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Introduction

The absolute Galois group GQ of the field of rational numbers is arguably the central object
of algebraic number theory, as it governs all number fields and their arithmetic. However, its
structure remains very mysterious. A natural approach is to study its linear representations,
i.e. continuous homomorphisms GQ → GLn(K) for some integer n ≥ 1, where K is
a topological field. Among other things, the Langlands program describes the case of
complex representations, i.e. those with K = C, via automorphic representations. Only for
n = 1 all complex Galois representations are known explicitly, as they are described by the
Kronecker-Weber theorem resp. by class field theory, when Q is replaced by an arbitrary
number field.

One of the aims of this thesis is to study and develop methods for computing explicitly
with odd semi-simple continuous representations of dimension n = 2 over Fp for a prime p,
i.e.

ρ : GQ → GL2(Fp)

where Fp is equipped with the discrete topology. Odd means that the image of any complex
conjugation has determinant−1. For both complex representations and representations over
Fp continuity implies that the image is a finite group. However, in GL2(C) there are relatively
few finite subgroups up to conjugation, whereas the theory is much richer over Fp.

Odd semi-simple 2-dimensional continuous Galois representations over Fp arise from
certain modular forms by a theorem of Deligne, Deligne-Serre and Shimura. The arithmetic
of such a modular representation is closely connected with the coefficients of the modular
form it comes from. A conjecture by Serre (henceforth simply the Serre conjecture) claims a
converse, namely, that the irreducible among those representations can be obtained from pre-
cisely described modular forms. Thus, the irreducible odd 2-dimensional Galois representa-
tions with coefficients in Fp are believed to be completely governed by modular forms. As
modular forms are very accessible for explicit computations, the Serre conjecture provides us
also with a tentative computational approach to all such 2-dimensional representations ofGQ

over Fp.
The modular forms used in the original version of the Serre conjecture were classical

Hecke eigenforms, that is, they are holomorphic functions from the upper half plane to the
complex numbers, satisfying certain transformation and growth properties and they are eigen-
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iv Modular Forms of Weight One Over Finite Fields

forms for the so-called Hecke operators. These conditions imply that after a suitable normal-
isation these forms have a Fourier series at i∞ of the form q +

∑
n≥2 anq

n with q = e2πiτ ,
where the an are algebraic integers. The associated Galois representation over Fp only de-
pends on the reduction of the an modulo a chosen prime above p. So, it is natural in the
context of the Serre conjecture to try to define modular forms directly over finite fields.

A good theory of modular forms over any ring in which the level is invertible was set
up by Katz in terms of the algebraic geometry of modular curves. It is this theory that we
will be using in this thesis. For weight at least 2 when working with the group Γ1(N) for
N ≥ 5 the Katz forms over Fp coincide with the reductions of the forms described in the
previous paragraph. The case of forms of weight one, however, plays a special rôle, as then
the Katz theory is much richer than the classical one. One can extend the Serre conjecture to
include weight one Katz forms over Fp, which ought to correspond to Galois representations
unramified at p. This aspect was discussed by Edixhoven in [EdixWeight].

In view of their number theoretic significance it is essential to be able to compute (Katz)
modular forms over finite fields explicitly. One aim of this thesis is to establish methods
for computing the associated Hecke algebra with fast methods, preferably in terms of linear
algebra over finite fields. Using work by Eichler and Shimura, one can compute classical
modular forms of weight at least 2 with linear algebra methods over the integers by using
integral modular symbols or integral group cohomology. Hence, reduction modulo a prime
above p yields a method for computing (Katz) modular forms over Fp. However, the theory of
modular symbols and group cohomology also makes sense over Fp. So, a natural question to
ask is whether one can compute modular forms over Fp directly with linear algebra methods
over Fp. More precisely, the question arises in which cases the Hecke algebra over Fp of
(Katz) modular forms over Fp coincides with the one of modular symbols over Fp.

Katz modular forms

Hecke algebras

Modular symbols

Modular curves

representations
???

odd 2−dim. s.s. Galois

The relationships between the ob-
jects described is illustrated in the fig-
ure. The modular curves can be seen as
the unifying element of the objects con-
cerned. Considering the modular curves
as Riemann surfaces, analytic cohomol-
ogy for a certain sheaf gives rise to the
modular symbols. The étale cohomol-
ogy of the modular curve over Q for a
similarly defined étale sheaf leads to the
Galois representation. Finally, global
sections of a certain invertible sheaf on
the modular curve base changed to Fp yield the Katz modular forms over Fp.

We now give an overview of the thesis and mention important results.
Chapter I is a reprinting of the article “Dihedral Galois Representations and Katz Modular

Forms” ([W-Dih]). In that article we prove the extended form of the Serre conjecture for



Introduction v

dihedral Galois representations. More precisely, the principal result is the following theorem
(cf. Theorem (1.1.1)).

Theorem. Let p be a prime and ρ : GQ → GL2(Fp) an irreducible odd Galois represen-

tation such that the image of GQ
ρ−→ GL2(Fp)

proj
� PGL2(Fp) is a dihedral group Dn for

some n. As in [Serre1] define Nρ to be the conductor of ρ and ερ to be the prime-to-p part
of det ◦ρ (that is the restriction to (Z/NρZ)∗ when det ◦ρ is considered as a character of
(Z/(Nρp)Z)∗). Define the minimal weight k(ρ) as in [EdixWeight].

Then there exists a normalised Katz eigenform f ∈ Sk(ρ)(Γ1(Nρ), ε,Fp) (i.e. it has
level Nρ, weight k(ρ) and character ερ) such that its associated Galois representation
ρf : GQ → GL2(Fp) is isomorphic to ρ.

The modularity of dihedral representations was apparently already known to Hecke, at
least for p > 2. So the question is whether the weight and the level of the modular form can
be chosen as predicted. For modular, irreducible, but not necessarily dihedral representations
this is known if p ≥ 3 by the work of many mathematicians, but for p = 2 there are open
exceptional cases. Our result hence shows that this is also true for p = 2, at least when the
representation is dihedral. The proof relies on the use of Katz modular forms and does not
work when one only uses reductions of holomorphic modular forms.

Chapters II, III and IV concern the computation of the Hecke algebra of Katz modular
forms over finite fields. In other words, we need a faithful module for that Hecke algebra
which can be easily described and calculated. The one used in the Magma implementations is
the module of modular symbols, but also a certain group cohomology group can be employed.

In Chapter II we study this group cohomology group and modular symbols (for their def-
inition see (2.5.1)) by relating them to certain cohomology groups of modular curves. From
a geometric point of view the cohomology groups of modular curves are the natural object to
consider. However, they are a priori not very accessible. But for modular curves that are ob-
tained as quotients of the upper half plane by groups like Γ = Γ1(N) with N ≥ 5, they agree
with certain group cohomology groups for Γ, which have an elementary description. For
more general groups Γ ≤ SL2(Z) there are differences. The usefulness of modular symbols
(or rather the modular symbols formalism) stems from the fact that a good implementation (in
Magma by William Stein) exists. Besides the modular curves, which we consider as Riemann
surfaces, we also use - in slight generalisation - analytic stacks, called modular stacks. The
latter notion only differs from the former, when the modular curve in question is obtained
as the quotient of the upper half plane by a non-freely acting subgroup Γ ≤ PSL2(Z) of
finite index. In the stack setting the cohomology groups under consideration also naturally
arise in the theory of group cohomology, whereas for modular curves geometric methods
such as Poincaré duality are available. Using both points of view allows us to establish an
explicit description of the first cohomology group of any modular curve and the push-forward
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of any locally constant sheaf of R-modules on the modular stack for an arbitrary ring R (cf.
Theorem (2.4.6)).

Theorem. For any ringR, any congruence subgroup Γ ≤ PSL2(Z) and anyR[Γ]-module V
with associated locally constant sheaf V on the analytic stack [Γ\H], we have

H1(Γ\H, π∗V) ∼= M/
(
M 〈σ〉 +M 〈τ〉

)

with M = Coind
PSL2(Z)
Γ (V ), σ =

(
0 −1
1 0

)
, τ =

(
1 −1
1 0

)
and π the natural projection map

from the stack [Γ\H] to the modular curve Γ\H, seen as a Riemann surface.

We can precisely describe the difference between the objects in question, which yields
the following criterion for them to be equal (cf. Theorem (2.6.1)). For the precise definitions
see Chapter II.

Theorem. Let R be a ring, Γ ≤ SL2(Z) be a congruence subgroup and k ≥ 2 an integer.
Suppose that the orders of all stabilisors for the action of Γ/Γ ∩ 〈−1〉 on the upper half
plane H are invertible in R.

Then the module of modular symbols over R for Γ of weight k is isomorphic with the
group cohomology group over R for Γ of weight k and the cohomology group over R of
weight k of the modular curve Γ\H. Similar results also hold for the respective parabolic
and the boundary subspaces.

We are also able to describe the torsion of the modules in question over the integers (see
Proposition (2.4.8)). Finally, a study of these objects for Γ1(N) as a (Z/NZ)∗-module is
carried out, which will be necessary in order to pass to characters in Chapter III.

The principal aim of Chapter III is to compare the Hecke algebra of modular forms
over Fp for Γ1(N) with p - N to the Hecke algebra defined on the parabolic group cohomol-
ogy group H1

par(Γ1(N), Vk−2(Fp)), where Vk−2(Fp) is the Fp[Γ1(N)]-module of homoge-
neous polynomials of degree k − 2 in two variables. The main idea is to work in weight 2

with level Np which forces us to restrict to weights 2 ≤ k ≤ p+ 1.
We introduce the following notation. Let M be any Fp-vector space on which the Hecke

operators Tl and the p-part of the diamond operators 〈·〉p act. By M [k− 2] we mean M with
the action of the Hecke operator Tl “twisted” to be lk−2Tl (in particular Tp acts as zero).
Furthermore, by M(k − 2) be denote the subspace on which 〈l〉p acts as lk−2.

For 3 ≤ k ≤ p there is the following proposition by Serre (cf. Proposition (3.3.8)).

Proposition. (Serre) Let p be a prime,N ≥ 5 and 3 ≤ k ≤ p integers such that p - N . More-
over, let L denote the Zp[ζp]-module consisting of the modular forms in S2(Γ1(Np),Qp(ζp))

all of whose q-expansions are integral. Let L = L⊗ Fp.
Then there is an isomorphism

L(k − 2) ∼= Sk(Γ1(N),Fp)⊕ Sp+3−k(Γ1(N),Fp)[k − 2],

which respects the Hecke action.
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We establish a parallel result on group cohomology (cf. Proposition (3.2.5)), which for
the non-parabolic spaces is already present in [Ash-Stevens].

Proposition. Let p be a prime, N ≥ 5 and 3 ≤ k ≤ p integers such that p - N .
We have the exact sequence

0→ H1
par(Γ1(N), Vk−2(Fp))→ H1

par(Γ1(Np),Fp)(k − 2)

→ H1
par(Γ1(N), Vp+3−k−2(Fp))[k − 2]→ 0,

in which the Hecke action is respected.

Via the Jacobian one can obtain a connection between Katz modular forms over Fp

and the corresponding group cohomology group, following the strategy of the proof of
[EdixJussieu], Theorem 5.2. In that way we are able to prove the following result (cf. Corol-
lary (3.3.14)).

Theorem. Let p be a prime, N ≥ 5 and k ∈ {2, . . . , p + 1} integers such that p - N .
Let P be a maximal ideal of the Fp-Hecke algebra T of Sk(Γ1(N),Fp) corresponding to
a normalised cuspidal eigenform f which is ordinary, i.e. the p-th coefficient ap(f) of the
standard q-expansion of f is non-zero.

Then H1
par(Γ1(N), Vk−2(Fp))P is a faithful module for TP.

Studying Sk(Γ1(N),Fp) as a (Z/NZ)∗-module this result can be extended to characters
(cf. Proposition (3.3.20)). It should be mentioned that methods from p-adic Hodge theory (cf.
Corollary (3.3.7) and [EdixJussieu], Theorem 5.2) show that the ordinariness assumption is
not necessary when k < p.

In Chapter IV we explain how the methods from Chapters II and III can be used algorith-
mically. Using a method from [EdixJussieu] we obtain the following corollary of the case
k = p of the preceding theorem (cf. Corollary (4.5.5)).

Corollary. The Hecke algebra of weight one Katz modular forms for Γ1(N) over Fp with
p - N can be computed using cuspidal modular symbols over Fp.

Chapter V reports on computer calculations performed with the algorithms from Chap-
ter IV. One result is the following (cf. Theorem (5.1.1)).

Theorem. All groups SL2(F2r) occur as Galois groups over Q for r from 1 up to 77.

This extends computations by Mestre, who covered r ≤ 16.

Chapters I and V are independent of any other chapter. Chapters II, III and IV build on
each other.
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Notations and Conventions

Let R be a ring which is commutative and has a unit element. All base rings in this thesis are
assumed to satisfy these properties.

If M is a left R[G]-module for a group G, we denote the (left) coinvariants by

GM = M/IGM,

with the augmentation ideal IG defined by the exact sequence

0→ IG → R[G]
g 7→1−−−→ R→ 0.

The augmentation ideal is the ideal of R[G] generated by all elements of the form (1− g) for
g ∈ G. If M is a right R[G]-module, we denote the (right) coinvariants by

MG = M/MIG.

For the right resp. left invariants we use the notation MG resp. GM .
If g is an element of finite order n in G, we define the norm of g as the element

Ng = 1 + g + · · · + gn−1 in R[G]. Similarly, if G is a finite group we mean by NG the
formal sum over the group elements of G inside R[G].

If φ is an endomorphism of M , respecting the submoduleN ⊆M , the notation kerN (φ)

means the kernel of φ considered as an endomorphism of N .

We let Mat2(Z) 6=0 denote the monoid of 2 × 2-matrices with entries in Z and non-zero
determinant. We have the following important matrices in Mat2(Z) 6=0:

T = ( 1 1
0 1 ) , σ =

(
0 −1
1 0

)
, τ := Tσ =

(
1 −1
1 0

)
,

τ2 =
(

0 −1
1 −1

)
, T ′ = ( 1 0

1 1 ) , η =
(
−1 0
0 1

)
.

For a 2× 2-matrix M =
(

a b
c d

)
over a ring R one defines Shimura’s main involution

M ι = Tr(M)−M =
(

d −b
−c a

)
.

If M has invertible determinant, we have M ι = M−1 det(M). The matrix M ι is also called
the adjoint matrix. Moreover, we have the identity M ι = (σ−1Mσ)>.

We consider the standard subgroups Γ(N), Γ1(N) and Γ0(N) of SL2(Z) consisting of
those matrices in SL2(Z) which reduce to ( 1 0

0 1 ) resp. to ( 1 ∗
0 1 ) resp. to ( ∗ ∗

0 ∗ ) modulo N .
If G is a subgroup of SL2(Z), we denote by G = G/(〈−1〉 ∩ G) the corresponding

subgroup of PSL2(Z).

If Γ ≤ SL2(Z) is a congruence subgroup, i.e. contains some Γ(N), then throughout this
thesis the notation Sk(Γ, R) means Katz modular forms of weight k for the group Γ over the
Z[1/N ]-algebra R (see e.g. [EdixBoston]). A similar notation is used with a character.



Chapter I

Dihedral Galois Representations
and Katz Modular Forms

This chapter has appeared as [W-Dih]. All changes to the published version are indicated by
footnotes. The notation slightly differs from the one used in the other chapters of this thesis.

We show that any two-dimensional odd dihedral representation ρ over a finite
field of characteristic p > 0 of the absolute Galois group of the rational numbers
can be obtained from a Katz modular form of level N , character ε and weight k,
whereN is the conductor, ε is the prime-to-p part of the determinant and k is the
so-called minimal weight of ρ. In particular, k = 1 if and only if ρ is unramified
at p. Direct arguments are used in the exceptional cases, where general results
on weight and level lowering are not available.

1.1. Introduction

In [Serre1] Serre conjectured that any odd irreducible continuous Galois representation
ρ : GQ → GL2(Fp) for a prime p comes from a modular form in characteristic p of a certain
level Nρ, weight kρ ≥ 2 and character ερ. Later Edixhoven discussed in [EdixWeight] a
slightly modified definition of weight, the so-called minimal weight, denoted k(ρ), by invok-
ing Katz’ theory of modular forms. In particular, one has that k(ρ) = 1 if and only if ρ is
unramified at p.

The present note contains a proof of this conjecture for dihedral representations. We
define those to be the continuous irreducible Galois representations that are induced from
a character of the absolute Galois group of a quadratic number field. Let us mention that
this is equivalent to imposing that the representation is irreducible and its projective image is

1



2 I. Dihedral Galois Representations and Katz Modular Forms

isomorphic to a dihedral group Dn for some n.1

(1.1.1) Theorem. Let p be a prime and ρ : GQ → GL2(Fp) an odd dihedral representation.
As in [Serre1] define Nρ to be the conductor of ρ and ερ to be the prime-to-p part of det ◦ρ
(considered as a character of (Z/(Nρp)Z)∗)2. Define k(ρ) as in [EdixWeight].

Then there exists a normalised Katz eigenform f ∈ Sk(ρ)(Γ1(Nρ), ερ,Fp)Katz, whose
associated Galois representation ρf is isomorphic to ρ.

We will on the one hand show directly that ρ comes from a Katz modular form of levelNρ,
character ερ and minimal weight k(ρ) = 1, if ρ is unramified at p. If on the other hand ρ is
ramified at p, we will finish the proof by applying the fundamental work by Ribet, Edixhoven,
Diamond, Buzzard and others on “weight and level lowering” (see Theorem (1.4.2)).

Let us recall that in weight at least 2 every Katz modular form on Γ1
3 is classical, i.e. a

reduction from a characteristic zero form of the same level and weight. Hence multiplying
by the Hasse invariant, if necessary, it follows from Theorem (1.1.1) that every odd dihedral
representation as above also comes from a classical modular form of level Nρ and Serre’s
weight kρ. However, if one also wants the character to be ερ, one has to exclude in case
p = 2 that ρ is induced from Q(i) and in case p = 3 that ρ is induced from Q(

√
−3) (see

[Buzzard], Corollary 2.7, and [Diamond], Corollary 1.2).
Edixhoven’s theorem on weight lowering ([EdixWeight], Theorem 4.5) states that mod-

ularity in level Nρ and the modified weight k(ρ) follows from modularity in level Nρ

and Serre’s weight kρ, unless one is in a so-called exceptional case. A representation
ρ : GQ → GL2(Fp) is called exceptional if the semi-simplification of its restriction to a
decomposition group at p is the sum of two copies of an unramified character. Because of
work by Coleman and Voloch the only open case left is that of characteristic 2 (see the intro-
duction of [EdixWeight]).

Exceptionality at 2 is a common phenomenon for mod 2 dihedral representations. One
way to construct examples is to consider the Hilbert class fieldH of a quadratic fieldK that is
unramified at 2 and has a non-trivial class group. One lets ρK be the dihedral representation
obtained by induction toGQ of a mod 2 character of the Galois group ofH |K. If the prime 2

stays inert in OK , then 2OK splits completely in H and the order of ρK(Frob2) is 2, where
Frob2 is a Frobenius element at 2. Consequently, ρK is exceptional. An example for this
behaviour is provided by K = Q(

√
229). If the prime 2 splits in OK and the primes of OK

lying above 2 are principal, then ρK(Frob2) is the identity and hence ρK is exceptional. This
happens for example for K = Q(

√
2089).

Let us point out that some of the weight one forms that we obtain cannot be lifted to
characteristic zero forms of weight one and the same level, so that the theory of modular
forms by Katz becomes necessary. Namely, if p = 2 and the dihedral representation in

1A small mistake concerning n = 2 has been corrected (pointed out by K. Buzzard).
2By the prime-to-p part we mean the restriction to (Z/NρZ)∗.
3More precisely: Γ1(N) with N ≥ 5.
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question has odd conductorN and is induced from a real quadratic fieldK of discriminantN ,
whose fundamental units have norm −1, then there does not exist an odd characteristic zero
representation with conductor dividing N that reduces to ρ. The representation coming from
the quadratic field Q(

√
229) used above, can also here serve as an example.4

The fact that dihedral representations come from some modular form is well-known (ap-
parently already due to Hecke5). So the subtle issue is to adjust the level, character and
weight. It should be noted that Rohrlich and Tunnell solved many cases for p = 2 with Serre’s
weight kρ by rather elementary means in [R-T], however, with the more restrictive definition
of a dihedral representation to be such that its image in GL2(F2), and not in PGL2(F2), is
isomorphic to a dihedral group.

Let us also mention that it is possible to do computations of weight one forms in positive
characteristic on a computer (see [W-App]) and thus to collect evidence for Serre’s conjecture
in some cases.

This note is organised as follows. The number theoretic ingredients on dihedral repre-
sentations are provided in Section 2. In Section 3 some results on oldforms, also in positive
characteristic, are collected. Section 4 is devoted to the proof of Theorem (1.1.1). Finally, in
Section 5 we include a result on the irreducibility of certain mod p representations.

I wish to thank Peter Stevenhagen for helpful discussions and comments and especially
Bas Edixhoven for invaluable explanations and his constant support.

1.2. Dihedral representations

We shall first recall some facts on Galois representations. Let ρ : GQ → GL(V ) be a
continuous representation with V a 2-dimensional vector space over an algebraically closed
discrete field k.

Let L be the number field such that Ker(ρ) = GL (by the notation GL we always mean
the absolute Galois group of L). Given a prime Λ of L dividing the rational prime l, we
denote by GΛ,i the i-th ramification group in lower numbering of the local extension LΛ|Ql.
Furthermore, one sets

nl(ρ) =
∑

i≥0

dim(V/V GΛ,i)

(GΛ,0 : GΛ,i)
.

This number is an integer, which is independent of the choice of the prime Λ above l. With
this one defines the conductor of ρ to be f(ρ) =

∏
l l

nl(ρ), where the product runs over all
primes l different from the characteristic of k. If k is the field of complex numbers, f(ρ)

coincides with the Artin conductor.

4It was pointed out by Frank Calegari that the form in question does come from a holomorphic eigenform of
weight one and level 229. The projective image of its complex representation is S4 and thus not dihedral. This
phenomenon cannot happen when the class number of the real quadratic field is at least 5.

5Hecke probably knew this for odd p. The case p = 2 can be dealt with by Serre’s trick (see Lemma (1.2.1))
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Let ρ be a dihedral representation. Then ρ is induced from a character χ : GK → k∗

for a quadratic number field K such that χ 6= χσ, with χσ(g) = χ(σ−1gσ) for all g ∈ GK ,
where σ is a lift to GQ of the non-trivial element of GK|Q. For a suitable choice of basis
we then have the following explicit description of ρ: If an unramified prime l splits in K as
Λσ(Λ), then ρ(Frobl) =

(
χ(FrobΛ) 0

0 χσ(FrobΛ)

)
.Moreover, ρ(σ) is represented by the matrix

(
0 1

χ(σ2) 0

)
. As ρ is continuous, its image is a finite group, say, of order m.

(1.2.1) Lemma. Let ρ : GQ → GL2(Fp) be an odd dihedral representation that is unrami-
fied at p. Define K, χ, σ and m as above. Let N be the conductor of ρ. Let ζm a primitive
m-th root of unity and P a prime of Q(ζm) above p.

Then one of the following two statements holds.

(a) There exists an odd dihedral representation ρ̂ : GQ → GL2(Z[ζm]), which has Artin
conductorN and reduces to ρ modulo P.

(b) One has that p = 2 andK is real quadratic. Moreover, there is an infinite set S of primes
such that for each l ∈ S the trace of ρ(Frobl) is zero, and there exists an odd dihedral
representation ρ̂ : GQ → GL2(Z[ζm]), which has Artin conductor Nl and reduces to ρ
modulo P.

Proof. Suppose that the quadratic field K equals Q(
√
D) with D square-free. The char-

acter χ : GK → k∗ can be uniquely lifted to a character χ̃ : GK → Z[ζm]∗ of the same
order, which reduces to χ modulo P. Denote by ρ̃ the continuous representation Ind

GQ

GK
χ̃.

For the choice of basis discussed above the matrices representing ρ can be lifted to matrices
representing ρ̃, whose non-zero entries are in the m-th roots of unity. Then for a subgroup
H of the image ρ(GQ), one has that (Fp

2
)H is isomorphic to (Z[ζm]2)H ⊗ Fp. Hence the

conductor of ρ equals the Artin conductor of ρ̃, as ρ̃ is unramified at p. Alternatively, one
can first remark that the conductor of χ equals the conductor of χ̃ and then use the formulae
f(ρ) = NormK|Q(f(χ))D and f(ρ̃) = NormK|Q(f(χ̃))D.

Thus condition (a) is satisfied if ρ̃ is odd. Let us now consider the case when ρ̃ is even.
This immediately implies p = 2 and that the quadratic field K is real, as is the number field
L whose absolute Galois groupGL equals the kernel of ρ, and hence also the kernel of χ̃. We
shall now adapt “Serre’s trick” from [R-T], p. 307, to our situation.

Let f be the conductor of χ̃. As L is totally real, f is a finite ideal of OK . Via class field
theory, χ̃ can be identified with a complex character of ClfK , the ray class group modulo f.
Let∞1,∞2 be the infinite places of K. Consider the class

c = [{(λ) ∈ Cl4Df∞1∞2

K | Norm(λ) < 0, λ ≡ 1 mod 4Df}]

in the ray class group of K modulo 4Df∞1∞2. By Cebotarev’s density theorem the primes
of OK are uniformly distributed over the conjugacy classes of Cl4Df∞1∞2

K . Hence, there are
infinitely many primes Λ of degree 1 in the class c. Take S to be the set of rational primes
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lying under them. Let a prime Λ from the class c be given. It is principal, say Λ = (λ),
and coprime to 4Df. By construction we have c2 = [Λ2] = 1. As ClfK is a quotient of
Cl4Df∞1∞2

K , the class of Λ in ClfK has order 1 or 2. Since p = 2, the character χ has odd
order and we conclude that χ(Λ) = 1.

We have λ ≡ 1 mod 4Df and Norm(λ) = −l for some odd prime l. Hence, the ex-
tension K(

√
λ) has two real and two complex embeddings and is unramified at 2 and at the

primes dividing Df. We represent K(
√
λ) by the quadratic character ξ : GK → {±1}.

For the complex conjugation, the “infinite Frobenius element”, Frob∞1 , we have that
ξ(Frob∞1)ξ

σ(Frob∞1) = −1. We now consider the representation ρ̂ obtained by induc-
tion from the character χ̂ = χ̃ξ. Using the same basis as in the discussion at the beginning
of this section, an element g of GK is represented by the matrix

(
eχ(g)ξ(g) 0

0 eχσ(g)ξσ(g)

)
. In

particular, we obtain that the determinant of Frob∞ over Q equals −1, whence ρ̂ is odd.
Moreover, as l splits in K, one has that ρ(Frobl) is the identity matrix, so that the trace of
ρ(Frobl) is zero.

The reduction of ρ̂ equals ρ, as ξ is trivial in characteristic 2. Moreover, outside Λ the
conductor of χ̂ equals the conductor of χ̃. At the prime Λ the local conductor of χ̂ is Λ, as
the ramification is tame. Consequently, the Artin conductor of ρ̂ equals Nl. 2

Also without the condition that it is unramified at p, one can lift a dihedral representation
to characteristic zero, however, losing control of the Artin conductor.

(1.2.2) Lemma. Let ρ : GQ → GL2(Fp) be an odd dihedral representation. Define K, χ,
m, ζm and P as in the previous lemma.

There exists an odd dihedral representation ρ̂ : GQ → GL2(Z[ζm]), whose reduction
modulo P is isomorphic to ρ.

Proof. We proceed as in the preceding lemma for the definitions of χ̃ and ρ̃. If ρ̃ is
even, then p = 2 and K is real. In that case we choose some λ ∈ OK − Z, which sat-
isfies Norm(λ) < 0. The field K(

√
λ) then has signature (2, 1) and gives a character

ξ : GK → Z[ζm]∗. As in the proof of the preceding lemma one obtains that the repre-
sentation ρ̂ = Ind

GQ

GK
χ̃ξ is odd and reduces to ρ modulo P. 2

1.3. On oldforms

In this section we collect some results on oldforms. We try to stay as much as possible in the
characteristic zero setting. However, we also need a result on Katz modular forms.

(1.3.1) Proposition. Let N, k, r be positive integers, p a prime and ε a Dirichlet character
of modulus N . The homomorphism

φN
pr :

(
Sk(Γ1(N), ε,C)

)r+1
↪→ Sk(Γ1(Np

r), ε,C), (f0, f1, . . . , fr) 7→
r∑

i=0

fi(q
pi

)
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is compatible with all Hecke operators Tn with (n, p) = 1.
Let f ∈ Sk(Γ1(N), ε,C) be a normalised eigenform for all Hecke operators. Then the

forms f(q), f(qp2

), . . . , f(qpr

) in the image of φN
pr are linearly independent, and on their

span the action of the operator Tp in level Npr is given by the matrix



ap(f) 1 0 0 . . . 0

−δpk−1ε(p) 0 1 0 . . . 0

0 0 0 1 . . . 0
...

0 . . . 0 0 0 1

0 . . . 0 0 0 0




,

where δ = 1 if p - N and δ = 0 otherwise.

Proof. The embedding map and its compatibility with the Hecke action away from p

is explained in [DiamondIm], Section 6.1. The linear independence can be checked on q-
expansions. Finally, the matrix can be elementarily computed. 2

(1.3.2) Corollary. Let p be a prime, r ≥ 0 some integer and f ∈ Sk(Γ1(Np
r), ε,C) an

eigenform for all Hecke operators. Then there exists an eigenform for all Hecke operators
f̃ ∈ Sk(Γ1(Np

r+2), ε,C), which satisfies al(f̃) = al(f) for all primes l 6= p and ap(f̃) = 0.

Proof. One computes the characteristic polynomial of the operator Tp of Proposition
(1.3.1) and sees that it has 0 as a root if the dimension of the matrix is at least 3. Hence one
can choose the desired eigenform f̃ in the image of φNpr

p2 . 2

As explained in the introduction, Katz’ theory of modular forms ought to be used in the
study of Serre’s conjecture. Following [EdixBoston], we briefly recall this concept, which
was introduced by Katz in [Katz]. However, we shall use a “non-compactified” version.

Let N ≥ 1 be an integer and R a ring, in which N is invertible. One defines the category
[Γ1(N)]R, whose objects are pairs (E/S/R, α), where S is an R-scheme, E/S an elliptic
curve (i.e. a proper smooth morphism of R-schemes, whose geometric fibres are connected
smooth curves of genus one, together with a section, the “zero section”, 0 : S → E) and
α : (Z/NZ)S → E[N ], the level structure, is an embedding of S-group schemes. The
morphisms in the category are cartesian diagrams

E′ //

2

E

S′ //
��

S,
��

which are compatible with the zero sections and the level structures. For every such elliptic
curve E/S/R we let ωE/S = 0∗ΩE/S . For every morphism π : E ′/S′/R → E/S/R the
induced map ωE′/S′ → π∗ωE/S is an isomorphism.
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A Katz cusp form f ∈ Sk(Γ1(N), R)Katz assigns to every object (E/S/R, α) of
[Γ1(N)]R an element f(E/S/R, α) ∈ ω⊗k

E/S(S), compatibly for the morphisms in the cate-
gory, subject to the condition that all q-expansions (which one obtains by adjoining all N -th
roots of unity and plugging in a suitable Tate curve) only have positive terms.

For the following definition let us remark that if m ≥ 1 is coprime to N and is invertible
inR, then any morphism of group schemes of the form φNm : (Z/NmZ)S → E[Nm] can be
uniquely written as φN ×S φm with φN : (Z/NZ)S → E[N ] and φm : (Z/mZ)S → E[m].

(1.3.3) Definition. A Katz modular form f ∈ Sk(Γ1(Nm), R)Katz is called indepen-
dent of m if for all elliptic curves E/S/R, all φN : (Z/N)S ↪→ E[N ] and all
φm, φ

′
m : (Z/m)S ↪→ E[m] one has the equality

f(E/S/R, φN ×S φm) = f(E/S/R, φN ×S φ
′
m) ∈ ω⊗k

E/S(S).

(1.3.4) Proposition. Let N , m be coprime positive integers and R a ring, which contains
the Nm-th roots of unity and 1

Nm . A Katz modular form f ∈ Sk(Γ1(Nm), R)Katz is inde-
pendent of m if and only if there exists a Katz modular form g ∈ Sk(Γ1(N), R)Katz such
that

f(E/S/R, φNm) = g(E/S/R, φNm ◦ ψ)

for all elliptic curves E/S/R and all φNm : (Z/NmZ)S ↪→ E[Nm]. Here ψ denotes the
canonical embedding (Z/NZ)S ↪→ (Z/NmZ)S of S-group schemes. In that case, f and g
have the same q-expansion at∞.

Proof. If m = 1, there is nothing to do. If necessary replacing m by m2, we can hence
assume that m is at least 3.

Let us now consider the category [Γ1(N ;m)]R, whose objects are triples
(E/S/R, φN , ψm), whereS is anR scheme,E/S an elliptic curve, φN : (Z/NZ)S ↪→ E[N ]

an embedding of group schemes and ψm : (Z/mZ)2S
∼= E[m] an isomorphism of group

schemes. The morphisms are cartesian diagrams compatible with the zero sections, the φN

and the ψm as before.
We can pull back the form f ∈ Sk(Γ1(Nm), R)Katz to a Katz form h on [Γ1(N ;m)]R as

follows. First let β : (Z/mZ)S ↪→ (Z/mZ)2S be the embedding of S-group schemes defined
by mapping onto the first factor. Using this, f gives rise to h by setting

h((E/S/R, φN , ψm)) = f((E/S/R, φN , ψm ◦ β)) ∈ ω⊗k
E/S(S).

As f is independent of m, it is clear that h is independent of ψm and thus invariant under the
natural GL2(Z/mZ)-action.

As m ≥ 3, one knows that the category [Γ1(N ;m)]R has a final object
(Euniv/Y1(N ;m)R/R, α

univ). In other words, h is an GL2(Z/mZ)-invariant global sec-
tion of ω⊗k

Euniv/Y1(N ;m)R
. Since this R-module is equal to Sk(Γ1(N), R)Katz (see e.g.
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Equation 1.2 of [EdixBoston], p. 210), we find some g ∈ Sk(Γ1(N), R)Katz such that
f(E/S/R, φNm) = g(E/S/R, φNm ◦ ψ) for all (E/S/R, φNm).

Plugging in the Tate curve, one sees that the standard q-expansions of f and g coincide.
2

(1.3.5) Corollary. Let N,m be coprime positive integers, p a prime not dividing Nm and
ε : (Z/NZ)∗ → Fp a character. Let f ∈ Sk(Γ1(Nm), ε,Fp)Katz be a Katz cuspidal eigen-
form for all Hecke operators.

If f is independent of m, then there exists an eigenform for all Hecke operators
g ∈ Sk(Γ1(N), ε,Fp)Katz such that the associated Galois representations ρf and ρg are
isomorphic.

Proof. From the preceding proposition we get a modular form g ∈ Sk(Γ1(N), ε,Fp)Katz,
noting that the character is automatically good. Because of the compatibility of the embed-
ding map with the operators Tl for primes l - m, we find that g is an eigenform for these
operators. As the operators Tl for primes l - m commute with the others, we can choose a
form of the desired type. 2

1.4. Proof of the principal result

We first cover the weight one case.

(1.4.1) Theorem. Let p be a prime and ρ : GQ → GL2(Fp) an odd dihedral representation
of conductorN , which is unramified at p. Let ε denote the character det ◦ρ.

Then there exists a Katz eigenform f in S1(Γ1(N), ε,Fp)Katz, whose associated Galois
representation is isomorphic to ρ.

Proof. Assume first that part (a) of Lemma (1.2.1) applies to ρ, and let ρ̂ be a lift provided
by that lemma. A theorem by Weil-Langlands (Theorem 1 of [Serre2]) implies the existence
of a newform g in S1(Γ1(N), det ◦ρ̂,C), whose associated Galois representation is isomor-
phic to ρ̂. Now reduction modulo a suitable prime above p yields the desired modular form.
In particular, one does not need Katz’ theory in this case.

If part (a) of Lemma (1.2.1) does not apply, then part (b) does, and we let S be the infinite
set of primes provided. For each l ∈ S the theorem of Weil-Langlands yields a newform f (l)

in S1(Γ1(Nl),C), whose associated Galois representation reduces to ρ modulo P, where P

is the ideal from the lemma. Moreover, the congruence aq(f
(l)) ≡ 0 mod P holds for all

primes q ∈ S different from l.
From Corollary (1.3.2) we obtain Hecke eigenforms f̃ (l) ∈ S1(Γ1(Nl

3),C) such that
al(f̃

(l)) = 0 and aq(f̃
(l)) = aq(f

(l)) ≡ 0 mod P for all primes q ∈ S, q 6= l. Reducing
modulo the prime ideal P, we get eigenforms g(l) ∈ S1(Γ1(Nl

3), ε,Fp), whose associated
Galois representations are isomorphic to ρ. One also has aq(g

(l)) = 0 for all q ∈ S.
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The coefficients aq(f
(l)) for all primes q | N appear in the L-series of the complex repre-

sentation ρf (l) associated to f (l). As the image of ρf (l) is isomorphic to a fixed finite groupG,
not depending on l, there are only finitely many possibilities for the value of aq(f

(l)). Hence
the same holds for the g(l). Consequently, there are two forms g1 = g(l1) and g2 = g(l2)

for l1 6= l2 that have the same coefficients at all primes q | N . For primes q - Nl1l2
one has that the trace of ρf (l1)(Frobq) is congruent to the trace of ρf (l2)(Frobq), whence
aq(g1) = aq(g2). Let us point out that this includes the case q = p = 2, as the complex
representation is unramified at p.

In the next step we embed g1 and g2 into S1(Γ1(Nl
3
1l

3
2), ε,Fp)Katz via the method in the

statement of Proposition (1.3.4). As the q-expansions coincide, g1 and g2 are mapped to the
same form h. But as h comes from g2, it is independent of l1 and analogously also of l2.
Since ρh = ρ, Theorem (1.4.1) follows immediately from Corollary (1.3.5). 2

We will deduce the cases of weight at least two from general results. The current state of
the art in “level and weight lowering” seems to be the following theorem.

(1.4.2) Theorem. (Ribet, Edixhoven, Diamond, Buzzard,. . . ) Let p be a prime and
ρ : GQ → GL2(Fp) a continuous irreducible representation, which is assumed to come
from some modular form. Define kρ and Nρ as in [Serre1]. If p = 2, additionally assume
either (i) that the restriction of ρ to a decomposition group at 2 is not contained within the
scalar matrices or (ii) that ρ is ramified at 2.

Then there exists a normalised eigenform f ∈ Skρ
(Γ1(Nρ),Fp) giving rise to ρ.

Proof. The case p 6= 2 is Theorem 1.1 of [Diamond], and the case p = 2 with condition (i)
follows from Propositions 1.3 and 2.4 and Theorem 3.2 of [Buzzard], multiplying by the
Hasse invariant if necessary.

We now show that if p = 2 and ρ restricted to a decomposition groupGQ2 at 2 is contained
within the scalar matrices, then ρ is unramified at 2. Let φ : GQ → F2

∗
be the character such

that φ2 = det ◦ρ. As φ has odd order, it is unramified at 2 because of the Kronecker-Weber
theorem. If ρ restricted to GQ2 is contained within the scalar matrices, then we have that

ρ|GQ2
is

(
φ|GQ2

0

0 φ|GQ2

)
, whence ρ is unramified at 2. 2

Proof of theorem (1.1.1). Let ρ be the dihedral representation from the assertion. If ρ is
unramified at p, one has k(ρ) = 1, and Theorem (1.1.1) follows from Theorem (1.4.1).

If ρ is ramified at p, then let ρ̂ be a characteristic zero representation lifting ρ, as pro-
vided by Lemma (1.2.2). The theorem by Weil-Langlands already used above (Theorem 1
of [Serre2]) implies the existence of a newform in weight one and characteristic zero giving
rise to ρ̂. So from Theorem (1.4.2) we obtain that ρ comes from a modular form of Serre’s
weight kρ and level Nρ. Let us note that using Katz modular forms the character is automat-
ically the conjectured one ερ.

The weights kρ and k(ρ) only differ in two cases (see [EdixWeight], Remark 4.4). The
first case is when k(ρ) = 1. The other case is when p = 2 and ρ is not finite at 2. Then



10 I. Dihedral Galois Representations and Katz Modular Forms

one has k(ρ) = 3 and kρ = 4. In that case one applies Theorem 3.4 of [EdixWeight] to
obtain an eigenform of the same level and character in weight 3, or one applies Theorem 3.2
of [Buzzard] directly. 2

1.5. An irreducibility result

We first study the relation between the level of an eigenform in characteristic p and the con-
ductor of the associated Galois representation.

(1.5.1) Lemma. Let ρ : GQ → GL2(Fp) be a continuous representation of conductor N ,
and let k be a positive integer. If f ∈ Sk(Γ1(M), ε,Fp)Katz is a Hecke eigenform giving rise
to ρ, then N divides M .

Proof. By multiplying with the Hasse invariant, if necessary, we can assume that
the weight is at least 2. Hence the form f can be lifted to characteristic zero (see e.g.
[DiamondIm], Theorem 12.3.2) in the same level. Thus there exists a newform g, say of
level L, whose Galois representation ρg reduces to ρ. Now Proposition 0.1 of [Livné] yields
that N divides L. As L divides M , the lemma follows. 2

We can derive the following proposition, which is of independent interest.

(1.5.2) Proposition. Let f ∈ Sk(Γ0(N),Fp)Katz be a normalised Hecke eigenform for a
square-free level N with p - N in some weight k ≥ 1.

(a) If p = 2, the associated Galois representation is either irreducible or trivial.

(b) For any prime p the associated Galois representation is either irreducible or corresponds
to a direct sum α ⊕ χk−1

p α−1, where χp is the mod p cyclotomic character and α is a
character factoring through G(Q(ζp)|Q) for a primitive p-th root of unity ζp.

Proof. Let us assume that the representation ρ associated to f is reducible. Since ρ is
semi-simple, it is isomorphic to the direct sum of two characters α⊕β. As the determinant is
the (k−1)-th power of the mod p cyclotomic characterχp, we have that β = χk−1

p α−1. Since
the conductor of χk−1

p is 1, it follows that the conductor of α equals that of β. Consequently,
the conductor of ρ is the square of the conductor of α. Lemma (1.5.1) implies that the
conductor of ρ divides N . As we have assumed this number to be square-free, we have that
ρ can only ramify at p.

The number field L with GL = Ker(ρ) is abelian. As only p can be ramified, it follows
that L is contained in Q(ζpn) for some pn-th root of unity. Since the order of α is prime to p,
we conclude that α factors throughG(Q(ζp)|Q). In characteristic p = 2 this implies that ρ is
the trivial representation, as χ2 is the trivial character. 2



Chapter II

Modular Symbols Over Rings

The Eichler-Shimura-Theorem (Theorem (3.3.1)) establishes an isomorphism between the
direct sum of two copies of the space of holomorphic cusp forms for a congruence subgroup
Γ ≤ SL2(Z) of finite index and the parabolic subspace of the analytic cohomology of the
associated modular curveXΓ for a certain sheaf of C-vector spaces. In this setting the Hecke
algebra defined on the cohomology group coincides with the usual one on cusp forms, so that
the knowledge of the Hecke operators on the cohomology group determines the cusp forms
completely. One of the principal themes of this thesis is to obtain similar results over finite
fields in certain cases.

This chapter is concerned with the analytic cohomology groups used in the Eichler-
Shimura theorem, but over general rings. Whereas from a geometric point of view the co-
homology of modular curves is the most natural object to study, it only becomes explicitly
accessible via the natural comparison with group cohomology. Another explicit approach is
provided by the modular symbols formalism. It is of practical interest, as it has been imple-
mented by William Stein into Magma. We compute the differences between these objects for
general congruence subgroups of SL2(Z) and give a criterion when they agree.

A link with the theory of modular forms will be established in Chapter III.

We start this chapter by introducing modular curves as Riemann surfaces, analytic mod-
ular stacks and the sheaves and some of their properties to be used in the sequel. We begin
our study with the cohomology of modular stacks and relate it to group cohomology. Next,
we derive an explicit description of the cohomology of modular curves for the push-forward
of any locally constant sheaf on the modular stack by comparing it via the Leray spectral se-
quence to stack cohomology and using the Mayer-Vietoris sequence for group cohomology.
Moreover, torsion properties are discussed. The following section is devoted to introducing
the modular symbols formalism and to prove an explicit description in terms of the so-called
Manin symbols. Next, we will be able to give a precise description of when the spaces in
question agree, resp. what their differences are. The final section treats modular symbols for

11
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Γ1(N) as a (Z/NZ)∗-module and a slight generalisation to some other subgroups.

(2.0.3) Notation. Recall that for a subgroup H of SL2(Z) we denote H = H/(〈−1〉 ∩H),
which we consider as a subgroup of PSL2(Z).

Throughout this chapter we let Γ and G be congruence subgroups of SL2(Z) such that

Γ �G ≤ SL2(Z).

For a ring R and an integer k ≥ 2 we let

Vk−2(R) := Symk−2(R2)

which carries the natural left SL2(Z)-action. Moreover, we will use a character of the form

ε : G
proj
� Γ\G→ R∗

and denote by Rε the R[G]-module which is defined to be a copy of R with G-action
through ε−1. Also define

V ε
k−2(R) := Vk−2(R)⊗R R

ε

for the diagonal G-action. In case that G contains the matrix −1, we will always assume
that ε(−1) = (−1)k, so that V ε

k−2(R) is an R[G]-module.

2.1. Modular curves and modular stacks

We assume Notation (2.0.3), as we do in all this chapter. The group Γ acts from the left on
the extended upper half plane H = H ∪ P1(Q) by fractional linear transformations. We can
associate to it the compact Riemann surface XΓ := Γ\H ∪ Γ\P1(Q). It contains the open
Riemann surface YΓ := Γ\H. BothXΓ and YΓ are called the modular curve of Γ. We denote
the inclusion by jΓ : YΓ ↪→ XΓ. We remark that−1 acts trivially, so that we could have used
Γ in the definitions.

Analogously, we also define the analytic Deligne-Mumford stacks [XΓ] and [YΓ] as the
stacks obtained by taking the quotient for the Γ/Γ(N)-action on XΓ(N) resp. YΓ(N), when
Γ(N) ≤ Γ with N ≥ 3. These stacks will be referred to as the modular stacks of Γ. Again
we have the open embedding j[Γ] : [YΓ] ↪→ [XΓ].

Moreover, there are natural projections πΓ : [XΓ] � XΓ and πΓ : [YΓ] � YΓ. These
commute with the embeddings jΓ and j[Γ]. If the group Γ acts freely on H and if the stabiliser
subgroup of Γ for any cusp only contains unipotent elements, then both πΓ are isomorphisms.

(2.1.1) Remark. Analytic Deligne-Mumford stacks have e.g. been defined in [Toen], Defini-
tion 5.2, building on the definition of the analytic site (loc. cit. p. 171). Moreover, it is stated
that quotient stacks of analytic spaces by finite groups are analytic Deligne-Mumford stacks,
which implies that the [YΓ] and [XΓ] above are.
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In the category of sheaves on the analytic site there are enough injectives (see e.g.
[Milne], Proposition III.1.1), so that a derived functor cohomology exists. This cohomol-
ogy coincides with the derived functor cohomology on analytic spaces, if the analytic stack
is an analytic space (for a discussion see [Milne], p. 118). As we will use the Leray spectral
sequence, we point out that it is a formal consequence, as the direct image of an injective
sheaf is injective and both the direct image functor and the global sections functor are left
exact (see e.g. [Milne], Theorem B.1).

There is a category equivalence between the locally constant sheaves of R-modules
on [YΓ] and R[Γ]-modules, given by the functor

F 7→ H0(H, f∗F),

where f : H
proj
� [YΓ] is the quotient morphism. As H is simply connected, the sheaf f ∗F is

constant and consequently H0(H, f∗F) = (f∗F)y = Ff(y) for any point y ∈ H. It follows
that (

H0(H, f∗F)
)Γ

= H0([YΓ],F).

As stack cohomology is the derived functor cohomology ofH0([YΓ], ·) and group cohomology
for R[Γ]-modules is the derived functor cohomology of taking Γ-invariants, we obtain

H i([YΓ],F) ∼= H i(Γ, H0(H, f∗F)) ∼= H i(Γ,Fx)

for any i ≥ 0, F a locally constant sheaf of R-modules on [YΓ] and x ∈ [YΓ]. We say that
H0(H, f∗F) = Fx is the R[Γ]-module associated to the locally constant sheaf F and vice
versa.

2.2. The module V ε
k−2(R) and the sheaf Vε

k−2(R)

In Notation (2.0.3) we have defined Vk−2(R) and V ε
k−2(R). Via the correspondence outlined

in Remark (2.1.1) the Γ-module Vk−2(R) corresponds to a locally constant sheaf on [YΓ]

which we denote by Vk−2,Γ(R). Similarly, we write Vε
k−2,G

(R) for the locally constant

sheaf on [YG] corresponding to the G-module V ε
k−2(R). We will usually drop Γ and G from

the notation.

(2.2.1) Remark. Let us assume that −1 6∈ Γ. Then we define the universal elliptic curve
πuniv : [Euniv

Γ
] � [YΓ], as the stack obtained by taking the Γ-quotient of E in the exact

sequence

0→ Z2 ×H
((n,m),τ)7→(nτ+m,τ)−−−−−−−−−−−−−−→ C×H −−−−−−−−−−−−−→ E→ 0,

where all spaces are equipped with the natural projection to H and C × H carries the Γ-
action

(
a b
c d

)
.(z, τ) = ( z

cτ+d ,
aτ+b
cτ+d). Alternatively, [Euniv

Γ
] can also be obtained as the quo-

tient stack for the group Γ/Γ(N) of the universal elliptic curve Euniv
Γ(N) over YΓ(N), when

Γ(N) ≤ Γ and N ≥ 3.
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When k ≥ 2 is an integer, the sheaf Vk−2,Γ(R) on the modular stack [YΓ] agrees with
Symk−2(R1πuniv

∗ R[Euniv
Γ

]), where R[Euniv
Γ

] denotes the constant sheaf R on [Euniv
Γ

].

Replacing Z2 by Z2⊗Z Zε and C by C⊗Z Zε one can also make a universal elliptic curve
over YG, when ε is a quadratic character of G with kernel Γ.

In the sequel we will often use the following different description of Vk−2(R).

(2.2.2) Lemma. Let R[X,Y ]n denote the R-module of homogeneous polynomials of de-
gree n in the variables X and Y over R. The map

Symn(R2)→ R[X,Y ]n,
( a1

b1

)
⊗ · · · ⊗

( an

bn

)
7→ (a1X + b1Y ) . . . (anX + bnY )

defines an isomorphism of left Mat2(Z) 6=0-modules, when we equip the polynomials with the
action (M.P )(X,Y ) = P

(
(X,Y )M

)
.

Proof. The map is well defined and every monomial is obviously hit. As Symn(R2) is
freely generated by the classes of ( 1

0 ) ⊗ · · · ⊗ ( 1
0 ) ⊗ ( 0

1 ) ⊗ · · · ⊗ ( 0
1 ), the map is in fact an

isomorphism. 2

(2.2.3) Remark. The polynomials of degree n are often equipped with a slightly different left
Mat2(Z) 6=0-action, namely by

(
a b
c d

)
.P (( X

Y )) := P (
(

a b
c d

)ι
( X

Y )) = P (
(

dX−bY
−cX+aY

)
).

This action is considered e.g. in [MerelUniversal] and the Magma implementation of modular
symbols. These two actions are isomorphic due to the identity (x, y)(M ι)> = (x, y)σ−1Mσ.

(2.2.4) Proposition. Suppose that n! is invertible in R. Then there is a perfect pairing
Vn(R) × Vn(R) → R of R-modules, which induces an isomorphism Vn(R) → Vn(R)∨

of R[Mat2(Z) 6=0]-modules, if we equip Vn(R)∨ with the left action (M.φ)(w) = φ(M ιw).
When M is invertible, we have (M.φ)(w) = det(M)nφ(M−1w).

Proof. One defines the perfect pairing on Vn(R) by first constructing a perfect pairing on
R2, which we consider as column vectors. We set

R2 ×R2 → R, 〈v, w〉 := det(v|w) = v1w2 − v2w1.

If M is a matrix in Mat2(Z) 6=0, one checks easily that 〈Mv,w〉 = 〈v,M ιw〉. This pairing
extends to a pairing on the n-th tensor power of R2 by letting

〈v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wn〉 = 〈v1, w1〉 · · · · · 〈vn, wn〉.

Due to our assumption on the invertibility of n!, we may view Symn(R2) as a submodule
in the n-th tensor power, and hence obtain the desired pairing. Consequently, one has the
isomorphism of R-modules

Vn(R)→ Vn(R)∨, v 7→ (w 7→ 〈v, w〉),

which is Mat2(Z) 6=0-equivariant for the actions considered. 2
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(2.2.5) Lemma. Let n ≥ 1 be an integer. We suppose that n!N is not a zero divisor in R.
The left t-invariants are 〈t〉Vn(R) = 〈Xn〉 for t = ( 1 N

0 1 ) and the left t′-invariants are
〈t′〉Vn(R) = 〈Y n〉 for t′ = ( 1 0

N 1 ).

Proof. The action of t gives t.(Xn−iY i) = Xn−i(NX + Y )i and consequently
(t − 1).(Xn−iY i) =

∑i−1
j=0 ri,jX

n−jY j with ri,j = N i−j
(

i
j

)
, which is not a zero divi-

sor by assumption. For x =
∑n

i=0 aiX
n−iY i we have

(t− 1).x =

n−1∑

j=0

Xn−jY j(

n∑

i=j+1

airi,j).

If (t − 1).x = 0, we conclude for j = n− 1 that an = 0. Next, for j = n− 2 it follows
that an−1 = 0, and so on, until a1 = 0. This proves the first part. The second follows from
symmetry. 2

(2.2.6) Proposition. Let n ≥ 1 be an integer.

(a) If n!N is not a zero divisor in R, then the R-module of left Γ(N)-invariants Γ(N)Vn(R)

is zero.

(b) If n! is invertible in R and N is not a zero divisor in R, then the R-module of left Γ(N)-
coinvariants Γ(N)Vn(R) is zero.

(c) Suppose that Γ is a subgroup of SL2(Z) such that reduction modulo p defines a surjection
Γ � SL2(Fp). Suppose moreover that 1 ≤ n ≤ p if p > 2, and n = 1 if p = 2. Then
one has ΓVn(Fp) = 0 = ΓVn(Fp).

Proof. As Γ(N) contains the matrices t and t′, Lemma (2.2.5) already finishes Part (a).
Under the assumptions of Part (b) Proposition (2.2.4) implies a self-duality, so that (b) follows
from (a). The only part of (c) that is not yet covered is when the degree is n = p > 2. In that
case we have an exact sequence of Γ(N)-modules

0→ V1(Fp)→ Vp(Fp)→ Vp−2(Fp)→ 0.

In fact, Vp(Fp) is naturally isomorphic with the space U1 considered on p. 46, so one can
proceed as there. It suffices to take (co-)invariants to obtain the desired result. 2

We also have a character version of this.

(2.2.7) Proposition. In Notation (2.0.3) we assume that R is an integral domain and we let
N ≥ 1 be an integer which is non-zero in R.

(a) If n = 0 and ε is non-trivial, or if n > 0 and n! 6= 0 in R, then the R-module of left
G-invariants GV ε

n (R) is zero.
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(b) If n = 0, ε is non-trivial and R is a field, or if n > 0 and n! is invertible in R, then the
R-module of left G-coinvariants GV

ε
n(R) is zero.

Proof. If n > 0, this follows directly from Proposition (2.2.6) by taking Γ-invariants.
If n = 0, we only have to remark that the G-invariants of Rε are zero, if the character is
non-trivial. The same holds for the coinvariants in the case of a field. 2

2.3. Cohomology of modular stacks and group cohomology

Parabolic and boundary spaces

Let F be a sheaf on [YΓ]. We apply the Leray spectral sequence to j = j[Γ] : [YΓ] ↪→ [XΓ].
The first four terms of its associated five term exact sequence are

0→ H1([XΓ], j∗F)→ H1([YΓ],F)→ H0([XΓ], R1j∗F)→ H2([XΓ], j∗F).

In analogy with the result of Proposition (2.4.1) we call

H1
par([YΓ],F) := H1([XΓ], j∗F)

the parabolic stack cohomology group (for [YΓ ] and F). Furthermore, H0([XΓ], R1j∗F) is
called the boundary stack cohomology group.

IfF = Vk−2,Γ(R) (resp.F = Vε
k−2,G

(R) on [YG]), then we speak of the (parabolic resp.
boundary) stack cohomology group of weight k over R for Γ (resp. for G with character ε).

Comparison with group cohomology

Let now V be a locally constant sheaf of R-modules on [YΓ] which corresponds to an R[Γ]-
module V . Then we have by Remark (2.1.1)

H i([YΓ],V) ∼= H i(Γ, V ).

We define the parabolic group cohomology group as the left hand term and the boundary
group cohomology group as the right hand term in the exact sequence

0→ H1
par(Γ, V )→ H1(Γ, V )

res−−→
⊕

g∈Γ\PSL2(Z)/U

H1(Γ ∩ gUg−1,ResΓ
Γ∩gUg−1V ),

where U = 〈T 〉. We notice that Γ ∩ gUg−1 is the stabiliser in Γ of g∞.
Again, if V = Vk−2(R), then we speak about the (parabolic/boundary) group cohomol-

ogy group of weight k over R for Γ and similarly in the case where Γ is replaced by G with a
character ε.
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(2.3.1) Proposition. For V a locally constant sheaf of R-modules on [YΓ ] corresponding
to an R[Γ]-module V , the stack cohomology group for V and [YΓ ] agrees with the group
cohomology group for V and Γ. This result also holds for the parabolic and the boundary
spaces.

Proof. As we have already seen that the “full” spaces agree, it suffices to prove that the
boundary spaces coincide, i.e. that

H0([XΓ], R1j∗V) ∼=
⊕

g∈Γ\PSL2(Z)/U

H1(Γ ∩ gUg−1, V ).

The sheaf R1j∗V is a skyscraper sheaf, whose support lies on the cusps, whence one has
H0([XΓ], R1j∗V) ∼=

⊕
c(R

1j∗V)c, where the sum runs over the cusps of [XΓ]. However,
these cusps are in bijective correspondence with the double cosets Γ\PSL2(Z)/U under the
mapping g 7→ g∞. Moreover, we have that (R1j∗V)c equals H1(Γ∩ gUg−1, V ), if the cusp
c is obtained from g under the mapping just described. 2

Computing group cohomology

In order to compute the group cohomology for Γ, it suffices to compute the cohomology
of PSL2(Z)-modules because of Shapiro’s Lemma, which for any R[Γ]-module V gives an
isomorphism

H1(PSL2(Z),Coind
PSL2(Z)

Γ
V ) ∼= H1(Γ, V ).

An elementary proof of the fact that Shapiro’s Lemma respects the parabolic subspace was
communicated to me by Adriaan Herremans. Here, however, I shall use the representation
theoretic machinery, more precisely Mackey’s formula.

(2.3.2) Proposition. Let V be a left R[Γ]-module for a subgroup Γ ≤ PSL2(Z) of finite
index. The group H1

par(Γ, V ) is isomorphic under the isomorphism of Shapiro’s Lemma to

H1
par(PSL2(Z),Coind

PSL2(Z)

Γ
V ).

Proof. It suffices to show that H1(U,Res
PSL2(Z)
U Coind

PSL2(Z)

Γ
V ) is equal to the direct

sum
⊕

g∈Γ\PSL2(Z)/U H
1(Γ∩gUg−1,ResΓ

Γ∩gUg−1V ). Applying Mackey’s formula (see e.g.
[Brown], Proposition III.5.6(b))

Res
PSL2(Z)
U Coind

PSL2(Z)

Γ
V =

⊕

g∈U\PSL2(Z)/Γ

CoindU
U∩gΓg−1

gResΓ
Γ∩g−1Ug

V,

the isomorphism
H1(U ∩ gΓg−1, gV ) ∼= H1(g−1Ug ∩ Γ, V )

and sending g to g−1 the proposition follows from Shapiro’s Lemma . 2
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(2.3.3) Corollary. The boundary space H0([XΓ], R1j∗V) has the group cohomological de-
scription H1(〈T 〉,Coind

PSL2(Z)

Γ
(V )). 2

We now explicitly compute the first group cohomology of R[PSL2(Z)]-modules. A first,
however, not complete description is provided by the Mayer-Vietoris sequence, using that
PSL2(Z) is the free product of the cyclic group of order 2 generated by the class of σ and
the cyclic group of order 3 generated by the class of τ . The result will be important for the
sequel and we record it in the following proposition.

(2.3.4) Proposition. LetM be a leftR[PSL2(Z)]-module. Then the Mayer-Vietoris sequence
gives the exact sequence

0→MPSL2(Z) →M 〈σ〉 ⊕M 〈τ〉 →M
m7→fm−−−−→

H1(PSL2(Z),M)→ H1(〈σ〉,M)⊕H1(〈τ〉,M) → 0,

where the 1-cocycle fm uniquely given by fm(σ) = (1 − σ)m and fm(τ) = 0, and for all
i ≥ 2 isomorphisms

H i(PSL2(Z),M) ∼= H i(〈σ〉,M) ⊕H i(〈τ〉,M).

Proof. Let us write G := PSL2(Z), G1 := 〈σ〉 and G2 := 〈τ〉. By [Brown], II.8.8, we
have the split exact sequence of R[G]-modules

0→ R[G]→ R[G/G1]⊕R[G/G2]→ R→ 0.

Application of the functor HomR(·,M) gives rise to the exact sequence of R[G]-modules

0→M → HomR[G1](R[G],M)⊕HomR[G2](R[G],M)→ HomR(R[G],M)→ 0.

The central terms, as well as the term on the right, can be identified with coinduced modules.
Hence, the statements follow by taking the long exact sequence of cohomology and invoking
Shapiro’s Lemma. 2

We now derive an explicit description of the group cohomology of PSL2(Z).

(2.3.5) Proposition. Let M be a left R[PSL2(Z)]-module. Then we have the exact sequence

0→MPSL2(Z) →M → kerM (1 + σ)× kerM (1 + τ + τ2)→ H1(PSL2(Z),M)→ 0.

Proof. We determine the 1-cocycles of M . Apart from f(1) = 0, they must satisfy

0 = f(σ2) = σf(σ) + f(σ) = (1 + σ)f(σ) and

0 = f(τ3) = · · · = (1 + τ + τ2)f(τ).
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Since these are the only relations in PSL2(Z), a cocycle is uniquely given by the choices

f(σ) ∈ kerM (1 + σ) and f(τ) ∈ kerM (1 + τ + τ2).

The 1-coboundaries are precisely those cocycles f which satisfy f(σ) = (1 − σ)m and
f(τ) = (1− τ)m for some m ∈M , which proves

H1(PSL2(Z),M) ∼= kerM (1 +σ)× kerM (1 + τ + τ2)/
(
((1− σ)m, (1− τ)m) |m ∈M

)
.

Rewriting yields the proposition. 2

(2.3.6) Remark. As U = 〈T 〉 < PSL2(Z) is an infinite cyclic group, one has

H1(U,ResU
GM) ∼= M/(1− T )M.

An explicit presentation of the parabolic group cohomology is the following.

(2.3.7) Proposition. The parabolic group cohomology group sits in the exact sequence

0→M 〈T 〉/MPSL2(Z) → kerM (1 + σ) ∩ kerM (1 + τ + τ2)
φ−→ H1

par(PSL2(Z),M)→ 0,

where φ maps an element m to the 1-cocycle f uniquely determined by f(σ) = f(τ) = m.

Proof. Using Proposition (2.3.5), we have the exact commutative diagram

M 〈T 〉/MPSL2(Z) _?

(σ−1−1) //
?�

σ−1

��

kerNσ ∩ kerNτ
//

?�

��

H1
par(PSL2(Z),M)

?�

��
M/MPSL2(Z) _?

(1−σ,1−τ) //

(1−T )σ

����

kerNσ × kerNτ
// //

(a,b)7→b−a

��

H1(PSL2(Z),M)

��
(1− T )M _? // M // // H1(U,M).

As the bottom left vertical arrow is surjective, the claim follows from the snake lemma. 2

2.4. Cohomology of modular curves

Parabolic and boundary spaces

Let F be a sheaf on YΓ. We proceed exactly as for stacks, now with j = jΓ instead of j[Γ]

and get the exact sequence

0→ H1(XΓ, j∗F)→ H1(YΓ,F)→ H0(XΓ, R
1j∗F)

→ H2(XΓ, j∗F)→ H2(YΓ,F)→ 0,
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since R2j∗F = 0 and H1(XΓ, R
1j∗F) = 0.

We consider the exact sequence of sheaves on XΓ

0→ j!F → j∗F → C → 0,

in which the last term is defined as the cokernel. The parabolic cohomology group (for YΓ and
F) is image of the map H i

c(YΓ,F) → H i(YΓ,F). It is denoted by H i
par(YΓ,F). Moreover,

we call H0(XΓ, R
1j∗F) the boundary cohomology group (for YΓ and F).

(2.4.1) Proposition. We have H1
par(YΓ,F) ∼= H1(XΓ, j∗F).

Proof. The sheaf C is a skyscraper sheaf, as it is only supported on the cusps. Hence,
H1(XΓ, C) = 0 and the long exact sequence associated to the short exact sequence of
sheaves above yields that the upper map is surjective in the commutative diagram

H1
c (YΓ,F) // //

((Q
Q

Q
Q

Q
Q

Q
Q

H1(XΓ, j∗F)
� _

��
H1(YΓ,F),

in which the vertical map comes from the Leray sequence above. As it is injective, the
proposition follows. 2

Explicit description of the cohomology

Let V be some R[Γ]-module. Via Remark (2.1.1), associated to it we have a locally con-
stant sheaf V on the stack [YΓ], which we can push forward under the projection π = πΓ :

[YΓ] � YΓ.
The spaces H i(YΓ, π∗Vk−2,Γ(R)), H i

par(YΓ, π∗Vk−2,Γ), H0(XΓ, R
1j∗(π∗Vk−2,Γ)) are

called the (parabolic/boundary) cohomology group of weight k over R for YΓ. We make a
similar definition with the sheaf Vε

k−2,G
(R) on [YG].

(2.4.2) Proposition. The boundary cohomology group for YΓ and π∗V equals the boundary
stack cohomology group for [YΓ] and V.

Proof. We only need to show that
(
R1j∗V

)
x
∼=

(
R1j∗(π∗V)

)
π(x)

for x in [XΓ] − [YΓ]. That is clear, since XΓ and [XΓ] do not differ in a (suitably small)
neighbourhood of the cusp x, when x is taken out. 2

Considering the Leray spectral sequence in order to compare the cohomology of modular
curves with group cohomology was suggested by Bas Edixhoven. Indeed, it even allows us to
give a simple description of the cohomology of modular curves. We shall first prove a result
on some second cohomology group.



2.4. Cohomology of modular curves 21

(2.4.3) Lemma. Let V be a locally constant sheaf on [YΓ]. Denote by Y 0
Γ the analytic sub-

space of YΓ obtained as the quotient by Γ of the upper half plane minus all non-trivially
stabilised points (for Γ). Denote by j0 the embedding Y 0

Γ ↪→ YΓ.
Then the sheaf (j0)∗(j

0)∗π∗V is a locally constant sheaf on YΓ.

Proof. Write j = j0 for short. Let x ∈ YΓ, which we may assume to lie in the comple-
ment of Y 0

Γ and take y ∈ [YΓ] with π(y) = x. As V is locally constant, we can choose an open
set V ⊂ [YΓ] containing y such that V|V is constant. The quotient map π is open (universally
submersive, see e.g. [Toen], p. 31, for algebraic stacks). So W = π(V ) is an open neigh-
bourhood in YΓ containing x. For W1 ⊆W open with x ∈W1 and V1 = π−1(W1), we have
j∗j

∗π∗V(W1) = (π∗V)(W1 − {x}) = V(V1 − π−1({x})), since π is a local isomorphism
outside the points x resp. π−1({x}). Our assumption on V hence implies that j∗j∗π∗V|W is
constant. 2

(2.4.4) Proposition. Let V be a locally constant sheaf on [YΓ ].

(a) We have H2(YΓ, π∗V) = 0.

(b) We have H2
c (YΓ, π∗V) = H0([YΓ],V∨)∨.

(c) For all i ≥ 2 we have H i
c(YΓ, π∗V) ∼= H i(XΓ, j∗π∗V), where j denotes the embedding

YΓ ↪→ XΓ.

Proof. We use the notations of Lemma (2.4.3). In the exact sequence of sheaves on YΓ

0→ K → π∗V→ (j0)∗(j
0)∗π∗V→ C → 0

both the kernel and the cokernel are skyscraper sheaves. As their higher cohomology van-
ishes, we obtain

H i(YΓ, π∗V) ∼= H i(YΓ, (j
0)∗(j

0)∗π∗V) for all i ≥ 2

and similarly for compactly supported cohomology. We may apply Poincaré duality to
H2(YΓ, (j

0)∗(j
0)∗π∗V) and H2

c (YΓ, (j
0)∗(j

0)∗π∗V). It yields that the first space is iso-
morphic toH0

c (YΓ, ((j
0)∗(j

0)∗π∗V)∨)∨, which is zero, as YΓ is non-compact and connected
and the sheaf ((j0)∗(j

0)∗π∗V)∨ is locally constant, proving (a). Poincaré duality furthermore
gives

H2
c (YΓ, (j

0)∗(j
0)∗π∗V) ∼= H0(YΓ, ((j

0)∗(j
0)∗π∗V)∨)∨ ∼= H0(Y 0

Γ , (π∗V)∨|Y 0
Γ
)∨.

The latter space is isomorphic to H0([YΓ]0,V∨|[YΓ]0)
∨, which in turn itself is equal to

H0([YΓ],V∨)∨, proving (b).
Part (c) follows immediately from the exact sequence of sheaves on XΓ

0→ j!π∗V→ j∗π∗V→ C ′ → 0,
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as the cokernel is again a skyscraper sheaf. 2

We now compare the cohomology groups of the modular stack to that of the modular
curve via the Leray spectral sequence. It gives rise to the short exact sequence

0→ H1(YΓ, π∗V)→ H1([YΓ],V)→ H0(YΓ, R
1π∗V)→ 0,

as H2(YΓ, π∗V) = 0 by Proposition (2.4.4). The sheaf R1π∗V is a skyscraper sheaf, sup-
ported only on non-trivially stabilised points. More precisely, if Γx denotes the stabiliser
group of Γ at the point x ∈ H, then

(R1π∗V)x = H1(Γx, V ).

(2.4.5) Proposition. We have the exact sequence of R-modules

0→ H1(YΓ, π∗V)→ H1([YΓ], π∗V)

→ H1(〈σ〉,Coind
PSL2(Z)

Γ
V )⊕H1(〈τ〉,Coind

PSL2(Z)

Γ
V )→ 0.

Proof. We first note that any non-trivially stabilised point x of H is conjugate by some
g ∈ PSL2(Z) to either i or ζ3, whence the stabiliser group then is g〈σ〉g−1∩Γ or g〈τ〉g−1∩Γ.
As in the proof of Proposition (2.3.2) we can apply Mackey’s formula to obtain

H1(〈σ〉,Coind
PSL2(Z)

Γ
V ) ∼=

⊕

g∈Γ\PSL2(Z)/〈σ〉

H1(g〈σ〉g−1 ∩ Γ, V )

and a similar result for τ . So we get

H0(YΓ, R
1π∗V) ∼= H1(〈σ〉,Coind

PSL2(Z)

Γ
V )⊕H1(〈τ〉,Coind

PSL2(Z)

Γ
V ),

which finishes the proof. 2

We have already earlier encountered the very same obstruction term, namely in the
Mayer-Vietoris sequence (see Proposition (2.3.4)). This establishes the following theorem.

(2.4.6) Theorem. For any ring R, any congruence subgroup Γ ≤ SL2(Z) and any R[Γ]-
module V with associated sheaf V on [YΓ], we have

H1(YΓ, π∗V) ∼= M/
(
M 〈σ〉 +M 〈τ〉

)

with M = Coind
PSL2(Z)

Γ
(V ) and π : [YΓ] � YΓ the natural projection.

We let
Hk(Γ, R) = M/

(
M 〈σ〉 +M 〈τ〉

)

as in the theorem with M = Coind
PSL2(Z)

Γ
(Vk−2(R)) and define CHk(Γ, R) as the kernel of

the boundary map

M/
(
M 〈σ〉 +M 〈τ〉

) m7→(1−σ)m−−−−−−−−→M/(1− T )M.
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We call CHk(Γ, R) the parabolic subspace and the space on the right the boundary space.
Moreover, we letHk(G, ε,R) := M/

(
M 〈σ〉+M 〈τ〉

)
forM = Coind

PSL2(Z)

G
(V ε

k−2(R))

and similarly as above we define a parabolic and a boundary space.

Merel’s study of homology

A study of the homology of modular curves (as Riemann surfaces) has been carried out
by [MerelHecke] also in order to compute modular forms. We shall see that Merel’s explicit
description is a special case of ours.

The first homology group relative to the cusps features in the long exact sequence

0→ H1(XΓ, R)→ H1(XΓ, cusps, R)→ R[cusps]→ R→ 0.

From this sequence it follows that H1(XΓ, cusps, R) is a free R-module (as H1(XΓ, R) is
free, which is well known for compact Riemann surfaces).

(2.4.7) Proposition. We have isomorphisms

H1(XΓ, cusps, R) ∼= H1(YΓ, R) ∼= H1(YΓ, R)∨.

Proof. The first isomorphism is a simple application of the general duality theorem
[Dold], Proposition VIII.7.2, noting that in this case C̆ech cohomology coincides with sin-
gular cohomology (see e.g. [Dold], Proposition VIII.6.12). The second isomorphism is a
consequence of the universal coefficient theorem. 2

In view of Proposition (2.4.7), the description of the relative homology group of
[MerelHecke], Proposition 4,

H1(XΓ, cusps, R) ∼= H2(Γ, R)

is now immediate.

Torsion-freeness and base change properties

Merel’s original computation of H1(XΓ, cusps,Z) as H2(Γ,Z) was to compute the torsion-
freeness of the latter module and to show that its rank is right. More generally, Herremans
has computed the torsion in the Γ1(N)-Manin symbols over Z ([Herremans], Proposition 9).
We will, however, give a geometric and more general proof of torsion-freeness, which Bas
Edixhoven has explained to the author.

(2.4.8) Proposition. Assume that R is an integral domain of characteristic 0 such that
R/pR ∼= Fp. Let N ≥ 1 be an integer such that p - N . We assume that Γ1(N) ≤ Γ

and that the stabilisers for the action of G on H have order invertible in R, or that k = 2 and
ε is trivial.
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We denote by ε the reduction modulo p of ε. Recall that πG denotes the projection
[YG] � YG. Write F(R) = πG,∗V

ε
k−2,G

(R) and similarly for F(Fp). Then the follow-
ing statements hold:

(a) We have H1
c (YG,F(R))⊗R Fp

∼= H1
c (YG,F(Fp)).

(b) We have an isomorphism H1(YG,F(R)) ⊗R Fp
∼= H1(YG,F(Fp)). If k = 2 and ε

is trivial, H1(YG,F(R))[p] = 0 holds. Otherwise, the p-torsion H1(YG,F(R))[p] is
isomorphic with SL2(Fp)V ε

k−2(Fp).

(c) We have H1
par(YG,F(R))⊗R Fp

∼= H1
par(YG,F(Fp)).

Proof. Let us first notice that the sequence

0→ Vε
k−2,G

(R)
·p−→ Vε

k−2,G
(R)→ Vε

k−2,G
(Fp)→ 0

of sheaves on [YG] is exact. Applying the left exact functor πG,∗ we obtain the short exact
sequence of sheaves on YG

0→ F(R)
·p−→ F(R)→ F(Fp)→ 0,

because we have seen before that R1πG,∗V
ε
k−2,G

(R) is a skyscraper sheaf supported only

on non-trivially stabilised points and there the stalk is H1(Gx, V
ε
k−2(R)), which is 0 by

assumption, as either the order of Gx is invertible or V ε
k−2(R) = R. The associated long

exact sequence gives rise to the short exact sequence

0→ H i(YG,F(R))⊗ Fp → H i(YG,F(Fp))→ H i+1(YG,F(R))[p]→ 0

for every i ≥ 0. A similar exact sequence also follows by taking compactly supported coho-
mology.

We have H2(YG,F(R)) = 0 and H2
c (YG,F(R))[p] = 0. The former was proved in

Proposition (2.4.4). The latter can also be deduced from that proposition, as H2
c (YG,F(R))

is a free R-module, since it is isomorphic to H0([YG],Vk−2,G(R)∨)∨. This proves (a) and
the base change part of (b).

We finish Part (b) by the isomorphism H0(YG,F(Fp)) ∼= GV ε
k−2(Fp) and the fact that

H0(YG,F(R)) ∼= GV ε
k−2(R) is zero, unless k = 2 and ε is trivial by Propositions (2.2.6)

and (2.2.7).
Part (c) is a direct consequence of (a) and (b), since parabolic cohomology is the image

of compactly supported cohomology in the usual one. 2

(2.4.9) Remark. We can use the short exact sequence 0 → j!F → j∗F → C → 0 to com-
pare compactly supported cohomology with parabolic cohomology. Namely, the associated
long exact sequence gives rise to the exact sequence

0→ ΓVk−2(R)→
⊕

cusps

R→ H1
c (YΓ,Vk−2,Γ(R))→ H1

par(YΓ,Vk−2,Γ(R))→ 0.

We omit the details, as this will not be used in the sequel.
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2.5. Modular symbols

Definition

Modular symbols can be thought of as geodesic paths between two cusps resp. as the associ-
ated homology class relative to the cusps. We shall, however, give a combinatorial definition,
as is implemented in Magma and like the one in Stein’s thesis [SteinThesis], except that we
do not factor out torsion, but intend a common treatment for all rings. We keep the Nota-
tion (2.0.3).

(2.5.1) Definition. We define the R-modules

M2(R) := R[{α, β}|α, β ∈ P1(Q)]/〈{α, α}, {α, β}+ {β, γ}+ {γ, α}|α, β, γ ∈ P1(Q)〉

and
B2(R) := R[P1(Q)],

which we equip with the natural left PSL2(Z)-action. Furthermore, we let

Mε
k(R) :=M2(R)⊗R V

ε
k−2(R)

and
Bε

k(R) := B2(R)⊗R V
ε
k−2(R)

for the left diagonalG-action. If ε is the trivial character, we usually drop it from the notation.

(a) We call the (left-)coinvariants

Mk(G, ε,R) := GMε
k(R) =Mk(R)/〈(x− gx)|g ∈ G, x ∈ Mε

k(R)〉

the space of G-modular symbols of weight k over R (for the character ε).

(b) We call the (left-)coinvariants

Bk(G, ε,R) := GBε
k(R) = Bk(R)/〈(x− gx)|g ∈ G, x ∈ Bε

k(R)〉

the space of G-boundary symbols of weight k over R (for the character ε).

(c) We define the boundary map as the map

Mk(G, ε,R)→ Bk(G, ε,R)

which is induced from the mapM2(R)→ B2(R) sending {α, β} to {β} − {α}.

(d) The kernel of the boundary map is denoted by CMk(G, ε,R) and is called the space of
cuspidal G-modular symbols of weight k over R (for the character ε).
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(e) The image of the boundary map inside Bk(G, ε,R) is denoted by Ek(G, ε,R) and is
called the space of G-Eisenstein symbols of weight k over R (for the character ε).

The definitions can be summarised in the exact sequence

0→ CMk(G, ε,R)→Mk(G, ε,R)→ Ek(G, ε,R)→ 0.

In the standard situation that Γ = Γ1(N) and G = Γ0(N), we can make the identification

Γ1(N)\Γ0(N)→ (Z/NZ)∗,

(
a b

Nc d

)
7→ a.

In the definitions above it seems natural to write e.g. Mk(G, ε,R) and not Mk(Γ, ε, R),
which would be closer to the usual notation for modular forms, namely Sk(Γ, ε, R).

(2.5.2) Remark. The map

M2(Z)→ Div0(P1(Q)), {α, β} 7→ β − α

is an isomorphism of left PSL2(Z)-modules.
Indeed, surjectivity is clear. The elements {α, α} and {α, β} + {β, γ} + {γ, α} are in

the kernel. These generate all relations of the form {α1, α2} + {α2, α3} + · · · + {αn, α1}
for n ≥ 1. But the kernel is generated by these.

Ash and Stevens (in [Ash-Stevens]) call HomΓ(Div0(P1(Q)), R) the space of modular
symbols. This is thus precisely the R-dual of the module considered here.

We end this section by a remark on changing the coefficient ring.

(2.5.3) Remark. Let R → S be a ring homomorphism. As tensoring, as well as taking
coinvariants, is right exact, we have

Mk(G,R)⊗R S ∼=Mk(G,S) and Bk(G,R)⊗R S ∼= Bk(G,S).

If R → S is flat, also CMk(G,R) ⊗R S ∼= CMk(G,S) holds. Similar statements are true
with a character ε. 2

Manin symbols

Manin symbols provide an explicit description of modular symbols. We stay in the general
setting over a ring R. Most proofs that modular and Manin symbols coincide (e.g. Merel in
[MerelUniversal]) use Manin’s original homological approach [Manin] or its generalisation
by [S̆okurov]. In this section we show, using a combinatorial proposition due to Martin, that
the identification is purely algebraic.

Martin has the following purely algebraic proposition, the proof of which is combinatorial
in nature. It is Proposition 4.3 in his thesis [Martin].
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(2.5.4) Proposition. (Martin) We consider the homomorphism

ψ : Z[SL2(Z)]→ Z[P1(Q)],M 7→M.∞−M.0.

Its kernel is given by Z[SL2(Z)](1 + σ) + Z[SL2(Z)](1− T − T ′).

Translating this proposition into the theory of Manin symbols, one obtains the following
proposition.

(2.5.5) Proposition. The homomorphism of R-modules

R[PSL2(Z)]
φ−→M2(R), g 7→ {g.0, g.∞}

is surjective and its kernel is given by R[PSL2(Z)](1 + σ) +R[PSL2(Z)](1 + τ + τ2).

Proof. For the surjectivity we follow [Cremona], p. 14. It suffices to prove that the
element {∞, α} with α a rational number is hit. Let α = a1 + 1

a2+
1

a3+... 1
ak

be the continued

fractions expansion of α and let Pl =
(

a1 1
1 0

) (
a2 1
1 0

)
· · ·

(
al 1
1 0

)
for all l ∈ {1, . . . , k}. We

may write Pl =
( pl pl−1

ql ql−1

)
with p0 = 1 and q0 = 0. By construction we have α = pk

qk
and

∞ = p0

q0
. Consequently, we obtain

(−p1 p0
−q1 q0

)
{0,∞}+ ( p2 p1

q2 q1 ) {0,∞}+ · · ·+
(

(−1)kpk pk−1

(−1)kqk qk−1

)
{0,∞} = {∞, α}.

We notice that due to the extra minus signs the determinants of all matrices equal 1.
Let us now notice that tensoring by R we may work with R-modules instead of Z-

modules. Moreover, as (1− σ)(1 + σ) = 1− (−1), we may replace SL2(Z) by PSL2(Z) in
Proposition (2.5.4).

Next we show that ker(φ) = ker(ψ), using the homomorphism

π :M2(R)→ R[P1(Q)], {α, β} 7→ β − α.

As ψ = π ◦ φ, the inclusion ker(φ) ⊆ ker(ψ) follows. For the other one we assume that∑
M uM [M ] ∈ ker(ψ), i.e.

0 =
∑

M

uM (M.0−M.∞) = (
∑

M

uMM.0)− (
∑

M

uMM.∞).

But then
∑

M uMM{0,∞} = (
∑

M uM{M.0,∞}) − (
∑

M uM{M.∞,∞}) = 0, estab-
lishing the converse inclusion.

Now it only remains to establish the claimed form of the kernel. We have the identities
τ = Tσ, T ′ = τ2σ−1 and consequently 1− T − T ′ = ((1 + σ) − (1 + τ + τ2))σ−1. The
latter one implies for all R[PSL2(Z)]-modules M the identity

(1− T − T ′)M + (1 + σ)M = (1 + τ + τ 2)M + (1 + σ)M,
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which finishes the proof. 2

If V is any left R[PSL2(Z)]-module, the induced module Ind
PSL2(Z)

Γ
(V ) is by definition

the left PSL2(Z)-moduleR[PSL2(Z)]⊗R[Γ]V , whereR[PSL2(Z)] is equipped with the nat-
ural rightR[Γ]-action and the left R[PSL2(Z)]-action. Sending g⊗Γ v to g−1⊗v establishes
an isomorphism of Ind

PSL2(Z)

Γ
(V ) with Γ(R[PSL2(Z)]⊗R V ), where now Γ acts diagonally

from the left. The left R[PSL2(Z)]-action is the one obtained by inversion from the natural
right action. We will in the sequel consider the module Γ(R[PSL2(Z)]⊗R V ) with this right
action.

(2.5.6) Theorem. Let M := Ind
PSL2(Z)

G
(V ε

k−2(R)) be the induced module with the right
R[PSL2(Z)]-action described directly before the theorem. Then the following statements
hold:

(a) The homomorphism φ from Proposition (2.5.5) induces the exact sequence of R-modules

0→M(1 + σ) +M(1 + τ + τ 2)→M →Mk(G, ε,R)→ 0.

(b) The homomorphism R[PSL2(Z)] → R[P1(Q)] sending [g] to g.∞ induces the exact
sequence of R-modules

0→M(1− T )→M → Bk(G, ε,R)→ 0.

(c) Under the identifications of (a) and (b) the boundary map is the map

M/
(
M(1 + σ) +M(1 + τ + τ2)

)
→M/

(
M(1− T )

)

induced from m 7→ m(1− σ) on M .

Proof. (a) We derive this from Proposition (2.5.5), which gives the exact sequence

0→ R[PSL2(Z)](1 + σ) +R[PSL2(Z)](1 + τ + τ2)→ R[PSL2(Z)]→M2(R)→ 0.

Let N := R[PSL2(Z)] ⊗R V ε
k−2(R), which we equip with the right PSL2(Z)-action

([g] ⊗ v).[σ] = [gσ] ⊗ v. As V ε
k−2(R) is a free R-module we obtain the exact sequence

of left R[G]-modules

0→ N(1 + σ) +N(1 + τ + τ2)→ N →Mε
k(R)→ 0.

Passing to left G-coinvariants yields (a).
(b) It is easy to compute that the described map fits into the exact sequence

0→ R[PSL2(Z)](1− T )→ R[PSL2(Z)]→ R[P1(Q)]→ 0.

Now we can proceed precisely as in (a) and obtain (b).
(c) It is clear that this map corresponds to the boundary map. It is well defined because

of (1 + τ + τ2)(1− σ) = (1 + τ + τ2)(1− T ). 2

In the literature on Manin symbols one usually finds a more explicit version of the mod-
ule M . This is the contents of the following proposition.
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(2.5.7) Proposition. (a) Consider the R-module X := R[Γ\SL2(Z)] ⊗R Vk−2(R) ⊗R Rε

equipped with the right SL2(Z)-action (Γh⊗V ⊗ r)g = (Γhg⊗ g−1v⊗ r) and with the
left Γ\G-action g(Γh⊗ v ⊗ r) = (Γgh⊗ v ⊗ ε(g)r).
Then X is isomorphic as a right R[SL2(Z)]-module and a left R[Γ\G]-module to
Ind

SL2(Z)
Γ (V ε

k (R)), and, moreover, Γ\GX is isomorphic to Ind
SL2(Z)
G (V ε

k (R)).

If −1 ∈ G and−1 6∈ Γ, then the latter module is isomorphic to Ind
PSL2(Z)

G
(V ε

k (R)).

(b) Consider the moduleX := R[G\PSL2(Z)]⊗R Vk−2(R)⊗R R
ε equipped with the right

PSL2(Z)-action (Γh⊗ V ⊗ r)g = (Γhg ⊗ g−1v ⊗ r).
If (−1)k = 1, then X is isomorphic to Ind

PSL2(Z)

G
(V ε

k (R)) as a right R[PSL2(Z)]-
module.

Proof. (a) Mapping g⊗v⊗r to g⊗g−1v⊗r defines an isomorphism of rightR[SL2(Z)]-
modules and of left R[Γ\G]-modules

Γ(R[SL2(Z)] ⊗R Vk−2(R)⊗R Rε)→ X.

As we have seen above, the left hand side module is naturally isomorphic to the induced
module Ind

SL2(Z)
Γ (V ε

k (R)) (equipped with its rightR[SL2(Z)]-action described before). This
establishes the first statement. The second one follows from Γ\G

(
ΓM

)
= GM for any G-

module M . The third statement is due to the fact that 〈−1〉(R[SL2(Z)] ⊗R V ε
k−2(R)) is

naturally isomorphic to R[PSL2(Z)] ⊗R V ε
k−2(R), since −1 acts trivially on the second

factor.
(b) This works analogously to the discussion in (a) with SL2(Z) replaced by PSL2(Z)

because we can now view Vk−2(R) as a PSL2(Z)-module. 2

Transportable Modular Symbols

In this section I present Stein’s and Verrill’s definition of transportable modular symbols, and
reprove their principal theorem (see [SteinVerrill], Theorem 2.4). The difference is that I
prove the result over any ring R, whereas the original proof was for modular symbols over Z

modulo torsion. This section is not used in the sequel, but can serve as an illustration that
working with the torsion can make things much easier.

Transportable modular symbols are used to compute periods of modular symbols resp.
modular forms. The aim is to transport a path from the cusp {α} to {∞} to a path from z

to γz for a well chosen z in the upper half plane (for some γ ∈ Γ) representing the same
homology class.

We shall not restate the original definition of transportable modular symbols, but the
equivalent variant of [SteinVerrill], Lemma 2.3 (The equivalence works over any ring, not
only Q).
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(2.5.8) Definition. A modular symbol x ∈ Mk(Γ, R) is called transportable if it can be
written in the form

∑m
i=1{∞, γi∞} ⊗ Pi with γi ∈ Γ and Pi ∈ Vk−2(R) such that∑m

i=1 Pi =
∑m

i=1 γ
−1
i Pi.

To make the last formula a little more understandable (and set a decisive step towards
proving the principal theorem in this context), let us note that by a straight forward calculation
a symbol of the form

∑m
i=1{∞, γi∞}⊗Pi is cuspidal (i.e. in the kernel of the boundary map)

if and only if
∑m

i=1 Pi =
∑m

i=1 γ
−1
i Pi holds.

(2.5.9) Theorem. (Stein, Verrill) A modular symbol is transportable if and only if it is cus-
pidal.

Proof. Choose a system of representatives R of Γ\P1(Q), representing Γ∞ by∞. Let
us suppose that x ∈ CMk(Γ, R). Writing {α, β} ⊗ P = {∞, β} ⊗ P − {∞, α} ⊗ P and
using the Γ-invariance, we write

x =
∑

β∈R

∑

γ∈Γ

{∞, γβ} ⊗ Pγ,β.

By assumption x is in the kernel of the boundary map, i.e.
∑

β∈R

∑

γ∈Γ

γ{β} ⊗ Pγ,β =
∑

β∈R

∑

γ∈Γ

{∞}⊗ Pγ,β ∈ ΓBk(R).

For∞ 6= β ∈ R it follows ∑

γ∈Γ

γ−1Pγ,β = 0,

which in turn yields
∑

γ∈Γ

{∞, γβ} ⊗ Pγ,β =
∑

γ∈Γ

({∞, γ∞}+ {γ∞, γβ})⊗ Pγ,β

=
∑

γ∈Γ

{∞, γ∞}⊗ Pγ,β +
∑

γ∈Γ

{∞, β} ⊗ γ−1Pγ,β

=
∑

γ∈Γ

{∞, γ∞}⊗ Pγ,β,

finishing the proof. 2

2.6. Comparison between the spaces

In group cohomology one conceptually has to work with coinduced modules. However, if
the index is finite, which is the case in all our considerations, one can identify induced and
coinduced modules. In the section about Manin symbols we have considered the induced
modules as right modules by inverting the natural left action. This was done in order to stay
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close to other treatments, e.g. [SteinThesis]. Here, however, we will go back to the natural
left action. An analog of Theorem (2.5.6) for left actions is obtained by formally rewriting
all right actions into left ones.

We still assume Notation (2.0.3).

(2.6.1) Theorem. The boundary spaces of modular symbols, group cohomology and of the
cohomology of modular curves agree, i.e.

Bk(G, ε,R) ∼= H1(〈T 〉,Coind
PSL2(Z)

G
(V ε

k (R))) ∼= H0(XG, R
1jG,∗(πG,∗V

ε
k(R))).

Assuming further that the orders of all stabilisers of G acting on H are invertible in R,
then also the full spaces of modular symbols, group cohomology and of the cohomology of
modular curves are isomorphic, i.e.

Mk(G, ε,R) ∼= H1(G, V ε
k (R)) ∼= H1(YG, πG,∗V

ε
k(R)),

as are their parabolic resp. cuspidal subspaces

CMk(G, ε,R) ∼= H1
par(G, V

ε
k (R)) ∼= H1

par(YG, πG,∗V
ε
k(R)).

Proof. Because of Proposition (2.3.1), Theorem (2.5.6) (b), Corollary (2.3.3), Proposi-
tion (2.4.2) and Remark (2.3.6), the boundary spaces agree.

Using Mackey’s formula as in Proposition (2.4.5) we get

H1(〈σ〉,Coind
PSL2(Z)

Γ
V ε

k−2(R)) ∼=
⊕

g∈Γ\PSL2(Z)/〈σ〉

H1(g〈σ〉g−1 ∩ Γ, V ε
k−2(R))

and a similar result for τ . The right hand side is zero due to the assumption on the sta-
biliser order. A similar result holds for the corresponding first homology group, which using
cyclicity gives Ĥ0(〈σ〉,Coind

PSL2(Z)

Γ
V ε

k−2(R)) = 0.
The vanishing of the first cohomology group implies via Theorem (2.4.6) and Proposi-

tion (2.3.4) that the full spaces of group cohomology and the cohomology of modular curves
agree. The former always coincides with the cohomology of the modular stack by Proposi-
tion (2.3.1). The vanishing of the Ĥ0-term means written out that

(1 + σ)Coind
PSL2(Z)

Γ
V ε

k−2(R) =
(
Coind

PSL2(Z)

Γ
V ε

k−2(R)
)〈σ〉

and similarly for τ , which via Theorems (2.5.6) and (2.4.6) establishes the comparison be-
tween modular symbols and the cohomology of modular curves.

As we have seen that the boundary spaces and the full spaces coincide, the same follows
for the parabolic resp. cuspidal spaces, as the boundary maps are compatible. 2

If k = 2 and ε is trivial, it actually suffices for the comparison between group cohomol-
ogy and the cohomology of modular curves to assume that the stabiliser orders are no zero
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divisors, as then V ε
k−2(R) = R and the H1-terms in the proof above vanish (but not the

Ĥ0-terms in general).
The stabilisers of the action of PSL2(Z) on H all have order dividing 6. The following

proposition investigates, when precisely stabilisers of order 2 or 3 occur.

(2.6.2) Proposition. (a) The following statements are equivalent:

(i) Γ0(N) contains no conjugate of σ.

(ii) The action of Γ0(N) on H does not have any stabiliser of even order.

(iii) N is divisible by a prime q which is 3 modulo 4 or by 4.

(b) The following statements are equivalent:

(i) Γ0(N) contains no conjugate of τ .

(ii) The action of Γ0(N) on H does not have any stabiliser of order divisible by 3.

(iii) N is divisible by a prime q which is 2 modulo 3 or by 9.

(c) If N > 3, then Γ1(N) acts freely on H.

Proof. Writing out (i) in the two cases as
(

a b
c d

)
σ

(
d −b
−c a

)
(resp. with τ ) gives the equa-

tions c2 + d2 = (c+ id)(c− id) ≡ 0 mod N resp. c2 + d2 + cd = (c− ζ3d)(c− ζ3d) ≡ 0

mod N , with (c, d) = 1. Let l be a prime dividing N . It is clear that l cannot be inert in
the extension Q(i) resp. Q(ζ3). If 4 divides N , then it follows that 2 divides c + id, which
contradicts the fact that (c, d) = 1. Concluding similarly for 9 in case (b) establishes the
implication (iii) ⇒ (i) for (a) and (b). Conversely, we suppose that N is divisible only by
split primes, i.e. lj = (cj + idj)(cj − idj) resp. lj = (cj − ζ3dj)(cj − ζ3dj), and possibly by
2 = (1 + i)(1 − i) resp. 3 = (1 − ζ3)(1 − ζ3). Multiplying out, it follows that N takes the
form c2 + d2 resp. c2 + d2 + cd with (c, d) = 1. Choosing a, b ∈ Z s.t.

(
a b
c d

)
is in SL2(Z) it

follows that
(

a b
c d

)
σ

(
d −b
−c a

)
(resp. with τ ) is an element of Γ0(N), establishing (i)⇒ (iii).

The equivalence of (i) and (ii) follows from the well known fact that the only non-trivial
stabiliser groups of points in the usual fundamental domain are the groups generated by σ
resp. τ .

(c) If a conjugate of σ (resp. τ ) is in Γ1(N), one has the equations ac+ bd ≡ ε1 mod N

and−(ac+ bd) ≡ ε1 mod N (resp. ad+ ac+ bd ≡ ε1 mod N and−(bc+ ac+ bd) ≡ ε1
mod N ) with ε = ±1 (since we can replace σ (resp. τ ) by −σ (resp. −τ )). This yields
±2 ≡ 0 mod N (resp. 2 ≡ ±1 mod N ). 2

2.7. Characters and the ∆-action

In this section we study the action of the group ∆ := Γ\G on various spaces in the Nota-
tion (2.0.3). That action is given by the diamond operators. We will be especially interested
in how far this action is semi-simple, i.e., if modular symbols decompose into eigenspaces
for characters.
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Some computations in group (co-)homology

We first provide some results of group (co-)homology that will be used later.

(2.7.1) Proposition. Let R be a ring, ∆ a finite group, S a finite left ∆-set and V a left
R[∆]-module. Suppose that for all s ∈ S the stabiliser group ∆s has order invertible in R.
Then we have for all i ≥ 1

Hi(∆, R[S]⊗R V ) = 0 = H i(∆, R[S]⊗R V )

for the diagonal left ∆-action on R[S]⊗R V .

Proof. We prove this for homology. The proof for cohomology is obtained by dualising
the arguments.

Choosing a system of representatives s1, . . . , sn of the ∆-orbits of S, we obtain a direct
sum decomposition respecting the ∆-action

R[S]⊗R V ∼=
n⊕

j=1

R[∆/∆sj
]⊗R V.

From the projection formula we get

R[∆/∆sj
]⊗R V ∼= Ind∆

∆sj
Res∆∆sj

V.

Shapiro’s lemma now gives for all i ≥ 0

Hi(∆, R[S]⊗R V ) ∼=
n⊕

j=1

Hi(∆sj
,Res∆∆sj

V ).

For i ≥ 1, the right hand side, however, is zero, as multiplication by the group order of ∆sj

is invertible in R. 2

(2.7.2) Proposition. Let A be a finite abelian group and K a field with trivial A-action.

(a) If the characteristic of K is zero, then Hi(A,K) = 0 for all i ≥ 1.

(b) If the characteristic of K is a prime p, then we have dimK H1(A,K) = n and
dimK H2(A,K) = n(n+1)

2 , where n is the number of cyclic factors of the p-Sylow sub-
group of A.

Proof. (a) is clear, as the group order is invertible in K. For (b) one can e.g. use that
the dimensions of H1(Ap,K) resp. H2(Ap,K) are the minimal number of generators resp.
relations of Ap. 2

For a character we have the following more general statement on the first homology
groups.
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(2.7.3) Proposition. Let K be a field, ∆ a finite abelian group and ε : ∆→ K∗ a character.
If K has characteristic p > 0, we also assume that ε is not the trivial character.

Then we have for all q ≥ 0 that dimK Hq(∆,K
ε) = dimK Hq(∆,Kε) = 0.

Proof. We only prove this for cohomology. The statement on homology can be obtained
by dualising the argument. The statement in characteristic 0 is clear, as the order of ∆ is
finite, so we assume that K has characteristic p.

For δ ∈ ∆ the endomorphism onHq(∆,Kε) which is induced from the action of δ onKε

is the identity (it is well-defined, since ∆ is abelian). Hence, for δ ∈ ∆ such that ε(δ) 6= 1

the non-zero element ε(δ)− 1 kills Hq(∆,Kε), from which the claim follows. 2

The ∆-action on the boundary space

(2.7.4) Proposition. LetN ≥ 1 be an integer which is invertible inR and assume Γ contains
Γ1(N). Let ∆ := Γ\G. Then we have

H1

(
∆,Bk(Γ, R)⊗R Rε

)
= 0.

Proof. Let us write for short M := Ind
PSL2(Z)

Γ
(V ε

k−2) and set U := 〈T,−1〉 ≤ SL2(Z).
By Theorem (2.5.6) (b) we have

MU
∼= M/M(1− T ) ∼= Bk(Γ, R).

We first assume (−1)k = 1, which is the case if −1 ∈ Γ, as then 1 = ε(−1) = (−1)k.
Then by Proposition (2.5.7) (b) we have

M ∼= R[Γ\PSL2(Z)]⊗ Vk−2 ⊗Rε

with the actions described in that proposition. In particular, Rε is a trivial right U-module
(by the restriction of the right PSL2(Z)-action). As TN acts trivially on R[Γ\PSL2(Z)], we
obtain

M〈T N〉
∼= R[Γ\PSL2(Z)]⊗ (Vk−2)〈T N〉 ⊗Rε.

The stabilisers of the ∆-action on the set Γ\PSL2(Z) are trivial, whence by Proposi-
tion (2.7.1), we have H1(∆,M〈T N〉) = 0. As the group U/〈TN〉 has order N , which
is invertible by assumption, MU is a direct summand of M〈T N〉, yielding the claim of the
proposition in the case under consideration.

We assume now that −1 6∈ Γ. Then M = 〈−1〉N with N := Ind
SL2(Z)
Γ (V ε

k−2). We
proceed as above. By Proposition (2.5.7) (a) we have

N ∼= R[Γ\SL2(Z)]⊗ Vk−2 ⊗Rε

with the actions described in that proposition. In particular,Rε is a trivial rightU -module (by
the restriction of the right SL2(Z)-action). As TN acts trivially on R[Γ\SL2(Z)], we obtain

N〈T N〉
∼= R[Γ\SL2(Z)] ⊗ (Vk−2)〈T N 〉 ⊗Rε.
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The stabilisers of the ∆-action on the set Γ\SL2(Z) are trivial, whence by Proposition (2.7.1),
we have H1(∆, N〈T N 〉) = 0. By the Hochschild-Serre spectral sequence we get a surjection
H1(∆, N〈T N〉) � H1(∆, 〈−1〉N〈T N〉), whence the right space is also zero. Hence, we have
H1(∆,M〈T N〉) = 0, and we can finish as above. 2

Modular symbols with and without character

In this section we will specialise to the case of fields instead of general rings. However, an
extension of the results to rings under natural restrictions is easily possible.

We start by comparing boundary and Eisenstein modular symbols.

(2.7.5) Proposition. (a) We have the exact sequence

0→ E2(Γ, R)→ B2(Γ, R)→ R→ 0.

(b) Let N ≥ 1 be an integer such that Γ1(N) ≤ Γ and let K be a field. If the characteristic
of K is p > 0, then we assume p - N and k ≤ p+ 2. If k = 2, then we suppose that ε is
not the trivial character.

Then we have
Ek(G, ε,K) ∼= Bk(G, ε,K).

Proof. For any ring R we have the exact sequence

M2(R)
{α,β}7→{β}−{α}−−−−−−−−−−−→ B2(R)

{α}7→1−−−−→ R→ 0.

We only need to show that
∑

{α} rα{α} is in the image of the boundary map, if
∑

{α} rα = 0.
But then

∑
{α} rα{α} =

∑
{α} rα({α} − {∞}), which clearly lies in the image. Taking Γ-

coinvariants, we obtain part (a), as R is a trivial Γ-module.
Let us now assume the situation described in (b). From the exact sequence above for

R = K, we immediately obtain the following exact sequence by tensoring with V ε
k−2(K)

M2(K)⊗K V ε
k−2(K)

{α,β}7→{β}−{α}−−−−−−−−−−−→ B2(K)⊗K V ε
k−2(K)

{α}7→1−−−−→ V ε
k−2(K)→ 0.

Propositions (2.2.6) and (2.2.7) now finish the proof. 2

We now compute the difference of the Eisenstein spaces.

(2.7.6) Lemma. Under the assumptions of Proposition (2.7.5)(b) we have the exact sequence

0→ H1(∆, ΓV
ε
k−2(K))→ ∆(Ek(Γ,K)⊗K Kε)→ Ek(G, ε,K)→ 0

with ∆ := Γ\G.
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Proof. We start with the exact sequence

0→ Ek(Γ,K)⊗K Kε → (Bk(Γ,K))⊗K Kε → (ΓVk−2(K))⊗K Kε → 0,

which gives rise to the long exact sequence

H1(∆,Bk(Γ,K)⊗K Kε)→ H1(∆, ΓV
ε
k−2(K))→

∆(Ek(Γ,K)⊗K Kε)→ Bk(G, ε,K)
φ−→ ∆(ΓV

ε
k−2(K))→ 0.

In Proposition (2.7.4) we proved that the first term is zero. The kernel of φ equals Ek(G, ε,K)

by exactness, which proves the lemma. 2

(2.7.7) Proposition. (a) We have the exact sequence

0→ H1(∆,K)→ ∆E2(Γ,K)→ E2(G,K)→ 0.

(b) Under the assumptions of Proposition (2.7.5)(b) we have

∆

(
E2(Γ,K)⊗K Kε

) ∼= Ek(G, ε,K).

Proof. The Proposition follows directly from Lemma (2.7.6) and Propositions (2.2.6),
(2.2.7) and (2.7.3). 2

Next we compare the spaces of cuspidal modular symbols.

(2.7.8) Theorem. (a) We have the exact sequence

H1(∆, E2(Γ,K))→ ∆CM2(Γ,K)→ CM2(G,K)→ H1(∆,K)→ 0

and H1(∆,K) ↪→ H0(∆, E2(Γ1,K)) and H2(∆,K) � H1(∆, E2(Γ1,K)).

(b) Let N ≥ 1 be an integer such that Γ1(N) ≤ Γ and let K be a field. If the characteristic
of K is p > 0, then we assume p - N and k ≤ p+ 2. If k = 2, then we suppose that ε is
not the trivial character. Then we have

∆(CMk(Γ,K)⊗K Kε) ∼= CMk(G, ε,K).

Proof. We compare the long exact sequence associated to the short exact sequence of
∆-modules

0→ CMk(Γ,K)⊗K Kε →Mk(Γ,K)⊗K Kε → Ek(Γ,K)⊗K Kε → 0

with the short exact sequence

0→ CMk(G, ε,K)→Mk(G, ε,K)→ Ek(G, ε,K)→ 0.
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Using the snake lemma and Lemma (2.7.6) we obtain the exact sequence

H1(∆, Ek(Γ,K)⊗K Kε)→ ∆(CMk(Γ,K)⊗K Kε)→
CMk(G, ε,K)→ H1(∆, ΓV

ε
k−2(K))→ 0,

from which all statements follow, except the second one of (a), via Propositions (2.7.4)
and (2.7.5). In order to finish part (a), we show

H2(∆,K) � H1(∆, Ek(Γ,K)) and H1(∆,K) ↪→ H0(∆, E2(Γ1,K)).

Both follow from the long exact sequence associated to the short exact sequence from Propo-
sition (2.7.5) (a) and the fact that H1(∆,B2(Γ,K)) = 0, as provided by Proposition (2.7.4).

2

The obstruction terms occurring in Theorem (2.7.8) have been calculated in Proposi-
tions (2.7.2).

The ∆-action on modular symbols

We first need a technical computation on induced and coinduced modules.

(2.7.9) Lemma. Let R be a ring, Γ � G be subgroups of finite index in a group S, let
∆ := G/Γ and let V be a right R[G]-module. Then the diagram of right R[S]-modules

IndS
GV

∼ // CoindS
GV

// CoindS
ΓV

+
��

IndS
ΓV

N∆· //

OO

IndS
ΓV

commutes, where the norm is taken for the natural left ∆-action.

Proof. For convenience we have exchanged right and left actions in the proof, which can
easily be undone by inverting. We consider IndS

ΓV = R[S]⊗R[Γ]V with the leftR[S]-action
on the left factor and the rightR[∆]-action (σ⊗Γv)δ = σδ⊗Γδ

−1v. This action is compatible
with the right R[Γ]-action on R[S] and the given left R[Γ]-action on V for which the tensor
product has been taken. We regard CoindS

ΓV = HomΓ(R[S], V ) with the left R[S]-action
(g.f)(σ) = f(g−1σ) and the right R[∆]-action (f.δ)(σ) = δ−1f(gδ−1). This last action is
the restriction of the G-action defining HomG(R[S], V ) =

(
HomR(R[S], V )

)G
.

Now we can check commutativity. We first go up, then right and then down, and verify in
the end that we obtain N∆ in this way. We choose a system of representatives g1, . . . , gn for
the residue classes S/G. Then the giδ are a system of representatives for the residue classes
of S/Γ when i = 1, . . . , n and δ ∈ ∆. So, let x =

∑
δ

∑
i giδ ⊗Γ vδ,i be an element of

IndS
GV . It is first mapped to

∑
δ

∑
i giδ ⊗G vδ,i =

∑
i gi ⊗G (

∑
δ δvδ,i). Its image in the

centre of the top row is the map f which is uniquely defined by sending gi to
∑

δ δvδ,i. We
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have that f(giδ̃) = δ̃−1f(gi). Hence, the image of x in the right upper corner is the map
which is uniquely given by sending giδ̃ to δ̃−1

∑
δ δvδ,i. Mapping this element down to the

right bottom corner gives ∑

δ̃

∑

δ

∑

i

giδ̃ ⊗Γ δ̃
−1δvδ,i.

This element, however, agrees with

x.N∆ =
∑

δ̂

∑

δ

∑

i

giδδ̂ ⊗Γ δ̂
−1vδ,i,

for δ̃ = δδ̂, as claimed. 2

(2.7.10) Proposition. Let N ≥ 1 be an integer such that Γ1(N) ≤ Γ and let K be a field. If
k = 2, then we suppose that ε is not the trivial character. If the characteristic of K is p > 0,
then we assume also p - N , k ≤ p + 2 and that all stabiliser subgroups of G for its action
on H have order invertible in K (cf. Theorem (2.6.2)).

Then the norm map N∆ induces isomorphisms

Mk(G, ε,K) = ∆(Mk(Γ,K)⊗K Kε) ∼= ∆(Mk(Γ,K)⊗K Kε),

Bk(G, ε,K) = ∆(Bk(Γ,K)⊗K Kε) ∼= ∆(Bk(Γ,K)⊗K Kε)

and
CMk(G, ε,K) = ∆(CMk(Γ,K)⊗K Kε) ∼= ∆(CMk(Γ,K)⊗K Kε).

Proof. With V = V ε
k−2(K) and S = PSL2(Z) Lemma (2.7.9) gives the commutative

diagram of K[PSL2(Z)]-modules

(Ind
PSL2(Z)

G
V )/a // (Coind

PSL2(Z)

G
V )/a // ∆(

(Coind
PSL2(Z)

Γ
V )/a

)

��

∆

(
(Ind

PSL2(Z)

Γ
V )/a

) ·N∆ //

OO

∆
(
(Ind

PSL2(Z)

Γ
V )/a

)

with a = (1 + σ, 1 + τ + τ2) �K[PSL2(Z)]. Due to the assumptions we may combine the
comparison result Theorem (2.6.1) with the description in terms of Manin symbols (Theo-
rem (2.5.6)). This allows us to reinterpret the diagram as

Mk(G, ε,K)
∼ // H1(G, V ε

k−2(K))
res // ∆(

H1(Γ, V ε
k−2(K))

)

+
��

∆

(
Mk(Γ,K)⊗K Kε

) ·N∆ //

+

OO

∆
(
Mk(Γ,K)⊗K Kε

)
.

In the diagram the left vertical arrow is the definition, the upper left horizontal and the right
vertical arrow come from the comparison and res is the restriction from group cohomology,
which features in the exact sequence

0→ H1(∆, V Γ)→ H1(G, V )
res−−→ ∆H1(Γ, V )→ H2(∆, V Γ)
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coming from the Hochschild-Serre spectral sequence. The first part of the proposition follows
from Propositions (2.2.6) and (2.2.7) for k > 2 and from the assumptions for k = 2, which
imply that the map res above is an isomorphism.

The result on the cuspidal subspace will follow from the result on the boundary space.
For that we proceed as above with a = (1−T ) �K[PSLZ]. This reduces us to show that the
map

H1(U,Coind
PSL2(Z)

G
V )→ ∆H1(U,Coind

PSL2(Z)

Γ
V )

coming from the restriction via Shapiro’s lemma is an isomorphism. We claim that the re-
striction map

H1(G ∩ gUg−1, V )
res−−→ H1(Γ ∩ gUg−1, V )G∩gUg−1

is an isomorphism for all g ∈ PSL2(Z). An easy calculation shows that g〈TN〉g−1 is an
element of Γ1(N) and is hence in Γ. Consequently we have the inclusions

g〈TN〉g−1 ⊆ Γ ∩ gUg−1 ⊆ G ∩ gUg−1 ⊆ gUg−1.

As the total index is N , the index of Γ ∩ gUg−1 in G ∩ gUg−1 divides N and is thus co-
prime with p. Using again the five term sequence associated to the Hochschild-Serre spectral
sequence immediately implies that the restriction map above is an isomorphism as claimed.

Given a fixed g ∈ G\PSL2(Z)/U we are reduced to consider the diagonal restriction

H1(G ∩ gUg−1, V )
res−−→

⊕

h

H1(Γ ∩ hUh−1, V )G∩gUg−1

,

where h runs through a system of representatives of ΓhU such that GhU = GgU . The group
∆ permutes this set and only the diagonal is invariant. 2

Let us point out that the ∆-action on the set Γ\PSL2(Z)/U is not free if N is not square-
free.

(2.7.11) Corollary. Under the assumptions of Proposition (2.7.10) all of the following
Tate cohomology groups are zero Ĥ0(∆,Mk(Γ,K) ⊗K Kε), Ĥ0(∆,Mk(Γ,K) ⊗K Kε),
Ĥ0(∆, CMk(Γ,K)⊗K Kε), Ĥ0(∆, CMk(Γ,K)⊗K Kε), Ĥ0(∆,Bk(Γ,K)⊗K Kε) and
Ĥ0(∆,Bk(Γ,K)⊗K Kε).

Proof. This is immediate from the definition of the Tate cohomology groups, which can
be summarised in the exact sequence 0 → Ĥ0 → H0

Norm−−−→ H0 → Ĥ0 → 0, and Propo-
sition (2.7.10). 2

Separating the p-Sylow action

We let ∆ := Γ\G and assume that it is an abelian group. Here we are interested in modular
symbols as a ∆-module. We will treat the case of p-primary and p-group action separately,
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when p is the characteristic of the coefficient field R = K. This is what we need the freedom
in choosing the groups Γ and G different from only Γ1(N) and Γ0(N) for.

By Sylow theory there is a group Γp such that

Γ � Γp �G

with Γ\Γp a p-group and Γp\G of order prime to p. The restriction of ε to Γ\Γp is necessarily
trivial. We define the character

ε̃ : G→ Γp\G ⊆ Γ\G→ K∗

using Γ\G ∼= Γp\G× Γ\Γp. We clearly have ε̃(−1) = ε(−1) = (−1)k.

(2.7.12) Remark. Let us point out that the condition on the characters only stems from the
fact that we want to work with PSL2(Z) instead of SL2(Z). This choice unfortunately pre-
vents us from repeating the above arguments with a subgroup Γ̃ such that Γ � Γ̃ � G with
Γ\Γ̃ of order prime to p and Γ̃\G a p-group. In that case the necessarily trivial character

G
proj
� Γ̃\G→ K∗ would not be allowed if (−1)k 6= 1.

The action of the group Γp\G is semi-simple, and any module splits into a direct sum of
character eigenspaces, if the ground field contains the character values. The behaviour is thus
as in characteristic zero.

There is quite a strong criterion to show that a module for a p-group is coinduced.

(2.7.13) Proposition. Let K be a finite field of characteristic p, let ∆p be a finite p-group
and let A be a K[∆p]-module. If Ĥn(∆p, A) = 0 for one n, then A is a coinduced K[∆p]-
module.

Proof. This is [NSW], Proposition 1.7.3 (ii). 2

(2.7.14) Corollary. Let k ≥ 3,N ≥ 1 be integers andK a finite field of characteristic p. We
assume p - N and k ≤ p + 2. Furthermore, let Γ1(N) ≤ Γ � Γp ≤ SL2(Z) be subgroups
such that Γ\Γp is a p-group. We furthermore suppose that G has no stabilisers of order p
for its action on H. Let ∆p := Γ\Γp. Then Mk(Γ,K), CMk(Γ,K) and Bk(Γ,K) are
coinducedK[∆p]-modules.

Proof. This follows directly from Corollary (2.7.11) and Proposition (2.7.13). 2



Chapter III

Hecke Algebras of mod p Modular
Forms and Modular Symbols

In this chapter we prove that under certain conditions the Hecke algebra of cuspidal modular
forms over Fp can be obtained by considering only group cohomology, generalising results
from [EdixJussieu]. When these conditions apply, one obtains much more information than
e.g. [Ash-Stevens], who have studied group cohomology in order to prove that all systems
of eigenvalues of modular forms mod p in level N for p - N and weight k ≥ 3 occur in the
group cohomology of level Np and weight 2.

We start this chapter by introducing Hecke operators on the group cohomology groups
considered in Chapter II. Moreover, the compatibility of the Hecke operators with Shapiro’s
lemma is studied.

The principal idea in this chapter is to relate modular forms and modular symbols of level
N with p - N and weight 2 ≤ k ≤ p+ 1 to level Np and weight 2. In the second section we
will develop this level raising for the cohomology groups.

The third section is concerned with Hecke algebras of modular symbols and a comparison
to Hecke algebras of modular forms. The Eichler-Shimura-Theorem for holomorphic modu-
lar forms will be recalled first. Next results of p-adic Hodge theory will be used to exhibit a
faithful module for the Hecke algebra of cusp forms over Fp, when the weight is between 2

and p − 1. As modular forms of weight 1 can be embedded into weight p, it is desirable to
extend the weight range. This, however, does not seem to be possible with p-adic Hodge the-
ory. In order to cover weights up to p+1, we relate them to weight 2 and higher level, so that
the Jacobian of the modular curve can be used. This method allows us to prove that locally
at ordinary primes of the Hecke algebra a faithful module is provided by group cohomology
with coefficients in Fp (see Corollary (3.3.14)). We end the chapter by a discussion of the
action of Γ0(N)/Γ1(N) on cusp forms, which allows us to extend our results to modular
forms with characters.

41
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In Chapter II we have discussed modular symbols and related spaces over quite general
rings. In this chapter we will mostly take a finite field of characteristic p as base field and
principally work with the group cohomological description.

3.1. Hecke action

The definitions in this section are based on [DiamondIm].
We directly define Hecke operators on group cohomology. Although we do not expose

the theory here, we should not fail to mention that Hecke operators conceptually come from
correspondences on the underlying modular curves that also have a very explicit description
in the moduli interpretation.

By the comparison result Theorem (2.6.1) the definition can be transferred to modular
symbols in the case of the group Γ1(N) for N ≥ 5. Taking coinvariants one can extend the
definition of Hecke operators also to spaces for Γ0(N) with a character.

Hecke operators on group cohomology

Let α ∈ Mat2(Z) 6=0 and Γ a congruence subgroup of SL2(Z). We use the notations
Γα := Γ∩α−1Γα and Γα := Γ∩αΓα−1, where we consider α−1 as an element of GL2(Q).
Both groups are commensurable with Γ.

Suppose that V is an R-module with a Mat2(Z) 6=0-(semi-group)-action. We define the
Hecke operator Tα acting on group cohomology as the composite

H1(Γ, V )
res−−→ H1(Γα, V )

conjα−−−→ H1(Γα, V )
cores−−−→ H1(Γ, V ).

The first map is the usual restriction, and the third is the so-called corestriction, which one
also finds in the literature under the name transfer (cf. [Weibel], [Brown]). We explicitly
describe the second map on cochains (cf. [DiamondIm], p. 116):

conjα : H1(Γα, V )→ H1(Γα, V ), c 7→
(
gα 7→ αι.c(αgαα

−1)
)
.

The following formula can also be found in [DiamondIm], p. 116, and [Shimura], Section 8.3.

(3.1.1) Proposition. Suppose that ΓαΓ =
⋃n

i=1 Γδi is a disjoint union. Then the Hecke
operator Tα acts on H1(Γ, V ) by sending the non-homogeneous cocyle c to Tαc defined by

(Tαc)(g) =

n∑

i=1

δι
ic(δigδ

−1
j(i))

for g ∈ Γ. Here j(i) is the index such that δigδ
−1
j(i) ∈ Γ.
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Proof. We only have to describe the corestriction explicitly. For that we notice that one
has Γ =

⋃n
i=1 Γαgi with αgi = δi. Furthermore the corestriction of a non-homogeneous

cocycle u ∈ H1(Γα, V ) is the cocycle cores(u) uniquely given by

cores(u)(g) =

n∑

i=1

g−1
i u(gigg

−1
j(i))

for g ∈ Γ. Combining with the explicit description of the map conjα yields the result. 2

For a positive integer n, one defines the Hecke operator Tn to be Tα for α = ( 1 0
0 n ).

If Γ1(N) ⊆ Γ and the integer d is coprime to N , one defines the diamond operator 〈d〉
to be Tα for any matrix α ∈ SL2(Z), whose reduction modulo N is

(
d−1 0
0 d

)
. The diamond

operator gives a group action by (Z/NZ)∗. If the level is NM with (N,M) = 1, then
we can separate the diamond operator into two parts 〈d〉 = 〈d〉M × 〈d〉N , corresponding to
Z/NMZ ∼= Z/MZ× Z/NZ.

Hecke operators and Shapiro’s lemma

(3.1.2) Lemma. Let N,M be coprime positive integers, and let V be an R[Γ1(N)]-module.
Define the R-module

W(M,V ) := {f ∈ HomR(R[(Z/MZ)2], V ) | f((u, v)) = 0 ∀(u, v) s.t. 〈u, v〉 6= Z/MZ}.

We equip it with the left Mat2(Z) 6=0-(semi-group)-action (g.f)((u, v)) = gf((u, v)g).
Then the homomorphism

W(M,V )→ HomR[Γ1(NM)](R[Γ1(N)], V ), f 7→
(
g 7→ (g.f)((0, 1))

)

is an isomorphism of left Γ1(N)-modules (by restricting the action onW(M,V )). In partic-
ular,W(M,V ) is isomorphic to Coind

Γ1(N)
Γ1(NM)(V ) as a left Γ1(N)-module.

Proof. As N and M are coprime, reduction modulo M defines a surjection from Γ1(N)

onto SL2(Z/MZ). This implies that the map

Γ1(NM)\Γ1(N)
A7→(0,1)A mod M−−−−−−−−−−−→ (Z/MZ)2

is injective, and its image is the set of the (u, v) with Z/MZ = 〈u, v〉. From this the claimed
isomorphism follows directly. 2

(3.1.3) Lemma. Let N be a positive integer and l a prime. We have the coset decomposition

Γ1(N) ( 1 0
0 l ) Γ1(N) =

⋃

a

⋃

b

Γ1(N)σa

(
a b
0 d

)

when a runs through the integers such that a > 0, (a,N) = 1, ad = l and b through a system
of representatives of Z/dZ. Here σa ∈ SL2(Z) is a matrix reducing to

(
a−1 0
0 a

)
modulo N .
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Proof. This is [Shimura], Proposition 3.36. 2

We can now prove the compatibility of the Hecke operators with the isomorphism
from Shapiro’s lemma when we take the Mat2(Z) 6=0-action on the coinduced module from
Lemma (3.1.2). A proof of this fact in the more general, but rather heavy language of weakly
compatible Hecke pairs can be found in [Ash-Stevens] (Lemma 2.2(b)).

The Shapiro map is the isomorphism on cohomology groups

Sh : H1(Γ1(N),W(M,V ))→ H1(Γ1(NM), V )

induced by the homomorphism

W(M,V )→ V, f 7→ f((0, 1)).

(3.1.4) Proposition. LetN,M be coprime positive integers, and let V be anR[Mat2(Z) 6=0]-
module. For all primes l and all integers d ≥ 1 with (d,N) = 1 we have

Tl ◦ Sh = Sh ◦ Tl and 〈d〉N ◦ Sh = Sh ◦ 〈d〉N .

Proof. First we prove the statement for Tl. We choose a matrix σa for (a,N) = 1 such
that it reduces to

(
a−1 0
0 a

)
modulo N . If (a,M) = 1, then we also impose that σa reduces

to
(

a−1 0
0 a

)
modulo M . If not, then we want σa ≡ ( 1 0

0 1 ) modulo M . Lemma (3.1.3) implies
that coset representatives of Γ1(NM)\Γ1(NM) ( 1 0

0 l ) Γ1(NM) can be chosen as a subset
of representatives of Γ1(N)\Γ1(N) ( 1 0

0 l ) Γ1(N). With the above choice of σa that is the
subset such that 〈u, v〉 = Z/MZ with ( u ∗

v ∗ ) = σa

(
a b
0 d

)
. For those we have by definition for

f ∈ W(M,V ) that (( u ∗
v ∗ )ιf)((0, 1)) = 0.

Let now c ∈ H1(Γ1(N),W(M,V )) be a cocycle. Then by Proposition (3.1.1) and the
definition of the Mat2(Z) 6=0-action onW(M,V ) we have for g ∈ Γ1(NM)

(Sh(Tnc))(g) =
∑

δ

δι(c(δgδ̃−1)((0, 1)δι)),

where the sum runs over the above coset representatives for Γ1(N) and δ̃ is chosen among
these representatives such that δgδ̃−1 ∈ Γ1(NM). Moreover, we have

(Tn(Sh(c)))(g) =
∑

δ

δι(c(δgδ̃−1)((0, 1))),

where now the sum only runs through the subset described above. By what we have remarked
right above (0, 1)δι is (0, 1) if and only if (a,M) = 1. In all other cases (0, 1)δι = (u, v)

with 〈u, v〉 6= Z/MZ. This proves the compatibility for Tl.
The same arguments as above also show the compatibility of the diamond operator, except

that we only have one coset representative. 2
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(3.1.5) Proposition. LetN,M be coprime positive integers, and let V be anR[Mat2(Z) 6=0]-
module. For (n,M) = 1 we define the R[Mat2(Z) 6=0]-isomorphism

multn :W(M,V )→W(M,V ), f 7→ ((u, v) 7→ f
(
(nu, nv)

)
).

Then we have
〈n〉M ◦ Sh = Sh ◦multn.

Proof. Let σ ∈ SL2(Z) be a matrix reducing to
(

n−1 0
0 n

)
modulo M and to ( 1 0

0 1 ) mod-
ulo N . This means in particular that σ ∈ Γ1(N). Hence, for a cocycle c ∈ H1(Γ1(N), V )

we have
σ−1c(σgσ−1) = c(g) + (g − 1)c(σ−1),

so that the equality c(σgσ−1) = σc(g) holds in H1(Γ1(N), V ).
We can now check the claim. First we have

(〈n〉p ◦ Sh)(c)(g) = σι(σ.c(g)((0, 1))) = c(g)((0, 1)σ).

This agrees with (Sh ◦multn)(c)(g) = c(g)((0, n)). 2

3.2. Level raising for parabolic group cohomology

The contents of this section is already partly present in [Ash-Stevens]. However, in that paper
the parabolic subspace is not treated.

Decomposition ofW(p, Fp) as Fp[Mat2(Z) 6=0]-module

We will now relate the Fp[Mat2(Z) 6=0]-modulesW(p,Fp) and Vd(Fp) for 0 ≤ d ≤ p − 1,
which are in fact precisely the simple Fp[SL2(Fp)]-modules (see e.g. [Alperin], p. 15).

(3.2.1) Lemma. Evaluation of polynomials on F2
p induces the natural isomorphism of left

Fp[Mat2(Z) 6=0]-modules

Fp[X,Y ]/(Xp −X,Y p − Y ) ∼= F
F2

p
p .

Proof. The map is well-defined because of Fermat’s little theorem and the compatibility
for the natural action is clear. As the dimensions on both sides agree, it suffices to prove
injectivity. Let f ∈ Fp[X,Y ] be a polynomial having degree ≤ p− 1 in both variables such
that f(a, b) = 0 for all a, b ∈ Fp. Then for fixed a the polynomial f(a, Y ) is identically zero,
as it is zero for all the p specialisations of Y . Hence, considering f as a polynomial in Y
with coefficients in Fp[X ], it follows that all those coefficients are identically zero for the
same argument. Consequently, the polynomial f is zero as an element of Fp[X,Y ] proving
the claim. 2
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We can thus identifyW(p,Fp) with {f ∈ Fp[X,Y ]/(Xp−X,Y p−Y ) | f((0, 0)) = 0}.
Let Ud(Fp) be the subspace consisting of polynomial classes of degree d ∈ {0, . . . , p− 2},
i.e. those that satisfy f(lx, ly) = ldf(x, y) for all l ∈ Fp. Note that the degree is naturally
defined modulo p − 1. It is clear that the natural Mat2(Z) 6=0-action respects the degree. By
collecting the monomials we obtain

W(p,Fp) =

p−2⊕

d=0

Ud(Fp).

Furthermore, we dispose of the perfect bilinear pairing

W(p,Fp)×W(p,Fp)→ Fp, 〈f, g〉 =
∑

(a,b)∈F2
p

f(a, b)g(a, b).

(3.2.2) Lemma. Let d, e ≥ 0 be integers. With (p− 1) - d or (p− 1) - e we have
∑

(a,b)∈F2
p

adbe = 0.

Proof. As the statement is symmetric in d and e, we may suppose that (p − 1) - e

and in particular e 6= 0. Then
∑

(a,b)∈F2
p
adbe =

∑p
a=0 a

d(
∑p−1

b=1 b
e). The latter sum,

however, is zero, as one can for instance see by choosing a generator σ of F∗
p and rewriting∑p−1

b=1 b
e =

∑p−1
i=1 (σe)i. As σe clearly is a zero of the polynomial Xp−1 − 1, it is a zero of

the polynomial
∑p−1

i=1 X
i, since σe 6= 1 using (p− 1) - e. 2

If (p−1) - (d+e), Lemma (3.2.2) implies that Ud(Fp) pairs to zero with Ue(Fp). Hence,
the restricted pairing Ud(Fp) × Up−1−d(Fp) → Fp is perfect for 0 ≤ d ≤ p − 1, as the
dimensions of Up−1−d(Fp) and Ud(Fp) are equal. Furthermore, Fp[X,Y ]d pairs to zero with
Fp[X,Y ]p−1−d. This follows from Lemma (3.2.2) and an easy calculation. Consequently
the induced pairing Ud(Fp)/Vd(Fp)× Vp−1−d(Fp)→ Fp is perfect.

Weight k ∈ {2, . . . , p + 1} in weight 2

Let M ∈ Mat2(Z) 6=0 such that its reduction modulo p is invertible. Then it is clear that the
above pairing respects the action of M , i.e. 〈Mf,Mg〉 = 〈f, g〉. Consequently, we receive
an isomorphism of Fp-vector spaces

Ud(Fp)/Vd(Fp)→ Vp−1−d(Fp)
∨

respecting the left action defined before. Composing with the map from Proposition (2.2.4),
we obtain an isomorphism

Ud(Fp)/Vd(Fp)→ Vp−1−d(Fp).

We now study how the Mat2(Z) 6=0-action behaves with respect to this isomorphism.
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(3.2.3) Lemma. Let 0 < d ≤ p−1 and letM ∈ Mat2(Z) 6=0 such that its reduction modulo p
is in GL2(Fp). Then the following diagram commutes:

0 // Vd(Fp)

M.

��

// Ud(Fp)

M.

��

// Vp−1−d(Fp)

det(M)dM.

��

// 0

0 // Vd(Fp) // Ud(Fp) // Vp−1−d(Fp) // 0.

Proof. This follows from the compatibilities of the two pairings with the group actions
described above. 2

(3.2.4) Lemma. LetM =
(

1 0
0 p

)
and 0 < d ≤ p−1. Then the following diagram commutes:

0 // Vd(Fp)

Mι.

��

// Ud(Fp)

Mι.

��

// Vp−1−d(Fp)

0

��

// 0

0 // Vd(Fp) // Ud(Fp) // Vp−1−d(Fp) // 0.

Proof. We have M ι =
(

p 0
0 1

)
. A basis of Ud(Fp) is given by the monomials of degree d,

which correspond to the embedding of Vd(Fp), together with the monomials X iY p−1+d−i

for d ≤ i ≤ p−1. As the latter monomials all contain at least one factor ofX , they are killed
by applying the matrix. 2

We hence find formulae similar to those that hold in a comparable situation for the action
on modular forms of level Np (see Proposition (3.3.8), resp. [Gross], p. 475). The following
Proposition, except for the parabolic part, is also [Ash-Stevens], Theorem 3.4.

We introduce the following notation. Let M be any Fp-vector space on which the Hecke
operators Tl and the p-part of the diamond operators 〈·〉p act. By M [d] we mean M with the
action of the Hecke operator Tl “twisted” to be ldTl (in particular Tp acts as zero). Further-
more, by M(d) be denote the subspace on which 〈l〉p acts as ld = χp(l)

d with χp the mod p
cyclotomic character.

(3.2.5) Proposition. Let p be a prime, N ≥ 5 and 0 < d ≤ p − 1 integers such that p - N .
We have isomorphisms respecting the Hecke operators

H1(Γ1(Np),Fp)(d) ∼= H1(Γ1(N), Ud(Fp)) and

H1
par(Γ1(Np),Fp)(d) ∼= H1

par(Γ1(N), Ud(Fp)).

Moreover, there are the exact sequences

H1(Γ1(N), Vd(Fp)) ↪→ H1(Γ1(N), Ud(Fp)) � H1(Γ1(N), Vp−1−d(Fp))[d]
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and

H1
par(Γ1(N), Vd(Fp)) ↪→ H1

par(Γ1(N), Ud(Fp)) � H1
par(Γ1(N), Vp−1−d(Fp))[d],

which respect the Hecke operators.

Proof. The first statement follows from Propositions (3.1.4) and (3.1.5) together with the
definition of Ud(Fp). The twisting of the Hecke action in the exact sequences is clear from
the definition of the Hecke operators on group cohomology using Lemmas (3.2.3) and (3.2.4).

For d = p − 1 we have U0(Fp) = V0(Fp) ⊕ Vp−1(Fp), from which the statements
follow. So we now assume d < p − 1, in particular p 6= 2. For the top sequence we only
need to check that it is exact on the left and on the right. By Proposition (2.2.6) we have
H0(Γ1(N), Vp−1−d(Fp)) = 0. The H2-terms are trivial as the cohomological dimension of
Γ1(N) is one, since the group acts freely on the upper half plane and is hence a free group.

The exactness of the second sequence follows from the snake lemma, once we have es-
tablished the exactness of

0→
⊕

c cusps

H1(Dc, Vd(Fp))→
⊕

c cusps

H1(Dc, Ud(Fp))→
⊕

c cusps

H1(Dc, Vp−1−d(Fp))→ 0,

where Dc is the stabiliser group of the cusp c = g∞ with g ∈ SL2(Z). Hence,
Dc = g〈±T 〉g−1 ∩ Γ1(N). This group is infinite cyclic generated by g ( 1 r

0 1 ) g−1 for some
r ∈ Z. Hence, we have H2(Dc, Vd(Fp)) = 0. If r is 0 modulo p, the sequence

0→
⊕

c cusps

H0(Dc, Vd(Fp))→
⊕

c cusps

H0(Dc, Ud(Fp))→
⊕

c cusps

H0(Dc, Vp−1−d(Fp))→ 0

is clearly right exact, as the action of Dc on the modules is trivial. If r is invertible in Fp,
it follows as in Lemma (2.2.5) that both H0(Dc, Vd(Fp)) and H0(Dc, Vp−1−d(Fp)) are 1-
dimensional. To finish the proof, it thus suffices to prove that H0(Dc, Ud(Fp)) is (at least)
2-dimensional. The elements Xd ∈ Ud(Fp) and Y d(1 − Xp−1) ∈ Ud(Fp) are invariant
under T . Indeed,

T.Y d(1−Xp−1) = (X + Y )d(1−Xp−1)

= Y d(1−Xp−1) +

d∑

i=1

( d
i )Y d−iX i(1−Xp−1) = Y d(1−Xp−1),

as in Ud(Fp) we have X i(1−Xp−1) = X i−1(X −Xp) = 0 for i > 0. 2

3.3. Hecke algebras

In this section we will compare the Hecke algebra of modular forms with that of modular
symbols and establish isomorphisms in certain cases. Whenever we have an R-module M ,
on which Hecke operators Tn act for all n, we let

TR(M) := R[Tn | n ∈ N] ⊆ EndR(M),
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i.e. the R-subalgebra of the endomorphism algebra generated by the Hecke operators.

The Hecke algebra of modular forms and Eichler-Shimura

We recall a theorem by Eichler and Shimura.

(3.3.1) Theorem. (Eichler-Shimura) For k ≥ 2 and Γ ≤ SL2(Z) a congruence subgroup,
there is an isomorphism of TZ(Sk(Γ,C))-modules, the Eichler-Shimura isomorphism,

H1
par(Γ, Vk−2(C)) ∼= Sk(Γ,C)⊕ Sk(Γ,C).

Proof. [DiamondIm], Theorem 12.2.2. 2

(3.3.2) Corollary. In the situation of Theorem (3.3.1) we have natural ring isomorphisms

TZ

(
Sk(Γ,C)

) ∼= TZ

(
H1

par(Γ, Vk−2(Z))/torsion
)
.

Proof. It is clear that the C-vector space H1
par(Γ, Vk−2(C)) contains the natural Z-

structureH1
par(Γ, Vk−2(Z))/torsion. This follows for instance from Remark (2.5.3) together

with the comparison result Theorem (2.6.1). Any Z-structure, however, gives an isomorphic
Hecke algebra. Finally, Theorem (3.3.1) implies that the Hecke algebra ofH1

par(Γ, Vk−2(C))

is isomorphic to the Hecke algebra of Sk(Γ,C). 2

The formula in this corollary is the reason why many people prefer to factor out the
torsion of modular symbols.

(3.3.3) Proposition. Let N ≥ 5, k ≥ 2 integers and p - N a prime. Then we have

TZ

(
Sk(Γ1(N),C)

)
⊗Z Fp

∼= TFp

(
Sk(Γ1(N),Fp)

)
.

Proof. By [DiamondIm], Theorem 12.3.2, we have

Sk(Γ1(N),Z[1/N ])⊗Z[1/N ] Fp
∼= Sk(Γ1(N),Fp).

We note that in this case there is no difference between Katz modular forms and those that are
reductions of classical modular forms whose q-expansion is in Z[1/N ]. By the q-expansion
principle we hence have the two perfect pairings

TZ

(
Sk(Γ1(N),C)

)
⊗Z Z[1/N ]× Sk(Γ1(N),Z[1/N ])→ Z[1/N ], (T, f) 7→ a1(Tf)

and
TFp

(
Sk(Γ1(N),Fp)

)
× Sk(Γ1(N),Fp)→ Fp, (T, f) 7→ a1(Tf).

Tensoring the first one with Fp allows us to compare it to the second one, from which the
proposition follows. 2
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(3.3.4) Corollary. Let p be a prime and N ≥ 5, 2 ≤ k ≤ p+ 2 integers s.t. p - N . Then the
Fp-algebra homomorphism

TFp

(
Sk(Γ1(N),Fp)

)
� TFp

(
H1

par(Γ1(N), Vk−2(Fp))
)
,

sending the operator Tl to Tl for all primes l is a surjection.

Proof. From Corollary (3.3.2) we obtain because of p-torsion-freeness (Proposi-
tion (2.4.8) together with the comparison result Theorem (2.6.1)) an isomorphism of Fp-
algebras

TZ

(
Sk(Γ1(N),C)

)
⊗ Fp

∼= TZp

(
H1

par(Γ1(N), Vk−2(Zp))
)
⊗Zp

Fp.

By Proposition (3.3.3) the term on the left hand side is equal to TFp

(
Sk(Γ1(N),Fp)

)
so that

it suffices to have a surjection

TZp

(
H1

par(Γ1(N), Vk−2(Zp))
)
⊗ Fp � TFp

(
H1

par(Γ1(N), Vk−2(Fp))
)
,

which follows from Proposition (2.4.8). Indeed, the isomorphism

H1
par(Γ1(N), Vk−2(Zp))⊗ Fp

∼= H1
par(Γ1(N), Vk−2(Fp))

is compatible with Hecke operators, and allows to define a homomorphism from the Hecke
algebra on the left hand term to the one on the right hand term, which is automatically sur-
jective by the definition of the Hecke algebra. 2

(3.3.5) Proposition. Let N ≥ 1, k ≥ 2 be integers and K a field. If the characteristic of K
is p > 0, then we assume p - N . Furthermore, let Γ1(N) ≤ Γ �G ≤ SL2(Z) be subgroups

and ε : G
proj
� Γ\G→ R∗ a character such that ε(−1) = (−1)k if−1 ∈ G. Denote by T the

K-Hecke algebra of Sk(Γ,K) and by Tε theK-Hecke algebra of Sk(G, ε,K). Furthermore,
let

I = (〈δ〉 − ε(δ) | δ ∈ Γ\G) � T.

Then T/I and Tε are isomorphic K-algebras.

Proof. As we work with Katz modular forms (for that we need the condition p - N ),
we dispose of the q-expansion principle. Hence we have isomorphisms respecting the Hecke
action (Tε)

∨ ∼= Sk(G, ε,K) = T∨[I ] ∼= (T/I)∨, whence the proposition follows. 2

Applying p-adic Hodge Theory

In this section we present an analog of the Eichler-Shimura isomorphism, formulated in terms
of p-adic Hodge theory. This was already used in [EdixJussieu], Theorem 5.2, to derive
an algorithm for computing modular forms. However, p-adic Hodge theory always has the
restriction that the weight be smaller than p.
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(3.3.6) Theorem. (Fontaine, Messing, Faltings) Let p be a prime and N ≥ 5, 2 ≤ k < p

be integers s.t. p - N . Then the Galois representation H1
ét, par(Y1(N)

Qp
, Symk−2(V))∨ is

crystalline, where V = R1π∗Fp with π : E → Y1(N) the universal elliptic curve. The
corresponding φ-module D sits in the exact sequence

0→ Sk(Γ1(N),Fp)→ D → Sk(Γ1(N),Fp)
∨ → 0,

which is equivariant for the action of the Hecke operators.

This can be compared to Theorem 1.1 and Theorem 1.2 of [FaltingsJordan]. Part (a) of
the following corollary is part of [EdixJussieu], Theorem 5.2.

(3.3.7) Corollary. Let N ≥ 5, p - N and 2 ≤ k < p.

(a) The parabolic group cohomology groupH1
par(Γ1(N),Vk−2(Fp)) is a faithful module for

TFp

(
Sk(Γ1(N),Fp)

)
.

(b) Let ε : (Z/NZ)∗ → Fp
∗

be a character. Define the ideal

I = (〈l〉 − ε(l) | (l, N) = 1) � T
Fp

(
Sk(Γ1(N),Fp)

)
.

Then
(
H1

par(Γ1(N),Vk−2(Fp)) ⊗Fp
Fp

)
/I is a faithful module for the Hecke algebra

TFp

(
Sk(Γ1(N), ε,Fp)

)
.

Proof. (a) From Theorem (3.3.6) we know that D is a faithful Hecke module. Hence,
so is H1

ét, par(YΓ1(N), Symk−2(V)). This module can be identified with its analog in analytic
cohomology which is isomorphic to H1

par(Γ1(N),Vk−2(Fp)) (see Chapter II).
(b) If the Hecke operator T acts as zero on

(
H1

ét, par(YΓ1(N), Symk−2(V))⊗Fp
Fp

)
/I , then

it acts as zero on (D⊗ Fp)/I , hence also on Sk(Γ1(N),Fp)
∨/I = TFp

(
Sk(Γ1(N),Fp)

)
/I,

from which T ∈ I follows. The statement now follows from Proposition (3.3.5). 2

Modular forms of weight 2 and level Np

We recall some work of Serre as explained in [Gross], cf. also [EdixWeight], Section 6.
Let us now introduce notation that is used throughout the sequel of this chapter. We

consider the modular curve X1(Np) over Qp(ζp) for a prime p > 2 not dividing N ≥ 5. It
has a regular stable model X over the ring Zp[ζp], see e.g. [Katz-Mazur]. Let J denote the
Néron model over Zp[ζp] of J1(Np), the Jacobian ofX1(Np) over Qp(ζp). We let, following
[Gross], Section 8,

L = H0(X,ΩX/Zp[ζp]),

where ΩX/Zp[ζp] is the dualising sheaf of X of [Deligne-Rapoport], Section I.2. By [Gross],
Equation 8.2, we have for the special fibre XFp

that

L := H0(XFp
,ΩXFp /Fp

) = L⊗Zp[ζp] Fp.
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On L and L we have the action of the p-part 〈·〉p of the diamond action. The principal
result on L that we will need is the following, which is Proposition 8.13 and Proposition 8.18
in [Gross].

(3.3.8) Proposition. (Serre) Assume 3 ≤ k ≤ p, N ≥ 5 and p - N . Then there is an
isomorphism of TFp

(L)-modules

L(k − 2) ∼= Sk(Γ1(N),Fp)⊕ Sp+3−k(Γ1(N),Fp)[k − 2].

Moreover, the sequence of Hecke modules

0→ S2(Γ1(N),Fp)[p− 1]→ L(p− 1)→ Sp+1(Γ1(N),Fp)→ 0

is exact.

In our attempt to compare Hecke algebras of modular forms with those of modular
symbols in characteristic p, we generalise the strategy of the second part of the proof of
[EdixJussieu], Theorem 5.2. Hence, we wish to bring the Jacobian into the play, since it will
enable us to pass from characteristic zero geometry to characteristic p.

(3.3.9) Lemma. Under the assumptions and notations above we have isomorphisms

L ∼= Cot0(J
0
Fp

) ∼= Cot0(J
0
Fp

[p]).

Proof. The first isomorphism is e.g. [EdixWeight], Equation 6.7.2. The second one
follows from the fact that multiplication by p on J0

Fp
induces multiplication by p on the

tangent space at 0, which is the zero map. Hence, the tangent space at 0 of J 0
Fp

[p] is equal to
the one of J0

Fp
. 2

Parabolic cohomology and the p-torsion of the Jacobian

To establish an explicit link between parabolic cohomology and modular forms, we identify
the parabolic cohomology group for Γ1(N) with Fp-coefficients as the p-torsion of the Ja-
cobian of the corresponding modular curve. Here we may view the Jacobian as a complex
abelian variety.

(3.3.10) Proposition. LetN ≥ 3 be an integer, and p a prime. Then we have an isomorphism
of TZ(S2(Γ1(Np),C))⊗ Fp-modules

H1
par(Γ1(Np),Fp) ∼= J(C)[p] = J(Qp)[p].

Proof. The second equality follows from the fact that torsion points are algebraic. We
start with the exact Kummer sequence of analytic sheaves over X1(Np)

0→ µp → Gm
p−→ Gm → 0.
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Its long exact sequence in analytic cohomology yields

0→ H1(X1(Np), µp)→ H1(X1(Np),Gm)
p−→ H1(X1(Np),Gm).

Using that H1(X1(Np),Gm) = J(C), we already obtain that H1(X1(Np), µp) ∼= J(C)[p].
As C contains the p-th roots of unity, we may replace the sheaf µp by the constant sheaf Fp.
Moreover, the group H1(X1(Np),Fp) coincides with H1

par(Y1(Np),Fp) (see Proposi-
tion (2.4.1)), which in turn is equal to H1(Γ1(Np),Fp), using that H � Y1(Np) is a Galois
covering under the assumption N ≥ 3. 2

Comparing Hecke algebras over Fp

(3.3.11) Proposition. Let N ≥ 5 be an integer, p - N a prime and 0 ≤ d ≤ p− 1 an integer.
There exists a surjection TFp

(
H1

par(Γ1(Np),Fp)(d)
)

� TFp
(L(d)) such that the diagram

of Fp-algebras

TFp
(L(d))

TZ

(
S2(Γ1(Np),C)(d)

)
⊗ Fp

22 22fffffffffffff

,, ,,YYYYYYYYY

TFp

(
H1

par(Γ1(Np),Fp)(d)
)

OOOO

commutes. All maps are uniquely determined by sending the Hecke operator Tl to Tl.

Proof. Let us first remark how the diagonal arrows are made. The lower one comes from
the isomorphism (see Proposition (2.4.8) and Theorem (2.6.1))

H1
par(Γ1(Np),Z)⊗ Fp

∼= H1
par(Γ1(Np),Fp).

The upper one is due to the fact that L is a lattice in S2(Γ1(Np,C)), using arguments as in
Corollary (3.3.2). We use that the order of F∗

p is invertible in Fp, so that we can everywhere
use the eigencomponents of the action of the p-part of the diamond operator 〈·〉p.

We obtain the vertical arrow by showing that the kernel of the lower diagonal map is
contained in the kernel of the upper diagonal map. In other words, we will show that if
T ∈ TZ

(
S2(Γ1(Np),C)(d)

)
⊗ Fp acts as zero on H1

par(Γ1(Np),Fp)(d), then it acts as zero
on L(d).

So assume that T acts as zero onH1
par(Γ1(Np),Fp)(d). By Proposition (3.3.10), it acts as

zero on J
Qp

(Qp)[p](d), hence on J
Qp

[p](d). But then it also acts as zero on JZp[ζp][p](d), as it
acts as zero on the generic fibre using that J [p] is flat over Zp[ζp] ([BLR], Lemma 7.3.2, as J
is semi-abelian) and that JQp

[p] is reduced. But consequently, it also acts as zero on the spe-
cial fibre J [p](d), whence also on the cotangent space Cot0(J

0[p])(d). Now Lemma (3.3.9)
finishes the proof. 2
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(3.3.12) Theorem. Let 2 < k ≤ p + 1, N ≥ 5 such that p - N . We write for short
Tpar,N,k := TFp

(
H1

par(Γ1(N), Vk−2(Fp))
)
, Tmod,N,k := TFp

(
Sk(Γ1(N),Fp)

)
and simi-

larly for the twisted ones. Then there is the commutative diagram of Fp-algebras

TFp

(
L(k − 2)

)
//

OO
Tmod,N,k

��

× Tmod,N,p+3−k,[k−2]

��
Tpar,Np,2 // Tpar,N,k × Tpar,N,p+3−k,[k−2].

The vertical arrows are obtained from Proposition (3.3.11) resp. Corollary (3.3.4), and the
horizontal ones from Proposition (3.3.8) and Proposition (3.2.5). The vertical arrows are
surjective. If 2 < k ≤ p, then the upper horizontal arrow is injective.

Proof. The commutativity is clear, as Tl is sent to Tl × Tl along the horizontal arrows,
and Tl is sent to Tl along the vertical arrows. The surjectivity of the vertical arrows has been
proved at the places cited above.

The injectivity of the upper homomorphism is the fact that L(k − 2) is the direct sum of
Sk(Γ1(N),Fp) and Sp+3−k(Γ1(N),Fp)[k − 2], if 2 < k ≤ p. 2

(3.3.13) Corollary. Let 2 < k ≤ p + 1, N ≥ 5 such that p - N . Let P be a maximal
ideal of TFp

(
L(k− 2)

)
which is not in the support of Sp+3−k(Γ1(N),Fp). Then we have an

isomorphism

TFp

(
Sk(Γ1(N),Fp)P

) ∼= TFp

(
H1

par(Γ1(N), Vk−2(Fp))P

)
.

Proof. The assumption means that (Sp+3−k(Γ1(N),Fp)[k − 2])P = 0. Because of
Corollary (3.3.4) we know that P is not in the support of H1

par(Γ1(N), Vp+1−k(Fp))[k − 2]

either, whence (H1
par(Γ1(N), Vp+1−k(Fp))[k − 2])P = 0. Hence, the sequence of Proposi-

tion (3.2.5) localised at P is split, and all maps in the localisation of the diagram of Theo-
rem (3.3.12) are isomorphisms. 2

(3.3.14) Corollary. Let 2 < k ≤ p+ 1, N ≥ 5 such that p - N . Let P be a maximal ideal of
TFp

(
Sk(Γ1(N),Fp)

)
corresponding to a normalised eigenform f ∈ Sk(Γ1(N),Fp) which

is ordinary, i.e. ap(f) 6= 0. Then we have an isomorphism

TFp

(
Sk(Γ1(N),Fp)P

) ∼= TFp

(
H1

par(Γ1(N), Vk−2(Fp))P

)
.

Proof. As the operator Tp always acts as zero on Sp+3−k(Γ1(N),Fp)[k−2] the maximal
ideal P cannot be in the support of Sp+3−k(Γ1(N),Fp)[k−2], whence we are in the situation
of Corollary (3.3.13). 2

(3.3.15) Remark. In contrast to Proposition (3.3.8) the exact sequence of Proposition (3.2.5)
is in general non-split for d = k − 2 with 2 < k ≤ p. However, it is split for k = 2.
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Action through characters

(3.3.16) Lemma. In the situation of Proposition (3.3.18) we have

H1(∆, Sk(Γ,K)) = 0.

This also holds for k = 2 away from Eisenstein ideals.

Proof. Without loss of generality we may assume that ∆ is a p-group and hence that
G acts freely on H and that π : XΓ � XG is a Galois cover with group ∆ of proper K-
schemes. The group action of ∆ on cohomology is through the Diamond operators. The
Hochschild-Serre spectral sequence gives an injection

0→ H1(∆, H0(XΓ, π
∗ω⊗k(−cusps)))→ H1(XG, ω

⊗k(−cusps)).

Using Serre duality and the Kodaira-Spencer isomorphism we obtain

H1(XG, ω
⊗k(−cusps))

S-D∼= H0(XG,Ω
1 ⊗ (ω⊗k(−cusps))∨)∨

K-S∼= H0(XG, ω
⊗2−k)∨

which is zero, since the degree of ω⊗2−k is negative (as k ≥ 3). The map π is étale and we
have H0(XΓ, π

∗ω⊗k(−cusps)) ∼= Sk(Γ,K), from which the claim follows. For k = 2 we
have H1(XG, ω

⊗2(−cusps)) ∼= H0(XG,O)∨, which is 1-dimensional. As a Hecke module
it cannot be in the support of a non-Eisenstein prime. 2

(3.3.17) Corollary. In the situation of Proposition (3.3.18) suppose that K has characteris-
tic p and that ∆ is a p-group. Then Sk(Γ,K) is an inducedK[∆]-module.

Proof. This follows from Lemma (3.3.16) and Proposition (2.7.13). 2

(3.3.18) Proposition. Let k ≥ 3, N ≥ 1 be integers and K a field. Furthermore, let

Γ1(N) ≤ Γ � G ≤ SL2(Z) be subgroups and ε : G
proj
� Γ\G → K∗ a character such

that ε(−1) = (−1)k if −1 ∈ G. Let ∆ := Γ\G. We assume that ∆ is abelian and that Γ

acts without stabilisers on H. If the characteristic of K is p > 0, then we assume p - N and
that G has no stabilisers of order p for its action on H.

Then the norm N∆ induces an isomorphism
(
Sk(Γ,K)⊗Kε

)
∆

N∆−−→
(
Sk(Γ,K)⊗Kε

)∆
= Sk(G, ε,K).

When k = 2, then the statements also hold if one localises away from Eisenstein maximal
ideals (i.e. those not corresponding to irreducible Galois representations).

Proof. If the characteristic of K is zero, the finite abelian group ∆ acts semi-simply, and
hence the claim follows. If the characteristic is p, it suffices to prove the statement for the
p-Sylow subgroup ∆p of ∆, as again ∆/∆p acts semi-simply. Corollary (3.3.17) implies that
Sk(Γ,K) is a cohomologically trivial (for Tate cohomology)K[∆p]-module. Consequently,
the norm induces an isomorphism. 2
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(3.3.19) Remark. If the characteristic of K is p, then the result of Proposition (3.3.18)
also holds for k = 1. For the ∆-action commutes with the derivation Θ used in Propo-
sition (4.5.2). As the ∆-invariants agree with the ∆-coinvariants in weights p and p + 2, it
follows that the same holds in weight one by the exact sequence in Part (a) of that proposition.

(3.3.20) Proposition. We keep the assumptions of Proposition (3.3.18). If the characteristic
of K is p > 0, we also assume k ≤ p+ 2.

If CMk(Γ,K) is a faithful TK(Sk(Γ,K))-module, then CMk(G, ε,K) is a faithful
TK(Sk(Γ, ε,K))-module. For k = 2 similar statements hold away from Eisenstein primes.

Proof. Dualising the result of Proposition (3.3.18) gives an isomorphism

(
T(Sk(Γ,K))⊗Kε

)
∆

N∆−−→
(
T(Sk(Γ,K))⊗Kε

)∆
,

which in particular yields that the implication

T (
∑

δ∈∆

ε(δ)−1〈δ〉) = 0 ⇒ T ∈ I,

where I is the ideal defined in Proposition (3.3.5). In view of that proposition, we only need
to show that if T acts as zero on CMk(G, ε,K), then T is in I .

That can be seen as follows. We now assume that ∆ = ∆, i.e. that G = G. For that we
may have to replaceG by a subgroup of index 2. This may be done since neither the space of
modular symbols nor the space of modular forms changes.

From Proposition (2.7.10) we know

CMk(G, ε,K) ∼= ∆(CMk(Γ,K)⊗K Kε)
N∆∼= ∆(CMk(Γ,K)⊗K Kε).

If T acts as zero on

CMk(G, ε,K) = N∆(CMk(Γ,K)⊗K Kε) = (
∑

δ∈∆

ε(δ)−1〈δ〉)CMk(Γ,K),

then
(T

∑

δ∈∆

ε(δ)−1〈δ〉)CMk(Γ,K) = 0

and by the assumed faithfulness of CMk(Γ,K), it follows that T (
∑

δ∈∆ ε(δ)
−1〈δ〉) = 0,

whence T ∈ I , as required. 2



Chapter IV

Computations of mod p Modular
Forms

In this chapter we explain how the results of Chapters II and III can be used algorithmically
to compute modular forms over finite fields with methods from linear algebra, most notably
modular symbols, under certain restrictions.

As modular forms in the situation when we consider them are uniquely determined by
their q-expansions, we only need to compute the corresponding Hecke algebra, since the
space of modular forms is its dual. If one is only interested in eigenforms, not the whole
Hecke algebra structure is needed, and we can do with fewer conditions. However, the knowl-
edge of the Hecke algebra structure is necessary for the computation of weight one forms,
and it is interesting to study e.g. the Gorenstein property in view of a possible identification
between the Zp-Hecke algebra with a deformation ring. We also explain how weight one
Hecke algebras can be computed using weight p, following [EdixJussieu]. Moreover, the
principal algorithms of my Magma package Weight1.mg, which builds on William Stein’s
package ModularSymbols, are presented. Fortunately, Stein’s package has already pro-
vided modular symbols over finite fields for a long time, and one could say that this chapter
is about their interpretation.

We start this chapter by recalling the relation between modular forms and Hecke alge-
bras. Next we present an algorithm which splits a module over a commutative algebra over
a finite field into local pieces up to Galois conjugacy. The third section compares systems of
eigenvalues of modular forms with those of modular symbols. In the fourth section an algo-
rithm for the computation of Hecke algebras of weight k ≥ 2 over finite fields using modular
symbols is treated. Then we explain how weight one and weight p are related for finite fields
of characteristic p, from which we derive an algorithm for the computation of weight one
forms, following [EdixJussieu]. The final section sketches a certain generalisation of Merel’s
universal Fourier expansions.

57
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4.1. Modular forms and Hecke algebras

Let K be a perfect field andK an algebraic closure. Let furthermore S(K) be some space of
modular forms defined over K and TK the associated Hecke algebra over K, such that the
pairing

TK × S(K)→ K, (T, f) 7→ a1(Tf)

is non-degenerate, where an(f) denotes the n-th coefficient of the standard q-expansion of f .
This is the case for instance for holomorphic modular forms (K = C) for Γ1(N), Γ0(N) and
all N ≥ 1, or for Katz modular forms over K = Fpr for Γ1(N), Γ0(N) and all N ≥ 1 such
that p - N . The pairing gives rise to the following Hecke equivariant isomorphisms

S(K) ∼= HomK(TK ,K) ∼= HomK(TK ⊗K K,K),

where the first arrow is given by f 7→ (T 7→ a1(Tf)). Let us recall the important formula
a1(Tnf) = an(f), which follows from the action of the Hecke operators on q-expansions.
Normalised Hecke eigenforms in S(K) correspond under the first isomorphism toK-algebra
homomorphisms TK → K. Eigenforms that are Galois conjugate (i.e. the coefficients of the
standard q-expansion are conjugate by G(K|K)) correspond to Galois conjugate K-algebra
homomorphisms TK → K. TwoK-algebra homomorphisms TK → K are Galois conjugate
if and only if they have the same kernel. It is common to refer to aK-algebra homomorphism
f : TK → K as the system of eigenvalues (λn)n of TK with λn = f(Tn).

We have established bijections

Spec(TK)
1−1←→ HomK−alg(TK ,K)

1−1←→ { normalised eigenforms in S(K) }/G(K|K)

and
Spec(TK ⊗K)

1−1←→ HomK−alg(TK ⊗K,K)
1−1←→

{ normalised eigenforms in S(K) } 1−1←→ { systems of eigenvalues of TK }.
The Hecke algebra TK is finite dimensional (an Artin algebra) and commutative. So all its
prime ideals are maximal, and using the Chinese Remainder Theorem the algebra decom-
poses as a product of its localisations:

TK
∼=

∏

m∈Spec(TK)

(TK)m
∼=

∏

m∈Spec(TK)

TK/m
∞ ∼=

∏

m∈Spec(TK)

TK/(1− em)TK .

If r is an integer r such that mr = mr+1, then we write m∞ for mr. The em in the formula
are idempotents corresponding to the decomposition.

4.2. Computing local factors of Hecke algebras

Let K be a perfect field, K an algebraic closure and A a finite dimensional commutative
K-algebra. We will write AL for A ⊗K L, where L|K is an extension inside K. The image
of a ∈ A in AK is denoted as a.
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In the context of Hecke algebras we would like to

(1) compute a local decomposition of A, resp.

(2) compute a local decomposition of AK keeping track of the G(K|K)-conjugacy.

In this section we present an algorithm solving both points. This algorithm is implemented
in my Magma package Weight1.mg. It is based on the following lemma.

(4.2.1) Lemma. (a) A is local if and only if the minimal polynomial of a (in K[X ]) is a
prime power for all a ∈ A.

(b) Let V be an A-module such that for all a ∈ A the minimal polynomial of a on V is a
prime power in K[X ], i.e. V is a primary space for all a ∈ A. Then the image of A in
End(V ) is a local algebra.

(c) Let V be anAK -module and let a1, . . . , an be generators of the algebraA. Suppose that
for i ∈ {1, . . . , n} the minimal polynomial of ai on V is a power of (X − λi) in K[X ]

for some λi ∈ K. Then the image of AK in End(V ) is a local algebra.

Proof. (a) Suppose first that A is local and take a ∈ A. Let φa : K[X ] → A be the
homomorphism of K-algebras defined by sending X to a. Let (f) be the kernel with f

monic, so that by definition f is the minimal polynomial of a. Hence, K[X ]/(f) ↪→ A,
whence K[X ]/(f) is local, implying that f cannot have two different prime factors.

Conversely, if A were not local, we would have an idempotent e 6∈ {0, 1}. The minimal
polynomial of e is X(X − 1), which is not a prime power.

(b) follows directly. For (c) one can use the following. Suppose that (a − λ)rV = 0

and (b − µ)sV = 0. Then ((a + b) − (λ + µ))r+sV = 0, as one sees by rewriting
((a + b) − (λ + µ)) = (a − λ) + (b − µ) and expanding out. From this it also follows
that (ab− λµ)2(r+s)V = 0 by rewriting ab− λµ = (a− λ)(b− µ) + λ(b− µ) + µ(a− λ).

2

Let us call a pair (V, L) consisting of a finite extension L|K with L ⊂ K and an AL-
module V an a-pair for a ∈ A if the coefficients of the minimal polynomial of a acting on
V ⊗L K generate L overK.

Let us furthermore call a set {(V1, L1), . . . (Vn, Ln)} consisting of a-pairs an a-decom-
position of an a-pair (V, L) if

(i) V ⊗L K ∼=
⊕n

i=1 Ṽi with Ṽi
∼=

⊕
σ∈GL/GLi

σ(Vi ⊗Li
K) and

(ii) the minimal polynomial of a restricted to Vi is a power of (X − λi) for some λi ∈ Li

for all i and

(iii) the minimal polynomial of a restricted to Ṽi is coprime to the minimal polynomial of a
restricted to Ṽj whenever i 6= j.



60 IV. Computations of mod p Modular Forms

The Ṽi correspond to the local factors of the L-algebra 〈a〉 and the σ(Vi ⊗Li
K) to the

local factors of the K-algebra 〈a〉. So the (Vi, Li) are a choice out of a G(Li|L)-conjugacy
class. The third condition above assures that for i 6= j no (σVi, σLi) for σ ∈ G(Li|L) is
conjugate to a (τVj , τLj) for any τ ∈ G(Lj |L).

An a-decomposition of an a-pair can be computed by the following algorithm.

(4.2.2) Algorithm. We define the function DecomposePair as follows.
input: (V, L), a, where (V, L) is an a-pair.
output: A list output [(V1, L1), . . . , (Vn, Ln)] containing an a-decomposition of (V, L).

1. Create an empty list output, which after the running will contain an a-decomposition.

2. Compute f ∈ L[X ], the minimal polynomial of a restricted to V .

3. Factor f =
∏n

i=1 p
ei

i with pi ∈ L[X ] pairwise coprime.

4. For all i in {1, . . . , n} do

1. Compute Ṽi as the kernel of pi(a|V )ei .

2. Compute Li, the splitting field over L of pi.

3. Factor pi(X) =
∏

σ∈GL/GLi
(X − σλi), for some λi ∈ Li.

4. Compute Vi as the kernel of (a| eVi
− λi)

ei .

5. Join (Vi, Li) to the list output.

5. Return output and stop.

The decomposition of an AK-module V corresponding to the local factors of AK and
keeping track of conjugacy can be computed by the following algorithm, when the a1, . . . , an

in the input generate A.

(4.2.3) Algorithm. We define the function Decompose as follows.
input: (V,K), [a1, . . . , an] with [a1, . . . , an] a list of elements ofA and (V,K) an ai-pair

for all i = 1, . . . , n.
output: A list output = [(V1,K1), . . . , (Vn,Kn)] consisting of pairs with Ki a finite

extension of K and Vi an AKi
-module. See Proposition (4.2.4) for an interpretation.

1. Compute dec as DecomposePair((V,K), a1).

2. If n = 1, then return dec.

3. Create the empty list output.

4. For all d in dec do

1. Compute dec1 as Decompose(d, [a2, . . . , an]).

2. Join dec1 to the list output.

5. Return the list output and stop.



4.3. Computing eigenforms of weight k ≥ 2 over finite fields 61

From Lemma (4.2.1) the following is clear.

(4.2.4) Proposition. Let A be a commutative finite dimensional K-algebra with generators
a1, . . . , an. Let V be an A-module. Suppose that Decompose((V,K), [a1, . . . , an])
gives the output {(V1,K1), . . . , (Vm,Km)}.

Then V ⊗K K =
⊕m

i=1 Ṽi with Ṽi =
⊕

σ∈Gk/GKi
σVi. The Ṽi correspond to the local

factors of A and the σVi correspond to the local factors of AK . 2

(4.2.5) Corollary. We keep the notation from Proposition (4.2.4). If V is a faithfulA-module,
then the local factors ofA are isomorphic to the images of A in End(Ṽi). Moreover the local
factors of AK correspond to the images of AK in End(σVi).

4.3. Computing eigenforms of weight k ≥ 2 over finite fields

[Ash-Stevens] have already noticed that all systems of eigenvalues of modular forms modulo
a suitable prime ideal above p also occur in group cohomology. We shall reprove that result in
a slightly more precise form using the properties of group cohomology and modular symbols
established before. We will also explain how this gives rise to an algorithm for computing
eigenforms over finite fields with methods from linear algebra over finite fields.

(4.3.1) Proposition. (a) Let p be a prime, k ≥ 2, N ≥ 5 with p - N integers and
f ∈ Sk(Γ1(N),Fp) a normalised eigenform for 2 ≤ k. Then its system of eigen-
values occurs in any of the spaces H1

par(Γ1(N), Vk−2(Fp)), CMk(Γ1(N),Fp) and
CHk(Γ1(N),Fp).

(b) Let k ≥ 2 be an integer and ε : (Z/NZ)∗ → F∗ be a character with ε(−1) = (−1)k

for F|Fp a finite extension. Then the system of eigenvalues of any normalised eigenform
f ∈ Sk(Γ1(N), ε,Fp) occurs in any of the spaces

H1
par(Γ0(N), V ε

k−2(F)), (Z/NZ)∗
(
H1

par(Γ1(N), Vk−2(F))⊗F Fε
)
,

CMk(Γ0(N), ε,F), (Z/NZ)∗
(
CMk(Γ1(N),F)⊗F Fε

)
,

(Z/NZ)∗
(
CHk(Γ1(N),F)⊗F Fε

)
, (Z/NZ)∗

(
CHk(Γ1(N),F)⊗F Fε

)
.

(c) Assume the situation of (a) and that 2 ≤ k ≤ p + 2. Then all systems of eigen-
values occurring on any of the spaces cited in (a) come from a normalised eigenform
f ∈ Sk(Γ1(N),Fp).

(d) Assume the situation of (b), 2 ≤ k ≤ p+2 and that Γ0(N) does not have any stabiliser of
order p for its action on H (compare Proposition (2.6.2)). If k = 2, then we also assume
ε to be non-trivial. Then all systems of eigenvalues occurring on any of the spaces cited
in (b) come from a normalised eigenform f ∈ Sk(Γ1(N), ε,Fp).

(e) Assume the situation of (a). Suppose there is a system of eigenvalues coming from any of
the spaces cited in (a) but not from a modular form. Then for any prime l - Np the Hecke
operator (Tl)

2 acts on it with eigenvalue (l + 1)2lk−2.
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Proof. Part (a) follows from Corollary (3.3.2) and the comparison result Theorem (2.6.1).
It is clear that a system of eigenvalues of a modular form with character ε also occurs in any
of the spaces given in (b).

(c) The statement is an immediate consequence of Corollary (3.3.4) and Theorem (2.6.1).
(d) follows from (c) using Proposition (2.7.10).
(e) We can assume k > p+ 2 by (c). By Corollary (3.3.2) a system of eigenvalues living

on the torsion free quotient comes from a modular form. So, a system of eigenvalues as in
the assumption must live on

H1(YΓ1(N), Vk−2(Zp))[p] ∼= H0(YΓ1(N), Vk−2(Fp)) ∼= Vk−2(Fp)
SL2(Fp),

where the first isomorphism comes from Proposition (2.4.8). Applying the definition of
the Hecke operator Tl for a prime l - Np, we see that it acts on the right hand side by
sending a polynomial f of degree k − 2 to (l + 1)

(
( l 0

0 1 ) .f
)
(x, y). So (Tl)

2 acts as
(l + 1)2

( (
l2 0
0 1

)
.f

)
(x, y). But

(
l2 0
0 1

)
=

(
l 0
0 l

) (
l 0
0 l−1

)
and the latter matrix acts trivially,

which implies the statement. 2

(4.3.2) Remark. Proposition (4.3.1)(a) and (c) also hold more generally for k ≥ 3 and
Γ ≤ SL2(Z) a subgroup of finite index whose stabilisers have order invertible modulo p.
With these assumptions Proposition (3.3.3) and Corollary (3.3.4) are also true. However, for
k = 2 there could be lifting problems to characteristic 0 (i.e. Carayol’s Lemma does not
hold).

For computational purposes it is essential to have a finite set of generators for the Hecke
algebra. This is provided by the following proposition.

(4.3.3) Proposition. Let N ≥ 1 and k ≥ 2 be integers such that p - N , F|Fp a finite
extension and let ε : (Z/NZ)∗ → F∗ be a character with ε(−1) = (−1)k. Set

B =
N

12

∏

l|N,l prime

(1 +
1

l
).

Let T(k) be the Hecke algebra for Sk(Γ1(N), ε,Fp). Then the Hecke operators

T
(k)
1 , T

(k)
2 , . . . , T

(k)
kB

generate T(k) as an F-vector space.
The number kB is called the Hecke bound of Sk(Γ1(N), ε,Fp).

Proof. This follows from the proof of [EdixJussieu], Proposition 4.2. 2

As we have seen that systems of eigenvalues of modular symbols are closely related to
those of modular forms, we quickly sketch how to compute them up to Galois conjugacy.
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(4.3.4) Algorithm. We define the function Eigenforms as follows.
input: N, k, p, ε, where N ≥ 1, k ≥ 2 are integers, p is a prime and ε is a Dirichlet

character of modulus N with values in some finite extension F of Fp.
output: A list output [(V1, L1), . . . , (Vn, Ln)].

1. Generate the space M of cuspidal modular symbols for Γ1(N), weight k and character ε
over F.

2. Compute the Hecke bound kB as in Proposition (4.3.3).

3. Compute the list L = [T1, ..., TkB] consisting of the listed Hecke operators on M.

4. output := Decompose((M,F),L)
The function Decompose was defined in Algorithm (4.2.3). We may replace all ei in
Step 4 of Algorithm (4.2.2) by 1, as we are only interested in systems of eigenvalues.

5. Return output and stop.

The (Vi, Li) in the list output correspond precisely to the different Galois conjugacy
classes of systems of eigenvalues (λn)n on the cuspidal modular symbols. That means that
the restriction of the Hecke operator Tn to Vi is a scalar matrix with eigenvalue λn.

4.4. Computing Hecke algebras of weight k ≥ 2 over finite
fields

We now address the question of computing the Hecke algebra of modular forms over finite
fields.

The following theorem is a very satisfactory result, if the weight is smaller than p or equal
to p+ 1. In the former case it is mainly due to Edixhoven ([EdixJussieu], Theorem 5.2).

(4.4.1) Theorem. Let p be a prime and N ≥ 5, k ≥ 2 integers such that p - N . Suppose
k < p or k = p+ 1.

(a) The Hecke algebra over Fp of Sk(Γ1(N),Fp) can be computed by the Hecke action on
any one of H1

par(Γ1(N), Vk−2(Fp)), CMk(Γ1(N),Fp) or CHk(Γ1(N),Fp).

(b) Let ε : (Z/NZ)∗ → F∗ a character with ε(−1) = (−1)k for a finite extension F of Fp.
If k = 2, then we assume that ε is non-trivial. We assume further that Γ0(N) does not
have any stabiliser of order p for its action on H (compare Proposition (2.6.2)).

Then the F-Hecke algebra of Sk(Γ1(N), ε,Fp) can be computed by the Hecke action on
any one of the spaces

H1
par(Γ0(N), V ε

k−2(F)), (Z/NZ)∗
(
H1

par(Γ1(N), Vk−2(F))⊗F Fε
)
,

CMk(Γ0(N), ε,F), (Z/NZ)∗
(
CMk(Γ1(N),F)⊗F Fε

)
,

(Z/NZ)∗
(
CHk(Γ1(N),F)⊗F Fε

)
, (Z/NZ)∗

(
CHk(Γ1(N),F)⊗F Fε

)
.
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Proof. In the case where k < p both parts are immediate from Corollary (3.3.7), the
comparison result Theorem (2.6.1) and Proposition (2.7.10).

If k = p+ 1, the result follows from Corollary (3.3.14), Proposition (3.3.20) because all
modular forms in weight p+ 1 are ordinary (see e.g. [EdixWeight], Proposition 3.3). 2

Next we cover the weight p case.

(4.4.2) Theorem. The statements of Theorem (4.4.1) also hold for weight k = p > 2 lo-
calised at ordinary (ap(f) 6= 0) systems of eigenvalues.

Proof. This follows as above from Corollary (3.3.14), Proposition (3.3.20), the compari-
son result Theorem (2.6.1) and Proposition (2.7.10). 2

(4.4.3) Lemma. Let ∆ := (Z/NZ)∗/〈−1〉. The Hecke operator Tl for any prime l - Np

acts on E2(Γ1(N),Fp), H0(∆, E2(Γ1(N),Fp)) and H1(∆, E2(Γ1(N),Fp)) by multiplica-
tion by (l + 1).

Proof. For the boundary space
⊕

g∈Γ1(N)\PSL2(Z)/U
H1(Γ1(N)∩gUg−1,Fp) the corre-

sponding statement is immediately verified from the definition of the Hecke operator Tl and
the fact that the index of Γ1(N) ∩ Γ0(l) ∩ gUg−1 in Γ1(N) ∩ gUg−1 is l + 1. As it holds
on the boundary space, it holds on the Eisenstein subspace, which is Hecke stable. As the
∆-action is through the diamond operators, which commute with Tl, the result also follows
for the two homology groups listed. 2

(4.4.4) Proposition. LetN ≥ 5 an integer and p - N a prime. We assume further that Γ0(N)

does not have any stabiliser of order p for its action on H (compare Proposition (2.6.2)).
Let f be a normalised eigenform in S2(Γ0(N),Fp) corresponding to a maximal ideal P

of the Hecke algebra T. If the associated Galois representation of f is not Eisenstein (i.e.
is not reducible), then the localisation at P of T can be computed by the Hecke action on
CM2(Γ0(N),Fp)P.

Proof. If p 6= 2 we invoke Theorem (4.4.1) and if p = 2 [EdixJussieu], Theorem 5.2,
in order to obtain the result for Γ1(N) without a character. By Theorem (2.7.8) it suffices
to prove that the Hecke action on H0(∆, E2(Γ1(N),Fp)) and H1(∆, E2(Γ1(N),Fp)) cannot
give rise to an irreducible representation. That, however, is clear by Lemma (4.4.3). 2

(4.4.5) Proposition. Let p be a prime, N ≥ 5, k ≥ 2 integers such that p - N , and let
ε : (Z/NZ)∗ → F∗ be a character with ε(−1) = (−1)k for a finite extension F of Fp. We
assume further that Γ0(N) does not have any stabiliser of order p for its action on H (com-
pare Proposition (2.6.2)). Let f ∈ Sk(Γ1(N), ε,Fp) a normalised eigenform for k ≥ 2 with
an irreducible Galois representation. Let M be any of the spaces H1

par(Γ0(N), V ε
k−2(F)),

CMk(Γ0(N), ε,F) or (Z/NZ)∗
(
CHk(Γ1(N),F)⊗ Fε

)
.

If the local factor at f of T(Sk(Γ1(N), ε,Fp)) has the same dimension as the correspond-
ing local factor of T(M), then these two local algebras are isomorphic.
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Proof. As we know that differences occurring in the passage to characters only cor-
respond to reducible Galois representations, it suffices to prove similar statements for
Γ := Γ1(N) without a character.

We show that there is a surjection of algebras from the local factor of T(Sk(Γ,Fp)) to
that of T(M). We have

TZ(Sk(Γ,C))⊗Z Fp
∼= TZp

(H1
par(Γ, Vk−2(Zp))/p−torsion)⊗Zp

Fp.

Locally at a prime ideal P corresponding to an irreducible representation we have

H1
par(Γ, Vk−2(Zp))/p−torsion)P

∼= H1
par(Γ, Vk−2(Zp)))P,

since the p-torsion part cannot correspond to an irreducible representation due to the calcula-
tion in the proof of part (e) of Proposition (4.3.1). Moreover, it is easy to check that irreducible
representations cannot live on the possible differences H1(〈σ〉,Coind

SL2(Z)
Γ Vk−2(Fp)) and

similarly for τ . 2

We next sketch an algorithm for computing the local factors of the Hecke algebra of
modular symbols up to Galois conjugacy.

(4.4.6) Algorithm. We define the function HeckeAlgebras as follows.
input: N, k, p, ε, where N ≥ 1, k ≥ 2 are integers, p is a prime and ε is a Dirichlet

character of modulus N with values in some finite extension F of Fp.
output: A list output [(V1, L1), . . . , (Vn, Ln)].

1. Generate the space M of cuspidal modular symbols for Γ1(N), weight k and character ε
over F.

2. Compute the Hecke bound kB as in Proposition (4.3.3).

3. Compute the list L = [T1, ..., TkB] consisting of the listed Hecke operators on M.

4. output := Decompose((M,F),L)
The function Decompose has been defined in Algorithm (4.2.3).

5. Return output and stop.

The (Vi, Li) in the list output correspond precisely to the different Galois conjugacy
classes. That means that the corresponding local Hecke algebra is generated by the restric-
tions of the Hecke operators to the Vi.

In order to obtain proved results if the conditions of Theorems (4.4.1) and (4.4.2) do not
apply, we must compute with cuspidal modular symbols over Q and choose a lattice. We
may then work with the reduction modulo p of the Hecke operators written with respect to
a lattice basis. Note that this method in the primitive form given only applies to situations
when the character takes values in {±1}. This approach works as any lattice gives rise to
an isomorphic Hecke algebra. However, working over Q, choosing a lattice and computing
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Hecke operators with integral coefficients is very slow. Moreover, if we work with non-free
groups such as Γ0(N) then we only get those forms that are reductions mod p of holomorphic
modular forms and possibly not all Katz forms. One of the advantages of working with all
the torsion is that we get Katz modular forms, whenever Theorems (4.4.1) or (4.4.2) apply.
E.g. with k = 2 and p = 3, mod 3 modular symbols also compute those mod 3 eigenforms
that cannot be lifted to characteristic 0 with a character of the same order.

4.5. Embedding weight one into weight p

In this section we describe how weight one and weight p modular forms are related. Recall
that we are working throughout with Katz modular forms, which becomes really essential in
this section. All ideas are taken from [EdixJussieu] (Section 4) and have also been described
in [W-App]. For more details the reader is referred there.

Let F be a finite field of prime characteristic p of Fp and fix a levelN ≥ 1 with p - N and
a character ε : (Z/NZ)∗ → F∗ with ε(−1) = (−1)k. We have two injections of F-vector
spaces

F,A : S1(Γ1(N), ε,F)→ Sp(Γ1(N), ε,F),

given on q-expansions by an(Ag) = an(g) and an(Fg) = an/p(g) (with an(Fg) = 0

if p - n), that are compatible with all Hecke operators Tl for primes l 6= p. The former
comes from the Frobenius and the latter is multiplication by the Hasse invariant. One
has T (p)

p F = A and AT (1)
p = T

(p)
p A + ε(p)F , where we have indicated the weight as a

superscript (see e.g. [EdixJussieu], Equation 4.1.2).
The key to an effective description of the image of F is the following theorem by Katz,

which is the main theorem of [KatzDerivation].

(4.5.1) Theorem. (Katz) Let k be an integer.

(1) There exists a homomorphism

AΘ : Sk(Γ1(N), ε,F)→ Sk+p+1(Γ1(N), ε,F),

whose effect on q-expansions is q d
dq (i.e. an(AΘf) = nan(f)), whence it is called a

derivation.

(2) Suppose p - k. If f ∈ Sk(Γ1(N), ε,F) does not come from a lower weight, then AΘf

has weight k + p+ 1, and does not come from a lower weight. In particular, AΘf 6= 0.

(3) If f ∈ Spk(Γ1(N), ε,F) and AΘf = 0, then f = hp for a unique h ∈ Sk(Γ1(N), ε,F).

Let T(k) be the Hecke algebra over F of weight k for a fixed level N and a fixed charac-
ter ε. We will also indicate the weight of Hecke operators by superscripts. We denote byA(p)

the Fp-subalgebra of T(p) generated by all Hecke operators T (p)
n for p - n.
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(4.5.2) Proposition. (a) There is a homomorphism Θ, also called a derivation, given on q-
expansions by an(Θf) = nan(f) such that the sequence

0→ S1(Γ1(N), ε,F)
F−→ Sp(Γ1(N), ε,F)

Θ−→ Sp+2(Γ1(N), ε,F)

is exact.

(b) Suppose f ∈ S1(Γ1(N), ε,F) such that an(f) = 0 for all n with p - n. Then f = 0. In
particular AS1(Γ1(N), ε,F) ∩ FS1(Γ1(N), ε,F) = 0.

(c) The Hecke algebra T(1) in weight one can be generated by all T (1)
l , where l runs through

the primes different from p.

(d) The weight one Hecke algebra T(1) is the algebra generated by the A(p)-action on the
module T(p)/A(p).

Proof. (a) Theorem (4.5.1) (3) gives the exact sequence

0→ S1(Γ1(N), ε,F)
F−→ Sp(Γ1(N), ε,F)

AΘ−−→ S2p+1(Γ1(N), ε,F)

by taking Galois invariants. However, as explained in [EdixJussieu], Section 4, the image
AΘSp(Γ1(N), ε,F) in weight 2p + 1 can be divided by the Hasse invariant, whence the
weight is as claimed.

(b) The condition implies by looking at q-expansions that AΘf = 0, whence by Theo-
rem (4.5.1) (3) f comes from a lower weight than 1, but below there is just the 0-form (see
also [EdixJussieu], Proposition 4.4).

(c) It is enough to show that T (1)
p is linearly dependent on the span of all T (1)

n for p - n. If
it were not, then there would be a modular form of weight 1 satisfying an(f) = 0 for p - n,
but ap(f) 6= 0, contradicting (b).

(d) Dualising the exact sequence in (a) yields that T(p)/A(p) and T(1) are isomorphic as
A(p)-modules, which implies the claim. 2

(4.5.3) Proposition. The F-algebra A(p) defined above can already be generated as an F-
vector space by the set

{ T (p)
n | p - n, n ≤ (p+ 2)B },

where B is the number from Proposition (4.3.3).

Proof. Assume that some T (p)
m for m > (p + 2)B and p - m is linearly indepen-

dent of the operators in the set of the assertion. This means that there is a modular form
f ∈ Sp(Γ1(N), ε,F) satisfying an(f) = 0 for all n ≤ (p + 2)B, but am(f) 6= 0. One gets
an(Θf) = 0 for all n ≤ (p + 2)B, but am(Θf) 6= 0. This contradicts Proposition (4.3.3).

2

These two propositions provide us with an effective method for computing the Hecke
algebra in weight one, once we dispose of a faithful module for the Hecke algebra in weight p.
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If we are only interested in forms of weight one, we would like to be able to throw away
parts that cannot come from weight one. The following considerations will also enable us in
certain cases to compute weight one eigenforms without computing all the Hecke algebra.

(4.5.4) Proposition. Let V ⊂ Sp(Γ1(N), ε,F) be the eigenspace of a system of eigenvalues
for the operators T (p)

l for all primes l 6= p

If the system of eigenvalues does not come from a weight one form, then V is at most
1-dimensional. Conversely, if there is a normalised weight one eigenform g with that system
of eigenvalues for T (1)

l for all primes l 6= p, then V = 〈Ag, Fg〉 and that space is 2-
dimensional. On it T (p)

p acts with eigenvaluesu and ε(p)u−1 satisfying u+ε(p)u−1 = ap(g).
In particular, the eigenforms in weight p which from weight one are ordinary.

Proof. If V is at least 2-dimensional, then we can choose a normalised eigenform f for
all operators and we then have V = Ff ⊕ {h | an(h) = 0 ∀p - n}. As a form h in the right
summand is annihilated by Θ, it is equal to Fg for some form g of weight one by Proposi-
tion (4.5.2) (a). By Part (b) of that proposition we know that 〈Ag, Fg〉 is 2-dimensional. If V
were more than 2-dimensional, then there would be two different modular forms in weight 1,
which are eigenforms for all T (1)

l with l 6= p. This, however, contradicts Part (c).
Any normalised eigenform f ∈ V for all Hecke operators in weight p has to be of the

form Ag + µFg for some µ ∈ F. The eigenvalue of T (p)
p on f is the p-th coefficient, hence

u = ap(g) + µ, as ap(Fg) = a1(g) = 1. Now we have

(ap(g) + µ)(Ag + µFg) = T (p)
p (Ag + µFg) = T (p)

p Ag + µAg

= AT (1)
p g − ε(p)Fg + µAg = (ap(g) + µ)Ag − ε(p)Fg,

which implies−ε(p) = (ap(g)+µ)µ = u2−uap(g) by looking at the p-th coefficient. From
this one obtains the claim on u. 2

(4.5.5) Corollary. Let N ≥ 5 an integer not disible by the prime p. The Hecke algebra of
S1(Γ1(N),Fp) can be computed using modular symbols over Fp.

Proof. Due to the ordinarity (Proposition (4.5.4)), this follows from Theorem (4.4.2) and
Proposition (4.5.2)(d). 2

4.6. Computing Hecke algebras of weight one over finite
fields

If one is only interested in eigenforms, one can use Algorithm (4.3.4) for weight pwith mod p
modular symbols and look for pairs of eigenforms differing only at p. These correspond
to weight one eigenforms by Proposition (4.5.4). However, a weight p eigenform f with
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ap(f)2 = ε(p) might or might not correspond to weight one. Here an extra check will be
needed.

We next describe the function SystemsOfEigenvalues implemented in the Magma
package Weight1.mg.

(4.6.1) Algorithm. We define the function SystemsOfEigenvalues as follows.
input: N, p, ε with N a positive integer, p a prime and ε a Dirichlet character over a field

extension F of Fp.
option: Wt1APriori ∈ { true, false }.
output: A decomposition of the cuspidal modular symbols for Γ1(N) of weight p and

character ε corresponding to the conjugacy classes of local factors of the algebra A(p). If
the option Wt1APriori is set, local factors that cannot correspond to weight one forms by
Proposition (4.5.4) are discarded.

1. Generate the space M of cuspidal modular symbols for Γ1(N), weight p and character ε
over F.

2. Compute b := (p+ 2)B as in Proposition (4.5.3).

3. Compute the list L consisting of the Hecke operators Tn acting on M for p - n and
1 ≤ n ≤ b.

4. If not Weight1APriori, call output := Decompose with the list L and the
pair (M,F). Return output and stop. The function Decompose was defined in Algo-
rithm (4.2.3).

5. If Weight1APriori, then proceed as follows.

1. Compute the operator Tp acting on M.

2. Compute the minimal polynomial Fp ∈ F[X ] of Tp and factor it
∏n

i=1 pi(X)ei over
F[X ] into coprime prime powers.

3. Create a set S of prime factors as follows.

If pi(X) = X + a with a2 = ε(p), then join pi(X)ei to the set S.

If pi(X) satisfies pi(a) = 0⇒ pi(ε(p)a
−1) = 0, then join pi(X)ei to the set S.

If for a pair i 6= j one has pi(a) = 0⇒ pj(ε(p)a
−1) = 0, then join pi(X)lcm(ei,ej ) to

the set S and discard pj(X).

Discard all other pi(X).

4. Create an empty list output.

5. For each p(X)e in S do:
1. Compute the kernel W of p(Tp)

e acting on M.
2. Create a list L′ by restricting the entries of L to W .
3. Join Decomposition ((W,F), L′) to the list output.

6. Return output and stop.
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One now obtains the local weight one Hecke algebras for the given level and character as
follows. Let Vi be one of the spaces in the output of SystemsOfEigenvalues. Then the
quotient

〈Tn|Vi
| 1 ≤ n ≤ pB〉/〈Tn|Vi

| 1 ≤ n ≤ (p+ 2)B, p - n〉

is an A(p)-module. Whenever the space of cuspidal modular symbols used in the function
SystemsOfEigenvalues is a faithful T(p)-module, the algebra generated by T (p)

l on
that quotient for l 6= p and 1 ≤ l ≤ B is the local factor of the Hecke algebra of weight one
that we were looking for.

4.7. Universal q-expansions

In [MerelUniversal] Merel has among other things established a “universal Fourier expan-
sion” of holomorphic modular forms in terms of Hecke operators acting on modular symbols.
We sketch how a generalisation of Merel’s result can be deduced from the theory developed
here.

The plus-space, denoted by the superscript +, is the subspace fixed by the action of the
matrix η :=

(
−1 0
0 1

)
(supposing that there is such an action).

(4.7.1) Proposition. Let Γ ≤ SL2(Z) be a subgroup of finite index. Suppose ηΓη = Γ and
that for some x ∈ CMk(Γ, R)+ the homomorphism

T→ CMk(Γ, R)+, T 7→ Tx

is an isomorphism, i.e. that CMk(Γ, R)+ is a free T-module of rank 1. Then we have a
universal q-expansion, i.e. an isomorphism

Hom(CMk(Γ, R)+, R)→ Sk(Γ, R), φ 7→
∑

n≥1

φ(Tnx)q
n.

Proof. We have the isomorphism

Hom(T, R)→ Sk(Γ, R), ψ 7→
∑

n≥1

ψ(Tn)qn,

which we only need to combine with the isomorphism between T and CMk(Γ, R)+ to obtain
the proposition. 2

From a version of the Eichler-Shimura Theorem involving the plus-space it follows that
the condition in Proposition (4.7.1) is satisfied, when R = C. In [EPW], p. 30, an iso-
morphism between TP and a space isomorphic to CMk(Γ1(N),Zp)

+
P locally at p-ordinary

and p-distinguished primes P of the Hecke algebra is derived from a fundamental theorem
by Wiles ([Wiles], Theorem 2.1). Hence, also in that situation there is a universal Fourier
expansion.



Chapter V

Some Computational Results

This chapter gives an overview over some computations that were carried out using the algo-
rithms presented in Chapter IV. Moreover, we give some motivation why these computations
are useful.

5.1. Weight one modular forms over F2 for Γ0(N)

Mestre’s computations

The first computer calculations of weight one modular forms known to the author were carried
out by Jean-François Mestre and written down in a letter to Serre from October 1987. The
letter has appeared as Appendix A of [EdixJussieu]. We have verified the computations and
reported on them in Appendix B [W-App] of loc. cit.

Further computations

All modular forms of weight 1 and 2 for Γ0(N) for odd N in the range from 11 to 3445 have
been computed with the Magma package Weight1.mg. Up to Galois conjugacy we found
2998 cuspidal Katz eigenforms of weight 1 and 14009 systems of eigenvalues of weight 2.
Among the latter there might be some that do not correspond to cusp forms (see Chapter IV).
For each of them we computed the field F generated by the coefficients, the local factor of
the corresponding Hecke algebra and a lower bound for the image of the associated Galois
representation (an upper bound is provided by SL2(F)).

We found the following distribution of the degree of the coefficient field. In the tables we
count all eigenforms (resp. systems of eigenvalues), not only up to Galois conjugacy.
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Weight 1:
Degree 1 2 3 4 5 8 10
# forms 1417 1102 1200 972 535 96 320
Percentage 21.1 16.4 17.9 14.5 7.9 1.4 4.7

The biggest degree occurring is 29.
Weight 2:

Degree 1 2 3 4 5 8 10
# forms 3765 5036 5115 6036 3160 2976 3430
Percentage 9.8 13.1 13.3 15.7 8.2 7.7 8.9

The biggest degree occurring is 127.

Non-liftable Katz forms of weight one

Eigenforms of weight one whose associated Galois representation has image equal to some
SL2(F2r) with r ≥ 3 cannot be lifted to holomorphic weight one forms, because PGL2(C)

does not have a finite subgroup having SL2(F2r ) with r ≥ 3 as a quotient. The first such
form was found by Mestre. More calculations have been carried out by Lloyd Kilford, Edray
Goins and the author for forms over F2.

Level Group History Level Group History
1429 SL2(F8) Mestre 2879 SL2(F8) W.
1567 SL2(F8) Mestre 3271 SL2(F512) W.
1613 SL2(F8) Mestre 3517 SL2(F8) Kilford
1693 SL2(F8) Mestre 3709 SL2(F8) Kilford
1997 SL2(F8) W. 4817 SL2(F8) Kilford
2017 SL2(F8) W. 4889 SL2(F8) Kilford
2089 SL2(F8) W. 6133 SL2(F1024) Kilford
2633 SL2(F32) Kilford 6709 SL2(F16) Kilford
2647 SL2(F16) W. 7237 SL2(F8) Kilford
2767 SL2(F64) W.

Non-Gorenstein Hecke algebras

The first non-Gorenstein Hecke algebras were found by Lloyd Kilford ([Kilford]) for Γ0(p)

in weight 2 over F2 with p ∈ {431, 503, 2089}. All corresponding modular forms are dihe-
dral, the associated Galois representation is only ramified in p and also occurs for a weight
one form. However, the local Hecke algebra in weight one is Gorenstein in all the cases.
These non-Gorenstein forms of weight 2 should be considered as old forms due to the pres-
ence of the weight one forms, which can be embedded into weight 2 in two different ways
as explained in Chapter IV. We did not find any weight one Hecke algebra which is non-
Gorenstein and whose system of eigenvalues does not already live in a strictly lower level.
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Realisation of SL2(F2r) as Galois groups over Q

Weight 2 eigenforms for Γ0(N) over F2 give rise to a Galois representation, whose image is
a finite subgroup in SL2(F2). This leads to a realisation of the occurring images as Galois
groups over Q. It seems only to have been known previously that SL2(F2r) occurs for r ≤ 16,
again due to computations by Mestre (see [SerreGalois], p. 53). The abstract realisations that
we obtain in that way only ramify in N and usually also 2.

Up to conjugation all subgroups of SL2(F2r) are

• SL2(F2s) with s | r,

• dihedral Dn with n | 2r − 1 or n | 2r + 1,

• cyclic Cn with n | 2r − 1 or n | 2r + 1,

• subgroups of the upper triangular matrices.

In square-free levels only Dn or SL2(F2s) are possible by Proposition (1.5.2), unless the
representation is trivial. It is easy to determine a lower bound for the image, as conjugacy
classes can be distinguished by their traces. The traces of all Frobenius elements for primes
p - 2N and p less than the Hecke bound are used in the program. Although it is unlikely, it is
not excluded that not enough conjugacy classes are hit to obtain the whole image. Hence, we
can only talk about lower bounds.

We have 2506 groups of the type SL2(F2s) with s > 1 in a table. For instance, there is a
Galois extensionK|Q with group SL2(F2127), which ramifies only in 3313 and (probably) 2.

There are relatively few forms with a full SL2(F2r ) as image in weight 1:

Degree all 2 3 4 5 6
# forms 1581 551 400 243 107 99
Percentage SL2 2.8 5.9 2.0 0.4 1.0 1.0

The central row indicates the number of eigenforms for that degree and the lower row contains
the percentage of SL2-forms. We point out that we count D3 = SL2(F2) as dihedral and not
among the SL2.

In weight 2 there are many more forms with a full SL2(F2r) as image:

Degree all 2-4 5-7 8-10 11-13 14-16
# forms 10244 5732 1746 907 511 262
Percentage SL2 47 33 60 57 61 74

If we restrict only to prime levels, in weight 2 the percentage is roughly 60%.
The computations have yielded the following result.

(5.1.1) Theorem. All groups SL2(F2r ) occur as Galois groups over Q for r from 1 up to 77.
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5.2. Icosahedral Galois representations and Serre’s conjec-
ture

Shepherd-Barron and Taylor ([ShBT]) have proved that any irreducible Galois representation

ρ : GQ → GL2(F4)

which is unramified at 3 and 5 is modular. In view of Serre’s conjecture only the level
and the weight question for such representations are hence not fully answered, when the
representation is exceptional (see Section 1.1).

From the point of view of Maaß forms these representations are interesting, when the
number field K cut out by the projectivisation ρ : GQ → GL2(F4) � PGL2(F4) is totally
real. For then there exists an even representation ρ : GQ → GL2(C) whose projectivisation
cuts out the same field K. Such representations are generally conjectured to come from
certain Maaß forms. If indeed this is true, then the corresponding Maaß form has coefficients
in the algebraic integers and should reduce modulo a prime above 2 to a Katz modular form
over F2 of weight one. It would be interesting to carry out some computations of Maaß forms
in that direction.

In [Doud-Moore] Doud and Moore use a targeted Hunter search to obtain a complete
list of all even icosahedral complex Galois representations of prime conductor p < 10000.
Moreover, they supply polynomials generating the correspondingA5-extensions of Q. None
of the representations in that range is exceptional, whence the cited result by Shepherd-Barron
and Taylor together with level and weight lowering gives the existence of the corresponding
modular forms for Γ0(p) and weight 1 over F2. We have verified some of the cases also
computationally.

Another list of polynomials generating totally real A5-extensions of Q was supplied by
Jürgen Klüners. It contains a totally real A5-extension ramifying only in the prime p = 8311

such that the associated representation GQ → SL2(F4) has conductor p, but there does not
exist a complex icosahedral representation of prime conductor. That representation is not
exceptional and the associated weight one form over F2 was found. The first exceptional
case of a totally real A5-representation GQ → PGL2(C) coming from Klüners’ table has
prime conductor p = 10267. As predicted by Serre’s conjecture there is a weight one form
in level 10267 whose coefficients match with the traces of the Frobenius elements Frobp for
primes 3 ≤ p ≤ 3413. This is the first test known to the author of Serre’s conjecture for a
totally real A5-extension in a case not covered by level lowering and weight lowering.
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Samenvatting

In deze samenvatting zal ik eerst een zo begrijpelijk mogelijke, elementaire inleiding geven
tot het gebied van de wiskunde waarover mijn proefschrift gaat. Daarna volgt een overzicht
van de inhoud van deze dissertatie.

Modulaire vormen spelen al sinds hun introductie in de 19de eeuw een belangrijke rol in
de getaltheorie. In het begin werden zij met behulp van de complexe analyse bestudeerd, om-
dat de bijbehorende Fouriercoëfficiënten vaak getaltheoretische interpretaties bezitten. Bij-
voorbeeld bestaat er een modulaire vorm waarvan de n-de Fouriercoëfficiënt gelijk is aan
het aantal mogelijkheden het getal n als som van acht kwadraten te schrijven. Sinds de ja-
ren zestig is de taal van de algebraïsche meetkunde, in het bijzonder die van de aritmetische
algebraïsche meetkunde, in veel gebieden van de getaltheorie heel nuttig gebleken. Op grond
van inzichten van Shimura, Weil, Serre en Deligne werd deze nieuwe taal met veel succes
ook op de theorie van modulaire vormen toegepast en er werden enige diepe samenhangen
ontdekt. Als hoogtepunt tot nu toe is het bewijs van het vermoeden van Fermat te noemen,
dat in 1994 door Andrew Wiles gevonden werd. Dit vermoeden zegt dat de vergelijking

an + bn = cn

met gehele machten n ≥ 3 geen oplossing heeft voor positieve natuurlijke getallen a, b, c.
De samenhang tussen getaltheorie en meetkunde wil ik met behulp van een eenvoudig

voorbeeld aanduiden. Laten we de vergelijking

a2 + b2 = c2

beschouwen. Anders dan in het vermoeden van Fermat heeft deze vergelijking wel oplossin-
gen, namelijk de bekende Pythagoreïsche drietallen, zoals 32 + 42 = 52 of 52 + 122 = 132.
Als we x = a

c en y = b
c schrijven, dan verkrijgen we middels een eenvoudige manipulatie de

vergelijking

x2 + y2 − 1 = 0.

Beschouwen we nu eerst alle reële oplossingen (d.w.z. we staan getallen toe die oneindig veel
cijfers achter de komma mogen hebben en niet periodiek hoeven te zijn).
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x

yMet behulp van de parametrisatie x = cos(ϕ) en y = sin(ϕ) zien
we dat de reële oplossingen precies de eenheidscirkel vormen (d.w.z.
de cirkel om de oorsprong van het coördinatenvlak met straal 1). Nu
zijn we heel duidelijk in de wereld van de meetkunde! Onze vraag
naar de Pythagoreïsche drietallen kan nu worden vertaald in de vraag
naar punten op het eenheidscirkel waarvan de coördinaten breuken
(d.w.z. rationale getallen) zijn.

We zullen zien dat de vergelijking a2 + b2 = c2 makkelijker te
bestuderen is, als men niet alleen met breuken werkt maar ook met het getal i dat als een
wortel van −1 gedefiniëerd is, d.w.z. als een oplossing van de vergelijking

X2 + 1 = 0.

Volgens de hoofdstelling van de algebra heeft namelijk iedere zulke vergelijking over de
complexe getallen even veel oplossingen (met multipliciteiten) als haar graad aangeeft; in dit
geval dus twee, namelijk i en −i.

We zullen in de getallen van Gauß rekenen, dit zijn alle getallen die men door optellen
en vermenigvuldigen van gehele getallen en het getal i verkrijgt. Het is makkelijk in te zien
dat men iedere getal van Gauß als a+ ib met gehele getallen a en b kan schrijven. Laten we
ons herinneren dat een positief natuurlijk getal ongelijk 1 een priemgetal heet, als zijn enige
positieve delers 1 en het getal zelf zijn. Ieder geheel getal ongelijk 0 kan op de volgorde
na op eenduidige manier geschreven worden als plus of min een product van priemgetallen,
bijv. is 12 = 2 · 2 · 3. Zoiets is ook voor de getallen van Gauß geldig. De enige getallen van
Gauß die ieder willekeurig getal van Gauß delen zijn 1,−1, i,−i; deze worden de Gaußeen-
heden genoemd. Een Gaußpriemgetal is een getal van Gauß ongelijk 1 die in de kwadrant
rechts boven met de positieve x-as en zonder de y-as ligt en alleen door de Gaußeenheden
en door zichzelf keer een Gaußeenheid gedeeld word. Ieder getal van Gauß kan op de volg-
orde na op eenduidige manier geschreven worden als product van Gaußpriemgetallen en een
Gaußeenheid.

Bovendien is het volgende geldig: Als een priemgetal p bij deling door 4 rest 3 heeft
(bijv. p = 3, p = 7 of p = 11), dan is p = p + i · 0 ook een Gaußpriemgetal. We zeggen in
dat geval dat p inert is. Als p gedeeld door 4 rest 1 heeft, dan kan men gehele getallen u, v
vinden, zodat p = u2 + v2 geldig is, en dus kan men p in de getallen van Gauß factoriseren:

p = (u+ iv)(u− iv) = u2 − (iv)2 = u2 − (i)2v2 = u2 − (−1)v2 = u2 + v2.

Daarom is in dat geval p geen Gaußpriemgetal, maar u + iv en u − iv zijn dat wel (op een
eenheid na). We zeggen dat p in de getallen van Gauß gespleten is. Een bijzondere rol speelt
het priemgetal 2. Het is

2 = −i(1 + i)2,

dus een Gaußeenheid keer het kwadraat van een Gaußpriemgetal. Het gehele priemgetal 2

heet daarom in de getallen van Gauß vertakt.
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Laten we teruggaan naar de vergelijking a2 + b2 = c2. In de getallen van Gauß kunnen
we nu schrijven:

a2 + b2 = (a+ ib)(a− ib) = c2.

Als we aannemen dat a, b, c geen gemeenschappelijke delers hebben (we zoeken dus alleen
primitieve Pythagoreïsche drietallen; door delen door de gemeenschappelijke factor kan men
ieder Pythagoreïsch drietal in een primitieve veranderen), dan zijn a + ib en a − ib getallen
van Gauß waarvan de gemeenschappelijke delers alleen de Gaußeenheden zijn. Wegens de
unieke priemfactorisatie in de getallen van Gauß moet dan a+ ib zelf een kwadraat zijn. Dus
er moet gelden

ε(a+ ib) = (u+ iv)2 = u2 − v2 + i2uv,

met een Gaußeenheid ε en gehele getallen u, v. Is ε = ±1, dan verkrijgen we dus
a = ±(u2 − v2) en b = ±2uv. Is ε = ±i, dan is het precies andersom, namelijk a = ±2uv

en b = ∓(u2 − v2). Het is ook makkelijk te verifiëren dat door

a = u2 − v2, b = 2uv, c = u2 + v2

Pythagoreïsche drietallen gegenereerd worden, namelijk:

a2 + b2 = (u2 − v2)2 + (2uv)2 = u4 + 2u2v2 + v4 = (u2 + v2)2 = c2.

Dus hebben we alle primitieve Pythagoreïsche drietallen bepaald door het getalbereik waarin
we rekenen slim uit te breiden. Dit is een van de belangrijkste methoden van de algebraïsche
getaltheorie. In het algemeen bestudeert men onder vermenigvuldiging en optellen afgesloten
uitbreidingen van de gehele getallen resp. de breuken, die door bijvoegen van oplossingen van
vergelijkingen van de vorm

Xn + an−1X
n−1 + · · ·+ a1X + a0 = 0

met gehele getallen ai ontstaan. Zulke oplossingen noemt men gehele algebraïsche getallen.
In plaats van unieke priemfactorisatie heeft men echter in het algemeen alleen nog unieke
priemideaalfactorisatie. Begrippen als inertie, splijten en vertakking bestaan ook in deze
algemene context. Dit wordt aritmetiek van getallenlichamen genoemd.

A

B
E

D C

Voordat we het over symmetriegroepen van getallenlicha-
men (de Galoisgroepen) hebben, behandelen we een voor-
beeld van symmetriegroepen uit de platte euclidische meet-
kunde. We beschouwen de regelmatige vijfhoek (penta-
goon). Welke afstandsbehoudende omkeerbare transformaties
bestaan er, die de pentagoon op zichzelf afbeelden? Het zijn
de rotaties over n · 72 graden met n ∈ {0, 1, . . . , 4} en de
spiegelingen door de assen die door een hoekpunt lopen en
loodrecht op de tegenoverliggende zijde staan. Bij elkaar be-
staan er dus 10 zulke transformaties. Het samenstellen van twee zulke levert altijd een derde
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op. Bovendien kan men de transformaties weer omkeren (de rotatie over n · 72 graden door
de rotatie over (5− n) · 72 graden, en de spiegeling door hem nog een keer te doen). Zoiets
noemt men een groep. We hebben dus net de symmetriegroep van de regelmatige vijfhoek
beschreven. In het algemeen noemt men de symmetriegroep van de regelmatige n-hoek de
n-de diëdergroep. Zij heeft 2n elementen.

In de getaltheorie bekijkt men de symmetriegroepen van getallenlichamen en noemt deze
Galoisgroepen. Laten we met het voorbeeld van boven doorgaan. De rationale getallen van
Gauß zijn alle getallen a+ ibwaarbij nu a en b breuken zijn. Een symmetrie van de rationale
getallen van Gauß is een omkeerbare afbeelding van de rationale getallen van Gauß naar
zichzelf die vermenigvuldiging en optellen behoudt. Zij is dan automatisch de identiteit op
de breuken. Naast de identieke symmetrie bestaat er één andere. Deze wordt gegeven door
het getal a + ib op het getal a − ib af te beelden, dus door complexe conjugatie. Past men
deze afbeelding twee keer toe dan verkrijgt men weer de identiteit. De Galoisgroep van de
rationale getallen van Gauß bevat precies deze twee elementen.

Maar er zijn ook getallenlichamen waarvan de symmetriegroep dezelfde vermenigvul-
diging heeft als de symmetriegroep van de vijfhoek (in het algemeen geldt dit voor iedere
regelmatige n-hoek). Bijvoorbeeld is dit het geval voor het getallenlichaam dat men verkrijgt
door aan de breuken nog alle oplossingen van de vergelijking

X5 − 2X4 + 2X3 −X2 + 1

toe te voegen en ook nog alle getallen die door vermenigvuldiging en optellen hieruit ont-
staan.

De symmetriegroep van de verzameling van alle algebraïsche getallen samen heet de
absolute Galoisgroep van de rationale getallen en wordt door het symboolGQ aangeduid. Uit
deze groep kan men in principe alle informatie over alle getallenlichamen en hun aritmetiek
aflezen! Dus isGQ het centrale object van de algebraïsche getaltheorie. Helaas is de structuur
van GQ heel mysterieus (zij heeft bijv. overaftelbaar veel elementen, d.w.z. veel meer dan er
gehele getallen bestaan) en zij is zeer slecht begrepen.

Op deze plaats speelt de diepe samenwerking van algebraïsche meetkunde en algebra-
ische getaltheorie in de theorie van de modulaire vormen een heel belangrijke rol. Er is
namelijk een theorema van Shimura, Deligne en Serre dat bij een modulaire vorm (die een
eigenvorm is, dat betekent bijv. als de vorm als oneindige reeks e2πiτ +

∑∞
n=2 ane

2πinτ

geschreven is dat dan an · am = anm geldt voor n en m zonder gemeenschappelijke factor)
voor een gegeven priemgetal p een Galoisrepresentatie (dat is een continuë afbeelding, d.w.z.
zij respecteert de meetkunde en het samenstellen)

GQ → GL2(Fp)

maakt (deze is oneven en semi-simpel). De rechterkant van de formule moet nog worden
uitgelegd. Hier is Fp de verzameling van alle oplossingen van vergelijkingen

Xn + an−1X
n−1 + · · ·+ a1X + a0 = 0,
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waar we nu van de coëfficiënten alleen de rest bekijken die zij bij het delen door p geven.
Daarenboven is GL2(Fp) de groep van omkeerbare lineaire afbeeldingen van het vlak met
coördinaten in Fp. Eenvoudig gezegd betekent dit dat we platte stukken van GQ in karakte-
ristiek p beschouwen. Hiervoor bestaat geen goede, intuïtieve aanschouwing, en de taal wordt
alleen in analogie met de gewone, reële meetkunde gebruikt. De topologie, d.w.z. de manier
waarop we de meetkunde op Fp definiëren, namelijk diskreet, heeft als gevolg dat de “platte
stukken” van GQ eindig zijn, dus alleen maar uit eindig veel elementen bestaan. Dit betekent
dan dat de modulaire vorm, waarmee we begonnen waren, een getallenlichaam oplevert. Het
belangrijke is nu dat de aritmetiek van het getallenlichaam (ten minste gedeeltelijk) aan de
coëfficiënten van de modulaire vorm kan worden afgelezen (die kunnen we berekenen; we
kunnen ze zelf direct in Fp nemen)! Op deze manier verlenen ons de modulaire vormen een
klein inzicht in de mysterieuze absolute GaloisgroepGQ!

Laten we een voorbeeld bekijken. Er is een modulaire vorm van niveau 229 en gewicht 1

waarvan de coëfficiënten in de verzameling {0, 1} liggen (met de optelling en vermenigvul-
diging 1 + 0 = 1, 1 + 1 = 0, 1 · 1 = 1, 1 · 0 = 0 dus in het eindige lichaam F2). Zij K
het getallenlichaam dat uit de breuken door bijvoegen van een wortel van het priemgetal 229

gemaakt wordt. Zij l een priemgetal ongelijk aan 2 en 229. Dan is de l-de coëfficiënt van de
modulaire vorm gelijk aan 0 dan en slechts dan als l in K inert is (d.w.z. dat geen kwadraat
bij delen door l dezelfde rest heeft als 229) of dat l in twee hoofdidealen splijt. Anders is de
coëfficiënt gelijk aan 1.

We hebben dus gezien, dat een modulaire vorm “platte stukken” van GQ in karakteris-
tiek p oplevert. De beroemde wiskundige Jean-Pierre Serre (in 2003 de eerste winnaar van
de nieuwe Abelprijs die de Nobelprijs voor de wiskunde zal worden) heeft het vermoeden
uitgesproken dat andersom alle “platte stukken” van GQ in karakteristiek p door modulaire
vormen kunnen worden beschreven. Hij heeft zelfs een formule aangegeven waarmee men
naar de modulaire vormen moet zoeken (d.w.z. het niveau, het karakter en het gewicht). Als
dit vermoeden waar is, dan kunnen we alle zulke platte stukken van GQ met de computer
berekenen, omdat we modulaire vormen kunnen berekenen! Serres vermoeden is dus zowel
van groot structureel als van computationeel belang. Echter is het niet bekend of Serres ver-
moeden waar is. Maar enkele maanden geleden werd een belangrijk geval opgelost zodat het
onderzoek tegenwoordig sterk in beweging is.

Nu zullen we kort modulaire krommen bespreken. Deze kunnen als het meetkundige as-
pect van modulaire vormen worden beschouwd. Bovendien geven zij de verbinding tussen
modulaire vormen, modulaire symbolen (zie beneden) en Galoisrepresentaties. Modulaire
krommen zijn voorlopig complexe krommen, dus vlakken in de aanschouwing. De een-
voudigste modulaire kromme is gegeven als de punten in het coördinatenvlak, waarvan de
x-coördinaat tussen − 1

2 en 1
2 ligt en die op of boven de eenheidscirkel liggen. Nu moet men

de linkerrand op de rechterrand plakken (letterlijk: we knippen dit gebied met een schaar uit;
dan plakken we de twee lange lijnen aan elkaar; tenslotte plakken we nog de linkerhelft van
de boog aan de rechterhelft; zo verkrijgt men een cilinder met een ietwat vreemde bodem).
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0.5 1−0.5−1 x

yHet op deze manier verkregen vlak is boven open. Men
kan hem door bijvoegen van een punt, van een spits, compac-
tificeren (ook dit is aanschouwelijk te maken: we duwen de
cilinder aan de bovenkant tot een punt samen; dan zien we
de spits heel duidelijk). Het zo ontstane vlak is een compact
Riemannoppervlak, d.w.z. dat kleine stukken meetkundig er
hetzelfde uitzien als het complexe getallenvlak. Modulaire
vormen vindt men op de modulaire krommen terug als dif-
ferentiaalvormen (deze heeft men bijv. nodig om op Rieman-
noppervlakken te integreren). Het belangrijke voor de getal-
theorie is dat de modulaire krommen ook een vrij diepe algebraïsche structuur hebben, d.w.z.
dat hun punten oplossingen van vergelijkingen met gehele coëfficiënten zijn, maar dan in
meerdere variabelen. Ook de differentiaalvormen hebben een algebraïsche analogon, die de
Katz modulaire vormen oplevert, die in dit proefschrift gebruikt worden. Ook de Galoisre-
presentaties worden met behulp van de algebraïsche beschrijving van de modulaire kromme
gemaakt.

Voor de studie van oppervlakken (en ook hogerdimensionale variëteiten) gebruikt men
de (co-)homologietheorie. We zullen kort de homologietheorie van Riemannoppervlakken
met triviale coëfficiënten beschrijven. Maar in het proefschrift worden ook (co-)homolo-
gietheorieën van schema’s (dat zijn algebraïsche generalisaties van Riemannoppervlakken),
stacks (dat zijn nog verdere generalisaties) en van groepen gebruikt en dan in het algemeen
met niet-triviale coëfficiënten.

Men kan ieder Riemannoppervlak trianguleren, d.w.z. hem in eindig veel driehoeken op-
delen (de zijden mogen krom zijn maar geen knikken bevatten). Voor het opdelen in drie-
hoeken worden zijden getekend. Iedere driehoek heeft drie zijden en twee elkaar aanrakende
driehoeken hebben ten minste een gemeenschappelijke zijde. Bovendien bekijken we de ver-
zameling van snijpunten van zijden.

A

D

B

C

We beschrijven nu een triangulatie van de fietsband (de torus). Dit doen
we constructief. We beginnen met de rechthoek uit het plaatje die we in twee
driehoeken opgedeeld hebben. Door plakken zal het aantal zijden dalen.
Eerst plakken we de zijde AD aan de zijde BC. Op deze manier verkrijgen
we een cilinder. Nu plakken we het deksel op de bodem (we stellen ons de
cilinder uit rubber voor).

De Eulerkarakteristiek van een oppervlak is χ = d − z + p, waar d het
aantal driehoeken, z het aantal zijden en p het aantal hoekpunten aanduidt.
De Eulerkarakteristiek is onafhankelijk van de triangulatie. Bovendien geldt de beroemde
formule

χ = 2− 2g,

waar g het geslacht van het oppervlak is, d.w.z. het aantal gaten.
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In het voorbeeld van de fietsband vinden we inderdaad g = 1.
We hebben namelijk nog altijd de twee driehoeken, waarmee we be-
gonnen zijn. Omdat we de zijde AD met BC en ook AB met DC
geïdentificeerd hebben, is het aantal zijden van onze triangulatie van
de torus 3. Bovendien vallen alle vier hoekpunten onder het plakken
samen tot één punt. Dus verkrijgen we inderdaad χ = 2−3+1 = 0.

De modulaire kromme die we boven beschreven hebben heeft geen gat. Dus geldt voor
haar g = 0. We kunnen ook de modulaire kromme makkelijk trianguleren. We vouwen haar
weer uiteen en gebruiken maar één driehoek. Dit bestaat uit de twee hoekpunten beneden
links en beneden rechts samen met een denkbeeldig punt helemaal boven (dit is het punt dat
door het samenduwen van de cilinder ontstaan is). Dan hebben we na het plakken nog drie
hoekpunten, twee zijden (de verticale en het stuk van de boog) en de driehoek. Dus verkrijgen
we χ = 1 − 2 + 3 = 2. Wat algemenere modulaire krommen, bijv. de in het proefschrift
gebruikte modulaire krommeX1(N), hebben meestal veel gaten.

De homologiegroepen staan in nauwe relatie tot de Eulerkarakteristiek (de Eulerkarakte-
ristiek wordt met behulp van de homologiegroepen afgeleid). De nulde en de tweede homo-
logiegroep zijn vrije groepen van rang gelijk aan het aantal samenhangscomponenten. In ons
geval is de rang van allebei dus 1. De eerste homologiegroep is ook een vrije groep. Haar
rang is 2g met g het geslacht.

Nadat we nu geprobeerd hebben een eerste, heel erg vereenvoudigd idee te geven van de
objecten die in het proefschrift behandeld worden, zullen we nu de inhoud ervan beschrijven.

Het eerste hoofdstuk is inmiddels als artikel verschenen. Er wordt een aangepaste versie
van Serres vermoeden behandeld. Diepe resultaten van verschillende wiskundigen zeggen
dat voor oneven karakteristiek p Serres formules voor het niveau, het karakter en het gewicht
van de gepostuleerde modulaire vorm inderdaad juist zijn. Dit wil zeggen dat als er een
modulaire vorm bestaat die een gegeven “plat stuk” van GQ geeft, dan bestaat er ook een
modulaire vorm die aan Serres formule voldoet. Het geval p = 2 is echter nog gedeeltelijk
open.

In het artikel beperk ik me tot “platte stukken” in karakteristiek p van GQ (dus twee-
dimensionale Galoisrepresentaties) waarvan de symmetriegroep een Diëdergroep, dus een
symmetriegroep van een regelmatige n-hoek is. Voor deze toon ik het aangepaste Serrever-
moeden aan zonder uitzondering, dus inclusief het geval p = 2. Dat zulk een Galoisrepre-
sentatie van een modulaire vorm komt was in principe al Erich Hecke bekend, ten minste
als p 6= 2 is. In het bewijs maak ik oneindig veel zulke modulaire vormen, zodat ik dan
met behulp van het ladenprincipe (verdeel 10 letters over 5 laden, dan is er een lade waarin
er ten minste twee liggen) er twee kan kiezen, die zich met methoden van de algebraïsche
meetkunde tot de gewenste modulaire vorm laten combineren.

In het Hoofdstuk II bereken en vergelijk ik verschillende soorten cohomologiegroepen die
alle met de modulaire kromme X1(N) (dit is een iets algemener Riemannoppervlak dan de
hiervoor beschreven modulaire kromme) samenhangen, met het formalisme van de modulaire
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symbolen dat van de homologie afgeleid is. In deze berekeningen is de coëfficiëntenring
willekeurig. Er worden expliciete beschrijvingen in termen van lineaire algebra gegeven.

We bekijken modulaire symbolen om praktische redenen: zij zijn in het ver verspreide
computeralgebrasysteem Magma geïmplementeerd. Ik heb computerprogramma’s geschre-
ven die hierop werken.

In het derde hoofdstuk worden nieuwe gevallen bewezen, wanneer de Katz modulaire
vormen over Fp met behulp van de expliciete beschrijvingen van de cohomologiegroepen
uit Hoofdstuk II direct over het eindige lichaam Fp kunnen worden berekend. Dit betekent
een snelheidswinst in vergelijking tot methoden die gehele getallen gebruiken. Met behulp
van een idee van Edixhoven verkrijgen we zo ook een algoritme voor de berekening van
Katz modulaire vormen van gewicht één (deze zijn niet direct berekenbaar) met behulp van
modulaire symbolen over Fp.

Het bewijs gebruikt het opmerkelijke parallel gedrag tussen de modulaire vormen van ge-
wicht 2 en niveau Np over Fp en de eerste cohomologiegroepen van de Riemannoppervlak-
ken X1(Np) met Fp-coëfficiënten. In allebei vindt men namelijk de modulaire vormen resp.
de eerste cohomologiegroepen terug, die bij het niveauN en het gewicht k ∈ {2, . . . , p+ 1}
horen.

De overgang van de complexe meetkunde naar de algebraïsche over Fp vindt met behulp
van de Jakobiaan van de modulaire kromme plaats. De eerste kohomologiegroep kan name-
lijk met de p-torsie van de complexe Jakobiaan geïdentificeerd worden. Gaat men dan naar
het Néronmodel van de Jakobiaan, dan kan men eigenschappen van de generieke vezel (zelfs
van het Riemannoppervlak) naar de speciale vezel (dus naar Fp) overdragen.

Het vierde hoofdstuk bevat een beschrijving van de algoritmen die voortkomen uit de
theorie van de twee voorgaande hoofdstukken. Tenslotte wordt in het vijfde hoofdstuk over
computerberekeningen gerapporteerd die met behulp van de voorgestelde algoritmen zijn uit-
gevoerd. Er wordt bijvoorbeeld geconstateerd dat de platte stukken vanGQ in karakteristiek 2

opmerkelijk sterk groeien. Bovendien worden ook observaties gemaakt, die enkele interes-
sante theoretische samenhangen suggereren. Hun studie zou het onderwerp van toekomstige
projecten kunnen zijn.



Zusammenfassung

In dieser kurzen Zusammenfassung möchte ich eine möglichst allgemein verständliche Ein-
führung in das Gebiet der vorliegenden Arbeit und einen Überblick über diese geben.

Modulformen spielen seit ihrer Einführung im 19. Jahrhundert eine zentrale Rolle in der
Zahlentheorie. Zu Anfang wurden sie mit Hilfe der Funktionentheorie untersucht, da die zu-
gehörigen Fourierkoeffizienten häufig interessante zahlentheoretische Bedeutungen haben.
So gibt es z. B. eine Modulform, deren n-ter Fourierkoeffizient angibt, wie oft die natürliche
Zahl n als Summe von 8 Quadraten dargestellt werden kann. Seit den 60er Jahren hat sich
die Sprache der algebraischen Geometrie, besonders der arithmetischen algebraischen Geo-
metrie, in vielen Bereichen der Zahlentheorie als sehr nützlich erwiesen. Auf Grund von Ein-
sichten von Shimura, Weil, Serre und Deligne wurde diese neue Sprache mit viel Erfolg auch
auf die Theorie der Modulformen angewandt und hat einige tief liegende Zusammenhänge
zu Tage gebracht. Als spektakulärer bisheriger Höhepunkt ist der Beweis der Fermatschen
Vermutung zu nennen, den Andrew Wiles 1994 gefunden hat. Diese Vermutung besagt, dass
die Gleichung

an + bn = cn

für ganze Exponenten n ≥ 3 keine Lösung in positiven natürlichen Zahlen a, b, c hat.
Den Zusammenhang zwischen Zahlentheorie und Geometrie möchte ich an einem einfa-

chen Beispiel andeuten. Nehmen wir die Gleichung

a2 + b2 = c2.

Im Gegensatz zum Fermatproblem hat diese Gleichung Lösungen, nämlich die wohlbekann-
ten Pythagoräischen Tripel, z. B. 32 + 42 = 52 oder 52 + 122 = 132. Schreiben wir x = a

c

und y = b
c , dann erhalten wir durch einfache Umformungen die Gleichung

x2 + y2 − 1 = 0.

Wir können zunächst alle reellen Lösungen betrachten (d. h. wir erlauben Zahlen mit belie-
biger, also auch unendlicher und nicht periodischer Dezimalschreibweise).

91
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x

yMittels der Parametrisierung x = cos(ϕ) und y = sin(ϕ) sehen
wir, dass die reellen Lösungen gerade den Einheitskreis bilden (d. h.
den Kreis von Radius 1 um den Ursprung der Koordinatenebene).
Damit sind wir nun ganz offensichtlich in der Welt der Geometrie!
Unsere Frage nach den Pythagoräischen Tripeln übersetzt sich dann
in die Frage nach Punkten auf dem Einheitskreis, deren Koordinaten
Bruchzahlen (diese nennen wir rationale Zahlen) sind.

Es stellt sich heraus, dass sich die Gleichung a2+b2 = c2 leichter
untersuchen lässt, wenn man nicht nur Bruchzahlen zulässt, sondern auch die Zahl i, welche
als eine Wurzel von −1 definiert ist, also als eine Lösung der Gleichung

X2 + 1 = 0.

Nach dem Hauptsatz der Algebra hat nämlich jede solche Gleichung über den komplexen
Zahlen so viele Lösungen (mit Multiplizitäten gezählt) wie der Grad ist; hier also zwei, und
die Lösungen sind i und−i.

Wir werden in den Gaußschen Zahlen rechnen. Das sind alle Zahlen, die man durch Ad-
dition und Multiplikation von ganzen Zahlen und der Zahl i erhält. Es ist einfach einzusehen,
dass sich jede Gaußche Zahl schreiben lässt als a + ib mit ganzen Zahlen a und b. Erinnern
wir uns, dass eine positive natürliche Zahl ungleich 1 Primzahl heißt, wenn die einzigen po-
sitiven Teiler 1 und die Zahl selbst sind. Jede ganze Zahl ungleich 0 lässt sich auf bis auf die
Reihenfolge eindeutige Weise als plus oder minus einem Produkt von Primzahlen schreiben,
z. B. ist 12 = 2 · 2 · 3. Etwas ganz Ähnliches gilt in den Gaußschen Zahlen. Die einzigen
Gaußschen Zahlen, die jede beliebige Gaußsche Zahl teilen, sind 1,−1, i,−i; diese heißen
Gaußsche Einheiten. Eine Gaußsche Primzahl ist eine Gaußsche Zahl ungleich 1, die im Qua-
draten rechts oben einschließlich dem positiven Teil der x-Achse ohne die y-Achse liegt und
nur von den Gaußschen Einheiten und von sich selbst mal einer Gaußschen Einheit geteilt
wird. Jede Gaußsche Zahl lässt sich auf bis auf die Reihenfolge eindeutige Weise als Produkt
einer Gaußschen Einheit mit einem Produkt von Gaußschen Primzahlen schreiben. Es gilt
ferner Folgendes: Wenn die ganze Primzahl p beim Teilen durch 4 den Rest 3 ergibt (z. B.
p = 3, p = 7 oder p = 11), dann ist p = p + i · 0 auch eine Gaußsche Primzahl. Wir sagen
dann, dass p träge ist. Lässt p aber beim Teilen durch 4 den Rest 1, dann kann man ganze
Zahlen u, v finden, derart dass p = u2 + v2 gilt, und daher kann man p in den Gaußschen
Zahlen faktorisieren:

p = (u+ iv)(u− iv) = u2 − (iv)2 = u2 − (i)2v2 = u2 − (−1)v2 = u2 + v2.

Daher ist in diesem Fall p keine Gaußsche Primzahl, stattdessen aber u+ iv und u− iv (evtl.
bis auf eine Einheit). Wir sagen, dass p in den Gaußschen Zahlen zerlegt ist. Eine besondere
Rolle spielt die Primzahl 2, sie ist

2 = −i(1 + i)2,
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d. h. eine Gaußsche Einheit mal einem Quadrat einer Gaußschen Primzahl. Die ganze Prim-
zahl 2 heißt deswegen in den Gaußschen Zahlen verzweigt.

Kommen wir zurück zur Gleichung a2 + b2 = c2. In den Gaußschen Zahlen können wir
diese nun so schreiben:

a2 + b2 = (a+ ib)(a− ib) = c2.

Wenn wir annehmen, dass a, b, c keine gemeinsamen Teiler haben (wir suchen dann nur pri-
mitive Pythagoräische Tripel; durch das Herausteilen des gemeinsamen Faktors kann jedes
Pythagoräische Tripel auf ein primitives zurückgeführt werden), dann sind a+ ib und a− ib
teilerfremde Gaußsche Zahlen, d. h. dass ihre gemeinsamen Teiler nur die Gaußschen Einhei-
ten sind. Wegen der eindeutigen Primfaktorzerlegung in den Gaußschen Zahlen muss dann
aber a+ ib schon selbst ein Quadrat sein, also muss gelten

ε(a+ ib) = (u+ iv)2 = u2 − v2 + i2uv,

mit einer Gaußschen Einheit ε und ganzen Zahlen u, v. Ist ε = ±1, dann erhalten wir also
a = ±(u2 − v2) und b = ±2uv. Ist ε = ±i, dann ist es gerade umgekehrt a = ±2uv und
b = ∓(u2 − v2). Andersherum ist es ganz einfach nachzuprüfen, dass die Zuordnung

a = u2 − v2, b = 2uv, c = u2 + v2

Pythagoräische Tripel erzeugt, nämlich:

a2 + b2 = (u2 − v2)2 + (2uv)2 = u4 + 2u2v2 + v4 = (u2 + v2)2 = c2.

Damit haben wir alle primitiven Pythagoräischen Tripel bestimmt, indem wir den Zahlenbe-
reich, in dem wir rechnen, geschickt erweitert haben. Dies ist eine Hauptmethode der alge-
braischen Zahlentheorie. Allgemeiner studiert man unter Multiplikation und Addition abge-
schlossene Erweiterungen der ganzen Zahlen bzw. der Bruchzahlen, die durch Hinzufügen
von Lösungen von Gleichungen der Form

Xn + an−1X
n−1 + · · ·+ a1X + a0 = 0

mit ganzen Zahlen ai entstehen. Solche Lösungen nennt man ganze algebraische Zahlen. An
die Stelle der eindeutigen Primfaktorzerlegung tritt dann jedoch im Allgemeinen nur noch
die eindeutige Primidealzerlegung. Begriffe wie Trägheit, Zerlegung und Verzweigung hat
man jedoch auch im erweiterten Sinn. Sie werden zusammengefasst im Begriff Arithmetik
der Zahlkörper.

Bevor wir zu Symmetriegruppen von Zahlkörpern (den sogenannten Galoisgruppen)
kommen, behandeln wir ein Beispiel von Symmetriegruppen aus der ebenen euklidischen
Geometrie. Wir betrachten das regelmäßige Fünfeck (Pentagon).
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E
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Welche abstandserhaltenden umkehrbaren Transformatio-
nen gibt es, die das Pentagon in sich selbst überführen? Es
sind dies die Drehungen um n · 72 Grad mit n ∈ {0, 1, . . . , 4}
und die Spiegelungen an den Achsen, die durch einen Eck-
punkt gehen und senkrecht auf der gegenüber dem Eckpunkt
liegenden Seite stehen. Insgesamt gibt es also 10 solche Trans-
formationen. Das Hintereinanderausführen von zwei solchen
liefert eine dritte. Außerdem kann man die Transformationen
wieder rückgängig machen (die Rotation um n ·72 Grad durch Rotation um (5−n) ·72 Grad,
und die Spiegelung durch nochmaliges Ausführen). So etwas nennt man eine Gruppe. Wir
haben also gerade die Symmetriegruppe des regelmäßigen Fünfecks beschrieben. Im Allge-
meinen nennt man die Symmetriegruppe des regelmäßigen n-Ecks die n-te Diedergruppe.
Diese hat 2n Elemente.

In der Zahlentheorie betrachtet man Symmetriegruppen von Zahlkörpern und nennt die-
se Galoisgruppen. Schließen wir an das Beispiel von oben an. Die gebrochenen Gaußschen
Zahlen sind alle Zahlen a+ ib, wobei a, b nun Bruchzahlen sind. Eine Symmetrie der gebro-
chenen Gaußschen Zahlen ist eine umkehrbare Selbstabbildung, die die Multiplikation und
die Addition respektiert. Sie ist dann automatisch die Identität auf den Bruchzahlen. Neben
der identischen Symmetrie gibt es eine weitere. Diese ist dadurch gegeben, dass die Zahl
a+ ib auf die Zahl a− ib abgebildet wird. Führt man diese Abbildung zweimal nacheinander
aus, so erhält man wieder die Identität. Die Galoisgruppe der gebrochenen Gaußschen Zahlen
enthält genau diese zwei Elemente.

Es gibt aber auch Zahlkörper, deren Symmetriegruppe denselben Gesetzen folgt wie die
Symmetriegruppe des Fünfecks (allgemeiner gilt dies für jedes regelmässige n-Eck). Z. B.
ist dies der Fall beim Zahlkörper, den man erhält, indem man zu den Bruchzahlen noch alle
Lösungen der Gleichung

X5 − 2X4 + 2X3 −X2 + 1

hinzufügt und alle Zahlen, die man aus diesen durch Multiplikation und Addition erhält.
Die Symmetriegruppe der Menge aller algebraischen Zahlen überhaupt nennt man die

absolute Galoisgruppe der rationalen Zahlen und bezeichnet sie mit dem Symbol GQ. Aus
ihr kann man im Prinzip alle Informationen zu allen Zahlkörpern und deren Arithmetik ab-
lesen! Daher ist GQ das zentrale Objekt der algebraischen Zahlentheorie. Allerdings ist die
Struktur von GQ sehr mysteriös (sie hat z. B. überabzählbar viele Elemente, d. h. viel mehr
als es ganze Zahlen gibt) und sie ist nur sehr schlecht verstanden.

An dieser Stelle kommt nun das tiefliegende Zusammenspiel von algebraischer Geometrie
und algebraischer Zahlentheorie in der Theorie der Modulformen voll zum Tragen. Es gibt
nämlich einen Satz von Shimura, Deligne und Serre, der einer Modulform (die eine Eigen-
form ist, d. h. u. a. wenn sie geschrieben wird als unendliche Reihe e2πiτ +

∑∞
n=2 ane

2πinτ ,
dass dann an · am = anm gilt für n und m ohne gemeinsamen Faktor) für eine vorgegebe-
ne Primzahl p eine Galoisdarstellung (das ist eine stetige Abbildung von Gruppen, d. h. sie
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respektiert die Geometrie und das Hintereinanderausführen)

GQ → GL2(Fp)

zuordnet (genauer: diese ist ungerade und halbeinfach). Die rechte Seite der Formel ist noch
zu erklären. Hier ist Fp die Menge aller Lösungen von Gleichungen

Xn + an−1X
n−1 + · · ·+ a1X + a0 = 0,

wobei wir nun von den Koeffizienten nur den Rest betrachten, den sie beim Teilen durch p
lassen. Ferner ist GL2(Fp) die Gruppe der umkehrbaren linearen Abbildungen der Ebene mit
Koordinaten in Fp. Vereinfacht ausgedrückt bedeutet dies, dass uns eine solche Galoisdarstel-
lung “ebene Stücke” von GQ in Charakteristik p liefert. Davon existiert keine gute, anschau-
liche Vorstellung, und die Sprache wird nur in Analogie zur gewöhnlichen reellen Geometrie
gebraucht. Die Topologie, d. h. die Art, wie wir uns die Geometrie auf Fp definieren, nämlich
diskret, hat zur Folge, dass die “ebenen Stücke” von GQ endlich sind, d. h. nur aus einer end-
lichen Anzahl Elementen bestehen. Das wiederum bedeutet, dass uns die Modulform, von der
wir ausgegangen sind, einen Zahlkörper liefert. Das Wichtige dabei ist, dass die Arithmetik
dieses Zahlkörpers (zumindest zum Teil) an den Koeffizienten der Modulform abzulesen ist
(diese können wir ausrechnen; wir können sie sogar gleich in Fp nehmen)! Damit gewähren
uns Modulformen einen kleinen Einblick in die mysteriöse absolute GaloisgruppeGQ!

Dies veranschaulichen wir uns an einem Beispiel. Es gibt eine Modulform von Stufe 229

und Gewicht 1, deren Koeffizienten an in der Menge {0, 1} liegen (mit der Addition und
Multiplikation 1 + 0 = 1, 1 + 1 = 0, 1 · 1 = 1, 1 · 0 = 0, mit anderen Worten dem endlichen
Körper F2). Sei K der Zahlkörper, der aus den Bruchzahlen durch Hinzunehmen einer Qua-
dratwurzel der Primzahl 229 gebildet wird. Sei l eine Primzahl, die nicht 2 und nicht 229 ist.
Dann ist der l-te Koeffizient unserer Modulform gleich 0 genau dann, wenn l träge in K ist
(mit anderen Worten, wenn keine Quadratzahl beim Teilen durch l denselben Rest lässt wie
229) oder l in zwei Hauptideale zerfällt. Sonst ist der Koeffizient gleich 1.

Wir haben also gesehen, dass eine Modulform uns ebene Stücke von GQ in Charakte-
ristik p gibt. Der berühmte Mathematiker Jean-Pierre Serre (2003 der erste Gewinner des
neuen Abel-Preises, der der “Nobelpreis” für Mathematik werden soll) hat die Vermutung
ausgesprochen, dass umgekehrt alle ebenen Stücke von GQ in Charakteristik p durch Mo-
dulformen beschrieben werden können. Er hat sogar noch eine Formel angegeben, wo die
Modulformen zu suchen sind (die Stufe, den Charakter und das Gewicht). Ist diese Vermu-
tung war, dann können wir alle solche ebenen Stücke von GQ mit dem Computer berechnen,
denn wir können Modulformen berechnen! Serres Vermutung ist daher sowohl von unge-
heuerer struktureller als auch von rechnerischer Bedeutung. Allerdings ist nicht bekannt, ob
Serres Vermutung wahr ist. Aber vor wenigen Monaten wurde ein wichtiger Fall gelöst, so
dass die Forschung gerade stark in Bewegung ist.

Als nächstes wollen wir kurz Modulkurven betrachten. Diese können als der geome-
trische Aspekt von Modulformen angesehen werden. Außerdem bilden sie das Verbin-
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dungsglied zwischen Modulformen, Modulsymbolen (siehe unten) und Galoisdarstellun-
gen. Modulkurven sind zunächst komplexe Kurven, d. h. Flächen in der Anschauung.

0.5 1−0.5−1 x

y

Die allereinfachste ist gegeben als die Punkte in der Koordi-
natenebene, deren x-Koordinate zwischen− 1

2 und 1
2 liegt und

die auf bzw. über dem Einheitskreis liegen. Dabei muss man
nun den linken Rand mit dem rechten Rand verkleben (das ist
ganz wörtlich vorstellbar: wir schneiden diesen Bereich mit
der Schere aus; dann kleben wir die beiden langen Geraden
zusammen; schließlich kleben wir noch die linke Hälfte des
Bogenstücks mit der rechten zusammen; dann hat man einen
Zylinder mit einem etwas komischen Boden). Die so erhaltene
(Ober-)Fläche ist oben offen. Man kann diese durch Hinzufü-
gen eines Punktes, einer sogenannten Spitze, kompaktifizieren
(auch das ist ganz bildlich: wir drücken den Zylinder oben zu einem Punkt zusammen; dann
sehen wir die Spitze ganz deutlich). Die so entstandene Fläche ist eine kompakte Riemann-
sche Fläche, d. h. kleine Stücke haben dieselbe Geometrie wie die komplexe Zahlenebene.
Modulformen findet man auf den Modulkurven wieder als sog. Differentialformen (diese ge-
braucht man z. B. zum Integrieren auf der Riemannschen Fläche). Der entscheidende Punkt
für die Zahlentheorie ist, dass die Modulkurven eine recht tiefliegende algebraische Struk-
tur haben, d. h. dass ihre Punkte auch Lösungen von Gleichungen mit ganzen Koeffizienten
sind, allerdings in vielen Variablen. Auch die Differentialformen haben ein algebraisches
Analogon, das uns die sogenannten Katz-Modulformen liefert, die in der vorliegenden Arbeit
benutzt werden. Auch die Galoisdarstellungen werden mit Hilfe der algebraischen Beschrei-
bung der Modulkurven konstruiert.

Dem Studium von Flächen (und höherdimensionalen Varietäten) dient die (Ko-)Homo-
logietheorie. Die Homologietheorie von Riemannschen Flächen mit trivialen Koeffizienten
wollen wir kurz vorstellen. In der vorliegenden Arbeit werden aber auch Kohomologietheo-
rien von Schemas (das sind weitreichende algebraische Verallgemeinerungen von Riemann-
schen Flächen), Stacks (das sind noch andere Verallgemeinerungen) und von Gruppen und
dann im allgemeinen mit nicht-trivialen Koeffizienten benutzt.

Eine Riemannsche Fläche kann man triangulieren, d. h. sie in endlich viele Dreiecke auf-
teilen (dabei dürfen die Seiten “krumm” sein, aber keine Knicke enthalten). Zur Aufteilung

A

D

B

C

in Dreiecke werden Seiten gezogen, d. h. jedes Dreieck hat drei Seiten und
zwei aneinander grenzende Dreiecke haben (mindestens) eine gemeinsame
Seite. Außerdem betrachten wir die Menge der Schnittpunkte der Seiten.

Wir beschreiben nun eine Triangulation des Fahrradreifens (des sog. To-
rus). Dabei gehen wir konstruktiv vor. Wir beginnen mit dem nebenstehen-
den Rechteck, das wir in zwei Dreiecke aufgeteilt haben. Durch Zusam-
menkleben wird sich die Anzahl der Seiten verkleinern. Zunächst kleben wir
die Seite AD an die Seite BC. Auf diese Weise erhalten wir einen Zylinder.
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Nun kleben wir den Deckel an den Boden (dazu stellen wir uns Gummi als Baumaterial vor).
Die Eulercharakteristik einer Fläche ist definiert als χ = d − s + p, wobei d die Anzahl

der Dreiecke, s die Anzahl der Seiten und p die Anzahl der Punkte bezeichnen. Die Euler-
charakteristik ist unabhängig von der Triangulation. Außerdem gilt die berühmte Beziehung

χ = 2− 2g,

wobei g das Geschlecht der Fläche ist, d. h. die Anzahl der Löcher.
Im Beispiel des Fahrradreifens finden wir in der Tat g = 1. Wir

haben nämlich noch immer die beiden Dreiecke, von denen wir aus-
gegangen waren. Da wir die Seite AD mit BC und ferner auch AB
mit DC identifiziert haben, ist die Anzahl der Seiten unserer Tri-
angulation des Torus 3. Außerdem fallen durch obige Verklebungen
alle vier Punkte zusammen zu einem. Somit ergibt sich tatsächlich
χ = 2− 3 + 1 = 0.

Die oben beschriebene Modulkurve hat kein Loch. Daher gilt für sie g = 0. Wir kön-
nen auch die Modulkurve einfach triangulieren. Dazu falten wir sie wieder auseinander. Wir
benutzen nur ein Dreieck. Dieses besteht aus den beiden Punkten unten links und unten
rechts und einem gedachten Punkt ganz oben (der Punkt der durch das Zusammendrücken
des Zylinders entstanden ist). Dann haben wir nach dem Zusammenkleben noch drei Punk-
te, zwei Seiten (die senkrechte und das Bogenstück) und das Dreieck. Damit ergibt sich
χ = 1 − 2 + 3 = 2. Allgemeinere Modulkurven, wie z. B. die in der Arbeit behandelte
ModulkurveX1(N), haben in der Regel viele Löcher.

Die Homologiegruppen stehen zur Eulercharakteristik in enger Beziehung (die Eulercha-
rakteristik wird aus diesen abgeleitet). Die nullte und die zweite Homologiegruppe sind freie
Gruppen vom Rang gleich der Anzahl der Zusammenhangskomponenten. In unserem Fall ist
der Rang beider also 1. Die erste Homologiegruppe ist wiederum eine freie Gruppe. Ihr Rang
ist 2g, wobei g wie oben die Anzahl der Löcher ist.

Nachdem wir versucht haben, eine erste, sehr stark vereinfachte Idee von den in der vor-
liegenden Arbeit untersuchten Objekten zu geben, wenden wir uns nun dem Inhalt zu.

Das erste Kapitel ist bereits als eigenständiger Artikel erschienen. Es geht in ihm um eine
leicht modifizierte Version von Serres Vermutung. In tief liegenden Arbeiten einer Vielzahl
Mathematiker wurde gezeigt, dass für ungerade Charakteristik p Serres Formeln für die Stufe,
den Charakter und das Gewicht der vorhergesagten Modulform richtig sind. Genauer, wenn
irgendeine Modulform existiert, die ein vorgegebenes ebenes Stück von GQ gibt, dann gibt
es auch eine da, wo Serres Formeln diese voraussagen. Der Fall p = 2 ist jedoch zum Teil
noch offen.

In dem Artikel beschränke ich mich auf “ebene Stücke” in Charakteristik p von GQ (al-
so zweidimensionale Galoisdarstellungen), deren Symmetriegruppe eine Diedergruppe, also
eine Symmetriegruppe eines regelmässigen n-Ecks ist. Von diesen zeige ich die modifizierte
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Serre-Vermutung ohne Ausnahme, d. h. einschließlich p = 2. Dass solche Galoisdarstellun-
gen von irgendeiner Modulform kommen, war im Prinzip schon Erich Hecke bekannt, zumin-
dest wenn p 6= 2 ist. Im Beweis mache ich unendlich viele solche Modulformen, so dass ich
dann mittels des Schubfachprinzips (verteile 10 Briefe auf 5 Schubfächer, dann liegen in ei-
nem mindestens zwei Breife) zwei wählen kann, die sich mit Hilfe algebraisch geometrischer
Methoden zu der gewünschten Form kombinieren lassen.

Im Kapitel II berechne und vergleiche ich verschiedene Arten von (Ko-)Homologie-
gruppen, die alle mit der Modulkurve X1(N) (einer etwas allgemeineren als der oben vor-
gestellten Riemannschen Fläche) zusammenhängen, mit dem Modulsymbolformalismus, der
an die Homologie angelehnt ist. Dabei ist der Koeffizientenring beliebig. Es werden jeweils
explizite Beschreibungen in Termen von linearer Algebra abgeleitet.

Modulsymbole betrachten wir aus praktischen Gesichtspunkten: sie sind im weit verbrei-
teten Computeralgebrasystem Magma implementiert. Ich habe Computerprogramme erstellt,
die hierauf beruhen.

Im dritten Kapitel werden neue Fälle bewiesen, in denen die Katz-Modulformen über
Fp mit Hilfe der expliziten Beschreibungen der Kohomologiegruppen aus Kapitel II direkt
über dem endlichen Körper Fp berechnet werden können. Dieses bringt einen Geschwindig-
keitszuwachs im Vergleich zu Methoden, die mit ganzen Zahlen rechnen. Unter Benutzung
einer Idee von Edixhoven erhalten wir auch einen Algorithmus zur Berechnung von Katz-
Modulformen von Gewicht eins (diese sind nicht direkt zugänglich!) mittels Modulsymbolen
über Fp.

Ausgenutzt wird im Beweis eine erstaunliche Parallelität im Verhalten der Modulformen
von Gewicht 2 und StufeNp über Fp und der ersten Kohomologiegruppen der Riemannschen
FlächeX1(Np) mit Fp-Koeffizienten. In beiden spiegeln sich nämlich die Modulformen bzw.
die ersten Kohomologiegruppen wider, die zu Stufe N und Gewicht k ∈ {2, . . . , p + 1}
gehören.

Der Übergang von komplexer Geometrie zu algebraischer Geometrie über Fp wird da-
bei mit Hilfe der Jakobischen der Modulkurve bewerkstelligt. Die erste Kohomologiegruppe
kann nämlich mit der p-Torsion der komplexen Jakobischen identifiziert werden. Geht man
dann zum Néronmodell der Jakobischen über, so gelingt es, Eigenschaften von der generi-
schen Faser (sogar der Riemannschen Fläche) zur speziellen Faser (also nach Fp) zu übertra-
gen.

Das vierte Kapitel enthält eine Beschreibung der Algorithmen, die sich aus der Theorie
der beiden vorangehenden Kaptiel ergeben. Schließlich wird im fünften Kapitel von Compu-
terberechnungen berichtet, die mit Hilfe der vorgestellten Algorithmen ausgeführt wurden.
Dabei wurde zum Beispiel festgestellt, dass die ebenen Stücke von GQ in Charakteristik 2

erstaunlich schnell sehr groß werden. Desweiteren wurden noch andere Beobachtungen ge-
macht, die einige interessante theoretische Zusammenhänge suggerieren. Das Studium dieser
kann Gegenstand zukünftiger Arbeiten sein.
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