Convex integration theory

I - Convex integration theory

The Convex integration theory provides a tool to prove that a h-principle holds for a relation \mathscr{R}.

I - Convex integration theory

The Convex integration theory provides a tool to prove that a h-principle holds for a relation \mathscr{R}.

For that, Convex integration introduces an explicit way to deform a formal solution to a holonomic solution.

Definition (Corrugation process)

Let

- $f_{0}:[0,1]^{m} \rightarrow \mathbb{R}^{n}$ be a map,
- $N \in \mathbb{N}^{*}$ be a number of corrugations,
- $\left(\gamma_{x}(\cdot)\right)_{x \in[0,1]^{m}}$ be a family of loops,
- ∂_{j} be a direction of corrugation
then the map given by

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x_{j}}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s
$$

where $\bar{\gamma}_{x}=\int_{0}^{1} \gamma_{x}(s) d s$, is said to be obtained from f_{0} by a Corrugation process in the direction ∂_{j}.

Coordinate-free expression of the Corrugation process.
Let

- $f_{0}: U \rightarrow(W, h)$ be a map from an open set $U \subset M$ to a complete manifold W endowed with a Riemannian metric,
- $N \in \mathbb{N}^{*}$ be a number of corrugations,
- $\gamma: U \times \mathbb{R} / \mathbb{Z} \rightarrow f_{0}^{*} T W$ be a family of loops,
- $\pi: U \rightarrow \mathbb{R}$ be a submersion,
then the Corrugation process writes

$$
\left.f_{1}(x):=\exp _{f_{0}(x)} \frac{1}{N} \int_{s=0}^{N \pi(x)}(\gamma(x, s))-\bar{\gamma}(x)\right) d s
$$

Coordinate-free expression of the Corrugation process.
Let

- $f_{0}: U \rightarrow(W, h)$ be a map from an open set $U \subset M$ to a complete manifold W endowed with a Riemannian metric,
- $N \in \mathbb{N}^{*}$ be a number of corrugations,
- $\gamma: U \times \mathbb{R} / \mathbb{Z} \rightarrow f_{0}^{*} T W$ be a family of loops,
- $\pi: U \rightarrow \mathbb{R}$ be a submersion,
then the Corrugation process writes

$$
\left.f_{1}(x):=\exp _{f_{0}(x)} \frac{1}{N} \int_{s=0}^{N \pi(x)}(\gamma(x, s))-\bar{\gamma}(x)\right) d s
$$

If $M=[0,1]^{m}, W=\mathbb{E}^{n}$ and $\pi(x)=x_{j}$, this formula reduces to the previous one.

Properties of

$$
f_{1}(x):=f_{0}(x)+\frac{1}{N} \int_{s=0}^{N x_{j}}\left(\gamma_{x}(s)-\overline{\gamma_{x}}\right) d s
$$

- C^{0}-closeness: for any $x \in[0,1]^{m}$, we have

$$
\left\{\begin{array}{l}
\left\|f_{1}-f_{0}\right\|_{C^{0}}=O(1 / N) \\
\left\|\partial_{i} f_{1}-\partial_{i} f_{0}\right\|_{C^{0}}=O(1 / N), \quad \text { for } i \neq j
\end{array}\right.
$$

- derivative along ∂_{j} : If $\bar{\gamma}_{x}=\partial_{j} f_{0}(x)$ for any x, we have

$$
\partial_{j} f_{1}(x)=\gamma_{x}\left(N x_{j}\right)+O(1 / N)
$$

- Assume that we have a formal solution of the form

$$
\sigma_{j-1}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, v_{j}, \ldots, v_{n}\right) \in \mathscr{R}
$$

- Assume that we have a formal solution of the form

$$
\sigma_{j-1}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, v_{j}, \ldots, v_{n}\right) \in \mathscr{R}
$$

Using a Corrugation process in the direction ∂_{j}, we obtain a new map f_{j} whose ∂_{j}-derivative is

$$
\partial_{j} f_{j}(x)=\gamma_{x}\left(N x_{j}\right)+O\left(\frac{1}{N}\right)
$$

- Assume that we have a formal solution of the form

$$
\sigma_{j-1}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, v_{j}, \ldots, v_{n}\right) \in \mathscr{R}
$$

Using a Corrugation process in the direction ∂_{j}, we obtain a new map f_{j} whose ∂_{j}-derivative is

$$
\partial_{j} f_{j}(x)=\gamma_{x}\left(N x_{j}\right)+O\left(\frac{1}{N}\right)
$$

Now setting

$$
\widetilde{\sigma_{j-1}}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, \gamma_{x}\left(N x_{j}\right), v_{j+1}, \ldots, v_{n}\right)
$$

we first look for a condition on the loop γ_{x} to have

$$
\widetilde{\sigma_{j-1}} \in \mathscr{R}
$$

Definition

Let $S=\left(x, Y, V_{1}, \ldots, V_{m}\right)$ be a point in \mathscr{R}. The slice of \mathscr{R} in the direction ∂_{j} over S is the subset

$$
\mathscr{R} j, S:=\left\{w \in \mathbb{R}^{n} \mid\left(x, Y, V_{1}, \ldots, V_{j-1}, w, V_{j+1}, \ldots, V_{m}\right) \in \mathscr{R}\right\}
$$

- So $\widetilde{\sigma_{j-1}} \in \mathscr{R}$ iff the image of $\gamma_{x}(\cdot)$ lies inside $\mathscr{R}_{j, S}$ with $S=\sigma_{j-1}(x)$.

Now we have

$$
\widetilde{\sigma_{j-1}}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, \gamma_{x}\left(N x_{j}\right), v_{j+1}, \ldots, v_{n}\right) \in \mathscr{R}
$$

Let us recall that, to have

$$
\partial_{j} f_{j}(x)=\gamma_{x}\left(N x_{j}\right)+O\left(\frac{1}{N}\right)
$$

we have required that

$$
\bar{\gamma}_{x}=\partial_{j} f_{j-1}(x)
$$

Now we have

$$
\widetilde{\sigma_{j-1}}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, \gamma_{x}\left(N x_{j}\right), v_{j+1}, \ldots, v_{n}\right) \in \mathscr{R}
$$

Let us recall that, to have

$$
\partial_{j} f_{j}(x)=\gamma_{x}\left(N x_{j}\right)+O\left(\frac{1}{N}\right)
$$

we have required that

$$
\bar{\gamma}_{x}=\partial_{j} f_{j-1}(x)
$$

To sum up, we have two conditions on γ_{x} :

- its image lies inside $\mathscr{R}_{j, S}$
- its average is $\partial_{j} f_{j-1}(x)$

So the existence of such a loop $\gamma_{x}(\cdot)$ is possible iff $\partial_{j} f_{j-1}(x)$ belongs to the convex hull of a path-connected component of the slice $\mathscr{R}_{j, S}$.

So the existence of such a loop $\gamma_{x}(\cdot)$ is possible iff $\partial_{j} f_{j-1}(x)$ belongs to the convex hull of a path-connected component of the slice $\mathscr{R}_{j, s}$.

Rk. To obtain a h-principle, the choice of the path-connected component is constrained by the formal solution.

- Finally, from

$$
\sigma_{j-1}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, v_{j}, \ldots, v_{n}\right) \in \mathscr{R}
$$

we have built a map f_{j} and a section

$$
\widetilde{\sigma_{j-1}}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, \gamma_{x}\left(N x_{j}\right), v_{j+1}, \ldots, v_{n}\right) \in \mathscr{R}
$$

$>$ Finally, from

$$
\sigma_{j-1}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, v_{j}, \ldots, v_{n}\right) \in \mathscr{R}
$$

we have built a map f_{j} and a section

$$
\widetilde{\sigma_{j-1}}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, \gamma_{x}\left(N x_{j}\right), v_{j+1}, \ldots, v_{n}\right) \in \mathscr{R}
$$

As

$$
\left\{\begin{aligned}
f_{j}(x) & =f_{j-1}(x)+O(1 / N) \\
\partial_{i} f_{j}(x) & =\partial_{i} f_{j-1}(x)+O(1 / N), \quad i \neq j \\
\partial_{j} f_{j}(x) & =\gamma_{x}\left(N x_{j}\right)+O(1 / N)
\end{aligned}\right.
$$

- Finally, from

$$
\sigma_{j-1}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, v_{j}, \ldots, v_{n}\right) \in \mathscr{R}
$$

we have built a map f_{j} and a section

$$
\widetilde{\sigma_{j-1}}=\left(x, f_{j-1}, \partial_{1} f_{j-1}, \ldots, \partial_{j-1} f_{j-1}, \gamma_{x}\left(N x_{j}\right), v_{j+1}, \ldots, v_{n}\right) \in \mathscr{R}
$$

As

$$
\left\{\begin{aligned}
f_{j}(x) & =f_{j-1}(x)+O(1 / N) \\
\partial_{i} f_{j}(x) & =\partial_{i} f_{j-1}(x)+O(1 / N), \quad i \neq j \\
\partial_{j} f_{j}(x) & =\gamma_{x}\left(N x_{j}\right)+O(1 / N)
\end{aligned}\right.
$$

if N is large enough and if the relation \mathscr{R} is open, then

$$
\sigma_{j}=\left(x, f_{j}, \partial_{1} f_{j}, \ldots, \partial_{j} f_{j}, v_{j+1}, \ldots, v_{n}\right) \in \mathscr{R}
$$

Iterating in the directions $\partial_{1}, \ldots, \partial_{m}$, we build a sequence of formal solutions:

$$
\begin{aligned}
& \sigma_{0}(x)=\left(x, \quad f_{0}(x), \quad v_{1}(x), \quad v_{2}(x), \quad \ldots, \quad v_{m}(x)\right) \quad \in \mathscr{R} \\
& \sigma_{1}(x)=\left(x, \quad f_{1}(x), \quad \partial_{1} f_{1}(x), \quad v_{2}(x), \ldots, \quad v_{m}(x)\right) \quad \in \mathscr{R} \\
& \sigma_{2}(x)=\left(x, \quad f_{2}(x), \quad \partial_{1} f_{2}(x), \quad \partial_{2} f_{2}(x), \quad \ldots, \quad v_{m}(x)\right) \quad \in \mathscr{R} \\
& \sigma_{m}(x)=\left(x, \quad f_{m}(x), \quad \partial_{1} f_{m}(x), \quad \partial_{2} f_{m}(x), \ldots, \quad \partial_{m} f_{m}(x)\right) \in \mathscr{R}
\end{aligned}
$$

Iterating in the directions $\partial_{1}, \ldots, \partial_{m}$, we build a sequence of formal solutions:

$$
\begin{aligned}
& \sigma_{0}(x)=\left(x, \quad f_{0}(x), \quad v_{1}(x), \quad v_{2}(x), \quad \ldots, \quad v_{m}(x)\right) \quad \in \mathscr{R} \\
& \sigma_{1}(x)=\left(x, \quad f_{1}(x), \quad \partial_{1} f_{1}(x), \quad v_{2}(x), \ldots, \quad v_{m}(x)\right) \quad \in \mathscr{R} \\
& \sigma_{2}(x)=\left(x, \quad f_{2}(x), \quad \partial_{1} f_{2}(x), \quad \partial_{2} f_{2}(x), \quad \ldots, \quad v_{m}(x)\right) \quad \in \mathscr{R} \\
& \sigma_{m}(x)=\left(x, \quad f_{m}(x), \quad \partial_{1} f_{m}(x), \quad \partial_{2} f_{m}(x), \ldots, \quad \partial_{m} f_{m}(x)\right) \in \mathscr{R}
\end{aligned}
$$

At the step m, we obtain a holonomic solution of \mathscr{R}.

$$
\sigma_{m}(x)=j^{1} f_{m}(x) \in \mathscr{R}
$$

Definition (ample)

Let \mathscr{R} be a relation. If the convex hull of each path-connected component of each slice of \mathscr{R} is \mathbb{R}^{n} (or if the slice is empty), then we say that \mathscr{R} is ample.

Definition (ample)

Let \mathscr{R} be a relation. If the convex hull of each path-connected component of each slice of \mathscr{R} is \mathbb{R}^{n} (or if the slice is empty), then we say that \mathscr{R} is ample.

Convex Integration Theorem, Gromov
Let \mathscr{R} be open and ample. Then \mathscr{R} satisfies the full h-principle.

II - Examples

1 - The relation of immersions

\checkmark The relation. The map $f_{0}:[0,1]^{m} \rightarrow \mathbb{R}^{n}$ is an immersion if the image of $j^{1} f_{0}$ is in

$$
\mathscr{R}_{i m}:=\left\{\left(x, y, v_{1}, \ldots, v_{m}\right) \mid v_{1}, \ldots, v_{m} \text { linearly independant }\right\}
$$

The slice. Let $S=\left(x, Y, V_{1}, \ldots, V_{m}\right)$ be a point in $\mathscr{R}_{i m}$. The slice in the direction ∂_{1} is:

$$
\mathscr{R}_{i m, 1, S}:=\left\{w \in \mathbb{R}^{n} \mid w \notin \operatorname{Span}\left(V_{2}, \ldots, V_{m}\right)\right\}
$$

Codimension 0

$$
\begin{gathered}
m=n=2 \\
\left\{w \in \mathbb{R}^{2} \mid w \notin \operatorname{Span}\left(V_{2}\right)\right\} \\
\left\{w \in \mathbb{R}^{2} \mid w \in \mathbb{R}^{2} \backslash \mathbb{R} V_{2}\right\}
\end{gathered}
$$

Codimension 0

Codimension 1

$$
\begin{gathered}
m=n=2 \\
\left\{w \in \mathbb{R}^{2} \mid w \notin \operatorname{Span}\left(V_{2}\right)\right\} \\
\left\{w \in \mathbb{R}^{2} \mid w \in \mathbb{R}^{2} \backslash \mathbb{R} V_{2}\right\}
\end{gathered}
$$

$$
m=2, n=3
$$

$$
\left\{w \in \mathbb{R}^{3} \mid w \notin \operatorname{Span}\left(V_{2}\right)\right\}
$$

$$
\left\{w \in \mathbb{R}^{3} \mid w \in \mathbb{R}^{3} \backslash \mathbb{R} V_{2}\right\}
$$

Codimension 0

$$
\begin{gathered}
m=n=2 \\
\left\{w \in \mathbb{R}^{2} \mid w \notin \operatorname{Span}\left(V_{2}\right)\right\} \\
\left\{w \in \mathbb{R}^{2} \mid w \in \mathbb{R}^{2} \backslash \mathbb{R} V_{2}\right\}
\end{gathered}
$$

Codimension 1

$m=2, n=3$
$\left\{w \in \mathbb{R}^{3} \mid w \notin \operatorname{Span}\left(V_{2}\right)\right\}$
$\left\{w \in \mathbb{R}^{3} \mid w \in \mathbb{R}^{3} \backslash \mathbb{R} V_{2}\right\}$

The relation of immersions in codim. 0 is not ample.

- The relation of immersions in codim. ≥ 1 is ample.

Let f_{0} be a parametrization of a cone

$$
\begin{aligned}
& f_{0}: \begin{array}{ll}
{[0,1]^{2}} & \longrightarrow \\
(t, \theta) & \longmapsto((2 t-1) \cos (2 \pi \theta),(2 t-1) \sin (2 \pi \theta))
\end{array}, ~ \mathbb{R}^{3} \\
& \longmapsto(2)
\end{aligned}
$$

Let f_{0} be a parametrization of a cone

$$
\begin{aligned}
f_{0}: \quad[0,1]^{2} & \longrightarrow \\
(t, \theta) & \longmapsto((2 t-1) \cos (2 \pi \theta),(2 t-1) \sin (2 \pi \theta))
\end{aligned}
$$

For $x=(t, \theta)$, let v_{2} be a vector field such that

$$
\sigma_{0}(x)=\left(x, f_{0}(x), \partial_{t} f_{0}(x), v_{2}(x)\right)
$$

is a formal solution.

Let f_{0} be a parametrization of a cone

$$
\begin{aligned}
f_{0}:[0,1]^{2} & \longrightarrow \\
(t, \theta) & \longmapsto((2 t-1) \cos (2 \pi \theta),(2 t-1) \sin (2 \pi \theta))
\end{aligned}
$$

For $x=(t, \theta)$, let v_{2} be a vector field such that

$$
\sigma_{0}(x)=\left(x, f_{0}(x), \partial_{t} f_{0}(x), v_{2}(x)\right)
$$

is a formal solution. We choose the loop γ_{x} to be an arc of circle in the plane normal to $\mathbb{R} \partial_{t} f_{0}(x)$ and of average $\partial_{\theta} f_{0}(x)$

2 - Holonomic approximation for 1-jets

Holonomic Approximation theorem of order 1 and $A=[0,1]^{m} \times\{0\}$
Let $A=[0,1]^{m} \times\{0\} \subset \mathbb{R}^{m} \times \mathbb{R}, O p(A)$ an open neighborhood of A.

Let $\sigma=\left((x, t), f_{0}, L\right): O p(A) \rightarrow J^{1}\left(O p(A), \mathbb{R}^{n}\right)$ be a section. For any $\epsilon>0$, there exists

- a function $\delta: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $\|\delta\|<\epsilon$, and we set

$$
A_{\delta}:=\left\{(x, \delta(x)) \mid x \in[0,1]^{m}\right\}=\square \sim \infty
$$

- a map f_{1} defined near A_{δ} such that $\left\|j^{1} f_{1}-\sigma\right\|_{C^{0}}<\epsilon$ on a sufficiently small open neighborhood of A_{δ}.

Example of the mountain path. Let

$$
\sigma((x, t))=\left((x, t), f_{0}(x, t)=x, L_{(x, t)}=0\right)
$$

Holonomic
Approximation Theorem

The associated relation is

$$
\mathscr{R}=\left\{\left((x, t), y, v_{1}, v_{2}\right) \mid\|y-x\|<\epsilon,\left\|v_{i}-0\right\|<\epsilon\right\}
$$

and the slice in the direction ∂_{1} is $\mathscr{R}_{1}=\{w \in \mathbb{R} \mid\|w\|<\epsilon\}$ so it's not ample!

Theorem (Massot-T. 2021)

We can rewrite the Holonomic Approximation of order 1 as an open ample relation, so solvable by Convex integration.

Theorem (Massot-T. 2021)

We can rewrite the Holonomic Approximation of order 1 as an open ample relation, so solvable by Convex integration.

Corrugation process

3 - Thickened relations

Let consider the toy example

$$
\mathscr{R}_{\text {orth }}=\left\{\left(x, y, v_{1}, v_{2}\right) \mid \text { angle }\left(v_{1}, v_{2}\right)=\frac{\pi}{2}, v_{1}, v_{2} \neq 0\right\}
$$

and a slice in ∂_{2} is $\mathscr{R}_{\text {orth, }, 2, S}=\left\{v_{2} \left\lvert\, \operatorname{angle}\left(V_{1}, v_{2}\right)=\frac{\pi}{2}\right., v_{2} \neq 0\right\}$

3 - Thickened relations

Let consider the toy example

$$
\mathscr{R}_{\text {orth }}=\left\{\left(x, y, v_{1}, v_{2}\right) \mid \text { angle }\left(v_{1}, v_{2}\right)=\frac{\pi}{2}, v_{1}, v_{2} \neq 0\right\}
$$

and a slice in ∂_{2} is $\mathscr{R}_{\text {orth, } 2, S}=\left\{v_{2} \left\lvert\, \operatorname{angle}\left(V_{1}, v_{2}\right)=\frac{\pi}{2}\right., v_{2} \neq 0\right\}$
in \mathbb{R}^{2}, not ample in \mathbb{R}^{3}, not ample

Let $\epsilon>0$, and now consider

$$
\mathscr{R}_{\text {orth }}^{\epsilon}=\left\{\left(x, y, v_{1}, v_{2}\right)| | \text { angle } \left.\left(v_{1}, v_{2}\right)-\frac{\pi}{2} \right\rvert\,<\epsilon, v_{1}, v_{2} \neq 0\right\}
$$

and a slice in the direction ∂_{2} is

$$
\mathscr{R}_{\text {orth }, 2, S}^{\epsilon}=\left\{v_{2}| | \text { angle } \left.\left(V_{1}, v_{2}\right)-\frac{\pi}{2} \right\rvert\,<\epsilon, v_{2} \neq 0\right\}
$$

in \mathbb{R}^{2}, not ample

in \mathbb{R}^{3}, ample

With the idea of thickening,

- the relation of Lagrangian immersions $\mathscr{R}_{\text {lag }}$ is not ample,
- the relation of ϵ-Lagrangian immersions $\mathscr{R}_{\text {lag }}^{\epsilon}$ is ample.
and also
- the relation of isotropic immersions $\mathscr{R}_{\text {isot }}$ is not ample,
- the relation of ϵ-isotropic immersions $\mathscr{R}_{\text {isot }}^{\epsilon}$ is ample.
but
- the relation of ϵ-coisotropic immersions $\mathscr{R}_{\text {coisot }}^{\epsilon}$ is not ample.
(see Introduction to the h-principle, Eliashberg, Mishachev, §19.2)

Appendix -

We saw that the relation of immersions (in codim. ≥ 1) is ample, and we managed to remove the singularity of a cone.

What about a more complicated surface ? Like the crosscap ? (a representation $\mathbb{R} P^{2}$)

Appendix -

The crosscap is obtained by gluing two opposite points on a disk, and closing it like described on the picture:

This surface has 2 singular points.

Appendix -

The crosscap is obtained by gluing two opposite points on a disk, and closing it like described on the picture:

This surface has 2 singular points.

Appendix -

The crosscap is obtained by gluing two opposite points on a disk, and closing it like described on the picture:

This surface has 2 singular points.

- Note that on this new surface, corrugations are localized a neighborhood of the segment connecting the two singular points.

Appendix -

The crosscap is obtained by gluing two opposite points on a disk, and closing it like described on the picture:

This surface has 2 singular points.

- Note that on this new surface, corrugations are localized a neighborhood of the segment connecting the two singular points.
- Is it possible to localize the corrugations on a neighborhood of each singular point?

Appendix -

If it was possible to remove only one singular point,
this would mean that we could build an intermediary closed surface with only one singular point...

Appendix -

If it was possible to remove only one singular point,
this would mean that we could build an intermediary closed surface with only one singular point...

but... from a theorem of Whitney, it is impossible.

- There is an obstruction to find such a formal solution.
- Tomorrow, we'll see the relation of isometric maps which is closed and not ample, but still satisfies a convex condition.

References

Books

- Partial differential relation, Gromov, 1986
- Convex integration theory. Solutions to the h-principle in geometry and topology, Spring, 1998
- Introduction to the h-principle, Eliashberg, Mishachev, 2002

Articles

- The singularities of a smooth n-manifold in (2n-1)-space, Whitney, 1944
- Holonomic approximation through convex integration, Massot, Theillière, 2021
- Convex integration theory without integration, Theillière, 2022

Additional references

- Applications of Convex integration to symplectic and contact geometry, McDuff, 1987
- Loose legendrian embeddings in high dimensional contact manifolds, Murphy, 2019
- Convex integration with avoidance and hyperbolic $(4,6)$ distributions, Martinez-Aguinaga, del Pino, 2021

Merci !

