Convex Integration in 1 Dimension

Why the 1 dimensional case ?

- The theory of Convex Integration is based on a 1D formula.

Aim of this talk:
I The example of Thurston's corrugation
II The Corrugation Process (1D case)

I - Thurston's corrugation

Whitney-Graustein theorem (1937)

If two closed immersed curves $f, g:[0,1] \rightarrow \mathbb{R}^{2}$ have the same turning number, there exists a regular homotopy in \mathbb{R}^{2} from f to g.

- The turning number is the number of turns of the derivative.

0

$+1$

$+1$

$+3$

So, it's possible to deform continuously this two curves without singular point!

So, it's possible to deform continuously this two curves without singular point!

A possibility

So, it's possible to deform continuously this two curves without singular point!

A possibility

Ok, but..., is there an algorithm to do this easily?

Definition (Thurston's corrugations)

Let consider

- an initial curve $f_{0}:[0,1] \rightarrow \mathbb{C}$
- a number of corrugation/oscillations $N \in \mathbb{N}^{*}$
then Thurston's corrugations are defined by

$$
f_{1}(x)=f_{0}(x)+\frac{1}{N} r[-\sin (4 \pi N x) \alpha(x)+2 \sin (2 \pi N x) i \alpha(x)]
$$

where $\bar{\gamma}_{x}$ is the average of $\gamma_{x}, r>0$ an amplitude, and $\alpha(x)$ a vector.

Let

$$
f_{0}(x)=x, \quad N=2
$$

Then f_{1} is

$$
r=\frac{1}{2}, \alpha(x)=\frac{f_{0}^{\prime}(x)}{\left\|f_{0}^{\prime}(x)\right\|}, \quad r=\frac{1}{4}, \alpha(x)=\frac{f_{0}^{\prime}(x)}{\left\|f_{0}^{\prime}(x)\right\|}, \quad r=\frac{1}{8}, \quad \alpha(x)=\frac{f_{0}^{\prime}(x)}{\left\|f_{0}^{\prime}(x)\right\|},
$$

$$
r=\frac{1}{4}, \alpha(x)=\exp (i 2 \pi / 6) \frac{f_{0}^{\prime}(x)}{\left\|f_{0}^{\prime}(x)\right\|} .
$$

Let

$$
f_{0}(x)=e^{i 2 \pi x}, \quad N=8, \quad r=2, \quad \alpha(x)=\frac{f_{0}^{\prime}(x)}{\left\|f_{0}^{\prime}(x)\right\|}
$$

Then f_{1} is

+

$$
f_{0}(x)=\cos ^{3}(\pi x)+i \sin ^{3}(\pi x)
$$

which is singular at $\left.x=\frac{1}{2}, x \in\right] 0,1[$.
For $r=0.8, \alpha(x)=-1 \in \mathbb{C}$, then f_{1} is

$N=20$.

We have succeeded in removing a singular point!

What's happening ?

For curves from $[0,1]$ to $\mathbb{R}^{2} \simeq \mathbb{C}$, the 1 -jet space is

$$
J^{1}([0,1], \mathbb{C})=[0,1] \times \mathbb{C} \times \mathbb{C}
$$

A curve f is an immersion if

$$
f^{\prime}(x) \neq 0, \quad \forall x \in[0,1]
$$

The differential relation associated to this constraint is

$$
\mathscr{R}_{i m}:=\left\{\left(x, y, v_{1}\right) \mid v_{1} \neq 0\right\}=[0,1] \times \mathbb{C} \times(\mathbb{C} \backslash\{0\})
$$

Let consider the formal solution

$$
\sigma(x)=\left(x, f_{0}(x)=\cos ^{3}(\pi x)+i \sin ^{3}(\pi x), v_{1}(x)=-1\right)
$$

With $\alpha(x)=v_{1}(x)$, we set

$$
f_{1}(x)=f_{0}(x)+\frac{1}{N} r[-\sin (4 \pi N x) \alpha(x)+2 \sin (2 \pi N x) i \alpha(x)]
$$

whose derivative is

$$
f_{1}^{\prime}(x)=f_{0}^{\prime}(x)+r 4 \pi[-\cos (4 \pi N x) \alpha(x)+\cos (2 \pi N x) i \alpha(x)]+O\left(\frac{1}{N}\right)
$$

Let's draw f_{1}^{\prime}

$$
\begin{aligned}
f_{1}^{\prime}(x) & =f_{0}^{\prime}(x)+r 4 \pi[-\cos (4 \pi N x) \alpha(x)+\cos (2 \pi N x) i \alpha(x)]+O\left(\frac{1}{N}\right) \\
& =f_{0}^{\prime}(x)+r[\text { an arc of parabola }]+O\left(\frac{1}{N}\right)
\end{aligned}
$$

So, if the parameter r is large enough, f_{1}^{\prime} is an immersion !

We add corrugations

we do a linear homotopy (between the two blue curves)

we unravel the corrugations, and then remove them.

video Outside In

Thurston's sphere eversion

video Outside In article Making Waves, S. Lévy, W. Thurston

II - The Corrugation process

Let $J^{1}\left([0,1], \mathbb{R}^{n}\right)$ be the 1 -jet space of curves from $[0,1]$ to \mathbb{R}^{n}. We consider a relation

$$
\mathscr{R} \subset J^{1}\left([0,1], \mathbb{R}^{n}\right)
$$

and a formal solution

$$
\sigma: x \mapsto\left(x, f_{0}(x), v_{1}(x)\right) \in \mathscr{R} .
$$

We want to generalize the former approach to build an holonomic solution of \mathscr{R} from a formal one.

Definition (Corrugation process for curves, T. 2022)

Let

- $f_{0}:[0,1] \rightarrow \mathbb{R}^{n}$ be an initial curve,
- $N \in \mathbb{N}^{*}$ be a number,
- $\left(\gamma_{x}(\cdot)\right)_{x \in[0,1]}$ be a family of loops,
then the map given by

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s
$$

where $\bar{\gamma}_{x}=\int_{0}^{1} \gamma_{x}(s) d s$ is the average of $\gamma_{x}(\cdot)$, is said to be obtained from f_{0} by a Corrugation Process.

Definition (Corrugation process for curves, T. 2022)
Let

- $f_{0}:[0,1] \rightarrow \mathbb{R}^{n}$ be an initial curve,
- $N \in \mathbb{N}^{*}$ be a number,
- $\left(\gamma_{x}(\cdot)\right)_{x \in[0,1]}$ be a family of loops,
then the map given by

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s
$$

where $\bar{\gamma}_{x}=\int_{0}^{1} \gamma_{x}(s) d s$ is the average of $\gamma_{x}(\cdot)$, is said to be obtained from f_{0} by a Corrugation Process.

The number $N \in \mathbb{N}^{*}$ is called the number of corrugations.

Note that the choice of

$$
\gamma_{x}(t)=r 4 \pi[-\cos (4 \pi t) \alpha(x)+\cos (2 \pi t) i \alpha(x)]
$$

in the formula of the Corrugation process leads to Thurston's corrugations.

Properties of

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s
$$

- C^{0}-closeness: for any $x \in[0,1]$, we have

$$
f_{1}(x)=f_{0}(x)+O(1 / N) \quad \Leftrightarrow \quad\left\|f_{1}-f_{0}\right\|_{C^{0}}=O(1 / N)
$$

- derivative: If $\bar{\gamma}_{x}=f_{0}^{\prime}(x)$ for any x, we have

$$
f_{1}^{\prime}(x)=\gamma_{x}(N x)+O(1 / N)
$$

$$
\left(f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s\right)
$$

Proof of the C^{0}-closeness.

- $\gamma_{x}(\cdot)$ is 1-periodic,
- $\gamma_{x}(\cdot)-\bar{\gamma}_{x}$ is 1-periodic of average $=0$,

$$
\left(f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s\right)
$$

Proof of the C^{0}-closeness.

- $\gamma_{x}(\cdot)$ is 1-periodic,
- $\gamma_{x}(\cdot)-\bar{\gamma}_{x}$ is 1-periodic of average $=0$,
- $t \mapsto \int_{s=0}^{t}\left(\gamma_{x}(s)-\bar{\gamma}_{x}\right) d s$ is 1-periodic \Rightarrow bounded,

$$
\left(f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s\right)
$$

Proof of the C^{0}-closeness.

- $\gamma_{x}(\cdot)$ is 1-periodic,
- $\gamma_{x}(\cdot)-\bar{\gamma}_{x}$ is 1-periodic of average $=0$,
- $t \mapsto \int_{s=0}^{t}\left(\gamma_{x}(s)-\bar{\gamma}_{x}\right) d s$ is 1-periodic \Rightarrow bounded,

$$
\int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s=O(1)
$$

$$
\left(f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s\right)
$$

Proof of the C^{0}-closeness.

- $\gamma_{x}(\cdot)$ is 1-periodic,
- $\gamma_{x}(\cdot)-\bar{\gamma}_{x}$ is 1-periodic of average $=0$,
- $t \mapsto \int_{s=0}^{t}\left(\gamma_{x}(s)-\bar{\gamma}_{x}\right) d s$ is 1-periodic \Rightarrow bounded,

$$
\int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s=O(1)
$$

- $f_{1}(x)=f_{0}(x)+O\left(\frac{1}{N}\right)$

$$
\left(f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s\right)
$$

Computation of the derivative:

$$
f_{1}^{\prime}(x)=f_{0}^{\prime}(x)+\gamma_{x}(N x)-\overline{\gamma_{x}}+\frac{1}{N} \int_{s=0}^{N x} \partial_{x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s
$$

$$
\left(f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s\right)
$$

Computation of the derivative:

$$
\begin{aligned}
f_{1}^{\prime}(x) & =f_{0}^{\prime}(x)+\gamma_{x}(N x)-\overline{\gamma_{x}}+\frac{1}{N} \int_{s=0}^{N x} \partial_{x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s \\
& =f_{0}^{\prime}(x)+\gamma_{x}(N x)-\overline{\gamma_{x}}+O\left(\frac{1}{N}\right)
\end{aligned}
$$

- By assumption, we have $\bar{\gamma}_{x}=f_{0}^{\prime}(x)$ for any x,

$$
\left(f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s\right)
$$

Computation of the derivative:

$$
\begin{aligned}
f_{1}^{\prime}(x) & =f_{0}^{\prime}(x)+\gamma_{x}(N x)-\overline{\gamma_{x}}+\frac{1}{N} \int_{s=0}^{N x} \partial_{x}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s \\
& =f_{0}^{\prime}(x)+\gamma_{x}(N x)-\overline{\gamma_{x}}+O\left(\frac{1}{N}\right)
\end{aligned}
$$

- By assumption, we have $\bar{\gamma}_{x}=f_{0}^{\prime}(x)$ for any x, so

$$
f_{1}^{\prime}(x)=\gamma_{x}(N x)+O\left(\frac{1}{N}\right)
$$

Let assume that the relation is open. Since

$$
f_{1}^{\prime}(x)=\gamma_{x}(N x)+O\left(\frac{1}{N}\right)
$$

if N is large enough, then
"the image of $\gamma_{x}(\cdot)$ satisfies the constraint $\Rightarrow f_{1}^{\prime}$ satisfies the constraint"

Let assume that the relation is open. Since

$$
f_{1}^{\prime}(x)=\gamma_{x}(N x)+O\left(\frac{1}{N}\right)
$$

if N is large enough, then
"the image of $\gamma_{x}(\cdot)$ satisfies the constraint $\Rightarrow f_{1}^{\prime}$ satisfies the constraint"
Precisely,

$$
\left(x, f_{0}(x), \gamma_{x}(s)\right) \in \mathscr{R} \quad \Rightarrow \quad\left(x, f_{0}(x), f_{1}^{\prime}(x)\right) \in \mathscr{R}
$$

Let assume that the relation is open. Since

$$
f_{1}^{\prime}(x)=\gamma_{x}(N x)+O\left(\frac{1}{N}\right)
$$

if N is large enough, then
"the image of $\gamma_{x}(\cdot)$ satisfies the constraint $\Rightarrow f_{1}^{\prime}$ satisfies the constraint"
Precisely,

$$
\left(x, f_{0}(x), \gamma_{x}(s)\right) \in \mathscr{R} \quad \Rightarrow \quad\left(x, f_{0}(x), f_{1}^{\prime}(x)\right) \in \mathscr{R}
$$

and as $f_{1}(x)=f_{0}(x)+O(1 / N)$, it follows

$$
j^{1} f_{1}(x)=\left(x, f_{1}(x), f_{1}^{\prime}(x)\right) \in \mathscr{R}
$$

Let assume that the relation is open. Since

$$
f_{1}^{\prime}(x)=\gamma_{x}(N x)+O\left(\frac{1}{N}\right)
$$

if N is large enough, then
"the image of $\gamma_{x}(\cdot)$ satisfies the constraint $\Rightarrow f_{1}^{\prime}$ satisfies the constraint"
Precisely,

$$
\left(x, f_{0}(x), \gamma_{x}(s)\right) \in \mathscr{R} \quad \Rightarrow \quad\left(x, f_{0}(x), f_{1}^{\prime}(x)\right) \in \mathscr{R}
$$

and as $f_{1}(x)=f_{0}(x)+O(1 / N)$, it follows

$$
j^{1} f_{1}(x)=\left(x, f_{1}(x), f_{1}^{\prime}(x)\right) \in \mathscr{R}
$$

Recall that, to use properties of the Corrugation process, we need the average of $\gamma_{x}(\cdot)$ to be equal to $f_{0}^{\prime}(x)$.

How to build the loop family γ_{x} ?

Let \mathscr{R} be a relation and f_{0} be a curve whose derivative lies in the convex hull of \mathscr{R}

How to build the loop family γ_{x} ?
Let $x \in[0,1]$

How to build the loop family γ_{x} ?

Let's define the slice of \mathscr{R} over x by

$$
\mathscr{R}_{x}:=\left\{v_{1} \mid\left(x, f_{0}(x), v_{1}\right) \in \mathscr{R}\right\}
$$

How to build the loop family γ_{x} ?

We require the image of γ_{x} to lie inside \mathscr{R}_{x} and $\bar{\gamma}_{x}=f_{0}^{\prime}(x)$

How to build the loop family γ_{x} ?

Observe that the condition $\bar{\gamma}_{x}=f_{0}^{\prime}(x)$ implies that $f_{0}^{\prime}(x)$ has to belong to the convex hull of \mathscr{R}_{x}.

Let's go back to the relation of immersions. Let $f_{0}:[0,1] \rightarrow \mathbb{C}$ be any curve.

We have $\mathscr{R}_{x}=\left\{v_{1} \mid\left(x, f_{0}(x), v_{1}\right) \in \mathscr{R}\right\}=\mathbb{C} \backslash\{0\}$

Let's go back to the relation of immersions. Let $f_{0}:[0,1] \rightarrow \mathbb{C}$ be any curve.

We have $\mathscr{R}_{x}=\left\{v_{1} \mid\left(x, f_{0}(x), v_{1}\right) \in \mathscr{R}\right\}=\mathbb{C} \backslash\{0\}$
Thus the convex hull of \mathscr{R}_{x} is \mathbb{C}, so $f_{0}^{\prime}(x)$ is in the convex hull!

Let's go back to the relation of immersions. Let $f_{0}:[0,1] \rightarrow \mathbb{C}$ be any curve.

We have $\mathscr{R}_{x}=\left\{v_{1} \mid\left(x, f_{0}(x), v_{1}\right) \in \mathscr{R}\right\}=\mathbb{C} \backslash\{0\}$
Thus the convex hull of \mathscr{R}_{x} is \mathbb{C}, so $f_{0}^{\prime}(x)$ is in the convex hull!

- Such a relation is called ample.

Back to the Thurston's homotopy:

corrugations are directed by a family of vector $(\alpha(x))_{t}$ such that

$$
\left(x, f_{(0, t)}(x), \alpha_{t}(x)\right) \quad \text { lie in the relation } \mathscr{R} .
$$

Here t is the parameter of the homotopy $f_{(0, t)}$.

(... intermediary steps with corrugations ...)

At the beginning we must have $\alpha_{0}(x)=f_{(0,0)}^{\prime}(x)$ and at the end $\alpha_{1}(x)=f_{(0,1)}^{\prime}(x)$.

(... intermediary steps with corrugations ...)

At the beginning we must have $\alpha_{0}(x)=f_{(0,0)}^{\prime}(x)$ and at the end $\alpha_{1}(x)=f_{(0,1)}^{\prime}(x)$.

So a regular homotopy is possible if there exists a continuous family of vector $\alpha_{t}(x)$ that never vanishes,

(... intermediary steps with corrugations ...)

At the beginning we must have $\alpha_{0}(x)=f_{(0,0)}^{\prime}(x)$ and at the end $\alpha_{1}(x)=f_{(0,1)}^{\prime}(x)$.

So a regular homotopy is possible if there exists a continuous family of vector $\alpha_{t}(x)$ that never vanishes,
i.e. if there exists a homotopy of formal solutions between the two holonomic solutions $j^{1} f_{0}$ and $j^{1} f_{1}$.

Appendix: Other formulas in the literature (given in 1D)

1954 - Nash's formula (relation of isometric maps in codim 2)

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} r\left[\Gamma_{1}(N x) \mathbf{n}_{1}(x)+\Gamma_{2}(N x) \mathbf{n}_{2}(x)\right]
$$

with $\Gamma_{1}(N x)=\cos (N x), \Gamma_{2}(N x)=\sin (N x), r$ a parameter of the problem, $\mathrm{n}_{1}, \mathrm{n}_{2}$ two unit normal vectors and $N \in \mathbb{N}$.

Appendix: Other formulas in the literature (given in 1D)

1954 - Nash's formula (relation of isometric maps in codim 2)
$f_{1}(x):=f_{0}(x)+\frac{1}{N} r\left[\Gamma_{1}(N x) \mathbf{n}_{1}(x)+\Gamma_{2}(N x) \mathbf{n}_{2}(x)\right]$

with $\Gamma_{1}(N x)=\cos (N x), \Gamma_{2}(N x)=\sin (N x), r$ a parameter of the problem, $\mathrm{n}_{1}, \mathrm{n}_{2}$ two unit normal vectors and $N \in \mathbb{N}$.

1955 - Kuiper's formula (relation of isometric maps in codim 1)

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} r\left[\Gamma_{1}(N x) \mathbf{t}(x)+\Gamma_{2}(N x) \mathbf{n}(x)\right]
$$

with $\Gamma_{1}(N x)=\frac{-a^{2} \sin (2 N x)}{8}, \Gamma_{2}(N x)=a \sin \left(N x-\frac{a^{2} \sin (2 N x)}{8}\right), r$ and a parameters of the problem, \mathbf{t} a unit tangent vector and \mathbf{n} a unit normal vector.

Appendix: Other formulas in the literature (given in 1D) 1995 - Thurston's formula (Sphere eversion, relation of immersion in codim 1)
$f_{1}(x):=f_{0}(x)+r\left[\Gamma_{1}(N x)+i \Gamma_{2}(N x)\right]$

with $r \in \mathbb{R}, \Gamma_{1}(N x)=-\sin (4 \pi N x), \Gamma_{2}(N x)=2 \sin (2 \pi N x)$ and $N \in \mathbb{N}$.

Appendix: Other formulas in the literature (given in 1D)

 1995 - Thurston's formula (Sphere eversion, relation of immersion in codim 1)$f_{1}(x):=f_{0}(x)+r\left[\Gamma_{1}(N x)+i \Gamma_{2}(N x)\right]$

with $r \in \mathbb{R}, \Gamma_{1}(N x)=-\sin (4 \pi N x), \Gamma_{2}(N x)=2 \sin (2 \pi N x)$ and $N \in \mathbb{N}$.
2009 - Conti-De Lellis-Székelyhidi's formula (codim 1, relation of isometric maps in codim 1)

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N}\left[\Gamma_{1}(x, N x) \mathbf{t}(x)+\Gamma_{2}(x, N x) \mathbf{n}(x)\right]
$$

with $\Gamma_{1}(N x)=\int_{0}^{N x} r \cos (a \sin (2 \pi s))-1 d s$, $\Gamma_{2}(N x)=\int_{0}^{N x} r \sin (a \sin (2 \pi s)) d s, r$ and a parameters of the problem, \mathbf{t} a unit tangent vector and n a unit normal vector.

Appendix: Other formulas in the literature (given in 1D)

1986 - Gromov's formula (Convex Integration Theory)

$$
f_{1}(x):=f_{0}(0)+\int_{s=0}^{x} \gamma_{s}(N s) d s
$$

with a family of loops $\left(\gamma_{t}\right)_{t}$ and $N \in \mathbb{N}$.

Appendix: Other formulas in the literature (given in 1D)

1986 - Gromov's formula (Convex Integration Theory)

$$
f_{1}(x):=f_{0}(0)+\int_{s=0}^{x} \gamma_{s}(N s) d s
$$

with a family of loops $\left(\gamma_{t}\right)_{t}$ and $N \in \mathbb{N}$.
2022 - Corrugation process, a variant of Gromov's formula

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\bar{\gamma}_{x}\right) d s
$$

Appendix: Other formulas in the literature (given in 1D)

1986 - Gromov's formula (Convex Integration Theory)

$$
f_{1}(x):=f_{0}(0)+\int_{s=0}^{x} \gamma_{s}(N s) d s
$$

with a family of loops $\left(\gamma_{t}\right)_{t}$ and $N \in \mathbb{N}$.
2022 - Corrugation process, a variant of Gromov's formula

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x}\left(\gamma_{x}(s)-\bar{\gamma}_{x}\right) d s
$$

To use both of these formula, we need

- the average of γ_{x} satisfies $\bar{\gamma}_{x}=f_{0}^{\prime}(x)$, for any x,
- the image of γ_{x} satisfies the differential constraint.

References

- C^{1} isometric imbeddings, Nash, 1954
- On C^{1}-isometric imbeddings I., Kuiper, 1955
- Partial differential relation, Gromov, 1986
- Convex integration theory. Solutions to the h-principle in geometry and topology, Spring, 1998
- Introduction to the h-principle, Eliashberg, Mishachev, 2002
- Making Waves, S. Lévy, W. Thurston, 1995
- Outside In (video), The Geometry Center, Univ. of Minnesota, 1995
- h-principle and rigidity for $C^{1, \alpha}$ isometric embeddings, Conti, De Lellis, Székelyhidi, 2009
- Convex integration theory without integration, Theilliere, 2022

Merci !

