & H(Xr, j.m.V), where j denotes the embedding
Yp — Xr.

Proof. We use the notations of Lemma[[Z.4.3)} In the exact sequence of sheaves on Yp
0— K —mV—- (G0 7V —-C—0

both the kernel and the cokernel are skyscraper sheaves. As their higher cohomology van-
ishes, we obtain

H(Yr, V) = H(Yr, (5°).(j°)* 7. V) foralli > 2

and similarly for compactly supported cohomology. We may apply Poincaré duality to
H2(Yr, (5°)«(5°)* 7. V) and H2(Yr, (). (5°)*7. V). It yields that the first space is iso-
morphic to HO(Yr, ((59)«(5°)*m.V)¥)V, which is zero, as Y is non-compact and connected
and the sheaf ((5°).(j°)* 7. V)" is locally constant, proving (a). Poincaré duality furthermore
gives

HZ(Yr, (5°)« (5°) mV) = HO(Yr, ((5°)« (5°) " m V) Y)Y 2 HO(YR, (mV) Y |ye) Y.

The latter space is isomorphic to HO([Y]?, VV|jy_j0)¥, which in turn itself is equal to
HO([Yg], V¥)V, proving (b).
Part (c) follows immediately from the exact sequence of sheaves on X

0— jmV — j,mV—C —0,
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as the cokernel is again a skyscraper sheaf. O

We now compare the cohomology groups of the modular stack to that of the modular
curve via the Leray spectral sequence. It gives rise to the short exact sequence

0— H'(Yr,m.V) — H([Y=],V) — H°(Yr, R'7.V) — 0,

as H?(Yr,m.V) = 0 by Proposition The sheaf R'7.V is a skyscraper sheaf, sup-
ported only on non-trivially stabilised points. More precisely, if I',, denotes the stabiliser
group of I at the point x € H, then

(R'7. V), = H'(T',, V).
(2.4.5) Proposition. We have the exact sequence of R-modules
0 — H'(Yr,m.V) — H'([Y5], 7.V)
— H'((0), Coind?SLz (Z)V) ® H (1), Coind?SLz(Z)V) — 0.
Proof. We first note that any non-trivially stabilised point x of H is conjugate by some

g € PSLy(Z) to either i or (3, whence the stabiliser group thenis g(c)g~*NT or g(7)g~'NI.
As in the proof of Proposition we can apply Mackey’s formula to obtain

H'((0), Coind > ) = D H'(g{o)g~ ' NT,V)
9€T\PSL2(Z)/ (o)

and a similar result for 7. So we get
HO(Yr, R'mw.V) 2 H'((0), CoindZ*"*®'V) & H'((r), Coind*?V),
which finishes the proof. m|

We have already earlier encountered the very same obstruction term, namely in the
Mayer-Vietoris sequence (see Proposition [2.3.4)). This establishes the following theorem.

(2.4.6) Theorem. For any ring R, any congruence subgroup I' < SLo(Z) and any R[T']-
module V' with associated sheaf V on [Y5|, we have

H (Y, 7. V) = M/(M(a) + M(r))

PSL2(Z)

with M = Coindg (V) and 7 : [Yg| — Yr the natural projection.

We let
Hi (T, R) = M/ (M) + M)
as in the theorem with M = Coind;SLz(Z) (Vk—2(R)) and define CHy(T', R) as the kernel of
the boundary map

m—(l—o)m
_—

M/(M) + M) M/(1—T)M.



2.4. Cohomology of modular curves 23

We call CH (T, R) the parabolic subspace and the space on the right the boundary space.
Moreover, we let Hy, (G, €, R) := M/ (M) + M(™) for M = CoinngLz(Z)(V,j_g(R))
and similarly as above we define a parabolic and a boundary space.

Merel’s study of homology

A study of the homology of modular curves (as Riemann surfaces) has been carried out
by [MerelHeckel also in order to compute modular forms. We shall see that Merel’s explicit
description is a special case of ours.

The first homology group relative to the cusps features in the long exact sequence

0 — Hi(Xr, R) — Hy(Xr,cusps, R) — R|cusps] — R — 0.

From this sequence it follows that H; (X, cusps, R) is a free R-module (as H1(Xr, R) is
free, which is well known for compact Riemann surfaces).

(2.4.7) Proposition. We have isomorphisms
Hi(Xr,cusps, R) = H'(Yr, R) = Hi(Yr, R)".

Proof. The first isomorphism is a simple application of the general duality theorem
[Dold]], Proposition VIIL.7.2, noting that in this case Cech cohomology coincides with sin-
gular cohomology (see e.g. [[Dold], Proposition VIII.6.12). The second isomorphism is a
consequence of the universal coefficient theorem. O

In view of Proposition the description of the relative homology group of
[MerelHeckel], Proposition 4,

Hy(Xr, cusps, R) = Hy (T, R)

is now immediate.

Torsion-freeness and base change properties

Merel’s original computation of H; (X, cusps,Z) as Hz(I', Z) was to compute the torsion-
freeness of the latter module and to show that its rank is right. More generally, Herremans
has computed the torsion in the T'; (/V)-Manin symbols over Z ([[Herremans], Proposition 9).
We will, however, give a geometric and more general proof of torsion-freeness, which Bas
Edixhoven has explained to the author.

(2.4.8) Proposition. Assume that R is an integral domain of characteristic 0 such that
R/pR = F,. Let N > 1 be an integer such that p t N. We assume that T'1(N) < T’
and that the stabilisers for the action of G on H have order invertible in R, or that k = 2 and
€ is trivial.
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We denote by € the reduction modulo p of €. Recall that g denotes the projection
Yg] - Yg. Write F(R) = WG’*VZdE(R) and similarly for F(F,). Then the follow-
ing statements hold:

(a) We have H! (Yo, F(R)) @r Fp = HY (Yg, F(F)p)).

(b) We have an isomorphism H*(Ya, F(R)) ®@r F, = H' (Yo, F(Fp)). If k = 2 and €
is trivial, H' (Yo, F(R))[p] = 0 holds. Otherwise, the p-torsion H'(Yg, F(R))[p] is
isomorphic with S%2F) Ve _(F).

(c) We have H, (Yo, F(R)) ®r Fp, = HL, (Yo, F(Fp)).

par P
Proof. Let us first notice that the sequence
p _
0= Vi gB) =V ,5(R) =V, _,5(F) =0
of sheaves on [Y] is exact. Applying the left exact functor 7 . we obtain the short exact
sequence of sheaves on Y

0 — F(R) = F(R) — F(F,) — 0,

because we have seen before that R'7g .V (R) is a skyscraper sheaf supported only

k—2,G 7"
on non-trivially stabilised points and there the stalk is H'(G,, V¢ ,(R)), which is 0 by
assumption, as either the order of G, is invertible or V,j_Q(R) = R. The associated long

exact sequence gives rise to the short exact sequence
0— H'(Ye, F(R) ®F, — H' (Yo, F(Fy)) — H™' (Ya, F(R))[p] — 0

for every ¢ > 0. A similar exact sequence also follows by taking compactly supported coho-
mology.

We have H?(Yq, F(R)) = 0 and H2(Yq, F(R))[p] = 0. The former was proved in
Proposition [Z4:4)] The latter can also be deduced from that proposition, as H2(Yq, F(R))
is a free R-module, since it is isomorphic to HO([Y5], V, _, z(R)")". This proves (a) and
the base change part of (b).

We finish Part (b) by the isomorphism H°(Y¢, F(F,)) = CVE_,(F,) and the fact that
HO(Yg, F(R)) = GVie_,(R) is zero, unless k = 2 and € is trivial by Propositions
and[(Z.2.T}

Part (c) is a direct consequence of (a) and (b), since parabolic cohomology is the image
of compactly supported cohomology in the usual one. O

(2.4.9) Remark. We can use the short exact sequence 0 — jF — j.F — C — 0 to com-
pare compactly supported cohomology with parabolic cohomology. Namely, the associated
long exact sequence gives rise to the exact sequence

0—TVira(R) — @ R— HX(Yr,V,_,1(R) — HL (Y0, V), +(R)) — 0.

par
cusps

We omit the details, as this will not be used in the sequel.
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2.5. Modular symbols

Definition

Modular symbols can be thought of as geodesic paths between two cusps resp. as the associ-
ated homology class relative to the cusps. We shall, however, give a combinatorial definition,
as is implemented in Magma and like the one in Stein’s thesis [SteinThesis], except that we
do not factor out torsion, but intend a common treatment for all rings. We keep the Nota-

tion (203}
(2.5.1) Definition. We define the R-modules

Ms(R) = R[{a, B}|o, B € PH(Q)]/({er, 0}, {a, B} + {87} + {7, a}|ov, B,7 € PH(Q))
and

Bs(R) := R[PY(Q)],
which we equip with the natural left PSLy(Z)-action. Furthermore, we let

M (R) := M2(R) ®@r Vi_5(R)

and

Bi(R) = B2(R) ®r Vi_»(R)

for the left diagonal G-action. If € is the trivial character, we usually drop it from the notation.

(a) We call the (left-)coinvariants
My(G, €, R) = gM;(R) = Mi(R)/{(z — gx)lg € G,z € M(R))

the space of G-modular symbols of weight k& over R (for the character ).

(b) We call the (left-)coinvariants
By(G, €, R) = gBi(R) = Bu(R)/{(z — gx)lg € G,z € By(R))

the space of GG-boundary symbols of weight k over R (for the character €).

(c) We define the boundary map as the map
My (G, e, R) — Bi(G, ¢, R)
which is induced from the map Mz(R) — Bz(R) sending {c, 8} to {8} — {a}.

(d) The kernel of the boundary map is denoted by CM (G, €, R) and is called the space of
cuspidal G-modular symbols of weight k£ over R (for the character €).
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(e) The image of the boundary map inside By (G, ¢, R) is denoted by (G, €, R) and is
called the space of GG-Eisenstein symbols of weight k over R (for the character €).

The definitions can be summarised in the exact sequence
0 — CMy(G,e,R) = My(G,¢e,R) — E(G, ¢, R) — 0.

In the standard situation that ' = T'y (N) and G = T'g(N), we can make the identification

b
) - @y, (v g ) e
In the definitions above it seems natural to write e.g. M(G, ¢, R) and not M (T, €, R),
which would be closer to the usual notation for modular forms, namely S (T, €, R).

(2.5.2) Remark. The map
M3(Z) — Div’(PY(Q)), {e, B}~ B—a

is an isomorphism of left PSLo(Z)-modules.

Indeed, surjectivity is clear. The elements {«, a} and {a, B} + {8,~7} + {7, a} are in
the kernel. These generate all relations of the form {a1, as} + {ag,as} + - + {an, a1}
forn > 1. But the kernel is generated by these.

Ash and Stevens (in [Ash-Stevend]) call Homp(Div®(P*(Q)), R) the space of modular
symbols. This is thus precisely the R-dual of the module considered here.

We end this section by a remark on changing the coefficient ring.

(2.5.3) Remark. Let R — S be a ring homomorphism. As tensoring, as well as taking
coinvariants, is right exact, we have

Mi(G,R)®r S = Mi(G,S) and Bi(G,R) ®r S = Bi(G, S).

If R — S is flat, also CM (G, R) ®r S = CM (G, S) holds. Similar statements are true

with a character e. O

Manin symbols

Manin symbols provide an explicit description of modular symbols. We stay in the general
setting over a ring R. Most proofs that modular and Manin symbols coincide (e.g. Merel in
[MerelUniversall]) use Manin’s original homological approach [[Manin] or its generalisation
by [Sokurov]. In this section we show, using a combinatorial proposition due to Martin, that
the identification is purely algebraic.

Martin has the following purely algebraic proposition, the proof of which is combinatorial
in nature. It is Proposition 4.3 in his thesis [[Martin]].
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(2.5.4) Proposition. (Martin) We consider the homomorphism
Y : Z[SLa(Z)] — Z[P(Q)], M +— M.co — M.0.
Its kernel is given by Z[SLo(Z)](1 + o) + Z[SL2(Z)|(1 =T —1T").

Translating this proposition into the theory of Manin symbols, one obtains the following
proposition.

(2.5.5) Proposition. The homomorphism of R-modules
R[PSLy(Z)] 2 Ma(R), g — {g.0, g.0o}

is surjective and its kernel is given by R[PSLa(Z)](1 + o) + R[PSL2(Z)](1 + 7 + 72).

Proof. For the surjectivity we follow [[Cremonal|, p. 14. It suffices to prove that the

element {00, a} with o a rational number is hit. Let & = a3 + ——L—— be the continued

az+ T

agt. o
fractions expansion of awand let P, = (% ) (% 8)--- (% 5) foralll € {1,...,k}. We
may write P, = (gf gfj) with pg = 1 and qo = 0. By construction we have o = Z—: and

00 = Z—g. Consequently, we obtain

(2o ) 0,00} + (B2 5) {000} + o+ ((C0P 71 ) 0,00} = {o0,a.

T 9o (=*qr ax—

We notice that due to the extra minus signs the determinants of all matrices equal 1.

Let us now notice that tensoring by R we may work with R-modules instead of Z-
modules. Moreover, as (1 —0)(1 +0) = 1 — (—1), we may replace SL2(Z) by PSL2(Z) in
Proposition

Next we show that ker(¢) = ker(¢)), using the homomorphism

7 : Ma(R) — R[PY(Q)], {a,B8}— B —a.

As 1) = 7 o ¢, the inclusion ker(¢) C ker(v)) follows. For the other one we assume that
Yo un[M] € ker(v), ie.

0= up(MO—Moo)= () uyMO0)— () uyM.oo).
M M M

But then ) ,, upr M{0,00} = (3, um{M.0,00}) — (3°,, un{M.co,00}) = 0, estab-
lishing the converse inclusion.

Now it only remains to establish the claimed form of the kernel. We have the identities
7=To,T' = 70~" and consequently 1 — 7 — T’ = ((14+0) — (1 +7 4+ 7%))o~*. The
latter one implies for all R[PSL2(Z)]-modules M the identity

A-T-TYM+A+0)M=>1+7+7 )M+ (1+0)M,
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which finishes the proof. a

If V is any left R[PSLy(Z)]-module, the induced module Indgsh(z) (V) is by definition
the left PSLy(Z)-module R[PSL2(Z)] ® g V', where R[PSLy(Z)] is equipped with the nat-
ural right R[T-action and the left R[PSLy(Z)]-action. Sending g @1 v to g~! ®@ v establishes

an isomorphism of Ind?SLQ(Z) (V) with #(R[PSL2(Z)] ®r V'), where now T acts diagonally
from the left. The left R[PSL2(Z)]-action is the one obtained by inversion from the natural
right action. We will in the sequel consider the module (R[PSL2(Z)] ® g V') with this right

action.

(2.5.6) Theorem. Let M := Ind_>*® (Ve ,(R)) be the induced module with the right
R[PSLs(Z)]-action described directly before the theorem. Then the following statements
hold:

(a) The homomorphism ¢ from Proposition induces the exact sequence of R-modules
0—=M1A+0)+MA+7+7%) = M — Mp(G,e, R) — 0.
(b) The homomorphism R[PSL2(Z)] — R[P*(Q)] sending [g] to g.cc induces the exact
sequence of R-modules

0—-M(1-T)— M — Bi(G,¢,R) — 0.

(c) Under the identifications of (a) and (b) the boundary map is the map
M/(M(1+0)+M(1+7+7%) > M/(M(1-T))
induced from m +— m(1 — o) on M.
Proof. (a) We derive this from Proposition [2.5.5) which gives the exact sequence
0 — R[PSLy(Z)](1 + o) 4+ R[PSLy(Z)](1 4 7 4+ 7%) — R[PSLy(Z)] — Ma(R) — 0.

Let N := R[PSLy(Z)] ®r Vi_5(R), which we equip with the right PSLo(Z)-action
([9] ® v).[o] = [go] ® v. As V¢ ,(R) is a free R-module we obtain the exact sequence

of left R[G]-modules
0= N1+o0)+N1A+7+7%) = N — ML(R) — 0.

Passing to left G-coinvariants yields (a).
(b) It is easy to compute that the described map fits into the exact sequence

0 — R[PSLo(Z)](1 — T) — R[PSLa(Z)] — RIP'(Q)] — 0.

Now we can proceed precisely as in (a) and obtain (b).
(c) It is clear that this map corresponds to the boundary map. It is well defined because
of l+7+7)(1—-0)=0Q+7+72)(1-T). ]

In the literature on Manin symbols one usually finds a more explicit version of the mod-
ule M. This is the contents of the following proposition.
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(2.5.7) Proposition. (a) Consider the R-module X := R[['\SL2(Z)] ®g Vi—2(R) @ R®
equipped with the right SLa(Z)-action Th®V ®@1)g = (Thg ® g~ 'v @ r) and with the
left T\ G-action gTh®@v®r) = (Cgh ® v ® e(g)r).

Then X is isomorphic as a right R[SLy(Z)]-module and a left R[I'\G]-module to
IndISiLz(Z) (Vi (R)), and, moreover, r\g X is isomorphic to IndSGLQ(Z)(V,:(R)).
If =1 € G and —1 &€ T, then the latter module is isomorphic to Ind%SLQ(Z) (VE(R)).

(b) Consider the module X := R[G\PSL2(Z)] ® g Vi—2(R) ®r R equipped with the right
PSLy(Z)-action Th®V @ r)g = (Thg® g v 7).

. ) PSL2(Z) /1 re .
If (=1)% = 1, then X is isomorphic to Ind~ ( )(Vk (R)) as a right R[PSLy(Z)]-
module.
Proof. (a) Mapping g ®v®7 to g® g~ v ®r defines an isomorphism of right R[SLz(Z)]-
modules and of left R[I"\ G]-modules

F(R[SLQ(Z)] Rr Vk_g(R) Rr RE) — X.

As we have seen above, the left hand side module is naturally isomorphic to the induced
module IndISiLz(Z) (V£ (R)) (equipped with its right R[SLo(Z)]-action described before). This
establishes the first statement. The second one follows from r\ ¢ (FM ) = gM for any G-
module M. The third statement is due to the fact that (_1)(R[SL2(Z)] ®r V;_5(R)) is

naturally isomorphic to R[PSL2(Z)] ®r V,i_5(R), since —1 acts trivially on the second

factor.
(b) This works analogously to the discussion in (a) with SL2(Z) replaced by PSLo(Z)
because we can now view Vj,_o(R) as a PSLo(Z)-module. O

Transportable Modular Symbols

In this section I present Stein’s and Verrill’s definition of transportable modular symbols, and
reprove their principal theorem (see [SteinVerrill], Theorem 2.4). The difference is that I
prove the result over any ring R, whereas the original proof was for modular symbols over Z
modulo torsion. This section is not used in the sequel, but can serve as an illustration that
working with the torsion can make things much easier.

Transportable modular symbols are used to compute periods of modular symbols resp.
modular forms. The aim is to transport a path from the cusp {a} to {co} to a path from =
to vz for a well chosen z in the upper half plane (for some v € I') representing the same
homology class.

We shall not restate the original definition of transportable modular symbols, but the
equivalent variant of [SteinVerrill], Lemma 2.3 (The equivalence works over any ring, not

only Q).
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(2.5.8) Definition. A modular symbol x € My(T, R) is called transportable if it can be
written in the form Y ;- {co0,vi00} @ P; with v; € T and P; € Vj_o(R) such that
221 P = 2221 'Y'ileV
To make the last formula a little more understandable (and set a decisive step towards
proving the principal theorem in this context), let us note that by a straight forward calculation

a symbol of the form )" | {c0, 7,00} ® P is cuspidal (i.e. in the kernel of the boundary map)
ifandonly if 1" P = Y"1" ;' P; holds.

(2.5.9) Theorem. (Stein, Verrill) A modular symbol is transportable if and only if it is cus-
pidal.

Proof. Choose a system of representatives R of I'\I?1(Q), representing 'oo by co. Let
us suppose that z € CMy (', R). Writing {a, 5} ® P = {00, 5} ® P — {00, a} ® P and
using the I'-invariance, we write

r= X o008 0 P
BER el
By assumption z is in the kernel of the boundary map, i.e.

Z Z’Y{ﬂ} Q Py p= Z Z{OO} ® Py5 € rBi(R).

BER yeT BER veT

Z 'Y_IP%B =0,

ver

For oo # 3 € R it follows

which in turn yields

> {00,198} @ Pyg=> ({00,700} + {700,78}) © Py g

yel yel’
= {00,700} @ Py s+ Y {00,807 Py g
yel el
=D {00700} ® Py g,
yel’
finishing the proof. m|

2.6. Comparison between the spaces

In group cohomology one conceptually has to work with coinduced modules. However, if
the index is finite, which is the case in all our considerations, one can identify induced and
coinduced modules. In the section about Manin symbols we have considered the induced
modules as right modules by inverting the natural left action. This was done in order to stay



2.6. Comparison between the spaces 31

close to other treatments, e.g. [SteinThesis]. Here, however, we will go back to the natural
left action. An analog of Theorem for left actions is obtained by formally rewriting
all right actions into left ones.

We still assume Notation

(2.6.1) Theorem. The boundary spaces of modular symbols, group cohomology and of the
cohomology of modular curves agree, i.e.
~ . PSL5(Z € ~ . €
Bi(G,e, R) = H'((T), Coindy* P (VE(R))) = H (X, R'jo (7 - Vi (R)))-
Assuming further that the orders of all stabilisers of G acting on H are invertible in R,

then also the full spaces of modular symbols, group cohomology and of the cohomology of
modular curves are isomorphic, i.e.

My(G, e, R) = H' (G, Vi(R)) = H' (Yo, 76, Vi,(R)),
as are their parabolic resp. cuspidal subspaces
CMi(G. e, R) = Hpo (G, ViE(R)) = Hy,, (Yo, 16 Vi (R)).-

Proof. Because of Proposition Theorem [(2.3.6)] (b), Corollary Proposi-

tion and Remark [[Z.3.6), the boundary spaces agree.
Using Mackey’s formula as in Proposition [2.4.5) we get

H'((0), CoindZ* PV, (R)) = P H (gl ' nT, Vi 4(R)
g€T\PSL2(Z) /(o)

and a similar result for 7. The right hand side is zero due to the assumption on the sta-
biliser order. A similar result holds for the corresponding first homology group, which using
eyclicity gives H((0), Coind=""* P Ve, (R)) = 0.

The vanishing of the first cohomology group implies via Theorem and Proposi-
tion [(Z.3-4) that the full spaces of group cohomology and the cohomology of modular curves
agree. The former always coincides with the cohomology of the modular stack by Proposi-

tion The vanishing of the H-term means written out that
(1 +0)Coind?5*® e ,(R) = (Coind? PV, (R)) "

and similarly for 7, which via Theorems [2.3.6) and [2.4.6) establishes the comparison be-
tween modular symbols and the cohomology of modular curves.
As we have seen that the boundary spaces and the full spaces coincide, the same follows

for the parabolic resp. cuspidal spaces, as the boundary maps are compatible. O

If £ = 2 and € is trivial, it actually suffices for the comparison between group cohomol-
ogy and the cohomology of modular curves to assume that the stabiliser orders are no zero
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divisors, as then V,f_Q(R) = R and the H!'-terms in the proof above vanish (but not the
HO-terms in general).

The stabilisers of the action of PSLy(Z) on H all have order dividing 6. The following
proposition investigates, when precisely stabilisers of order 2 or 3 occur.

(2.6.2) Proposition. (a) The following statements are equivalent:

(i) To(N) contains no conjugate of .

(ii) The action of T'o(N) on H does not have any stabiliser of even order.

(iii) N is divisible by a prime q which is 3 modulo 4 or by 4.
(b) The following statements are equivalent:

(i) To(N) contains no conjugate of .

(ii) The action of To(N) on H does not have any stabiliser of order divisible by 3.
(iii) N is divisible by a prime q which is 2 modulo 3 or by 9.

(¢c) If N > 3, then T'1(N) acts freely on H.

Proof. Writing out (i) in the two cases as (¢ %) o (%, ) (resp. with ) gives the equa-
tions ¢? + d? = (c+id)(c —id) =0 mod N resp. ¢ +d? +cd = (c — (3d)(c — (3d) =0
mod N, with (¢,d) = 1. Let ! be a prime dividing N. It is clear that [ cannot be inert in
the extension Q(¢) resp. Q((3). If 4 divides N, then it follows that 2 divides ¢ + id, which
contradicts the fact that (¢,d) = 1. Concluding similarly for 9 in case (b) establishes the
implication (iii) = (i) for (a) and (b). Conversely, we suppose that N is divisible only by
split primes, i.e. I; = (¢; +1id;)(c; —id;) resp. [; = (¢; — (3d;)(c; — (3d;), and possibly by
2 = (1+4)(1 —i)resp. 3 = (1 — ¢3)(1 — (3). Multiplying out, it follows that N takes the
form ¢? + d? resp. ¢? + d? + cd with (¢, d) = 1. Choosing a,b € Z s.t. (¢ 4) is in SLy(Z) it
follows that (¢ 4) o (%, ") (resp. with 7) is an element of [y (), establishing (i) => (iii).

The equivalence of (i) and (ii) follows from the well known fact that the only non-trivial
stabiliser groups of points in the usual fundamental domain are the groups generated by o

resp. T.

(c) If a conjugate of o (resp. 7) is in 'y (V), one has the equations ac+bd = €1l mod N
and —(ac+bd) = €l mod N (resp. ad + ac+bd = el mod N and —(be+ ac+ bd) = €l
mod N) with ¢ = +£1 (since we can replace o (resp. 7) by —o (resp. —7)). This yields
+2=0 mod N (resp. 2 =+£1 mod N). O

2.7. Characters and the A-action

In this section we study the action of the group A := I'\G on various spaces in the Nota-
tion That action is given by the diamond operators. We will be especially interested
in how far this action is semi-simple, i.e., if modular symbols decompose into eigenspaces
for characters.
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Some computations in group (co-)homology

We first provide some results of group (co-)homology that will be used later.

(2.7.1) Proposition. Let R be a ring, A a finite group, S a finite left A-set and V' a left
R[A]-module. Suppose that for all s € S the stabiliser group A has order invertible in R.
Then we have for all i > 1

Hi(A RIS @5 V) = 0 = H'(A, RS &1 V)
for the diagonal left A-action on R[S] Qr V.

Proof. We prove this for homology. The proof for cohomology is obtained by dualising
the arguments.

Choosing a system of representatives s1, . .., s, of the A-orbits of S, we obtain a direct
sum decomposition respecting the A-action

R[S @RV = EB RIA/A,,) @R V.

=1

From the projection formula we get
R[A/A,,]®r V = Ind} . Resy V.
J J

Shapiro’s lemma now gives forall 7 > 0

Hi(A,R[S]®r V) 2= (P Hi(A,, Resx_ V).
j=
For i > 1, the right hand side, however, is zero, as multiplication by the group order of A,
is invertible in R. d

(2.7.2) Proposition. Let A be a finite abelian group and K a field with trivial A-action.
(a) If the characteristic of K is zero, then H;(A, K) = 0 forall i > 1.

(b) If the characteristic of K is a prime p, then we have dimg H1(A, K) = n and
dimg Hy(A, K) = @ where n is the number of cyclic factors of the p-Sylow sub-
group of A.

Proof. (a) is clear, as the group order is invertible in K. For (b) one can e.g. use that
the dimensions of H;(Ap, K) resp. Ha(A,, K) are the minimal number of generators resp.
relations of A,. o

For a character we have the following more general statement on the first homology
groups.
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(2.7.3) Proposition. Let K be a field, A a finite abelian group and € : A — K* a character.
If K has characteristic p > 0, we also assume that e is not the trivial character.
Then we have for all ¢ > 0 that dimg H, (A, K¢) = dimg HI(A, K¢) = 0.

Proof. We only prove this for cohomology. The statement on homology can be obtained
by dualising the argument. The statement in characteristic 0 is clear, as the order of A is
finite, so we assume that K has characteristic p.

For § € A the endomorphism on H9(A, K¢) which is induced from the action of § on K¢
is the identity (it is well-defined, since A is abelian). Hence, for § € A such that ¢(§) # 1
the non-zero element €(J) — 1 kills H4(A, K¢), from which the claim follows. O

The A-action on the boundary space

(2.7.4) Proposition. Let N > 1 be an integer which is invertible in R and assume I contains
[y (N). Let A :=T\G. Then we have

H (&, By(T, R) ®r R°) = 0.

PSL2(2)

Proof. Let us write for short M := IndF

By Theorem[[Z.5.6) (b) we have
Mz2 M/M(1—T) = By(T, R).

(Vi_y)and set U := (T, —1) < SLy(Z).

We first assume (—1)* = 1, which is the case if —1 € T, as then 1 = ¢(—1) = (—=1)*.
Then by Proposition [2.5.7) (b) we have

M = R[T\PSLy(Z)] ® Vik—2 @ RE

with the actions described in that proposition. In particular, R€ is a trivial right /-module
(by the restriction of the right PSLy(Z)-action). As TV acts trivially on R[I['\PSLy(Z)], we
obtain
M(TN> = R[f\PSLg (Z)] X (Vk_2)<TN> Q RE.

The stabilisers of the A-action on the set I'\PSLy(Z) are trivial, whence by Proposi-
tion we have Hy(A, Mrvy) = 0. As the group U/(T™) has order N, which
is invertible by assumption, Mz is a direct summand of M r~), yielding the claim of the
proposition in the case under consideration.

We assume now that —1 ¢ I'. Then M = (_;) N with N := IndISﬂLQ(Z)(VkiQ). We
proceed as above. By Proposition [2.5.7) (a) we have

N = R[I'\SLy(Z)] ® Vi_2 ® R

with the actions described in that proposition. In particular, R¢ is a trivial right U-module (by
the restriction of the right SLo(Z)-action). As T acts trivially on R[I"\SL2(Z)], we obtain

N(TN> = R[F\SLQ(Z)] X (Vk_2)<TN> Q R°.
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The stabilisers of the A-action on the set I'\ SLy(Z) are trivial, whence by Proposition[(2.7.T)

2

we have Hq (A, N, (TN>) = 0. By the Hochschild-Serre spectral sequence we get a surjection

Hy (A, Nypny) = Hi(A, (—1yNip~y), whence the right space is also zero. Hence, we have
Hi (A, Mp~y) = 0, and we can finish as above. O

Modular symbols with and without character

In this section we will specialise to the case of fields instead of general rings. However, an
extension of the results to rings under natural restrictions is easily possible.
We start by comparing boundary and Eisenstein modular symbols.

(2.7.5) Proposition. (a) We have the exact sequence

0—&([,R) — By(I',R) - R— 0.

(b) Let N > 1 be an integer such that T'1(N) < T and let K be a field. If the characteristic
of K is p > 0, then we assume pt N and k < p + 2. If k = 2, then we suppose that € is
not the trivial character.

Then we have

E(G,e, K) =2 Bi(G, ¢, K).
Proof. For any ring R we have the exact sequence

{a}—1
_—

Mo(R) LAt g Ry R — 0.

We only need to show that 3, 7a{a} is in the image of the boundary map, if ., 7o = 0.
Butthen >,y ra{a} =32y ra({a} — {oo}l which clearly lies in the image. Taking T'-
coinvariants, we obtain part (a), as R is a trivial I"-module.

Let us now assume the situation described in (b). From the exact sequence above for
R = K, we immediately obtain the following exact sequence by tensoring with V,¢_, (K)

€ a,B—{B}—{« € at—1
Mo(K) @ VEy(K) LD ) (1) @ Ve () 2

Vii_2(K) — 0.

Propositions [[Z.2.6)] and [[Z.2.7) now finish the proof. a

We now compute the difference of the Eisenstein spaces.

(2.7.6) Lemma. Under the assumptions of Proposition[2.7.5)b) we have the exact sequence
0 — Hi(A, 5V 5(K)) — x(&(, K) @k K) — E(G,e, K) — 0

with A :=T\G.
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Proof. We start with the exact sequence
0—&(IN K)ok K¢ — (Bi(I',K)) @x K¢ — (gVi—2(K)) ®x K — 0,
which gives rise to the long exact sequence
Hi (A, By (T, K) @k K) — Hi(A,5Vi_o(K)) —
S(E (0. K) @ K) = By(CGe, K) % 55V o(K) = 0.

In Proposition[[Z.7-4) we proved that the first term is zero. The kernel of ¢ equals £, (G, €, K)
by exactness, which proves the lemma. O

(2.7.7) Proposition. (a) We have the exact sequence

0— Hi(AK) — &, K) — &(G,K) — 0.

(b) Under the assumptions of Proposition [2.7.5)b) we have
K(EQ(Fa K) K KE) = 5k(Ga €, K)

Proof. The Proposition follows directly from Lemma and Propositions [2.2.6}
[ZZ277)and [Z73) O

Next we compare the spaces of cuspidal modular symbols.

(2.7.8) Theorem. (a) We have the exact sequence
Hi(A &, K)) — ACM (T, K) - CM2(G,K) — Hi(AK)—0
and Hl(z, K) — HQ(Z, 82(F1, K)) and HQ(Z7 K) —» Hl(Z, 82(F1, K))

(b) Let N > 1 be an integer such that T'1(N) < I and let K be a field. If the characteristic
of K is p > 0, then we assume p{ N and k < p + 2. If k = 2, then we suppose that € is
not the trivial character. Then we have

ACM(T, K) @k K9) 2 CM(G, e, K).

Proof. We compare the long exact sequence associated to the short exact sequence of
A-modules

0— CMk(F,K) Qi K¢ — Mk(F,K) Qr K¢ — gk(F,K) R Kc— 0
with the short exact sequence

0— CMi(G,e, K) = My(G,e, K) — &:(G,e,K) — 0.
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Using the snake lemma and Lemma[(Z.7.6) we obtain the exact sequence
Hi(A &, K) @k K) — x(CMi(T,K) @k K) —
CM(Ge, K) — Hi(A, 5V 5(K)) = 0,

from which all statements follow, except the second one of (a), via Propositions
and[(Z.7:5)} In order to finish part (a), we show

HQ(A,K)A»Hl(Z,Ek(F,K)) and Hl(Z,K)%H()(Z,(SQ(Fl,K)).

Both follow from the long exact sequence associated to the short exact sequence from Propo-
sition (a) and the fact that H (A, Bo(T", K)) = 0, as provided by Proposition [Z.7.4)
O

The obstruction terms occurring in Theorem have been calculated in Proposi-
tions (272
The A-action on modular symbols

We first need a technical computation on induced and coinduced modules.

(2.7.9) Lemma. Let R be a ring, I' << G be subgroups of finite index in a group S, let
A := G/T andlet V be a right R|G]-module. Then the diagram of right R[S]-modules

ndSV = Coind2V —= Coind{V

I s

Nn-
IndSV = IndSV

commutes, where the norm is taken for the natural left A-action.

Proof. For convenience we have exchanged right and left actions in the proof, which can
easily be undone by inverting. We consider Ind2V = R[S]® gr] V with the left R[S]-action
on the left factor and the right R[A]-action (c®rv)d = 0d®rd 1 v. This action is compatible
with the right R[I']-action on R[S] and the given left R[I']-action on V' for which the tensor
product has been taken. We regard CoindSV = Homp(R[S], V) with the left R[S]-action
(9.f)(0) = f(g~ o) and the right R[A]-action (f.5)(c) = 6~ f(gd~!). This last action is
the restriction of the G-action defining Hom¢ (R[S], V) = (Hompg(R[S],V)) “

Now we can check commutativity. We first go up, then right and then down, and verify in
the end that we obtain N in this way. We choose a system of representatives g1, . . ., g, for
the residue classes S/G. Then the g;6 are a system of representatives for the residue classes
of S/Twheni = 1,...,nand 0 € A. So,letz = Y 5> . 9:0 ®r v5, be an element of
IndZ V. Itis first mapped to "5 37, 9:0 @ v5i = 3, 9i @ (3.5 0v5,4). Its image in the
centre of the top row is the map f which is uniquely defined by sending g; to >, dvs ;. We
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have that f(g;6) = 6~ f(g;). Hence, the image of z in the right upper corner is the map
which is uniquely given by sending g;d to 6~ Y~ dvs ;. Mapping this element down to the

right bottom corner gives
ZZZWF ®r 0~ 0

This element, however, agrees w1th
oNa = 3 SN b or
§ & i
for § = 65, as claimed. O

(2.7.10) Proposition. Let N > 1 be an integer such that 'y (N) < T" and let K be a field. If
k = 2, then we suppose that € is not the trivial character. If the characteristic of K isp > 0,
then we assume also p t N, k < p + 2 and that all stabiliser subgroups of G for its action
on H have order invertible in K (cf. Theorem[2.6.2)).

Then the norm map Ny induces isomorphisms

Mi(G, e, K) = x(Mp(T, K) @ K) = 2 (My(T, K) @k K°),
Bi(G.e, K) = 5(Br(l, K) @ K) 2 2(Bu(l, K) @ K°)

and

CMi(G, e, K) = x(CMy(T, K) @k K°) 2 2(CM(T, K) @k K°).

Proof. With V' = V¢ ,(K) and S = PSLy(Z) Lemma [Z.7.9) gives the commutative
diagram of K [PSL3(Z)]-modules

(d2 DY) Ja — (Coind***V) /a — 2 ((Coind2™*PV) /a)

| J

= ((md¥=®v) /a) A((md2*=Pv) /a)

with a = (1 + 0,1 + 7 + 72) << K[PSL2(Z)]. Due to the assumptions we may combine the
comparison result Theorem with the description in terms of Manin symbols (Theo-
rem[(2.5.6)). This allows us to reinterpret the diagram as

Mk(G,G,K) Hl(aavke—Q(K)) — (HI(F Vk 2( )))

it s

Z(Mk(FaK) KK KE) e Z(Mk(FaK) KK KE)'

In the diagram the left vertical arrow is the definition, the upper left horizontal and the right
vertical arrow come from the comparison and res is the restriction from group cohomology,
which features in the exact sequence

0— H' (A, VD) - H'(G,V) X5 2HYT, V) — H* (A, VD)
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coming from the Hochschild-Serre spectral sequence. The first part of the proposition follows
from Propositions [2.2.6) and [2.2.7) for & > 2 and from the assumptions for k = 2, which
imply that the map res above is an isomorphism.

The result on the cuspidal subspace will follow from the result on the boundary space.
For that we proceed as above with a = (1 —T') < K[PSLz]. This reduces us to show that the
map

HY(U, Coinde"™ V) — BHL(U, CoindL">*)v)

coming from the restriction via Shapiro’s lemma is an isomorphism. We claim that the re-
striction map
J— J— g — e el T7,,—1
HY(GngUg ', V) = H (T ngUg™*,V)erove

is an isomorphism for all ¢ € PSL2(Z). An easy calculation shows that g(T)g~! is an
element of T'; (V) and is hence in T'. Consequently we have the inclusions

g(TNyg P CTNgUg ' CGNglUg* CgUg™".

As the total index is IV, the index of T N gUg~ ' in G N gUg ™' divides N and is thus co-

prime with p. Using again the five term sequence associated to the Hochschild-Serre spectral

sequence immediately implies that the restriction map above is an isomorphism as claimed.
Given a fixed g € G\PSLy(Z)/U we are reduced to consider the diagonal restriction

HY (G ngUg™", V) ** @ H T N AU, V)Cals "
h

where h runs through a system of representatives of ThU such that GhU = GgU. The group
A permutes this set and only the diagonal is invariant. O

Let us point out that the A-action on the set [\PSLy(Z)/U is not free if N is not square-
free.

(2.7.11) Corollary. Under the assumptions of Proposition all of the following
Tate cohomology groups are zero HO(A, My, (T, K) @ K°), Ho(A, My(T, K) @ K°),
H(A,CM (T, K) @k K°), Ho(A,CMy (T, K) @ K), HY(A, By(T, K) @ K¢) and
Ho(A,By(T,K) @ K°).

Proof. This is immediate from the definition of the Tate cohomology groups, which can

. . s Norm faps
be summarised in the exact sequence 0 — Hy — Hy —— H® — H° — 0, and Propo-
stion 20} o

Separating the p-Sylow action

We let A := T'\G and assume that it is an abelian group. Here we are interested in modular
symbols as a A-module. We will treat the case of p-primary and p-group action separately,
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when p is the characteristic of the coefficient field R = K. This is what we need the freedom
in choosing the groups I" and G different from only 'y (V) and T'g (V) for.
By Sylow theory there is a group I',, such that

r«r,<d

with I'\I', a p-group and I',\ G of order prime to p. The restriction of € to I'\I',, is necessarily
trivial. We define the character

E:G—-TI,\GCI'\G— K"
using '\G 2 T',\G x I'\I',. We clearly have &(—1) = ¢(—1) = (—1)*.

(2.7.12) Remark. Let us point out that the condition on the characters only stems from the
fact that we want to work with PSLo(Z) instead of SLa(Z). This choice unfortunately pre-
vents us from repeating the above arguments with a subgroup I such that T' < T' < G with

F\f‘ of order prime to p and f‘\G a p-group. In that case the necessarily trivial character
proj

G - I'\G — K* would not be allowed if (—1)* # 1.

The action of the group I',\G is semi-simple, and any module splits into a direct sum of
character eigenspaces, if the ground field contains the character values. The behaviour is thus
as in characteristic zero.

There is quite a strong criterion to show that a module for a p-group is coinduced.

(2.7.13) Proposition. Let K be a finite field of characteristic p, let A, be a finite p-group
and let A be a K[Ap|-module. If H"(A,, A) = 0 for one n, then A is a coinduced K[A,]-
module.

Proof. This is [NSWI], Proposition 1.7.3 (ii). O

(2.7.14) Corollary. Let k > 3, N > 1 be integers and K a finite field of characteristic p. We
assume p t N and k < p + 2. Furthermore, let T'1(N) <T < T, < SLo(Z) be subgroups
such that T\T'y, is a p-group. We furthermore suppose that G has no stabilisers of order p
for its action on H. Let A, := T'\I',. Then My (T, K), CM(T',K) and By(T', K) are
coinduced K[Ap)-modules.

Proof. This follows directly from Corollary and Proposition [2.7:13) O



Chapter 111

Hecke Algebras of mod p Modular
Forms and Modular Symbols

In this chapter we prove that under certain conditions the Hecke algebra of cuspidal modular
forms over IF_p can be obtained by considering only group cohomology, generalising results
from [EdixJussieu]. When these conditions apply, one obtains much more information than
e.g. [[Ash-Stevens], who have studied group cohomology in order to prove that all systems
of eigenvalues of modular forms mod p in level N for p 4+ N and weight k£ > 3 occur in the
group cohomology of level Np and weight 2.

We start this chapter by introducing Hecke operators on the group cohomology groups
considered in Chapter [l Moreover, the compatibility of the Hecke operators with Shapiro’s
lemma is studied.

The principal idea in this chapter is to relate modular forms and modular symbols of level
N with p4 N and weight 2 < k < p + 1 to level Np and weight 2. In the second section we
will develop this level raising for the cohomology groups.

The third section is concerned with Hecke algebras of modular symbols and a comparison
to Hecke algebras of modular forms. The Eichler-Shimura-Theorem for holomorphic modu-
lar forms will be recalled first. Next results of p-adic Hodge theory will be used to exhibit a
faithful module for the Hecke algebra of cusp forms over E, when the weight is between 2
and p — 1. As modular forms of weight 1 can be embedded into weight p, it is desirable to
extend the weight range. This, however, does not seem to be possible with p-adic Hodge the-
ory. In order to cover weights up to p + 1, we relate them to weight 2 and higher level, so that
the Jacobian of the modular curve can be used. This method allows us to prove that locally
at ordinary primes of the Hecke algebra a faithful module is provided by group cohomology
with coefficients in F,, (see Corollary [3:3.14)). We end the chapter by a discussion of the
action of T'g(N)/T'1(IN) on cusp forms, which allows us to extend our results to modular
forms with characters.

41
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In Chapter [l we have discussed modular symbols and related spaces over quite general
rings. In this chapter we will mostly take a finite field of characteristic p as base field and
principally work with the group cohomological description.

3.1. Hecke action

The definitions in this section are based on [[DiamondIml].

We directly define Hecke operators on group cohomology. Although we do not expose
the theory here, we should not fail to mention that Hecke operators conceptually come from
correspondences on the underlying modular curves that also have a very explicit description
in the moduli interpretation.

By the comparison result Theorem the definition can be transferred to modular
symbols in the case of the group I'; (V) for N > 5. Taking coinvariants one can extend the
definition of Hecke operators also to spaces for I'g(N') with a character.

Hecke operators on group cohomology

Let « € Mato(Z)+o and I' a congruence subgroup of SLy(Z). We use the notations
[y :=TNa 'Taand ' := T'Nala~!, where we consider ! as an element of GL2(Q).
Both groups are commensurable with I".

Suppose that V' is an R-module with a Mats(Z).o-(semi-group)-action. We define the
Hecke operator T,, acting on group cohomology as the composite

HY(D, V) 2 gY(re, V) <% gir,, V) <= gi(r, V).
The first map is the usual restriction, and the third is the so-called corestriction, which one

also finds in the literature under the name transfer (cf. [Weibell, [Brownl]). We explicitly
describe the second map on cochains (cf. [[Diamondlml], p. 116):

conj, : H'(I*, V) — H'(Ta,V), ¢ (ga — a'.clagaa™)).

The following formula can also be found in [[DiamondIml], p. 116, and [Shimural], Section 8.3.

(3.1.1) Propeosition. Suppose that Tal' = |J;_, I'é; is a disjoint union. Then the Hecke
operator T,, acts on HY(T', V') by sending the non-homogeneous cocyle ¢ to T, defined by

(Tac)(g) =Y 8:c(8igd;1))
=1

for g € T. Here j(1) is the index such that 51‘95;(3) er.
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Proof. We only have to describe the corestriction explicitly. For that we notice that one
has I' = U?Zl I'wg; with ag; = 0;. Furthermore the corestriction of a non-homogeneous
cocycle u € HY(T',, V) is the cocycle cores(u) uniquely given by

cores(u Z g; tu(gi 99 )

for g € I'. Combining with the explicit description of the map conj,, yields the result. a

For a positive integer n, one defines the Hecke operator T}, to be Ty, for v = ({ 2).

If 'y (N) C T and the integer d is coprime to N, one defines the diamond operator (d)
to be Ty, for any matrix o € SLy(Z), whose reduction modulo N is (dgl g) The diamond
operator gives a group action by (Z/NZ)*. If the level is NM with (N, M) = 1, then
we can separate the diamond operator into two parts (d) = (d) ps X {(d)n, corresponding to

Z/NMZ > 7/MZ x Z/NZ.

Hecke operators and Shapiro’s lemma

(3.1.2) Lemma. Let N, M be coprime positive integers, and let V be an R[I'1(N)]-module.
Define the R-module

W(M,V) :={f € Homgp(R[(Z/MZ)?,V) | f((u,v)) = 0VY(u,v) s.t. (u,v) # Z/MZ}.

We equip it with the left Mata(Z)o-(semi-group)-action (g.f)((u, v)) = gf ((u, v)g).
Then the homomorphism

WM, V) — HOInR[Fl(NM)] (RIC1(N)L, V), fre (9 — (g.£)((0, 1)))

is an isomorphism of left 'y (N)-modules (by restricting the action on W(M,V')). In partic-
ular, W(M, V') is isomorphic to Coind?i 5%3\4) (V) as aleft T'1(N)-module.

Proof. As N and M are coprime, reduction modulo M defines a surjection from I'; (V)
onto SLy(Z/M?7Z). This implies that the map

A—(0,1)A mod M
- e,

L (NMOAT(N) (Z/MZ)?

is injective, and its image is the set of the (u, v) with Z/MZ = (u,v). From this the claimed
isomorphism follows directly. g

(3.1.3) Lemma. Let N be a positive integer and | a prime. We have the coset decomposition

T (N) (§9) (N UUn Joa (35)

when a runs through the integers such that a > 0, (a, N) = 1, ad = | and b through a system

of representatives of 7./ dZ. Here o, € SLy(Z) is a matrix reducing to ( a(;l 2) modulo N.
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Proof. This is [Shimural], Proposition 3.36. O

We can now prove the compatibility of the Hecke operators with the isomorphism
from Shapiro’s lemma when we take the Mats(Z)-action on the coinduced module from
Lemma[3.1.2)] A proof of this fact in the more general, but rather heavy language of weakly
compatible Hecke pairs can be found in [[Ash-Stevens] (Lemma 2.2(b)).

The Shapiro map is the isomorphism on cohomology groups

Sh: HY(T1(N), W(M,V)) — H'(T1(NM),V)
induced by the homomorphism

WM, V) =V, [ f((0,1)).

(3.1.4) Proposition. Let N, M be coprime positive integers, and let V be an R[Mata(Z)o]-
module. For all primes | and all integers d > 1 with (d, N) = 1 we have

TioSh=ShoT; and (d)yoSh=Sho(d)y

Proof. First we prove the statement for 7;. We choose a matrix o, for (a, N) = 1 such
that it reduces to (@' 0) modulo N. If (a, M) = 1, then we also impose that o, reduces
to (@, 9) modulo M. If not, then we want o, = (§ ) modulo M. Lemma [3.1.3)] implies
that coset representatives of 'y (NM)\I'1 (NM) (§9)T1(NM) can be chosen as a subset
of representatives of I't (N)\I'1 (V) (§9) T'1(IN). With the above choice of o, that is the
subset such that (u,v) = Z/MZ with (% %) = 0, (& 4). For those we have by definition for
feW(@, V) that ((3 1) f)((0,1)) = 0.

Let now ¢ € HY(I';(N),W(M,V)) be a cocycle. Then by Proposition [3.I.1) and the
definition of the Maty (Z)£o-action on W(M, V') we have for g € I'1 (N M)

(Sh(Tc)) Z& (69071)((0,1)3Y)),

where the sum runs over the above coset representatives for I'y (V) and § is chosen among
these representatives such that g6~ € I'; (N M). Moreover, we have

(T (Sh(e ZéL (895)((0,1))),

where now the sum only runs through the subset described above. By what we have remarked
right above (0, 1)d* is (0, 1) if and only if (a, M) = 1. In all other cases (0,1)0* = (u,v)
with (u,v) # Z/MZ. This proves the compatibility for 7;.

The same arguments as above also show the compatibility of the diamond operator, except
that we only have one coset representative. O
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(3.1.5) Proposition. Let N, M be coprime positive integers, and let V be an R[Maty(Z)0]-
module. For (n, M) = 1 we define the R[Mata(Z)o]-isomorphism

mult, : W(M, V) - W(M,V), [+ ((u,v) — f((nu,nv))).

Then we have
(n)am o Sh = Sh o mult,,.

Proof. Let 0 € SLy(Z) be a matrix reducing to (7" 9 ) modulo M and to (§ ) mod-
ulo N. This means in particular that o € I';(N). Hence, for a cocycle ¢ € HY(I'1(N), V)
we have

o le(ogo™!) = clg) + (g — L)e(o™ ),

so that the equality c(cgo~—1) = oc(g) holds in H*(T'1(N), V).
‘We can now check the claim. First we have

({(n)p 0 Sh)(c)(g) = o*(0-c(9)((0,1))) = ¢(9)((0, 1)0).

This agrees with (Sh o mult,,)(c)(g) = ¢(g)((0,n)). O

3.2. Level raising for parabolic group cohomology

The contents of this section is already partly present in [[Ash-Stevens]. However, in that paper
the parabolic subspace is not treated.

Decomposition of W (p,F,) as IF,[Maty(Z)_o]-module

We will now relate the F,,[Mats(Z)o]-modules W(p,F,) and Vy(F,) for0 < d < p — 1,
which are in fact precisely the simple Fj,[SLo(F,,)]-modules (see e.g. [[Alperin], p. 15).

(3.2.1) Lemma. Evaluation of polynomials on FZ induces the natural isomorphism of left
F,[Mato(Z)20]-modules

2
F,[X,Y]/(X? — X,Y? —Y) = F,".

Proof. The map is well-defined because of Fermat’s little theorem and the compatibility
for the natural action is clear. As the dimensions on both sides agree, it suffices to prove
injectivity. Let f € F,,[X, Y] be a polynomial having degree < p — 1 in both variables such
that f(a,b) = O forall a,b € F,. Then for fixed a the polynomial f(a,Y) is identically zero,
as it is zero for all the p specialisations of Y. Hence, considering f as a polynomial in Y
with coefficients in I, [X], it follows that all those coefficients are identically zero for the
same argument. Consequently, the polynomial f is zero as an element of F,,[ X, Y] proving
the claim. a
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We can thus identify W(p,Fp) with { f € F,[X,Y]/(X?-X,Y?-Y) | f((0,0)) = 0}.
Let Uy(F,) be the subspace consisting of polynomial classes of degree d € {0,...,p — 2},
i.e. those that satisfy f(lz,ly) = I?f(x,y) for all | € F,. Note that the degree is naturally
defined modulo p — 1. It is clear that the natural Mats (Z)o-action respects the degree. By
collecting the monomials we obtain

p—2
F,) = P Ua(Fy)
d=0
Furthermore, we dispose of the perfect bilinear pairing

W(p,Fp) x W(p,F,) = Fy, (frg)= Y fla,b)g(ab).

(a,b)€F3

(3.2.2) Lemma. Let d,e > 0 be integers. With (p — 1) t d or (p — 1) t e we have

Z a®b® =

(a,b)EF2

Proof. As the statement is symmetric in d and e, we may suppose that (p — 1) t e
and in particular e # 0. Then Z(%b)E]F% alb® = —oat(>h, 1 b¢). The latter sum,
however, is zero, as one can for instance see by choosmg a generator o of F and rewriting
SPT e = 3P (0°)7. As o clearly is a zero of the polynomial X7~ — 1, it is a zero of
the polynomial S Pl X7, since o # 1 using (p — 1) fe. O

If (p—1) t (d+e), Lemma[(3.2.2) implies that Uy(F,) pairs to zero with U, (F,,). Hence,
the restricted pairing Uq(F,) x Up—1-q(F,) — T, is perfect for 0 < d < p — 1, as the
dimensions of Uy, —1_q(F,) and Uq(F,) are equal. Furthermore, F,,[ X, Y4 pairs to zero with
F,[X,Y]p—1—q. This follows from Lemma [[3.2.2)] and an easy calculation. Consequently
the induced pairing Ug(F,) /Va(Fp) x Vp—1-q(F,) — F, is perfect.

Weight i € {2,...,p+ 1} in weight 2

Let M € Maty(Z)+o such that its reduction modulo p is invertible. Then it is clear that the
above pairing respects the action of M, i.e. (M f, Mg) = (f, g). Consequently, we receive
an isomorphism of [F,,-vector spaces

Ud(Fp)/Vd(Fp) - p—l—d(Fp)v

respecting the left action defined before. Composing with the map from Proposition
we obtain an isomorphism

Ua(Fp)/Va(Fyp) — Vp—1-a(Fyp).

We now study how the Mato(Z)0-action behaves with respect to this isomorphism.
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(3.2.3) Lemma. Let0 < d < p—1andlet M € Mato(Z)1o such that its reduction modulo p
is in GLo(F)). Then the following diagram commutes:

0 Vd(Fp) Ud(IFp) folfd(Fp) —0
M.L M. det(M)? M.
0 Va(Fy) Ua(Fp) Vp—1-a(Fp) ——0.

Proof. This follows from the compatibilities of the two pairings with the group actions
described above. a

(3.2.4) Lemma. Let M = ((1) g) and 0 < d < p— 1. Then the following diagram commutes:

0 Vd(Fp) Ud(IFp) folfd(Fp) —0
ML.‘/ M*. 0
0 Va(Fp) ——— Ua(Fp) Vp-1-a(Fp) ——0.

Proof. We have M* = (g ?) A basis of U4(F),) is given by the monomials of degree d,
which correspond to the embedding of Vy(IF,,), together with the monomials X iy p-ltd=i
for d < i < p—1. As the latter monomials all contain at least one factor of X, they are killed
by applying the matrix. O

We hence find formulae similar to those that hold in a comparable situation for the action
on modular forms of level Np (see Proposition [3:3.8) resp. [Grossll, p. 475). The following
Proposition, except for the parabolic part, is also [[Ash-Stevens], Theorem 3.4.

We introduce the following notation. Let M be any IF\,-vector space on which the Hecke
operators 7} and the p-part of the diamond operators (-),, act. By M[d] we mean M with the
action of the Hecke operator T “twisted” to be [T} (in particular T}, acts as zero). Further-
more, by M (d) be denote the subspace on which (1), acts as I¢ = y,,(1)¢ with , the mod p
cyclotomic character.

(3.2.5) Proposition. Let p be a prime, N > 5and 0 < d < p — 1 integers such that p { N.
We have isomorphisms respecting the Hecke operators

H'(Dy(Np),F,)(d) = H'(T'\(N), Ug(F,)) and
HLo (11 (Np), Fy)(d) 2 Hp (T3 (N), Ua(F,)-

Moreover, there are the exact sequences

H'(T1(N), Va(Fy)) = H' (D1 (N), Ua(Fp)) = H'(T1(N), Vp-1-a(Fy))[d]
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and

Hpor(C1(N), Va(Fp)) = Hpor (C1(N), Ua(Fy)) — Hpor(C1(N), Vi 1-a(Fp))[d],

par par

which respect the Hecke operators.

Proof. The first statement follows from Propositions [(3.1.4) and [3:1.5)| together with the
definition of Uq(F),). The twisting of the Hecke action in the exact sequences is clear from
the definition of the Hecke operators on group cohomology using Lemmas [3.2.3)and[3.2.4)}

For d = p — 1 we have Uy(F,) = Vo(F,) & V,—1(F},), from which the statements
follow. So we now assume d < p — 1, in particular p # 2. For the top sequence we only
need to check that it is exact on the left and on the right. By Proposition we have
H°(T1(N),V,—1-4(F,)) = 0. The H?-terms are trivial as the cohomological dimension of
I’y (V) is one, since the group acts freely on the upper half plane and is hence a free group.

The exactness of the second sequence follows from the snake lemma, once we have es-
tablished the exactness of

0— P H'(De,Va(F,) = P H'(De,Ua(F,) = P H'(De, Vpoi—a(Fy)) — 0,

c cusps c cusps c cusps

where D. is the stabiliser group of the cusp ¢ = goo with ¢ € SLy(Z). Hence,

D. = g(£T)g~' NT1(N). This group is infinite cyclic generated by g (7 ) g~! for some

r € Z. Hence, we have H?(D,, V4(F,)) = 0. If 7 is 0 modulo p, the sequence

0— @ HO(DCde(FP)) - @ H°(D,, Ua(Fy)) — @ H°(De, Vp-1-d(Fp)) — 0
c cusps c cusps c cusps

is clearly right exact, as the action of D. on the modules is trivial. If 7 is invertible in [F,,

it follows as in Lemma [2:2.5) that both H°(D.., V4(F,)) and H%(D., V,—1_4(F,)) are 1-

dimensional. To finish the proof, it thus suffices to prove that H(D., Uq(F})) is (at least)

2-dimensional. The elements X¢ € Uy(F,) and Y¢(1 — XP~1) € Uy(F,) are invariant

under 7. Indeed,

T.YY1 - X~ = (X +Y)%(1 - XP71)
d
=vi1-XP) ) (HYTIXI( - X =vi( - xPh,

i=1

asin Uy(F,) we have X?(1 — XP~1) = X*~1(X — XP) =0 fori > 0. O

3.3. Hecke algebras

In this section we will compare the Hecke algebra of modular forms with that of modular
symbols and establish isomorphisms in certain cases. Whenever we have an R-module M,
on which Hecke operators 77, act for all n, we let

TR(M) = R[Tn | n e N] - El’ldR(M),
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i.e. the R-subalgebra of the endomorphism algebra generated by the Hecke operators.

The Hecke algebra of modular forms and Eichler-Shimura

We recall a theorem by Eichler and Shimura.

(3.3.1) Theorem. (Eichler-Shimura) For k > 2 and T' < SLy(Z) a congruence subgroup,
there is an isomorphism of Tz (Sk (T, C))-modules, the Eichler-Shimura isomorphism,

H;m(F, Vi—2(C)) = S(T',C) & Sk (T, C).
Proof. [DiamondIm(], Theorem 12.2.2. O

(3.3.2) Corollary. In the situation of Theorem we have natural ring isomorphisms
Tz(Sk(T,C)) = Tz (Hy oo (T, Vee2(Z))/torsion).

Proof. It is clear that the C-vector space H!, (I',Vi_2(C)) contains the natural Z-

par

structure H}, (T, Vx—2(Z))/torsion. This follows for instance from Remark [Z:5.3)| together

par
with the comparison result Theorem [[2.6.1)] Any Z-structure, however, gives an isomorphic
Hecke algebra. Finally, Theorem[[3.3.1)implies that the Hecke algebra of H!, (T, Vi_2(C))

par

is isomorphic to the Hecke algebra of Sy (T, C). O

The formula in this corollary is the reason why many people prefer to factor out the
torsion of modular symbols.

(3.3.3) Proposition. Let N > 5, k > 2 integers and pt N a prime. Then we have
Tz (Sk(T1(N),€)) @2 F, = Tr, (Sp(T1(N). F,).
Proof. By [[DiamondIml], Theorem 12.3.2, we have
Sk(T1(N), Z[1/N]) @z1/n) Fp = Se(T1(N), Fp).

We note that in this case there is no difference between Katz modular forms and those that are
reductions of classical modular forms whose g-expansion is in Z[1/N]. By the g-expansion
principle we hence have the two perfect pairings

Tz(Sk(T1(N), C)) @z Z[1/N] x Sg(T1(N), Z[1/N]) — Z[1/N], (T, f) = ar(Tf)

and
Te, (Sk(D1(N),F,)) x Su(T1(N),Ey) = F, (T, f) = ar(Tf).

Tensoring the first one with IF), allows us to compare it to the second one, from which the
proposition follows. d
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(3.3.4) Corollary. Let p be a prime and N > 5,2 < k < p+ 2 integers s.t. pt N. Then the
Fy,-algebra homomorphism

Tr, (Sk(T1(N),Fp)) = Tr, (Hpur T1(N), Via(Fy))),
sending the operator T} to T} for all primes [ is a surjection.

Proof. From Corollary we obtain because of p-torsion-freeness (Proposi-
tion together with the comparison result Theorem an isomorphism of F-
algebras

Tz(9k(T1(N), C)) ® Fy = Tz, (Hpor(T1(N), Vio2(Zy))) @z, F.

By Proposition [3:3.3) the term on the left hand side is equal to T, (Sk(I'1(N),Fp)) so that
it suffices to have a surjection

TZP (Hll)ar(rl (N)7 Vk*2 (ZP))) ® FP - T]Fp (le)ar(rl (N)7 Vk*Q (Fp)))v
which follows from Proposition [2Z.4:8)] Indeed, the isomorphism

Hyop(T1(N), Va2 (Zp)) @ Fp = Hyo (T1(N), Via (Fy))

par par

is compatible with Hecke operators, and allows to define a homomorphism from the Hecke
algebra on the left hand term to the one on the right hand term, which is automatically sur-
jective by the definition of the Hecke algebra. O

(3.3.5) Proposition. Let N > 1, k > 2 be integers and K a field. If the characteristic of K
is p > 0, then we assume p ¥ N. Furthermore, let I'1(N) < T' < G < SLy(Z) be subgroups

ande: G I'\G — R* a character such that e(—1) = (—1)* if =1 € G. Denote by T the
K-Hecke algebra of Si.(T', K') and by T the K-Hecke algebra of Si.(G, €, K). Furthermore,
let

I=({(0)—€(0)|deT\G)<T.

Then T/I and T are isomorphic K -algebras.

Proof. As we work with Katz modular forms (for that we need the condition p t N),
we dispose of the g-expansion principle. Hence we have isomorphisms respecting the Hecke
action (T,)V = S,(G, e, K) = TV[I] = (T/I)", whence the proposition follows. O

Applying p-adic Hodge Theory

In this section we present an analog of the Eichler-Shimura isomorphism, formulated in terms
of p-adic Hodge theory. This was already used in [[EdixJussieul]], Theorem 5.2, to derive
an algorithm for computing modular forms. However, p-adic Hodge theory always has the
restriction that the weight be smaller than p.
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(3.3.6) Theorem. (Fontaine, Messing, Faltings) Letr p be a prime and N > 5,2 < k < p
be integers s.t. p f N. Then the Galois representation Hj; ,,,(Y1 (N)@p, Sym" (V)Y is
crystalline, where V.= R, F, with = : E — Y1(N) the universal elliptic curve. The
corresponding ¢-module D sits in the exact sequence

0 — ST (N),Fp) — D — Sk(T1(N), Fp)" — 0,
which is equivariant for the action of the Hecke operators.

This can be compared to Theorem 1.1 and Theorem 1.2 of [[FaltingsJordan]]. Part (a) of
the following corollary is part of [[Edix.Jussieu], Theorem 5.2.

(3.3.7) Corollary. Let N > 5,pt Nand2 <k < p.

(a) The parabolic group cohomology group H] . (T1(N),Vi_2(F,)) is a faithful module for
Tr, (Sk(T1(N), Fy)).

(b) Lete: (Z/NZ)* — F_p* be a character. Define the ideal
= () — ) | (. N) = 1) < T (Sk T2(V), F5)).

Then (H},.(T1(N),Vi_2(Fp)) @, Fp)/1 is a faithful module for the Hecke algebra
TE(Sk (Fl( ), €, Fp))

Proof. (a) From Theorem we know that D is a faithful Hecke module. Hence,
so is Hy par (YT (V) Sym"~2(V)). This module can be identified with its analog in analytic
cohomology which is isomorphic to H\, (T1(N), Vi_o(F})) (see Chapterﬂ]])

(b) If the Hecke operator 7" acts as zero on (Hj M(Yp1 N), Sym" 2(V))@p, F ) / 1, then

it acts as zero on (D ®F,,)/I, hence also on Si(I'1(N),F,)V /I = T—(Sk (T1(N),Fp)) /T
from which T" € I follows. The statement now follows from Proposition [(3.3.5) D

Modular forms of weight 2 and level Np

We recall some work of Serre as explained in [[Gross], cf. also [[EdixWeight], Section 6.

Let us now introduce notation that is used throughout the sequel of this chapter. We
consider the modular curve X (Np) over Q, () for a prime p > 2 not dividing N > 5. It
has a regular stable model X over the ring Z,[(,], see e.g. [Kafz-Mazui]. Let J denote the
Néron model over Zy,[¢p] of J1 (Np), the Jacobian of X; (Np) over Q,((,). We let, following
[Grossl], Section 8,

L= H(X,Qx/z,(,)),

where Q7 (¢,) 18 the dualising sheaf of X of [Deligne-Rapoport], Section 1.2. By [Gross],
Equation 8.2, we have for the special fibre X, that

L= HO(X]FWQXF;;/]FZJ) =L ®Zp[Cp] Fp'
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On L and L we have the action of the p-part (-) p of the diamond action. The principal
result on L that we will need is the following, which is Proposition 8.13 and Proposition 8.18
in [Gross].

(3.3.8) Proposition. (Serre) Assume 3 < k < p, N > 5 and p { N. Then there is an

isomorphism of Tr, (L)-modules
L(k —2) = Sp(T1(N), Fp) ® Sps—r(T1(N), Fp) [k — 2].
Moreover, the sequence of Hecke modules
0= S2(T1(N), Fp)lp — 1] = L(p — 1) = Sps1(T1(N),Fp) — 0
is exact.

In our attempt to compare Hecke algebras of modular forms with those of modular
symbols in characteristic p, we generalise the strategy of the second part of the proof of
[EdixJussieul], Theorem 5.2. Hence, we wish to bring the Jacobian into the play, since it will
enable us to pass from characteristic zero geometry to characteristic p.

(3.3.9) Lemma. Under the assumptions and notations above we have isomorphisms
f = CO‘E()(JH%)) = COt()(J]gp [p])

Proof. The first isomorphism is e.g. [[EdixWeight]], Equation 6.7.2. The second one
follows from the fact that multiplication by p on Jlgp induces multiplication by p on the
tangent space at 0, which is the zero map. Hence, the tangent space at 0 of Jn?p [p] is equal to
the one of J]gp. |

Parabolic cohomology and the p-torsion of the Jacobian

To establish an explicit link between parabolic cohomology and modular forms, we identify
the parabolic cohomology group for I'; (V) with Fp,-coefficients as the p-torsion of the Ja-
cobian of the corresponding modular curve. Here we may view the Jacobian as a complex
abelian variety.

(3.3.10) Proposition. Let N > 3 be an integer, and p a prime. Then we have an isomorphism
of Tz(S2(T'1(Np),C)) @ Fp-modules

Hy, (T (Np), Fp) 22 J(C)lp] = J(@,)[p).

Proof. The second equality follows from the fact that torsion points are algebraic. We
start with the exact Kummer sequence of analytic sheaves over X1 (Np)

O_)Mp_)Gmﬂ)Gm_’O-
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Its long exact sequence in analytic cohomology yields
0 — HY(X1(Np). ptp) — H'(X2(Np),Gpn) = H' (X1(Np), G-

Using that H' (X1 (Np),G,,) = J(C), we already obtain that H* (X1 (Np), up) = J(C)[p].
As C contains the p-th roots of unity, we may replace the sheaf 11, by the constant sheaf F,.
Moreover, the group H'(X(Np),F,) coincides with H_, (Y1(Np),F,) (see Proposi-

tion [[Z41)), which in turn is equal to H'(T'1(Np),F,), using that H — Y;(Np) is a Galois
covering under the assumption N > 3. O

Comparing Hecke algebras over I,

(3.3.11) Proposition. Let N > 5 be an integer, p { N a prime and 0 < d < p — 1 an integer.
There exists a surjection Tg, (HZ,.(I'1(Np),F,)(d)) — Tr,(L(d)) such that the diagram

par

of Fp-algebras

Tr, (L(d))

/

Tz (S2(C1(Np), C)(d)) @ F, ’
\

1 (Np)a F;D)

T, (Hpar (T ()

commutes. All maps are uniquely determined by sending the Hecke operator T} to Tj.

Proof. Let us first remark how the diagonal arrows are made. The lower one comes from

the isomorphism (see Proposition [2.4:8) and Theorem [2.6.T))

H;ar(rl (Np)a Z) ® FP = H;ar(rl (Np)a ]FP)
The upper one is due to the fact that L is a lattice in S2(I'; (Np, C)), using arguments as in
Corollary [3.37] We use that the order of IF; is invertible in I, so that we can everywhere
use the eigencomponents of the action of the p-part of the diamond operator (-) .

We obtain the vertical arrow by showing that the kernel of the lower diagonal map is
contained in the kernel of the upper diagonal map. In other words, we will show that if
TeTy (S2(I'1(Np),C)(d)) ® F, acts as zero on H},.(T1(Np),F,)(d), then it acts as zero
on L(d).

So assume that 7" acts as zero on H}, . (T1(Np),F,)(d). By Proposition[(3:3.10} it acts as
zero on J@p (Q,)[pl(d), hence on J@p [p](d). But then it also acts as zero on Jz, |¢,1[p](d), as it
acts as zero on the generic fibre using that J[p] is flat over Z[(,] ([BLR]], Lemma 7.3.2, as J
is semi-abelian) and that Jg, [p] is reduced. But consequently, it also acts as zero on the spe-
cial fibre .J[p](d), whence also on the cotangent space Coto(J°[p])(d). Now Lemmal[(3.3.9)
finishes the proof. |
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(3.3.12) Theorem. Let 2 < k < p+ 1, N > 5 such that p t N. We write for short
Tpar, Nk = Tr, (Hpar(T1(N), Vie2(Fp))), Tmod, N,k = Tr, (Se(T'1(N),Fp)) and simi-
larly for the twisted ones. Then there is the commutative diagram of F,-algebras

Tr, (L(k — 2)) — Tmod, Nk % Tmod, N p+3—k,[k—2]

T | |

Toar,np,2 ——> Tpar,v e % Tpar, N pt3—k,[k—2]-

P

The vertical arrows are obtained from Proposition resp. Corollary and the
horizontal ones from Proposition and Proposition The vertical arrows are
surjective. If 2 < k < p, then the upper horizontal arrow is injective.

Proof. The commutativity is clear, as 7; is sent to 7; x 7; along the horizontal arrows,
and 7; is sent to T; along the vertical arrows. The surjectivity of the vertical arrows has been
proved at the places cited above.

The injectivity of the upper homomorphism is the fact that L(k — 2) is the direct sum of
Sp(T1(N),Fp) and Spis—x(T1(N),Fp) [k — 2], if2 < k < p. O

(3.3.13) Corollary. Let 2 < k < p+ 1, N > 5 such that p t N. Let P be a maximal
ideal of Ty, (L(k — 2)) which is not in the support of Sp43—,(T'1(N),Fy,). Then we have an
isomorphism

Tr, (Sk(T1(N), Fp)gp) = Tr, (Hpor (1 (N), Vieoa(F))sp)

Proof. The assumption means that (Sp+3-x(T'1(N),F,)[k — 2])p = 0. Because of
Corollary [3:3:4) we know that 9B is not in the support of H},.(T'1(N), Vpy1-k(Fp))[k — 2]
either, whence (HI;%r (T1(N), Vps1-&(Fp))[k — 2])p = 0. Hence, the sequence of Proposi-
tion [(3:2.5)] localised at P is split, and all maps in the localisation of the diagram of Theo-
rem[(3.3.12) are isomorphisms. O

(3.3.14) Corollary. Let2 < k <p+1, N > 5suchthatp{ N. Let P be a maximal ideal of
Tg, (Sk(F1(N),Fp)) corresponding to a normalised eigenform f € S(T'1(N),F,) which
is ordinary, i.e. ay(f) # 0. Then we have an isomorphism

T]Fp (Sk(rl(N)ﬂ }FP)&B) = T]Fp (Hp{ar(]'—‘l (N)7 Vk72(Fp))‘J3)~

Proof. As the operator T}, always acts as zero on Sp43—(I'1 (IV), Fp) [k — 2] the maximal
ideal 3 cannot be in the support of Sp43_k(I'1(N), Fp)[k—2], whence we are in the situation

of Corollary O

(3.3.15) Remark. In contrast to Proposition[[3.3.8)|the exact sequence of Proposition[3.2.5]
is in general non-split for d = k — 2 with 2 < k < p. However, it is split for k = 2.
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Action through characters

(3.3.16) Lemma. In the situation of Proposition [3.3.18] we have
HY(A, Si(T,K)) = 0.

This also holds for k = 2 away from Eisenstein ideals.

Proof. Without loss of generality we may assume that A is a p-group and hence that
G acts freely on H and that 7 : Xp — X is a Galois cover with group A of proper K-
schemes. The group action of A on cohomology is through the Diamond operators. The
Hochschild-Serre spectral sequence gives an injection

0 — HY (A, HY (X7, 7*w®*(—cusps))) — H'(Xq,w®*(—cusps)).

Using Serre duality and the Kodaira-Spencer isomorphism we obtain

S-D K-S
H'(Xq,w®(—cusps)) = H*(Xq, Q' @ (w®*(—cusps))V)" = HY(Xq,w®? )V

which is zero, since the degree of w®2—k g negative (as k > 3). The map 7 is étale and we
have HO(Xp, 7*w®(—cusps)) = Sk (T, K), from which the claim follows. For k = 2 we
have H!(Xg,w®?(—cusps)) & H%(Xg, 0)Y, which is 1-dimensional. As a Hecke module
it cannot be in the support of a non-Eisenstein prime. O

(3.3.17) Corollary. In the situation of Proposition [3.3.18) suppose that K has characteris-
tic p and that A is a p-group. Then Sy, (T, K) is an induced K[A]-module.

Proof. This follows from Lemma [(3.3.16) and Proposition [2.7.13) O

(3.3.18) Proposition. Let £ > 3, N > 1 be integers and K a field. Furthermore, let

I'(N) < T <G < SLy(Z) be subgroups and € : G e "G — K* a character such
that e(—1) = (=1)* if =1 € G. Let A := T'\G. We assume that A is abelian and that T
acts without stabilisers on H. If the characteristic of K is p > 0, then we assume pt N and
that G has no stabilisers of order p for its action on H.

Then the norm Na induces an isomorphism

(Sk(T, K) @ K°) . Y25 (ST, K) @ K™ = Si(G, e, K).

When k = 2, then the statements also hold if one localises away from Eisenstein maximal
ideals (i.e. those not corresponding to irreducible Galois representations).

Proof. If the characteristic of K is zero, the finite abelian group A acts semi-simply, and
hence the claim follows. If the characteristic is p, it suffices to prove the statement for the
p-Sylow subgroup A, of A, as again A /A, acts semi-simply. Corollary [3.3.T7)implies that
Sk (T, K) is a cohomologically trivial (for Tate cohomology) K [A,]-module. Consequently,
the norm induces an isomorphism. m|
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(3.3.19) Remark. If the characteristic of K is p, then the result of Proposition [(3.3.15)
also holds for k = 1. For the A-action commutes with the derivation © used in Propo-
sition As the A-invariants agree with the A-coinvariants in weights p and p + 2, it
follows that the same holds in weight one by the exact sequence in Part (a) of that proposition.

(3.3.20) Proposition. We keep the assumptions of Proposition If the characteristic
of K isp > 0, we also assume k < p + 2.

If CMy(T,K) is a faithful Tk (Si(T, K))-module, then CMy (G, e, K) is a faithful
Tr (Sk(T, €, K))-module. For k = 2 similar statements hold away from Eisenstein primes.

Proof. Dualising the result of Proposition [[3:3.18) gives an isomorphism
A
(T(Sk(T,K)) @ K°) . ™2 (T(Su(T, K)) @ K9)°,
which in particular yields that the implication

T(Y e®) M) =0 = Tel,

[ J<PAN

where I is the ideal defined in Proposition In view of that proposition, we only need
to show that if T" acts as zero on CM (G, €, K), then T is in I.

That can be seen as follows. We now assume that A = A, i.e. that G = G. For that we
may have to replace G by a subgroup of index 2. This may be done since neither the space of
modular symbols nor the space of modular forms changes.

From Proposition we know

N
CMi(G, e, K) = A(CME(T, K) @k K°) = 2(CM(T, K) @5 K°).
If T acts as zero on

CMy(G,e, K) = Na(CMi(T, K) @k K) = (Y e(8)1(6))CMy(T, K),
dEA

then
(T e(8)"1(8))CMi(T, K) =0

dEA

and by the assumed faithfulness of CM (T, K), it follows that (D ;. €(6)(8)) = 0,
whence T' € I, as required. O



Chapter IV

Computations of mod p Modular
Forms

In this chapter we explain how the results of Chapters [l and [Tl can be used algorithmically
to compute modular forms over finite fields with methods from linear algebra, most notably
modular symbols, under certain restrictions.

As modular forms in the situation when we consider them are uniquely determined by
their g-expansions, we only need to compute the corresponding Hecke algebra, since the
space of modular forms is its dual. If one is only interested in eigenforms, not the whole
Hecke algebra structure is needed, and we can do with fewer conditions. However, the knowl-
edge of the Hecke algebra structure is necessary for the computation of weight one forms,
and it is interesting to study e.g. the Gorenstein property in view of a possible identification
between the Z,-Hecke algebra with a deformation ring. We also explain how weight one
Hecke algebras can be computed using weight p, following [[EdixJussieu]]. Moreover, the
principal algorithms of my Magma package Weight1 .mg, which builds on William Stein’s
package ModularSymbols, are presented. Fortunately, Stein’s package has already pro-
vided modular symbols over finite fields for a long time, and one could say that this chapter
is about their interpretation.

We start this chapter by recalling the relation between modular forms and Hecke alge-
bras. Next we present an algorithm which splits a module over a commutative algebra over
a finite field into local pieces up to Galois conjugacy. The third section compares systems of
eigenvalues of modular forms with those of modular symbols. In the fourth section an algo-
rithm for the computation of Hecke algebras of weight £ > 2 over finite fields using modular
symbols is treated. Then we explain how weight one and weight p are related for finite fields
of characteristic p, from which we derive an algorithm for the computation of weight one
forms, following [[Edix.Jussieul]. The final section sketches a certain generalisation of Merel’s
universal Fourier expansions.

57
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4.1. Modular forms and Hecke algebras

Let K be a perfect field and K an algebraic closure. Let furthermore S(K) be some space of
modular forms defined over K and T g the associated Hecke algebra over K, such that the
pairing
Tx x S(K) = K, (T,f)— ai(T)

is non-degenerate, where a,, () denotes the n-th coefficient of the standard g-expansion of f.
This is the case for instance for holomorphic modular forms () = C) forI'y (N), I'g(N) and
all N > 1, or for Katz modular forms over K’ = F,» for I'1 (IV), T'o(/V) and all N > 1 such
that p ¥ N. The pairing gives rise to the following Hecke equivariant isomorphisms

S(K) = Homp (Tk, K) = Hom#(Tx @K K, K),

where the first arrow is given by f — (T — a1(Tf)). Let us recall the important formula
a1(Tnf) = an(f), which follows from the action of the Hecke operators on g-expansions.
Normalised Hecke eigenforms in S(/) correspond under the first isomorphism to K -algebra
homomorphisms Ty — K. Eigenforms that are Galois conjugate (i.e. the coefficients of the
standard g-expansion are conjugate by G(K|K)) correspond to Galois conjugate K -algebra
homomorphisms T — K. Two K -algebra homomorphisms Tx — K are Galois conjugate
if and only if they have the same kernel. It is common to refer to a /-algebra homomorphism
f: Tx — K as the system of eigenvalues (A, )y, of Trc with \,, = f(T},).
We have established bijections

Spec(T g = Homg _ TK,F 471 1 normalised eigenforms in S K G(K|K
g

and
Spec(Tx ® K) L Homg . (Tx @ K, K) L

normalised eigenforms in S(K = systems of eigenvalues of T }.
g y g

The Hecke algebra T g is finite dimensional (an Artin algebra) and commutative. So all its
prime ideals are maximal, and using the Chinese Remainder Theorem the algebra decom-
poses as a product of its localisations:

Te= [ Towz= J[ Te/m>= J[ Tx/(0-en)Tk.

méeSpec(Txk) méeSpec(Tk) meSpec(Tk)

If r is an integer r such that m” = m" 1 then we write m® for m”. The ey, in the formula
are idempotents corresponding to the decomposition.

4.2. Computing local factors of Hecke algebras

Let K be a perfect field, K an algebraic closure and A a finite dimensional commutative
K-algebra. We will write Ay, for A ® ¢ L, where L|K is an extension inside K. The image
of a € Ain A3 is denoted as .
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In the context of Hecke algebras we would like to

(1) compute a local decomposition of A, resp.

(2) compute a local decomposition of Az keeping track of the G(K|K)-conjugacy.

In this section we present an algorithm solving both points. This algorithm is implemented
in my Magma package Weightl .mg. It is based on the following lemma.

(4.2.1) Lemma. (a) A is local if and only if the minimal polynomial of a (in K[X]) is a
prime power for all a € A.

(b) Let V be an A-module such that for all a € A the minimal polynomial of a on 'V is a
prime power in K[X], i.e. V is a primary space for all a € A. Then the image of A in
End(V) is a local algebra.

(c) LetV be an Azz-module and let a1, . . ., a, be generators of the algebra A. Suppose that
fori € {1,...,n} the minimal polynomial of @; on V is a power of (X — X\;) in K[X]
for some \; € K. Then the image of Az in End(V) is a local algebra.

Proof. (a) Suppose first that A is local and take a € A. Let ¢, : K[X] — A be the
homomorphism of K-algebras defined by sending X to a. Let (f) be the kernel with f
monic, so that by definition f is the minimal polynomial of a. Hence, K[X]/(f) — A,
whence K [X]/(f) is local, implying that f cannot have two different prime factors.

Conversely, if A were not local, we would have an idempotent e ¢ {0, 1}. The minimal
polynomial of e is X (X — 1), which is not a prime power.

(b) follows directly. For (c) one can use the following. Suppose that (a — A\)"V = 0
and (b — p)*V = 0. Then ((a + b) — (A + p))" TV = 0, as one sees by rewriting
((a4+b) — (A+ ) = (a — ) + (b — p) and expanding out. From this it also follows
that (ab — Ap)2(" )V = 0 by rewriting ab — A\t = (a — X\) (b — p) + (b — 1) + p(a — \).

O

Let us call a pair (V, L) consisting of a finite extension L|K with L C K and an Ap-
module V' an a-pair for a € A if the coefficients of the minimal polynomial of @ acting on
V ®r, K generate L over K.

Let us furthermore call a set {(V1, L1),...(Vs, L)} consisting of a-pairs an a-decom-
position of an a-pair (V, L) if

() Veor K = ®., V; with V; = ®O'EGL/GL- o(V; ®r, K) and

(ii) the minimal polynomial of @ restricted to V; is a power of (X — ;) for some \; € L;
for all 7 and

(iii) the minimal polynomial of @ restricted to IZ is coprime to the minimal polynomial of @
restricted to V; whenever ¢ # j.
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The V; correspond to the local factors of the L-algebra (a) and the o/(V; @1, K) to the
local factors of the K-algebra (a@). So the (V;, L;) are a choice out of a G(L;|L)-conjugacy
class. The third condition above assures that for ¢ # j no (oV;,0L;) for o € G(L;|L) is
conjugate to a (7V;, 7L;) forany 7 € G(L;|L).

An a-decomposition of an a-pair can be computed by the following algorithm.

(4.2.2) Algorithm. We define the function DecomposePair as follows.
input: (V, L), a, where (V, L) is an a-pair.
output: A list output [(V1, L1), ..., (Vn, Ly)] containing an a-decomposition of (V, L).

Create an empty list output, which after the running will contain an a-decomposition.
Compute | € L[X)], the minimal polynomial of @ restricted to V.

Factor f = [[;_, p{* with p; € L|X| pairwise coprime.

Foralliin{1,...,n}do

1. Compute V; as the kernel of p;(aly ).

A Wb o~

Compute L;, the splitting field over L of p;.

Factor p;(X) = HUEGL/GLi (X — o), for some \; € L;.
Compute V; as the kernel of (aly; — A\i)*.

Join (V;, L;) to the list output.

ARSI

5. Return output and stop.

The decomposition of an Ax-module V' corresponding to the local factors of A% and
keeping track of conjugacy can be computed by the following algorithm, when the a1, ..., a,
in the input generate A.

(4.2.3) Algorithm. We define the function Decompose as follows.

input: (V,K),[a1,...,a,] with[as, ..., ay] alist of elements of A and (V, K) an a;-pair
form: 1,...,n

output: A list output = [(V1,K1),. .., (Va, Ky)| consisting of pairs with K; a finite
extension of K and V; an Ag,-module. See Proposition[4.2.4} for an interpretation.

1. Compute dec as DecomposePair ((V,K), a1).
2. If n =1, then return dec.

3. Create the empty list output.

4. Foralldindec do

1. Compute decl as Decompose (d, [aa,...,an]).

2. Join decl to the list output.

5. Return the list output and stop.
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From Lemma the following is clear.

(4.2.4) Proposition. Let A be a commutative finite dimensional K -algebra with generators
ai,...,an. Let V be an A-module. Suppose that Decompose ((V, K), [a1,...,as])
gives the output {(V1, K1), ..., (Vin, Kin) }.

ThenV ®9x K = @i, V with V; = @Ueck/GK oVi. The V; correspond to the local
factors of A and the oV correspond to the local factors of Az O

(4.2.5) Corollary. We keep the notation from Proposition[4.2.4) If V is a faithful A-module,
then the local factors of A are isomorphic to the images of A in End(V) Moreover the local
factors of Az correspond to the images of Ay in End(cVj).

4.3. Computing eigenforms of weight £ > 2 over finite fields

[Ash-Stevens|] have already noticed that all systems of eigenvalues of modular forms modulo
a suitable prime ideal above p also occur in group cohomology. We shall reprove that result in
a slightly more precise form using the properties of group cohomology and modular symbols
established before. We will also explain how this gives rise to an algorithm for computing
eigenforms over finite fields with methods from linear algebra over finite fields.

(4.3.1) Proposition. (a) Let p be a prime, k > 2, N > 5 with p 1 N integers and
f e Sk(Fl(N),IF_p) a normalised eigenform for 2 < k. Then its system of eigen-
values occurs in any of the spaces H., (T'1(N),Vi_2(Fp)), CMp(T1(N),F,) and
CHi(T1(N),Fp).

(b) Let k > 2 be an integer and ¢ : (Z/NZ)* — F* be a character with ¢(—1) = (—1)¥
for F|F, a finite extension. Then the system of eigenvalues of any normalised eigenform
f € Sk(T1(N), €, F,) occurs in any of the spaces
H} (Do (N), Vie_o(F)), @/Nzy (Hhar(T1(N), Vi (F)) ©F F€),
CMi(To(N),e,F), E/ND (CM(T1(N), F) @ FF),
ZIND™ (CHE(T1(N),F) @ F),  z/nz)+ (CHe(T1(N),F) @F F€).
(c) Assume the situation of (a) and that 2 < k < p + 2. Then all systems of eigen-
values occurring on any of the spaces cited in (a) come from a normalised eigenform

f € SrT1(N),Fp).

(d) Assume the situation of (b), 2 < k < p+2 and that FO( ) does not have any stabiliser of
order p for its action on H (compare Proposition[2.62)). If k = 2, then we also assume
€ to be non-trivial. Then all systems of eigenvalues occurring on any of the spaces cited
in (b) come from a normalised eigenform f € Si(T'1(N),€,Fp).

(e) Assume the situation of (a). Suppose there is a system of eigenvalues coming from any of
the spaces cited in (a) but not from a modular form. Then for any prime | ¥ Np the Hecke
operator (T})? acts on it with eigenvalue (I + 1)21F72.
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Proof. Part (a) follows from Corollary[(3.3.2) and the comparison result Theorem [2.6.T}
It is clear that a system of eigenvalues of a modular form with character € also occurs in any
of the spaces given in (b).

(c) The statement is an immediate consequence of Corollary [(3.3.4) and Theorem[[Z:6.1)]

(d) follows from (c) using Proposition [Z:7.10)

(e) We can assume k > p + 2 by (c). By Corollary [(3.3.2) a system of eigenvalues living
on the torsion free quotient comes from a modular form. So, a system of eigenvalues as in
the assumption must live on

H (Ve oy V2 (Zp)) 0] = HO (Y, oy, V-2 (Fp)) & Voo ()12,

where the first isomorphism comes from Proposition Applying the definition of
the Hecke operator 7T} for a prime [ { Np, we see that it acts on the right hand side by
sending a polynomial f of degree k — 2 to (I + 1)(({9).f)(=,y). So (T})* acts as
L+ 1)2((59).f)(zy). But (50) = ({9) (é 191) and the latter matrix acts trivially,
which implies the statement. a

(4.3.2) Remark. Proposition [4.31}a) and (c) also hold more generally for k > 3 and
I' < SLa(Z) a subgroup of finite index whose stabilisers have order invertible modulo p.
With these assumptions Proposition[3.3.3) and Corollary[3.3.4) are also true. However, for
k = 2 there could be lifting problems to characteristic 0 (i.e. Carayol’s Lemma does not
hold).

For computational purposes it is essential to have a finite set of generators for the Hecke
algebra. This is provided by the following proposition.

(4.3.3) Proposition. Ler N > 1 and k > 2 be integers such that p t N, F|F,, a finite
extension and let € : (Z/NZ)* — F* be a character with e(—1) = (—1)*. Set

N 1
B=— -).
n 1 ey
l|N,l prime
Let T be the Hecke algebra for Sp(I'y(N), €, F,). Then the Hecke operators

k k k
I N M

generate T®) as an F-vector space.
The number kB is called the Hecke bound of Si(T'1(N), €, ).

Proof. This follows from the proof of [[Edix.Jussieul], Proposition 4.2. m|

As we have seen that systems of eigenvalues of modular symbols are closely related to
those of modular forms, we quickly sketch how to compute them up to Galois conjugacy.
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(4.3.4) Algorithm. We define the function Eigenforms as follows.

input: N, k,p,e, where N > 1, k > 2 are integers, p is a prime and € is a Dirichlet
character of modulus N with values in some finite extension I of F,

output: A list output [(Vi, L1),..., (Va, Ly)].

1. Generate the space M of cuspidal modular symbols for T'1(N), weight k and character €
overF.

2. Compute the Hecke bound kB as in Proposition
3. Compute the list L. = [T1, ..., Txp] consisting of the listed Hecke operators on M.

4. output := Decompose((M,F),L)
The function Decompose was defined in Algorithm We may replace all e; in
Step 4 of Algorithm[[4.2.2) by 1, as we are only interested in systems of eigenvalues.

5. Return output and stop.

The (V;, L;) in the list output correspond precisely to the different Galois conjugacy
classes of systems of eigenvalues (\,),, on the cuspidal modular symbols. That means that
the restriction of the Hecke operator T;, to V; is a scalar matrix with eigenvalue A, .

4.4. Computing Hecke algebras of weight © > 2 over finite
fields

We now address the question of computing the Hecke algebra of modular forms over finite
fields.

The following theorem is a very satisfactory result, if the weight is smaller than p or equal
to p 4 1. In the former case it is mainly due to Edixhoven ([[EdixJussieu], Theorem 5.2).

(4.4.1) Theorem. Let p be a prime and N > 5, k > 2 integers such that p t N. Suppose
k<pork=p+ 1

(a) The Hecke algebra over F,, of Si.(T'1(N),Fp) can be computed by the Hecke action on
any one of Hy, . (U'1(N), Vk—2( p)) CMi(T1(N), Fp) or CHy(T1(N), Fy).

(b) Lete: (Z/NZ)* — F* a character with e(—1) = (—1)kf0r a finite extension F of F,,.
If k = 2, then we assume that € is non-trivial. We assume further that I'o(N) does not
have any stabiliser of order p for its action on H (compare Proposition [2.6.2)).

Then the F-Hecke algebra of Sk(I'1(N),€,F,) can be computed by the Hecke action on
any one of the spaces
H],(To(N), Vi, (F)), @/Nz)* (Hror (C1(N), Viea (F)) ©F F€),
CM(To(N),¢,F), (Z/ND (CM,(T1(N),F) @5 F),
E/ND (CHR(T1(N),F) @ F),  z/n2)- (CHE(T1(N),F) @ F€).
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Proof. In the case where k < p both parts are immediate from Corollary the
comparison result Theorem and Proposition

If kK = p + 1, the result follows from Corollary Proposition [(3.3.20) because all
modular forms in weight p 4 1 are ordinary (see e.g. [EdixWeight]], Proposition 3.3). O

Next we cover the weight p case.

(4.4.2) Theorem. The statements of Theorem also hold for weight k = p > 2 lo-
calised at ordinary (a,(f) # 0) systems of eigenvalues.

Proof. This follows as above from Corollary Proposition [(3.3.20) the compari-
son result Theorem and Proposition O

(4.4.3) Lemma. Let A := (Z/N7)*/(—1). The Hecke operator T; for any prime | { Np
acts on E(T1(N),F,), Ho(A,E(T1(N),Fp)) and Hi (A, E(T1(N),F,)) by multiplica-
tion by (I + 1).

Proof. For the boundary space @gGFI(N \PSLa (2) /T HY(T1(N)ngUg~*,TF,) the corre-
sponding statement is 1mmed1ately verified from the definition of the Hecke operator 7; and
the fact that the index of T'1(N) N TO(1) N gUg " inT1(N) N gUg~ " is [ + 1. As it holds
on the boundary space, it holds on the Eisenstein subspace, which is Hecke stable. As the
‘A-action is through the diamond operators, which commute with 77, the result also follows
for the two homology groups listed. a

(4.4.4) Proposition. Let N > 5 aninteger and p t N a prime. We assume further that To(N')
does not have any stabiliser of order p for its action on H (compare Proposition |(2.6.2)).
Let f be a normalised eigenform in So(L'o(N),F,) corresponding to a maximal ideal P
of the Hecke algebra T. If the associated Galois representation of f is not Eisenstein (i.e.
is not reducible), then the localisation at 3 of T can be computed by the Hecke action on

CMso(To(N),Fp)gp.

Proof. If p # 2 we invoke Theorem and if p = 2 [EdixJussieul], Theorem 5.2,
in order to obtain the result for I'; (V) without a character. By Theorem it suffices
to prove that the Hecke action on Ho(A, E(I'1(N),F,)) and Hq (A, E(T1(N),F,)) cannot
give rise to an irreducible representation. That, however, is clear by Lemma O

(4.4.5) Proposition. Let p be a prime, N > 5, k > 2 integers such that p t+ N, and let
€: (Z/NZ)* — F* be a character with e(—1) = (—1)* for a finite extension F of F,,. We
assume further that FO(N ) does not have any stabiliser of order p for its action on H (com-
pare Proposition[2.6.2)). Let f € Si(T1(N),¢,F,) a normalised eigenform for k > 2 with
an irreducible Galois representatwn Let M be any of the spaces H], . (To(N), Vii_y(F)),
CMk(F()( ) € IF) or (Z/NZ (CHk(Fl( ) IF) ®FE)

Ifthe local factor at f of T(Sk(T'1(N), €, F,)) has the same dimension as the correspond-
ing local factor of T(M), then these two local algebras are isomorphic.
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Proof. As we know that differences occurring in the passage to characters only cor-
respond to reducible Galois representations, it suffices to prove similar statements for
I' :=T'y (V) without a character.

We show that there is a surjection of algebras from the local factor of T(S(T',F,)) to
that of T(M). We have

Tz(sk (F, (C)) KRz IFp = TZ;) (le)ar (F, Vi—o (Zp))/pftorsion) ®Zp Fp.
Locally at a prime ideal ‘B3 corresponding to an irreducible representation we have
Hyor (T, Vie2(Zy)) /p—torsion)q 2= Hy, (T, Viea (Zp)) ),

since the p-torsion part cannot correspond to an irreducible representation due to the calcula-
tion in the proof of part (e) of Proposition[[4.3.T)] Moreover, it is easy to check that irreducible
representations cannot live on the possible differences H'((c), CoindISiLQ(Z)Vk,g (Fp)) and

similarly for 7. O
We next sketch an algorithm for computing the local factors of the Hecke algebra of

modular symbols up to Galois conjugacy.

(4.4.6) Algorithm. We define the function HeckeAlgebras as follows.
input: N, k,p,e, where N > 1, k > 2 are integers, p is a prime and € is a Dirichlet

character of modulus N with values in some finite extension F of IF,.
output: A list output [(Vi,L1),...,(Va, Lyp)].

1. Generate the space M of cuspidal modular symbols for T'1(N), weight k and character €
overF.

2. Compute the Hecke bound kB as in Proposition
3. Compute the listL., = [Ty, ..., Tip] consisting of the listed Hecke operators on M.

4. output := Decompose((M,F),L)
The function Decompose has been defined in Algorithm

5. Return output and stop.

The (V;, L;) in the list output correspond precisely to the different Galois conjugacy
classes. That means that the corresponding local Hecke algebra is generated by the restric-
tions of the Hecke operators to the V.

In order to obtain proved results if the conditions of Theorems [4.4.1) and [4.4.2) do not
apply, we must compute with cuspidal modular symbols over QQ and choose a lattice. We
may then work with the reduction modulo p of the Hecke operators written with respect to
a lattice basis. Note that this method in the primitive form given only applies to situations
when the character takes values in {£1}. This approach works as any lattice gives rise to
an isomorphic Hecke algebra. However, working over Q, choosing a lattice and computing
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Hecke operators with integral coefficients is very slow. Moreover, if we work with non-free
groups such as I'g (V) then we only get those forms that are reductions mod p of holomorphic
modular forms and possibly not all Katz forms. One of the advantages of working with all
the torsion is that we get Katz modular forms, whenever Theorems or [(4:42) apply.
E.g. with £ = 2 and p = 3, mod 3 modular symbols also compute those mod 3 eigenforms
that cannot be lifted to characteristic 0 with a character of the same order.

4.5. Embedding weight one into weight p

In this section we describe how weight one and weight p modular forms are related. Recall
that we are working throughout with Katz modular forms, which becomes really essential in
this section. All ideas are taken from [[EdixJussieul] (Section 4) and have also been described
in [[W-App]. For more details the reader is referred there.

Let IF be a finite field of prime characteristic p of E and fix alevel N > 1 withp{ N and
a character € : (Z/NZ)* — F* with e(—1) = (—1)*. We have two injections of F-vector
spaces

F‘7 A: S’l(I’l(N), E,F) — Sp(Fl(N), €,F),

given on g-expansions by a,(Ag) = an(g) and a,(Fg) = ayn/,(g9) (With a,(Fg) = 0
if p 1 n), that are compatible with all Hecke operators T; for primes [ # p. The former
comes from the Frobenius and the latter is multiplication by the Hasse invariant. One
has Tp(p)F = A and ATp(l) = Tp(p)A + €(p)F, where we have indicated the weight as a
superscript (see e.g. [EdixJussieul], Equation 4.1.2).

The key to an effective description of the image of F' is the following theorem by Katz,
which is the main theorem of [[KatzDerivationl.

(4.5.1) Theorem. (Katz) Let k be an integer.

(1) There exists a homomorphism
A© : Sk (Fl(N), €, F) - Sk+p+1 (Fl (]\7)7 €, F),

whose effect on q-expansions is qd% (ie. an(AOf) = nan(f)), whence it is called a
derivation.

(2) Supposep | k. If f € Sp(T'1(N), €, F) does not come from a lower weight, then A f
has weight k + p + 1, and does not come from a lower weight. In particular, A© f £ 0.

(3) If f € Spr(T1(N),€,F) and AOf = 0, then f = h® for a unique h € Sk(I'1(N), €, F).

Let T®) be the Hecke algebra over F of weight k for a fixed level N and a fixed charac-
ter e. We will also indicate the weight of Hecke operators by superscripts. We denote by A ®)
the IF,,-subalgebra of T(®) generated by all Hecke operators T,(Lp ) for pin.
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(4.5.2) Proposition. (a) There is a homomorphism ©, also called a derivation, given on q-
expansions by a, (0O f) = nay(f) such that the sequence

0— S1(T1(N),e,F) £ S,(T1(N), e, F) 2 S, 5(T1(N), e, F)
s exact.

(b) Suppose f € S1(T'1(N), €, ) such that a,,(f) = 0 for all n withp t n. Then f = 0. In
particular AS1(T'1(N),e,F) N FS1(T1(N),e,F) =0.

(c) The Hecke algebra TY) in weight one can be generated by all Tl(l), where | runs through
the primes different from p.

(d) The weight one Hecke algebra TV is the algebra generated by the A®)-action on the
module T®) /AP),

Proof. (a) Theorem[[4:3.T)] (3) gives the exact sequence
A0
0 — S (T1(N),&,F) 5 Sp(T1(N), €, F) =2 Sa,41(T1(N), €, F)

by taking Galois invariants. However, as explained in [[EdixJussieu], Section 4, the image
ABS,(I'1(N),¢,F) in weight 2p + 1 can be divided by the Hasse invariant, whence the
weight is as claimed.

(b) The condition implies by looking at g-expansions that A® f = 0, whence by Theo-
rem [£5.1)] (3) f comes from a lower weight than 1, but below there is just the O-form (see
also [[EdixJussieul], Proposition 4.4).
(c) It is enough to show that T,Sl) is linearly dependent on the span of all T,(Ll) forp t n. If
it were not, then there would be a modular form of weight 1 satisfying a,,(f) = 0 for p { n,
but a,(f) # 0, contradicting (b).

(d) Dualising the exact sequence in (a) yields that T(®) /A() and T(") are isomorphic as
A®) _modules, which implies the claim. O

(4.5.3) Proposition. The F-algebra A®) defined above can already be generated as an F-
vector space by the set
{T® | ptn,n<(p+2)B},

where B is the number from Proposition

Proof. Assume that some T,(,f ) for m > (p +2)B and p 1 m is linearly indepen-

dent of the operators in the set of the assertion. This means that there is a modular form
f € S,(T1(N), ¢, F) satisfying a,,(f) = 0 forall n < (p + 2) B, but a,,(f) # 0. One gets
an(©f) =0foralln < (p+ 2)B, but a,,(Of) # 0. This contradicts Proposition [4.3-3)

O

These two propositions provide us with an effective method for computing the Hecke
algebra in weight one, once we dispose of a faithful module for the Hecke algebra in weight p.
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If we are only interested in forms of weight one, we would like to be able to throw away
parts that cannot come from weight one. The following considerations will also enable us in
certain cases to compute weight one eigenforms without computing all the Hecke algebra.

(4.5.4) Proposition. Let V C S,(I'1(N), €, F) be the eigenspace of a system of eigenvalues
for the operators Tl(p) forall primes | # p

If the system of eigenvalues does not come from a weight one form, then V is at most
1-dimensional. Conversely, if there is a normalised weight one eigenform g with that system
of eigenvalues for Tl(1> for all primes 1 # p, then V. = (Ag, Fg) and that space is 2-
dimensional. On it T,Ep) acts with eigenvalues v and e(p)u~" satisfying u-+e(p)u="' = a,(g).
In particular, the eigenforms in weight p which from weight one are ordinary.

Proof. If V is at least 2-dimensional, then we can choose a normalised eigenform f for
all operators and we then have V = Ff & {h | an(h) = 0 ¥p{ n}. As a form h in the right
summand is annihilated by ©, it is equal to F'g for some form g of weight one by Proposi-
tion [[4:3.2) (a). By Part (b) of that proposition we know that (Ag, F'g) is 2-dimensional. If V/
were more than 2-dimensional, then there would be two different modular forms in weight 1,
which are eigenforms for all Tl(l) with [ # p. This, however, contradicts Part (c).

Any normalised eigenform f € V for all Hecke operators in weight p has to be of the
form Ag + pFg for some pu € F. The eigenvalue of T,Ep ) on f is the p-th coefficient, hence
u=ap(g) + . as ap(Fg) = a1(g) = 1. Now we have

T (Ag + pFyg) = TP Ag + Ag
= AT(Ng—e(p)Fg+pAg=(ap(g) +p)Ag —e(p)Fy,

(ap(g) + p)(Ag + puFg)

which implies —¢(p) = (a,(g) + p)p = u? —ua,(g) by looking at the p-th coefficient. From

this one obtains the claim on u. O

(4.5.5) Corollary. Let N > 5 an integer not disible by the prime p. The Hecke algebra of
S1(I'1(N),F,) can be computed using modular symbols over I,

Proof. Due to the ordinarity (Proposition [£.5.4)), this follows from Theorem and
Proposition [4:3.2)}d). O

4.6. Computing Hecke algebras of weight one over finite
fields

If one is only interested in eigenforms, one can use Algorithm [4-3:4)| for weight p with mod p
modular symbols and look for pairs of eigenforms differing only at p. These correspond
to weight one eigenforms by Proposition However, a weight p eigenform f with
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ap(f)* = €(p) might or might not correspond to weight one. Here an extra check will be
needed.

We next describe the function SystemsOfEigenvalues implemented in the Magma
package Weightl.mg.

(4.6.1) Algorithm. We define the function SystemsOfEigenvalues as follows.
input: N, p, e with N a positive integer, p a prime and € a Dirichlet character over a field

extension I of F,,.

option: We1APriori € { true, false }.

output: A decomposition of the cuspidal modular symbols for T'1(N) of weight p and
character € corresponding to the conjugacy classes of local factors of the algebra AW, If
the option Wt 1APriori is set, local factors that cannot correspond to weight one forms by

Proposition are discarded.

1. Generate the space M of cuspidal modular symbols for T'1(N), weight p and character €
overF.

2. Compute b := (p + 2)B as in Proposition [4.5.3)

3. Compute the list L consisting of the Hecke operators T,, acting on M for p 1 n and
1<n<hb.

4. If not WeightlAPriori, call output := Decompose with the list L and the
pair (M, F). Return output and stop. The function Decompose was defined in Algo-

rithm
5. IfWeightl1APriori, then proceed as follows.

1. Compute the operator T}, acting on M.

2. Compute the minimal polynomial F, € F[X] of T, and factor it [, p;(X )¢ over
F[X] into coprime prime powers.

3. Create a set S of prime factors as follows.
Ifpi(X) = X + a with a® = €(p), then join p;(X )% to the set S.
If pi(X) satisfies p;(a) = 0 = p;(e(p)a—t) =0, thenjom pi(X)% to the set S.
Iffor a pairi # j one has p;(a) = 0 = pj(e(p)a—") = 0, then join p;(X )™ (€-¢) 10
the set S and discard p;(X).
Discard all other p;(X).

4. Create an empty list output.

5. Foreach p(X)©in S do:
1. Compute the kernel W of p(T},)¢ acting on M.
2. Create a list L' by restricting the entries of L to W.
3. Join Decomposition ((W,F),L’) to the list output.

6. Return output and stop.
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One now obtains the local weight one Hecke algebras for the given level and character as
follows. Let V; be one of the spaces in the output of SystemsOfEigenvalues. Then the
quotient

(Tolvi |1 <n<pB)/(Tolv; |1 <n<(p+2)B,pin)

is an A®)-module. Whenever the space of cuspidal modular symbols used in the function
SystemsOfEigenvalues is a faithful T(P)-module, the algebra generated by Tl(p) on
that quotient for [ # p and 1 < [ < B is the local factor of the Hecke algebra of weight one
that we were looking for.

4.7. Universal g-expansions

In [MerelUniversal] Merel has among other things established a “universal Fourier expan-
sion” of holomorphic modular forms in terms of Hecke operators acting on modular symbols.
We sketch how a generalisation of Merel’s result can be deduced from the theory developed
here.

The plus-space, denoted by the superscript T, is the subspace fixed by the action of the

matrix n := (' 9) (supposing that there is such an action).

(4.7.1) Proposition. Let I' < SLo(Z) be a subgroup of finite index. Suppose nI'n = I" and
that for some x € CMy (T, R)™ the homomorphism

T — CMi(T,R)Y, T— Tz

is an isomorphism, i.e. that CM (T, R)" is a free T-module of rank 1. Then we have a
universal g-expansion, i.e. an isomorphism

HOIH(CMk(F, R)Jra R) - Sk(ra R)a (b = Z ¢(Tnx)qn

n>1

Proof. We have the isomorphism

Hom(T, R) — Sk(T, R), v — Y _ ¥(Tw)q",

n>1

which we only need to combine with the isomorphism between T and CM (T, R)* to obtain
the proposition. O

From a version of the Eichler-Shimura Theorem involving the plus-space it follows that
the condition in Proposition is satisfied, when R = C. In [[EPW], p. 30, an iso-
morphism between Ty and a space isomorphic to CM  (I'y (IV), Zp)$ locally at p-ordinary
and p-distinguished primes ‘3 of the Hecke algebra is derived from a fundamental theorem
by Wiles ([[Wiles], Theorem 2.1). Hence, also in that situation there is a universal Fourier
expansion.



Chapter V

Some Computational Results

This chapter gives an overview over some computations that were carried out using the algo-
rithms presented in Chapter[[Vl Moreover, we give some motivation why these computations
are useful.

5.1. Weight one modular forms over F for T'y(V)

Mestre’s computations

The first computer calculations of weight one modular forms known to the author were carried
out by Jean-Frangois Mestre and written down in a letter to Serre from October 1987. The
letter has appeared as Appendix A of [[EdixJussieu]. We have verified the computations and
reported on them in Appendix B [[W-App] of loc. cit.

Further computations

All modular forms of weight 1 and 2 for I'g(/V) for odd N in the range from 11 to 3445 have
been computed with the Magma package Weight1.mg. Up to Galois conjugacy we found
2998 cuspidal Katz eigenforms of weight 1 and 14009 systems of eigenvalues of weight 2.
Among the latter there might be some that do not correspond to cusp forms (see Chapter [V]).
For each of them we computed the field F generated by the coefficients, the local factor of
the corresponding Hecke algebra and a lower bound for the image of the associated Galois
representation (an upper bound is provided by SLo(TF)).

We found the following distribution of the degree of the coefficient field. In the tables we
count all eigenforms (resp. systems of eigenvalues), not only up to Galois conjugacy.

71
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Weight 1:
Degree 1 2 3 4 5 8 10
# forms 1417 | 1102 | 1200 | 972 | 535 | 96 | 320

Percentage || 21.1 | 164 | 179 | 145 | 79 | 14 | 4.7

The biggest degree occurring is 29.
Weight 2:
Degree 1 2 3 4 5 8 10
# forms 3765 | 5036 | 5115 | 6036 | 3160 | 2976 | 3430
Percentage 9.8 13.1 | 13.3 | 15.7 8.2 7.7 8.9

The biggest degree occurring is 127.

Non-liftable Katz forms of weight one

Eigenforms of weight one whose associated Galois representation has image equal to some
SLo(For) with > 3 cannot be lifted to holomorphic weight one forms, because PGL4(C)
does not have a finite subgroup having SLo(Far) with » > 3 as a quotient. The first such
form was found by Mestre. More calculations have been carried out by Lloyd Kilford, Edray
Goins and the author for forms over F.

Level Group History || Level Group History

1429 | SLy(Fs) | Mestre || 2879 | SLqo(Fs) W.

1567 SLy (Fg) Mestre 3271 SL, (F512) W.

1613 | SLy(Fg) | Mestre || 3517 SLo(Fs) | Kilford
1693 | SLy(Fg) | Mestre || 3709 SLo(Fs) | Kilford
1997 | SLy(Fs) | W. || 4817 | SLy(Fs) | Kilford
2017 | SLo(Fs) | W. | 4889 | SL,(Fs) | Kilford
2089 SL2 (Fg) W. 6133 SL2 (F1024) Kilford

2647 | SLo(Fi6) | W. 7237 | SLy(Fs) | Kilford
2767 | SLa(Fes) | W.

Non-Gorenstein Hecke algebras

The first non-Gorenstein Hecke algebras were found by Lloyd Kilford ([Kilford]) for T'g(p)
in weight 2 over 5 with p € {431, 503,2089}. All corresponding modular forms are dihe-
dral, the associated Galois representation is only ramified in p and also occurs for a weight
one form. However, the local Hecke algebra in weight one is Gorenstein in all the cases.
These non-Gorenstein forms of weight 2 should be considered as old forms due to the pres-
ence of the weight one forms, which can be embedded into weight 2 in two different ways
as explained in Chapter [Vl We did not find any weight one Hecke algebra which is non-
Gorenstein and whose system of eigenvalues does not already live in a strictly lower level.
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Realisation of SL,(F,-) as Galois groups over Q

Weight 2 eigenforms for I'g(IV) over Fy give rise to a Galois representation, whose image is
a finite subgroup in SLy(F3). This leads to a realisation of the occurring images as Galois
groups over Q. It seems only to have been known previously that SLo (Far ) occurs for r < 16,
again due to computations by Mestre (see [SerreGalois], p. 53). The abstract realisations that
we obtain in that way only ramify in N and usually also 2.

Up to conjugation all subgroups of SLy (Far) are

o SLy(Fos) with s | 7,

o dihedral D, withn | 2" —1orn | 2" + 1,
o cyclic Cp, withn | 2" —1orn | 2" + 1,

e subgroups of the upper triangular matrices.

In square-free levels only D,, or SLa(IF2s ) are possible by Proposition [1.5.2)] unless the
representation is trivial. It is easy to determine a lower bound for the image, as conjugacy
classes can be distinguished by their traces. The traces of all Frobenius elements for primes
p 12N and p less than the Hecke bound are used in the program. Although it is unlikely, it is
not excluded that not enough conjugacy classes are hit to obtain the whole image. Hence, we
can only talk about lower bounds.

We have 2506 groups of the type SLa(F2:) with s > 1 in a table. For instance, there is a
Galois extension K'|Q with group SLa(Fa127 ), which ramifies only in 3313 and (probably) 2.

There are relatively few forms with a full SLy(F2-) as image in weight 1:

Degree all 2 3 4 5 6
# forms 1581 | 551 | 400 | 243 | 107 | 99
Percentage SLo 28 |59 |20 (04|10 |10

The central row indicates the number of eigenforms for that degree and the lower row contains
the percentage of SLo-forms. We point out that we count D3 = SLy(F2) as dihedral and not
among the SLs.

In weight 2 there are many more forms with a full SLo(Fo-) as image:

Degree all 2-4 5-7 | 8-10 | 11-13 | 14-16
# forms 10244 | 5732 | 1746 | 907 | 511 262
Percentage SLo 47 33 60 57 61 74

If we restrict only to prime levels, in weight 2 the percentage is roughly 60%.
The computations have yielded the following result.

(5.1.1) Theorem. All groups SLa(Far) occur as Galois groups over Q for r from 1 up to 77.
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5.2. Icosahedral Galois representations and Serre’s conjec-
ture

Shepherd-Barron and Taylor ([ShBT]]) have proved that any irreducible Galois representation
p: Gg — GLa(Fy)

which is unramified at 3 and 5 is modular. In view of Serre’s conjecture only the level
and the weight question for such representations are hence not fully answered, when the
representation is exceptional (see Section [LT).

From the point of view of Maal} forms these representations are interesting, when the
number field K cut out by the projectivisation p : Gg — GL2(F4) — PGLy(F4) is totally
real. For then there exists an even representation p : Gg — GL2(C) whose projectivisation
cuts out the same field K. Such representations are generally conjectured to come from
certain Maal} forms. If indeed this is true, then the corresponding Maal3 form has coefficients
in the algebraic integers and should reduce modulo a prime above 2 to a Katz modular form
over 5 of weight one. It would be interesting to carry out some computations of MaaB forms
in that direction.

In [[Doud-Moore] Doud and Moore use a targeted Hunter search to obtain a complete
list of all even icosahedral complex Galois representations of prime conductor p < 10000.
Moreover, they supply polynomials generating the corresponding As-extensions of Q. None
of the representations in that range is exceptional, whence the cited result by Shepherd-Barron
and Taylor together with level and weight lowering gives the existence of the corresponding
modular forms for I'g(p) and weight 1 over F5. We have verified some of the cases also
computationally.

Another list of polynomials generating totally real As-extensions of Q was supplied by
Jiirgen Kliiners. It contains a totally real As-extension ramifying only in the prime p = 8311
such that the associated representation Gg — SLq (F4) has conductor p, but there does not
exist a complex icosahedral representation of prime conductor. That representation is not
exceptional and the associated weight one form over Fy was found. The first exceptional
case of a totally real As-representation Gg — PGL2(C) coming from Kliiners’ table has
prime conductor p = 10267. As predicted by Serre’s conjecture there is a weight one form
in level 10267 whose coefficients match with the traces of the Frobenius elements Frob,, for
primes 3 < p < 3413. This is the first test known to the author of Serre’s conjecture for a
totally real As-extension in a case not covered by level lowering and weight lowering.
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Samenvatting

In deze samenvatting zal ik eerst een zo begrijpelijk mogelijke, elementaire inleiding geven
tot het gebied van de wiskunde waarover mijn proefschrift gaat. Daarna volgt een overzicht
van de inhoud van deze dissertatie.

Modulaire vormen spelen al sinds hun introductie in de 19de eeuw een belangrijke rol in
de getaltheorie. In het begin werden zij met behulp van de complexe analyse bestudeerd, om-
dat de bijbehorende Fouriercoéfficiénten vaak getaltheoretische interpretaties bezitten. Bij-
voorbeeld bestaat er een modulaire vorm waarvan de n-de Fouriercoéfficiént gelijk is aan
het aantal mogelijkheden het getal n als som van acht kwadraten te schrijven. Sinds de ja-
ren zestig is de taal van de algebraische meetkunde, in het bijzonder die van de aritmetische
algebraische meetkunde, in veel gebieden van de getaltheorie heel nuttig gebleken. Op grond
van inzichten van Shimura, Weil, Serre en Deligne werd deze nieuwe taal met veel succes
ook op de theorie van modulaire vormen toegepast en er werden enige diepe samenhangen
ontdekt. Als hoogtepunt tot nu toe is het bewijs van het vermoeden van Fermat te noemen,
dat in 1994 door Andrew Wiles gevonden werd. Dit vermoeden zegt dat de vergelijking

aTL + b’fL — CTL

met gehele machten n > 3 geen oplossing heeft voor positieve natuurlijke getallen a, b, c.
De samenhang tussen getaltheorie en meetkunde wil ik met behulp van een eenvoudig
voorbeeld aanduiden. Laten we de vergelijking

a®>+ b2 =¢?

beschouwen. Anders dan in het vermoeden van Fermat heeft deze vergelijking wel oplossin-
gen, namelijk de bekende Pythagoreische drietallen, zoals 3% + 42 = 52 of 52 + 122 = 132,
Alswez = %eny = % schrijven, dan verkrijgen we middels een eenvoudige manipulatie de
vergelijking

242 —1=0.

Beschouwen we nu eerst alle reéle oplossingen (d.w.z. we staan getallen toe die oneindig veel
cijfers achter de komma mogen hebben en niet periodiek hoeven te zijn).
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Met behulp van de parametrisatie x = cos(y) en y = sin(p) zien y 4

N
we dat de reéle oplossingen precies de eenheidscirkel vormen (d.w.z.
de cirkel om de oorsprong van het codrdinatenvlak met straal 1). Nu / \

zijn we heel duidelijk in de wereld van de meetkunde! Onze vraag
naar de Pythagoreische drietallen kan nu worden vertaald in de vraag
naar punten op het eenheidscirkel waarvan de codrdinaten breuken
(d.w.z. rationale getallen) zijn.

We zullen zien dat de vergelijking a? + b = ¢ makkelijker te
bestuderen is, als men niet alleen met breuken werkt maar ook met het getal 7 dat als een
wortel van —1 gedefiniéerd is, d.w.z. als een oplossing van de vergelijking

s\

X24+1=0.

Volgens de hoofdstelling van de algebra heeft namelijk iedere zulke vergelijking over de
complexe getallen even veel oplossingen (met multipliciteiten) als haar graad aangeeft; in dit
geval dus twee, namelijk ¢ en —1.

We zullen in de getallen van Gauf} rekenen, dit zijn alle getallen die men door optellen
en vermenigvuldigen van gehele getallen en het getal ¢ verkrijgt. Het is makkelijk in te zien
dat men iedere getal van GauB3 als a + ¢b met gehele getallen a en b kan schrijven. Laten we
ons herinneren dat een positief natuurlijk getal ongelijk 1 een priemgetal heet, als zijn enige
positieve delers 1 en het getal zelf zijn. Ieder geheel getal ongelijk 0 kan op de volgorde
na op eenduidige manier geschreven worden als plus of min een product van priemgetallen,
bijv.is 12 = 2 - 2 - 3. Zoiets is ook voor de getallen van Gauf3 geldig. De enige getallen van
GauB die ieder willekeurig getal van GauB} delen zijn 1, —1, ¢, —¢; deze worden de GauB3een-
heden genoemd. Een Gauflpriemgetal is een getal van Gauf} ongelijk 1 die in de kwadrant
rechts boven met de positieve x-as en zonder de y-as ligt en alleen door de GauBeenheden
en door zichzelf keer een GauBleenheid gedeeld word. Ieder getal van Gauf3 kan op de volg-
orde na op eenduidige manier geschreven worden als product van Gaullpriemgetallen en een
Gauleenheid.

Bovendien is het volgende geldig: Als een priemgetal p bij deling door 4 rest 3 heeft
(bijv.p=3,p=Tof p=11),danis p = p + ¢ - 0 ook een GauBpriemgetal. We zeggen in
dat geval dat p inert is. Als p gedeeld door 4 rest 1 heeft, dan kan men gehele getallen u, v
vinden, zodat p = u? + v? geldig is, en dus kan men p in de getallen van Gauf factoriseren:

p=(u+v)(u—iv) = u® — (iv)> = u? — (i)%v? = u? — (—=1)0? = u® + 02
Daarom is in dat geval p geen GauBlpriemgetal, maar u + v en u — 7v zijn dat wel (op een
eenheid na). We zeggen dat p in de getallen van Gaul} gespleten is. Een bijzondere rol speelt
het priemgetal 2. Het is

2=—i(l+1i)?

dus een GauBleenheid keer het kwadraat van een Gauflpriemgetal. Het gehele priemgetal 2
heet daarom in de getallen van Gaul} vertakt.
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Laten we teruggaan naar de vergelijking a? + b?> = 2. In de getallen van GauB kunnen
we nu schrijven:
a? +b* = (a +ib)(a — ib) = c*.

Als we aannemen dat a, b, ¢ geen gemeenschappelijke delers hebben (we zoeken dus alleen
primitieve Pythagoreische drietallen; door delen door de gemeenschappelijke factor kan men
ieder Pythagoreisch drietal in een primitieve veranderen), dan zijn a + ¢b en a — ib getallen
van Gauf} waarvan de gemeenschappelijke delers alleen de Gaulleenheden zijn. Wegens de
unieke priemfactorisatie in de getallen van Gaul3 moet dan a + b zelf een kwadraat zijn. Dus
er moet gelden

2

ela+1ib) = (u + iv)* = u® — v* + i2uv,

met een GaulBeenheid € en gehele getallen u,v. Is ¢ = =1, dan verkrijgen we dus
a= :t(u2 — vz) en b = £2uw. Is € = %4, dan is het precies andersom, namelijk a = +2uv

en b = F(u? — v?). Het is ook makkelijk te verifiéren dat door

a=u?—0v% b=2uw, c=u’®+v?

Pythagoreische drietallen gegenereerd worden, namelijk:
a? + 0% = (u? —vH)? + 2uw)? = u? + 2u%0? + ot = (u? +0?)? =

Dus hebben we alle primitieve Pythagoreische drietallen bepaald door het getalbereik waarin
we rekenen slim uit te breiden. Dit is een van de belangrijkste methoden van de algebraische
getaltheorie. In het algemeen bestudeert men onder vermenigvuldiging en optellen afgesloten
uitbreidingen van de gehele getallen resp. de breuken, die door bijvoegen van oplossingen van
vergelijkingen van de vorm

X" +an,1X"_1 —+ - +a1X+a0 =0

met gehele getallen a; ontstaan. Zulke oplossingen noemt men gehele algebraische getallen.
In plaats van unieke priemfactorisatie heeft men echter in het algemeen alleen nog unieke
priemideaalfactorisatie. Begrippen als inertie, splijten en vertakking bestaan ook in deze
algemene context. Dit wordt aritmetiek van getallenlichamen genoemd.

Voordat we het over symmetriegroepen van getallenlicha-
men (de Galoisgroepen) hebben, behandelen we een voor- A
beeld van symmetriegroepen uit de platte euclidische meet-
kunde. We beschouwen de regelmatige vijthoek (penta- ™~ B
goon). Welke afstandsbehoudende omkeerbare transformaties E
bestaan er, die de pentagoon op zichzelf afbeelden? Het zijn ~-
de rotaties over n - 72 graden met n € {0,1,...,4} en de
spiegelingen door de assen die door een hoekpunt lopen en
loodrecht op de tegenoverliggende zijde staan. Bij elkaar be-
staan er dus 10 zulke transformaties. Het samenstellen van twee zulke levert altijd een derde
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op. Bovendien kan men de transformaties weer omkeren (de rotatie over n - 72 graden door
de rotatie over (5 — n) - 72 graden, en de spiegeling door hem nog een keer te doen). Zoiets
noemt men een groep. We hebben dus net de symmetriegroep van de regelmatige vijfhoek
beschreven. In het algemeen noemt men de symmetriegroep van de regelmatige n-hoek de
n-de diédergroep. Zij heeft 2n elementen.

In de getaltheorie bekijkt men de symmetriegroepen van getallenlichamen en noemt deze
Galoisgroepen. Laten we met het voorbeeld van boven doorgaan. De rationale getallen van
GauB zijn alle getallen a + b waarbij nu @ en b breuken zijn. Een symmetrie van de rationale
getallen van Gaul} is een omkeerbare afbeelding van de rationale getallen van Gauf} naar
zichzelf die vermenigvuldiging en optellen behoudt. Zij is dan automatisch de identiteit op
de breuken. Naast de identicke symmetrie bestaat er één andere. Deze wordt gegeven door
het getal a + ib op het getal a — ib af te beelden, dus door complexe conjugatie. Past men
deze afbeelding twee keer toe dan verkrijgt men weer de identiteit. De Galoisgroep van de
rationale getallen van Gaul3 bevat precies deze twee elementen.

Maar er zijn ook getallenlichamen waarvan de symmetriegroep dezelfde vermenigvul-
diging heeft als de symmetriegroep van de vijfhoek (in het algemeen geldt dit voor iedere
regelmatige n-hoek). Bijvoorbeeld is dit het geval voor het getallenlichaam dat men verkrijgt
door aan de breuken nog alle oplossingen van de vergelijking

X5 —o2X*+2Xx3-X2%2+1

toe te voegen en ook nog alle getallen die door vermenigvuldiging en optellen hieruit ont-
staan.

De symmetriegroep van de verzameling van alle algebraische getallen samen heet de
absolute Galoisgroep van de rationale getallen en wordt door het symbool G g aangeduid. Uit
deze groep kan men in principe alle informatie over alle getallenlichamen en hun aritmetiek
aflezen! Dus is Gg het centrale object van de algebraische getaltheorie. Helaas is de structuur
van G heel mysterieus (zij heeft bijv. overaftelbaar veel elementen, d.w.z. veel meer dan er
gehele getallen bestaan) en zij is zeer slecht begrepen.

Op deze plaats speelt de diepe samenwerking van algebraische meetkunde en algebra-
ische getaltheorie in de theorie van de modulaire vormen een heel belangrijke rol. Er is
namelijk een theorema van Shimura, Deligne en Serre dat bij een modulaire vorm (die een
eigenvorm is, dat betekent bijv. als de vorm als oneindige reeks e?™" + >~ , a,,e?™"7
geschreven is dat dan a, - a,, = anm geldt voor n en m zonder gemeenschappelijke factor)
voor een gegeven priemgetal p een Galoisrepresentatie (dat is een continué afbeelding, d.w.z.
zij respecteert de meetkunde en het samenstellen)

Gg — GLo(F,)

maakt (deze is oneven en semi-simpel). De rechterkant van de formule moet nog worden
uitgelegd. Hier is IF,, de verzameling van alle oplossingen van vergelijkingen

X" +ap X" '+t a X +ag=0,
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waar we nu van de coéfficiénten alleen de rest bekijken die zij bij het delen door p geven.
Daarenboven is GL2(F,) de groep van omkeerbare lineaire afbeeldingen van het vlak met
codrdinaten in ]F_p Eenvoudig gezegd betekent dit dat we platte stukken van G in karakte-
ristiek p beschouwen. Hiervoor bestaat geen goede, intuitieve aanschouwing, en de taal wordt
alleen in analogie met de gewone, reéle meetkunde gebruikt. De topologie, d.w.z. de manier
waarop we de meetkunde op ]F_p definiéren, namelijk diskreet, heeft als gevolg dat de “platte
stukken” van G eindig zijn, dus alleen maar uit eindig veel elementen bestaan. Dit betekent
dan dat de modulaire vorm, waarmee we begonnen waren, een getallenlichaam oplevert. Het
belangrijke is nu dat de aritmetiek van het getallenlichaam (ten minste gedeeltelijk) aan de
coéfficiénten van de modulaire vorm kan worden afgelezen (die kunnen we berekenen; we
kunnen ze zelf direct in IF_p nemen)! Op deze manier verlenen ons de modulaire vormen een
klein inzicht in de mysterieuze absolute Galoisgroep Gq!

Laten we een voorbeeld bekijken. Er is een modulaire vorm van niveau 229 en gewicht 1
waarvan de coéfficiénten in de verzameling {0, 1} liggen (met de optelling en vermenigvul-
diging1 +0=1,14+1=0,1-1 = 1,1-0 = 0 dus in het eindige lichaam Fs). Zij K
het getallenlichaam dat uit de breuken door bijvoegen van een wortel van het priemgetal 229
gemaakt wordt. Zij [ een priemgetal ongelijk aan 2 en 229. Dan is de [-de coéfficiént van de
modulaire vorm gelijk aan 0 dan en slechts dan als / in K inert is (d.w.z. dat geen kwadraat
bij delen door [ dezelfde rest heeft als 229) of dat [ in twee hoofdidealen splijt. Anders is de
coéfficiént gelijk aan 1.

We hebben dus gezien, dat een modulaire vorm “platte stukken” van G in karakteris-
tiek p oplevert. De beroemde wiskundige Jean-Pierre Serre (in 2003 de eerste winnaar van
de nieuwe Abelprijs die de Nobelprijs voor de wiskunde zal worden) heeft het vermoeden
uitgesproken dat andersom alle “platte stukken” van Gg in karakteristiek p door modulaire
vormen kunnen worden beschreven. Hij heeft zelfs een formule aangegeven waarmee men
naar de modulaire vormen moet zoeken (d.w.z. het niveau, het karakter en het gewicht). Als
dit vermoeden waar is, dan kunnen we alle zulke platte stukken van Gg met de computer
berekenen, omdat we modulaire vormen kunnen berekenen! Serres vermoeden is dus zowel
van groot structureel als van computationeel belang. Echter is het niet bekend of Serres ver-
moeden waar is. Maar enkele maanden geleden werd een belangrijk geval opgelost zodat het
onderzoek tegenwoordig sterk in beweging is.

Nu zullen we kort modulaire krommen bespreken. Deze kunnen als het meetkundige as-
pect van modulaire vormen worden beschouwd. Bovendien geven zij de verbinding tussen
modulaire vormen, modulaire symbolen (zie beneden) en Galoisrepresentaties. Modulaire
krommen zijn voorlopig complexe krommen, dus vlakken in de aanschouwing. De een-
voudigste modulaire kromme is gegeven als de punten in het codrdinatenvlak, waarvan de
x-coordinaat tussen 7% en % ligt en die op of boven de eenheidscirkel liggen. Nu moet men
de linkerrand op de rechterrand plakken (letterlijk: we knippen dit gebied met een schaar uit;
dan plakken we de twee lange lijnen aan elkaar; tenslotte plakken we nog de linkerhelft van

de boog aan de rechterhelft; zo verkrijgt men een cilinder met een ietwat vreemde bodem).
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Het op deze manier verkregen vlak is boven open. Men PN
kan hem door bijvoegen van een punt, van een spits, compac-
tificeren (ook dit is aanschouwelijk te maken: we duwen de
cilinder aan de bovenkant tot een punt samen; dan zien we
de spits heel duidelijk). Het zo ontstane vlak is een compact
Riemannoppervlak, d.w.z. dat kleine stukken meetkundig er
hetzelfde uitzien als het complexe getallenvlak. Modulaire
vormen vindt men op de modulaire krommen terug als dif- ‘ ‘ N
ferentiaalvormen (deze heeft men bijv. nodig om op Rieman- -1 =05 05 1 x
noppervlakken te integreren). Het belangrijke voor de getal-
theorie is dat de modulaire krommen ook een vrij diepe algebraische structuur hebben, d.w.z.
dat hun punten oplossingen van vergelijkingen met gehele coéfficiénten zijn, maar dan in
meerdere variabelen. Ook de differentiaalvormen hebben een algebraische analogon, die de
Katz modulaire vormen oplevert, die in dit proefschrift gebruikt worden. Ook de Galoisre-
presentaties worden met behulp van de algebraische beschrijving van de modulaire kromme

gemaakt.

Voor de studie van oppervlakken (en ook hogerdimensionale variéteiten) gebruikt men
de (co-)homologietheorie. We zullen kort de homologietheorie van Riemannoppervlakken
met triviale coéfficiénten beschrijven. Maar in het proefschrift worden ook (co-)homolo-
gietheorieén van schema’s (dat zijn algebraische generalisaties van Riemannoppervlakken),
stacks (dat zijn nog verdere generalisaties) en van groepen gebruikt en dan in het algemeen
met niet-triviale coéfficiénten.

Men kan ieder Riemannoppervlak trianguleren, d.w.z. hem in eindig veel driechoeken op-
delen (de zijden mogen krom zijn maar geen knikken bevatten). Voor het opdelen in drie-
hoeken worden zijden getekend. Iedere driehoek heeft drie zijden en twee elkaar aanrakende
driehoeken hebben ten minste een gemeenschappelijke zijde. Bovendien bekijken we de ver-
zameling van snijpunten van zijden.

We beschrijven nu een triangulatie van de fietsband (de forus). Dit doen
we constructief. We beginnen met de rechthoek uit het plaatje die we in twee A B
driehoeken opgedeeld hebben. Door plakken zal het aantal zijden dalen.
Eerst plakken we de zijde AD aan de zijde BC'. Op deze manier verkrijgen
we een cilinder. Nu plakken we het deksel op de bodem (we stellen ons de
cilinder uit rubber voor).

De Eulerkarakteristiek van een oppervlak is x = d — z + p, waar d het
aantal driehoeken, z het aantal zijden en p het aantal hoekpunten aanduidt.
De Eulerkarakteristiek is onafhankelijk van de triangulatie. Bovendien geldt de beroemde
formule

X =2-—2g,

waar g het geslacht van het oppervlak is, d.w.z. het aantal gaten.
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In het voorbeeld van de fietsband vinden we inderdaad ¢ = 1.
We hebben namelijk nog altijd de twee driehoeken, waarmee we be-
gonnen zijn. Omdat we de zijde AD met BC' en ook AB met DC'
geidentificeerd hebben, is het aantal zijden van onze triangulatie van
de torus 3. Bovendien vallen alle vier hoekpunten onder het plakken
samen tot één punt. Dus verkrijgen we inderdaad y =2 —-3+1 = 0.

De modulaire kromme die we boven beschreven hebben heeft geen gat. Dus geldt voor
haar g = 0. We kunnen ook de modulaire kromme makkelijk trianguleren. We vouwen haar
weer uiteen en gebruiken maar één driehoek. Dit bestaat uit de twee hoekpunten beneden
links en beneden rechts samen met een denkbeeldig punt helemaal boven (dit is het punt dat
door het samenduwen van de cilinder ontstaan is). Dan hebben we na het plakken nog drie
hoekpunten, twee zijden (de verticale en het stuk van de boog) en de driehoek. Dus verkrijgen
we x = 1 — 2+ 3 = 2. Wat algemenere modulaire krommen, bijv. de in het proefschrift
gebruikte modulaire kromme X5 (), hebben meestal veel gaten.

De homologiegroepen staan in nauwe relatie tot de Eulerkarakteristiek (de Eulerkarakte-
ristiek wordt met behulp van de homologiegroepen afgeleid). De nulde en de tweede homo-
logiegroep zijn vrije groepen van rang gelijk aan het aantal samenhangscomponenten. In ons
geval is de rang van allebei dus 1. De eerste homologiegroep is ook een vrije groep. Haar
rang is 2g met g het geslacht.

Nadat we nu geprobeerd hebben een eerste, heel erg vereenvoudigd idee te geven van de
objecten die in het proefschrift behandeld worden, zullen we nu de inhoud ervan beschrijven.

Het eerste hoofdstuk is inmiddels als artikel verschenen. Er wordt een aangepaste versie
van Serres vermoeden behandeld. Diepe resultaten van verschillende wiskundigen zeggen
dat voor oneven karakteristiek p Serres formules voor het niveau, het karakter en het gewicht
van de gepostuleerde modulaire vorm inderdaad juist zijn. Dit wil zeggen dat als er een
modulaire vorm bestaat die een gegeven “plat stuk” van G geeft, dan bestaat er ook een
modulaire vorm die aan Serres formule voldoet. Het geval p = 2 is echter nog gedeeltelijk
open.

In het artikel beperk ik me tot “platte stukken” in karakteristiek p van G'g (dus twee-
dimensionale Galoisrepresentaties) waarvan de symmetriegroep een Diédergroep, dus een
symmetriegroep van een regelmatige n-hoek is. Voor deze toon ik het aangepaste Serrever-
moeden aan zonder uitzondering, dus inclusief het geval p = 2. Dat zulk een Galoisrepre-
sentatie van een modulaire vorm komt was in principe al Erich Hecke bekend, ten minste
als p # 2 is. In het bewijs maak ik oneindig veel zulke modulaire vormen, zodat ik dan
met behulp van het ladenprincipe (verdeel 10 letters over 5 laden, dan is er een lade waarin
er ten minste twee liggen) er twee kan kiezen, die zich met methoden van de algebraische
meetkunde tot de gewenste modulaire vorm laten combineren.

In het Hoofdstuk IT bereken en vergelijk ik verschillende soorten cohomologiegroepen die
alle met de modulaire kromme X5 (N) (dit is een iets algemener Riemannoppervlak dan de
hiervoor beschreven modulaire kromme) samenhangen, met het formalisme van de modulaire
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symbolen dat van de homologie afgeleid is. In deze berekeningen is de coéfficiéntenring
willekeurig. Er worden expliciete beschrijvingen in termen van lineaire algebra gegeven.

We bekijken modulaire symbolen om praktische redenen: zij zijn in het ver verspreide
computeralgebrasysteem Magma geimplementeerd. Ik heb computerprogramma’s geschre-
ven die hierop werken.

In het derde hoofdstuk worden nieuwe gevallen bewezen, wanneer de Katz modulaire
vormen over I, met behulp van de expliciete beschrijvingen van de cohomologiegroepen
uit Hoofdstuk II direct over het eindige lichaam I, kunnen worden berekend. Dit betekent
een snelheidswinst in vergelijking tot methoden die gehele getallen gebruiken. Met behulp
van een idee van Edixhoven verkrijgen we zo ook een algoritme voor de berekening van
Katz modulaire vormen van gewicht één (deze zijn niet direct berekenbaar) met behulp van
modulaire symbolen over I,

Het bewijs gebruikt het opmerkelijke parallel gedrag tussen de modulaire vormen van ge-
wicht 2 en niveau Np over IF;, en de eerste cohomologiegroepen van de Riemannoppervlak-
ken X (Np) met [F,-coéfficiénten. In allebei vindt men namelijk de modulaire vormen resp.
de eerste cohomologiegroepen terug, die bij het niveau N en het gewichtk € {2,...,p+ 1}
horen.

De overgang van de complexe meetkunde naar de algebraische over I}, vindt met behulp
van de Jakobiaan van de modulaire kromme plaats. De eerste kohomologiegroep kan name-
lijk met de p-torsie van de complexe Jakobiaan geidentificeerd worden. Gaat men dan naar
het Néronmodel van de Jakobiaan, dan kan men eigenschappen van de generieke vezel (zelfs
van het Riemannoppervlak) naar de speciale vezel (dus naar IF,,) overdragen.

Het vierde hoofdstuk bevat een beschrijving van de algoritmen die voortkomen uit de
theorie van de twee voorgaande hoofdstukken. Tenslotte wordt in het vijfde hoofdstuk over
computerberekeningen gerapporteerd die met behulp van de voorgestelde algoritmen zijn uit-
gevoerd. Er wordt bijvoorbeeld geconstateerd dat de platte stukken van G g in karakteristiek 2
opmerkelijk sterk groeien. Bovendien worden ook observaties gemaakt, die enkele interes-
sante theoretische samenhangen suggereren. Hun studie zou het onderwerp van toekomstige
projecten kunnen zijn.



Zusammenfassung

In dieser kurzen Zusammenfassung mochte ich eine moglichst allgemein verstindliche Ein-
fiihrung in das Gebiet der vorliegenden Arbeit und einen Uberblick iiber diese geben.

Modulformen spielen seit ihrer Einfithrung im 19. Jahrhundert eine zentrale Rolle in der
Zahlentheorie. Zu Anfang wurden sie mit Hilfe der Funktionentheorie untersucht, da die zu-
gehorigen Fourierkoeffizienten hiufig interessante zahlentheoretische Bedeutungen haben.
So gibt es z. B. eine Modulform, deren n-ter Fourierkoeffizient angibt, wie oft die natiirliche
Zahl n als Summe von 8 Quadraten dargestellt werden kann. Seit den 60er Jahren hat sich
die Sprache der algebraischen Geometrie, besonders der arithmetischen algebraischen Geo-
metrie, in vielen Bereichen der Zahlentheorie als sehr niitzlich erwiesen. Auf Grund von Ein-
sichten von Shimura, Weil, Serre und Deligne wurde diese neue Sprache mit viel Erfolg auch
auf die Theorie der Modulformen angewandt und hat einige tief liegende Zusammenhinge
zu Tage gebracht. Als spektakulédrer bisheriger Hohepunkt ist der Beweis der Fermatschen
Vermutung zu nennen, den Andrew Wiles 1994 gefunden hat. Diese Vermutung besagt, dass
die Gleichung

a” +b" =c"

fiir ganze Exponenten n > 3 keine Losung in positiven natiirlichen Zahlen a, b, ¢ hat.

Den Zusammenhang zwischen Zahlentheorie und Geometrie mochte ich an einem einfa-
chen Beispiel andeuten. Nehmen wir die Gleichung

a’ + 0% =%
Im Gegensatz zum Fermatproblem hat diese Gleichung Losungen, nimlich die wohlbekann-
ten Pythagoriischen Tripel, z. B. 32 + 4% = 52 oder 5% + 12% = 13 Schreiben wir z = £
und y = % dann erhalten wir durch einfache Umformungen die Gleichung

242 —1=0.

Wir konnen zunéchst alle reellen Losungen betrachten (d. h. wir erlauben Zahlen mit belie-
biger, also auch unendlicher und nicht periodischer Dezimalschreibweise).

91
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Mittels der Parametrisierung = cos(y) und y = sin(y) sehen y 4
wir, dass die reellen Losungen gerade den Einheitskreis bilden (d. h.
den Kreis von Radius 1 um den Ursprung der Koordinatenebene).

N
Damit sind wir nun ganz offensichtlich in der Welt der Geometrie! <>

s\

Unsere Frage nach den Pythagoriischen Tripeln iibersetzt sich dann
in die Frage nach Punkten auf dem Einheitskreis, deren Koordinaten
Bruchzahlen (diese nennen wir rationale Zahlen) sind.

Es stellt sich heraus, dass sich die Gleichung a?+b = ¢? leichter
untersuchen ldsst, wenn man nicht nur Bruchzahlen zulisst, sondern auch die Zahl 7, welche
als eine Wurzel von —1 definiert ist, also als eine Losung der Gleichung

X24+1=0.

Nach dem Hauptsatz der Algebra hat ndmlich jede solche Gleichung iiber den komplexen
Zahlen so viele Losungen (mit Multiplizititen gezihlt) wie der Grad ist; hier also zwei, und
die Losungen sind ¢ und —3.

Wir werden in den Gauflschen Zahlen rechnen. Das sind alle Zahlen, die man durch Ad-
dition und Multiplikation von ganzen Zahlen und der Zahl ¢ erhilt. Es ist einfach einzusehen,
dass sich jede GauBiche Zahl schreiben lisst als a + b mit ganzen Zahlen a und b. Erinnern
wir uns, dass eine positive natiirliche Zahl ungleich 1 Primzahl heifit, wenn die einzigen po-
sitiven Teiler 1 und die Zahl selbst sind. Jede ganze Zahl ungleich 0 14sst sich auf bis auf die
Reihenfolge eindeutige Weise als plus oder minus einem Produkt von Primzahlen schreiben,
z. B.ist 12 = 2 - 2 - 3. Etwas ganz Ahnliches gilt in den GauBschen Zahlen. Die einzigen
GauBschen Zahlen, die jede beliebige GauB3sche Zahl teilen, sind 1, —1, ¢, —¢; diese heilen
Gauflsche Einheiten. Eine Gauf3sche Primzahl ist eine GauB3sche Zahl ungleich 1, die im Qua-
draten rechts oben einschlieBlich dem positiven Teil der x-Achse ohne die y-Achse liegt und
nur von den GauBischen Einheiten und von sich selbst mal einer GauB3schen Einheit geteilt
wird. Jede GauB3sche Zahl ldsst sich auf bis auf die Reihenfolge eindeutige Weise als Produkt
einer GauBlschen Einheit mit einem Produkt von Gauflschen Primzahlen schreiben. Es gilt
ferner Folgendes: Wenn die ganze Primzahl p beim Teilen durch 4 den Rest 3 ergibt (z. B.
p=3,p="T7oderp = 11),dann ist p = p + 7 - 0 auch eine GauBlsche Primzahl. Wir sagen
dann, dass p trdge ist. Lisst p aber beim Teilen durch 4 den Rest 1, dann kann man ganze
Zahlen u, v finden, derart dass p = u? + v? gilt, und daher kann man p in den GauBschen
Zahlen faktorisieren:

p=(u+v)(u—iv) = u® — (iv)> = u® — (i)%v? = u? — (—=1)0? = u? + 02

Daher ist in diesem Fall p keine GauB3sche Primzahl, stattdessen aber u + v und © — iv (evtl.
bis auf eine Einheit). Wir sagen, dass p in den Gauf3schen Zahlen zerlegt ist. Eine besondere
Rolle spielt die Primzahl 2, sie ist

2= —i(1+1)?
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d. h. eine GauB3sche Einheit mal einem Quadrat einer Gaulschen Primzahl. Die ganze Prim-
zahl 2 heifit deswegen in den GauB3schen Zahlen verzweigt.

Kommen wir zuriick zur Gleichung a? + b?> = ¢2. In den GauBschen Zahlen kénnen wir
diese nun so schreiben:

a® +b* = (a +ib)(a — ib) = c*.

Wenn wir annehmen, dass a, b, ¢ keine gemeinsamen Teiler haben (wir suchen dann nur pri-
mitive Pythagoriische Tripel; durch das Herausteilen des gemeinsamen Faktors kann jedes
Pythagoriische Tripel auf ein primitives zuriickgefiihrt werden), dann sind a + #b und a — b
teilerfremde GauB3sche Zahlen, d. h. dass ihre gemeinsamen Teiler nur die Gau3schen Einhei-
ten sind. Wegen der eindeutigen Primfaktorzerlegung in den Gauf3schen Zahlen muss dann
aber a + b schon selbst ein Quadrat sein, also muss gelten

ela+1ib) = (u + iv)* = u® — v* + i2uv,

mit einer GauBschen Einheit € und ganzen Zahlen u, v. Ist ¢ = +£1, dann erhalten wir also
a = £(u? —v?) und b = +2uw. Ist € = +i, dann ist es gerade umgekehrt a = +2uv und
b = F(u? — v?). Andersherum ist es ganz einfach nachzupriifen, dass die Zuordnung

a=u?—0v? b=2uww, c=u®+v?

Pythagoriische Tripel erzeugt, ndmlich:

a® 4+ b* = (u? —v?)? + (2uv)? = u* + 200 vt = (WP +0?)? =2
Damit haben wir alle primitiven Pythagoriischen Tripel bestimmt, indem wir den Zahlenbe-
reich, in dem wir rechnen, geschickt erweitert haben. Dies ist eine Hauptmethode der alge-
braischen Zahlentheorie. Allgemeiner studiert man unter Multiplikation und Addition abge-
schlossene Erweiterungen der ganzen Zahlen bzw. der Bruchzahlen, die durch Hinzufiigen
von Losungen von Gleichungen der Form

X"+an,1X"71+~~~+a1X+ao:O

mit ganzen Zahlen a; entstehen. Solche Losungen nennt man ganze algebraische Zahlen. An
die Stelle der eindeutigen Primfaktorzerlegung tritt dann jedoch im Allgemeinen nur noch
die eindeutige Primidealzerlegung. Begriffe wie Tréigheit, Zerlegung und Verzweigung hat
man jedoch auch im erweiterten Sinn. Sie werden zusammengefasst im Begriff Arithmetik
der Zahlkorper.

Bevor wir zu Symmetriegruppen von Zahlkorpern (den sogenannten Galoisgruppen)
kommen, behandeln wir ein Beispiel von Symmetriegruppen aus der ebenen euklidischen
Geometrie. Wir betrachten das regelméBige Fiinfeck (Pentagon).
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Welche abstandserhaltenden umkehrbaren Transformatio- A
nen gibt es, die das Pentagon in sich selbst iiberfiihren? Es
sind dies die Drehungen um n - 72 Grad mitn € {0,1,...,4}  ~~- B
und die Spiegelungen an den Achsen, die durch einen Eck- E
punkt gehen und senkrecht auf der gegeniiber dem Eckpunkt S~
liegenden Seite stehen. Insgesamt gibt es also 10 solche Trans-
formationen. Das Hintereinanderausfiihren von zwei solchen
liefert eine dritte. AuBBerdem kann man die Transformationen
wieder riickgingig machen (die Rotation um n - 72 Grad durch Rotation um (5 —n) - 72 Grad,
und die Spiegelung durch nochmaliges Ausfiihren). So etwas nennt man eine Gruppe. Wir
haben also gerade die Symmetriegruppe des regelmifBigen Fiinfecks beschrieben. Im Allge-
meinen nennt man die Symmetriegruppe des regelméBigen n-Ecks die n-te Diedergruppe.
Diese hat 2n Elemente.

In der Zahlentheorie betrachtet man Symmetriegruppen von Zahlkérpern und nennt die-
se Galoisgruppen. Schlieen wir an das Beispiel von oben an. Die gebrochenen Gauf3schen
Zahlen sind alle Zahlen a + b, wobei a, b nun Bruchzahlen sind. Eine Symmetrie der gebro-
chenen Gaulischen Zahlen ist eine umkehrbare Selbstabbildung, die die Multiplikation und
die Addition respektiert. Sie ist dann automatisch die Identitit auf den Bruchzahlen. Neben
der identischen Symmetrie gibt es eine weitere. Diese ist dadurch gegeben, dass die Zahl
a+ b auf die Zahl a — ¢b abgebildet wird. Fiihrt man diese Abbildung zweimal nacheinander
aus, so erhélt man wieder die Identitit. Die Galoisgruppe der gebrochenen Gau3schen Zahlen
enthilt genau diese zwei Elemente.

Es gibt aber auch Zahlkorper, deren Symmetriegruppe denselben Gesetzen folgt wie die
Symmetriegruppe des Fiinfecks (allgemeiner gilt dies fiir jedes regelméssige n-Eck). Z. B.
ist dies der Fall beim Zahlkorper, den man erhilt, indem man zu den Bruchzahlen noch alle
Losungen der Gleichung

X?—2X*4+2Xx3 - X?%241

hinzufiigt und alle Zahlen, die man aus diesen durch Multiplikation und Addition erhalt.

Die Symmetriegruppe der Menge aller algebraischen Zahlen iiberhaupt nennt man die
absolute Galoisgruppe der rationalen Zahlen und bezeichnet sie mit dem Symbol Gg. Aus
ihr kann man im Prinzip alle Informationen zu allen Zahlkorpern und deren Arithmetik ab-
lesen! Daher ist Gg das zentrale Objekt der algebraischen Zahlentheorie. Allerdings ist die
Struktur von G sehr mysterids (sie hat z. B. iiberabzihlbar viele Elemente, d. h. viel mehr
als es ganze Zahlen gibt) und sie ist nur sehr schlecht verstanden.

An dieser Stelle kommt nun das tiefliegende Zusammenspiel von algebraischer Geometrie
und algebraischer Zahlentheorie in der Theorie der Modulformen voll zum Tragen. Es gibt
niamlich einen Satz von Shimura, Deligne und Serre, der einer Modulform (die eine Eigen-
form ist, d. h. u. a. wenn sie geschrieben wird als unendliche Reihe e?™ + >~  a,,e?™"7
dass dann a,, - @, = apqy gilt fiir n und m ohne gemeinsamen Faktor) fiir eine vorgegebe-
ne Primzahl p eine Galoisdarstellung (das ist eine stetige Abbildung von Gruppen, d. h. sie
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respektiert die Geometrie und das Hintereinanderausfiihren)
Gg — GL»(F,)

zuordnet (genauer: diese ist ungerade und halbeinfach). Die rechte Seite der Formel ist noch
zu erklédren. Hier ist IE"_p die Menge aller Losungen von Gleichungen

X +an,1X”71 + - +(Z1X+(l() = 0,

wobei wir nun von den Koeffizienten nur den Rest betrachten, den sie beim Teilen durch p
lassen. Ferner ist GLo(TF,,) die Gruppe der umkehrbaren linearen Abbildungen der Ebene mit
Koordinaten in IF_p. Vereinfacht ausgedriickt bedeutet dies, dass uns eine solche Galoisdarstel-
lung “ebene Stiicke” von Gg in Charakteristik p liefert. Davon existiert keine gute, anschau-
liche Vorstellung, und die Sprache wird nur in Analogie zur gewohnlichen reellen Geometrie
gebraucht. Die Topologie, d. h. die Art, wie wir uns die Geometrie auf IF_,) definieren, namlich
diskret, hat zur Folge, dass die “ebenen Stiicke” von Gg endlich sind, d. h. nur aus einer end-
lichen Anzahl Elementen bestehen. Das wiederum bedeutet, dass uns die Modulform, von der
wir ausgegangen sind, einen Zahlkorper liefert. Das Wichtige dabei ist, dass die Arithmetik
dieses Zahlkorpers (zumindest zum Teil) an den Koeffizienten der Modulform abzulesen ist
(diese konnen wir ausrechnen; wir konnen sie sogar gleich in F,, nehmen)! Damit gewéhren
uns Modulformen einen kleinen Einblick in die mysteriose absolute Galoisgruppe Gg!

Dies veranschaulichen wir uns an einem Beispiel. Es gibt eine Modulform von Stufe 229
und Gewicht 1, deren Koeffizienten a,, in der Menge {0, 1} liegen (mit der Addition und
Multiplikation1+0=1,1+1=0,1-1=1,1-0 = 0, mit anderen Worten dem endlichen
Korper F2). Sei K der Zahlkorper, der aus den Bruchzahlen durch Hinzunehmen einer Qua-
dratwurzel der Primzahl 229 gebildet wird. Sei [ eine Primzahl, die nicht 2 und nicht 229 ist.
Dann ist der [-te Koeffizient unserer Modulform gleich 0 genau dann, wenn [ trdge in K ist
(mit anderen Worten, wenn keine Quadratzahl beim Teilen durch [ denselben Rest lidsst wie
229) oder ! in zwei Hauptideale zerfillt. Sonst ist der Koeffizient gleich 1.

Wir haben also gesehen, dass eine Modulform uns ebene Stiicke von G'g in Charakte-
ristik p gibt. Der berithmte Mathematiker Jean-Pierre Serre (2003 der erste Gewinner des
neuen Abel-Preises, der der “Nobelpreis” fiir Mathematik werden soll) hat die Vermutung
ausgesprochen, dass umgekehrt alle ebenen Stiicke von G in Charakteristik p durch Mo-
dulformen beschrieben werden konnen. Er hat sogar noch eine Formel angegeben, wo die
Modulformen zu suchen sind (die Stufe, den Charakter und das Gewicht). Ist diese Vermu-
tung war, dann konnen wir alle solche ebenen Stiicke von G mit dem Computer berechnen,
denn wir konnen Modulformen berechnen! Serres Vermutung ist daher sowohl von unge-
heuerer struktureller als auch von rechnerischer Bedeutung. Allerdings ist nicht bekannt, ob
Serres Vermutung wahr ist. Aber vor wenigen Monaten wurde ein wichtiger Fall gelost, so
dass die Forschung gerade stark in Bewegung ist.

Als nidchstes wollen wir kurz Modulkurven betrachten. Diese konnen als der geome-
trische Aspekt von Modulformen angesehen werden. Auflerdem bilden sie das Verbin-
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dungsglied zwischen Modulformen, Modulsymbolen (siche unten) und Galoisdarstellun-
gen. Modulkurven sind zunédchst komplexe Kurven, d. h. Fliachen in der Anschauung.
Die allereinfachste ist gegeben als die Punkte in der Koordi-

natenebene, deren z-Koordinate zwischen —% und % liegt und y
die auf bzw. tiber dem Einheitskreis liegen. Dabei muss man
nun den linken Rand mit dem rechten Rand verkleben (das ist
ganz wortlich vorstellbar: wir schneiden diesen Bereich mit
der Schere aus; dann kleben wir die beiden langen Geraden
zusammen; schlieBlich kleben wir noch die linke Hilfte des
Bogenstiicks mit der rechten zusammen; dann hat man einen
Zylinder mit einem etwas komischen Boden). Die so erhaltene | ! 5
(Ober-)Fliche ist oben offen. Man kann diese durch Hinzufii- -1 =05 05 1 ox
gen eines Punktes, einer sogenannten Spitze, kompaktifizieren

(auch das ist ganz bildlich: wir driicken den Zylinder oben zu einem Punkt zusammen; dann
sehen wir die Spitze ganz deutlich). Die so entstandene Fliche ist eine kompakte Riemann-
sche Flidche, d. h. kleine Stiicke haben dieselbe Geometrie wie die komplexe Zahlenebene.
Modulformen findet man auf den Modulkurven wieder als sog. Differentialformen (diese ge-
braucht man z. B. zum Integrieren auf der Riemannschen Fldche). Der entscheidende Punkt
fiir die Zahlentheorie ist, dass die Modulkurven eine recht tiefliegende algebraische Struk-
tur haben, d. h. dass ihre Punkte auch Losungen von Gleichungen mit ganzen Koeffizienten
sind, allerdings in vielen Variablen. Auch die Differentialformen haben ein algebraisches
Analogon, das uns die sogenannten Katz-Modulformen liefert, die in der vorliegenden Arbeit
benutzt werden. Auch die Galoisdarstellungen werden mit Hilfe der algebraischen Beschrei-
bung der Modulkurven konstruiert.

Dem Studium von Fldchen (und hoherdimensionalen Varietiten) dient die (Ko-)Homo-
logietheorie. Die Homologietheorie von Riemannschen Flichen mit trivialen Koeffizienten
wollen wir kurz vorstellen. In der vorliegenden Arbeit werden aber auch Kohomologietheo-
rien von Schemas (das sind weitreichende algebraische Verallgemeinerungen von Riemann-
schen Flidchen), Stacks (das sind noch andere Verallgemeinerungen) und von Gruppen und
dann im allgemeinen mit nicht-trivialen Koeffizienten benutzt.

Eine Riemannsche Fldche kann man triangulieren, d. h. sie in endlich viele Dreiecke auf-
teilen (dabei diirfen die Seiten “krumm” sein, aber keine Knicke enthalten). Zur Aufteilung
in Dreiecke werden Seiten gezogen, d. h. jedes Dreieck hat drei Seiten und
zwei aneinander grenzende Dreiecke haben (mindestens) eine gemeinsame A B
Seite. Aulerdem betrachten wir die Menge der Schnittpunkte der Seiten.

Wir beschreiben nun eine Triangulation des Fahrradreifens (des sog. To-
rus). Dabei gehen wir konstruktiv vor. Wir beginnen mit dem nebenstehen-
den Rechteck, das wir in zwei Dreiecke aufgeteilt haben. Durch Zusam-
menkleben wird sich die Anzahl der Seiten verkleinern. Zunichst kleben wir
die Seite AD an die Seite BC. Auf diese Weise erhalten wir einen Zylinder.
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Nun kleben wir den Deckel an den Boden (dazu stellen wir uns Gummi als Baumaterial vor).

Die Eulercharakteristik einer Fldache ist definiert als x = d — s + p, wobei d die Anzahl
der Dreiecke, s die Anzahl der Seiten und p die Anzahl der Punkte bezeichnen. Die Euler-
charakteristik ist unabhéngig von der Triangulation. Aulerdem gilt die berithmte Beziehung

X =2—2g,

wobei g das Geschlecht der Fliche ist, d. h. die Anzahl der Locher.

Im Beispiel des Fahrradreifens finden wir in der Tat g = 1. Wir
haben namlich noch immer die beiden Dreiecke, von denen wir aus-
gegangen waren. Da wir die Seite AD mit BC' und ferner auch AB
mit DC identifiziert haben, ist die Anzahl der Seiten unserer Tri-
angulation des Torus 3. Auflerdem fallen durch obige Verklebungen
alle vier Punkte zusammen zu einem. Somit ergibt sich tatsdchlich
XxX=2-3+1=0.

Die oben beschriebene Modulkurve hat kein Loch. Daher gilt fiir sie ¢ = 0. Wir kon-
nen auch die Modulkurve einfach triangulieren. Dazu falten wir sie wieder auseinander. Wir
benutzen nur ein Dreieck. Dieses besteht aus den beiden Punkten unten links und unten
rechts und einem gedachten Punkt ganz oben (der Punkt der durch das Zusammendriicken
des Zylinders entstanden ist). Dann haben wir nach dem Zusammenkleben noch drei Punk-
te, zwei Seiten (die senkrechte und das Bogenstiick) und das Dreieck. Damit ergibt sich
x = 1—2+ 3 = 2. Allgemeinere Modulkurven, wie z. B. die in der Arbeit behandelte
Modulkurve X (IN), haben in der Regel viele Locher.

Die Homologiegruppen stehen zur Eulercharakteristik in enger Beziehung (die Eulercha-
rakteristik wird aus diesen abgeleitet). Die nullte und die zweite Homologiegruppe sind freie
Gruppen vom Rang gleich der Anzahl der Zusammenhangskomponenten. In unserem Fall ist
der Rang beider also 1. Die erste Homologiegruppe ist wiederum eine freie Gruppe. Ihr Rang
ist 2g, wobei g wie oben die Anzahl der Locher ist.

Nachdem wir versucht haben, eine erste, sehr stark vereinfachte Idee von den in der vor-
liegenden Arbeit untersuchten Objekten zu geben, wenden wir uns nun dem Inhalt zu.

Das erste Kapitel ist bereits als eigenstiandiger Artikel erschienen. Es geht in ihm um eine
leicht modifizierte Version von Serres Vermutung. In tief liegenden Arbeiten einer Vielzahl
Mathematiker wurde gezeigt, dass fiir ungerade Charakteristik p Serres Formeln fiir die Stufe,
den Charakter und das Gewicht der vorhergesagten Modulform richtig sind. Genauer, wenn
irgendeine Modulform existiert, die ein vorgegebenes ebenes Stiick von Gg gibt, dann gibt
es auch eine da, wo Serres Formeln diese voraussagen. Der Fall p = 2 ist jedoch zum Teil
noch offen.

In dem Artikel beschriinke ich mich auf “ebene Stiicke” in Charakteristik p von Gq (al-
so zweidimensionale Galoisdarstellungen), deren Symmetriegruppe eine Diedergruppe, also
eine Symmetriegruppe eines regelmissigen n-Ecks ist. Von diesen zeige ich die modifizierte
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Serre-Vermutung ohne Ausnahme, d. h. einschlielich p = 2. Dass solche Galoisdarstellun-
gen von irgendeiner Modulform kommen, war im Prinzip schon Erich Hecke bekannt, zumin-
dest wenn p # 2 ist. Im Beweis mache ich unendlich viele solche Modulformen, so dass ich
dann mittels des Schubfachprinzips (verteile 10 Briefe auf 5 Schubficher, dann liegen in ei-
nem mindestens zwei Breife) zwei wihlen kann, die sich mit Hilfe algebraisch geometrischer
Methoden zu der gewiinschten Form kombinieren lassen.

Im Kapitel II berechne und vergleiche ich verschiedene Arten von (Ko-)Homologie-
gruppen, die alle mit der Modulkurve X; (V) (einer etwas allgemeineren als der oben vor-
gestellten Riemannschen Fldche) zusammenhéngen, mit dem Modulsymbolformalismus, der
an die Homologie angelehnt ist. Dabei ist der Koeffizientenring beliebig. Es werden jeweils
explizite Beschreibungen in Termen von linearer Algebra abgeleitet.

Modulsymbole betrachten wir aus praktischen Gesichtspunkten: sie sind im weit verbrei-
teten Computeralgebrasystem Magma implementiert. Ich habe Computerprogramme erstellt,
die hierauf beruhen.

Im dritten Kapitel werden neue Fille bewiesen, in denen die Katz-Modulformen iiber
[, mit Hilfe der expliziten Beschreibungen der Kohomologiegruppen aus Kapitel II direkt
iiber dem endlichen Korper I, berechnet werden konnen. Dieses bringt einen Geschwindig-
keitszuwachs im Vergleich zu Methoden, die mit ganzen Zahlen rechnen. Unter Benutzung
einer Idee von Edixhoven erhalten wir auch einen Algorithmus zur Berechnung von Katz-
Modulformen von Gewicht eins (diese sind nicht direkt zugénglich!) mittels Modulsymbolen
iiber IF),.

Ausgenutzt wird im Beweis eine erstaunliche Parallelitit im Verhalten der Modulformen
von Gewicht 2 und Stufe Np iiber IF}, und der ersten Kohomologiegruppen der Riemannschen
Fliche X (Vp) mit [F,-Koeffizienten. In beiden spiegeln sich ndmlich die Modulformen bzw.
die ersten Kohomologiegruppen wider, die zu Stufe N und Gewicht k € {2,...,p + 1}
gehoren.

Der Ubergang von komplexer Geometrie zu algebraischer Geometrie iiber F,, wird da-
bei mit Hilfe der Jakobischen der Modulkurve bewerkstelligt. Die erste Kohomologiegruppe
kann ndmlich mit der p-Torsion der komplexen Jakobischen identifiziert werden. Geht man
dann zum Néronmodell der Jakobischen iiber, so gelingt es, Eigenschaften von der generi-
schen Faser (sogar der Riemannschen Fliche) zur speziellen Faser (also nach IF;,) zu iibertra-
gen.

Das vierte Kapitel enthilt eine Beschreibung der Algorithmen, die sich aus der Theorie
der beiden vorangehenden Kaptiel ergeben. Schlielich wird im fiinften Kapitel von Compu-
terberechnungen berichtet, die mit Hilfe der vorgestellten Algorithmen ausgefiihrt wurden.
Dabei wurde zum Beispiel festgestellt, dass die ebenen Stiicke von G in Charakteristik 2
erstaunlich schnell sehr grol werden. Desweiteren wurden noch andere Beobachtungen ge-
macht, die einige interessante theoretische Zusammenhénge suggerieren. Das Studium dieser
kann Gegenstand zukiinftiger Arbeiten sein.
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