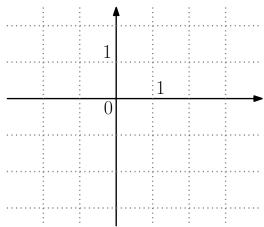
Feuille I - Paramétrisation 1

Pour les exercices 1 et 2, dessiner sur



Exercice 1. Dessiner les courbes $c: I \to \mathbb{R}^2$ et indiquer le sens de parcours avec une flèche.

- (i) $I = [0, 1], \quad c_i(t) = (3 4t, 2 t)$
- (ii) $I = [-1, 1], \quad c_{ii}(t) = (1 2t, \frac{3}{2} \frac{1}{2}t)$
- (iii) $I = [0,1], \quad c_{iii}(t) = (3-4(1-t), 2-(1-t))$ (Rq: on peut écrire $c_{iii} = c_i \circ \varphi$.)

Exercice 2.

- (i) On considère le cercle dans \mathbb{R}^2 de rayon r=3 et de centre (1,1). Dessiner et paramétrer le quart de cercle $c:[0,\frac{\pi}{2}]\to\mathbb{R}^2$ allant de c(0)=(-2,1) à $c(\frac{\pi}{2})=(1,-2)$.
- (ii) Paramétrer le cercle de centre (0,0) de rayon 2 dans le sens trigonométrique sous la forme $c: \mathbb{R} \to \mathbb{R}^2$ avec les conditions c(0) = (0,2) et ||c'(t)|| = 3 pour tout $t \in \mathbb{R}$.

Exercice 3. Soient p = (-3, 1, 2) et q = (0, 0, 1) deux points de \mathbb{R}^3 .

- (i) Paramétrer le segment \overline{pq} dans \mathbb{R}^3 sous la forme $c_1:[0,1]\to\mathbb{R}^3$.
- (ii) Trouver un changement de paramètre $\varphi: [3,4] \to [0,1]$ qui préserve le sens de parcours, puis donner une nouvelle paramétrisation c_2 du segment \overline{pq} définie sur [3,4].
- (iii) Trouver un changement de paramètre $\psi : [1,4] \to [0,1]$ qui inverse le sens de parcours, puis donner une paramétrisation c_3 du segment \overline{pq} sur [1,4] qui inverse le sens de parcours.

Exercice 4. On considère la courbe

$$c(t) = (t, \sin(4t), \ln(8t)), \quad t \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right].$$

Trouver une courbe $\gamma: [-\pi, \pi] \to \mathbb{R}^3$ ayant la même image, de sens de parcours inversé.

Exercice 5. Soit la courbe $c(t) = (t^3, 2, t^3), t \in \mathbb{R}$.

- 1. Montrer que c n'est pas régulière en un point et donner ce point.
- 2. En remarquant que

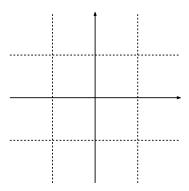
$$c(t) = (0, 2, 0) + t^3(1, 0, 1)$$

est une droite, donner une paramétrisation régulière γ de cette droite.

Feuille II - Paramétrisation 2

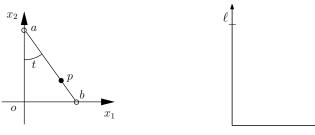
Exercice 1.

- (i) Sur le quadrillage ci-dessous,
 - (a) dessiner C le cercle de rayon 1 de centre (0,0);
 - (b) choisir un point (x, y) sur $\mathcal{C} \setminus \{(-1, 0)\}$;
 - (c) tracer la droite passant par (x, y) et par (-1, 0);
 - (d) noter (0,t) le point d'intersection de cette droite avec l'axe vertical Oy.



- (ii) L'équation d'une droite (non verticale) est donnée par $Y = \alpha X + \beta$ avec $\alpha, \beta \in \mathbb{R}$. Trouver les paramètres α, β de la droite passant par (x, y) et (-1, 0). En déduire une expression de t en fonction de (x, y).
- (iii) Exprimer (x,y) en fonction de t. En déduire une paramétrisation de $\mathcal{C} \setminus \{(-1,0)\}$.

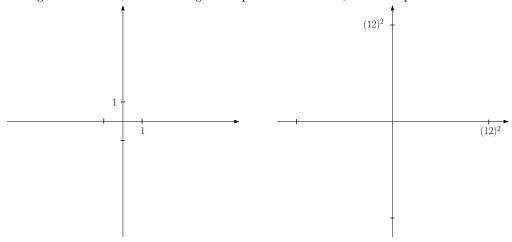
Exercice 2. Soit une barre d'extrémités a et b de longueur $\ell = ||b - a||$ et soit p un point de la barre (voir figure). On veut étudier la position du point p lorsque la barre glisse le long du "mur" Ox_2 et finit par terre. Le point b bouge sur l'axe Ox_1 et le point a bouge sur l'axe Ox_2 .



- (i) Sur l'image de droite, dessiner (selon vous) la courbe décrite par p = a lorsque la barre glisse le long du mur. Puis par p = b, et par un point $p \neq a, b$.
- (ii) Soit ℓ la distance entre a et p. En utilisant les définitions du sinus et du cosinus, trouver le paramétrage c sur $\left[0,\frac{\pi}{2}\right]$ de cette courbe en fonction de l'angle t. En déduire que c'est une ellipse.
- (iii) Calculer c'(t), puis c'(0) et $c'(\pi/2)$.
- (iv) Y-a-t-il une position particulière du point p pour que sa trajectoire soit un arc cercle?

Feuille III - Angles et Longueurs

Sur les images ci-dessous, dessiner à gauche pour l'exercice 1, à droite pour l'exercice 3.



Exercice 1. Soit R > 1, et soient les courbes $\gamma : [0, 2\pi] \longrightarrow \mathbb{R}^2$ et $\delta_R : [0, 2\pi] \longrightarrow \mathbb{R}^2$ données par $\gamma(t) = (e^t \cos(t), e^t \sin(t)), \quad \delta_R(s) = (R \cos(s), R \sin(s)).$

- a) Dessiner la courbe γ et la courbe δ_R .
- b) Calculer le point d'intersection des deux courbes.
- c) Calculer les vecteurs tangents des deux courbes.
- d) Calculer l'angle entre les deux courbes au point d'intersection.

Exercice 2. Calculer la longueur de la courbe $c:[0,5]\to\mathbb{R}^3$ donnée par

$$c(t) = \left(\frac{e^t}{2}, \frac{e^{-t}}{2}, \frac{t}{\sqrt{2}}\right).$$

Exercice 3. Soit $c:[0,12]\to\mathbb{R}^2$ la courbe définie par $c(t)=(t^2,t)$.

- a) Dessiner la courbe c.
- b) Calculer le point d'intersection p entre c et le cercle \mathcal{C} de centre (0,0) et de rayon $\frac{1}{2}$.
- c) Donner une paramétrisation de \mathcal{C} et donner l'expression de ses vecteurs tangents. En remarquant qu'en un point (a,b) de \mathcal{C} , le vecteur tangent s'écrit (-b,a) donner le vecteur tangent de \mathcal{C} au point p.
- d) Calculer le cosinus de l'angle entre c et le cercle C au point p.
- e) Calculer la longueur de la courbe c entre c(0) et $p = c(t_0)$. (On peut utiliser le changement de variable $2t = \sinh y$ et utiliser le fait que $1 + \sinh^2 y = \cosh^2 y$. De plus, $2\cosh^2 y = \cosh 2y + 1$)

Exercice 4. On considère la courbe

$$c(t) = \left(\frac{t^2-1}{t^2+1}, \frac{2t}{t^2+1}\right), \quad t \in [0,1] \, .$$

- a) Calculer la longueur de la courbe c.
- b) Trouver $t_0 \in]0,1[$ tel que le point $c(t_0)$ partage la courbe en deux morceaux de même longueur.

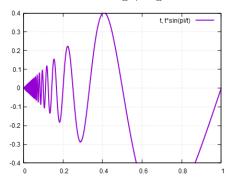
Feuille IV - Courbes non rectifiables

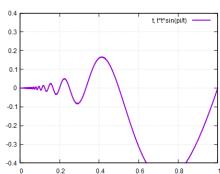
Rappel. Une courbe $c:[a,b] \to \mathbb{R}^w$ est rectifiable si la quantité

$$\sup \left\{ \sum_{k=1}^{n} \|c(t_k) - c(t_{k-1})\| \mid \{a = t_0 < t_1 < \dots < t_n = b\} \text{ est une partition de } [a, b] \right\}$$

est finie.

Exercice 1. Sur l'image, à gauche la courbe c_1 , à droite la courbe c_2 .





(1) Soit $c_1:[0,1]\to\mathbb{R}^2$ la courbe donnée par

$$c_1(t) = (t, t\sin(\pi/t))$$

pour $t \in]0,1]$ et $c_1(0) = (0,0)$. En considérant la suite de partitions

$$\sigma_n = \left\{0, v_n = \frac{2}{2n+1}, \dots, v_k = \frac{2}{2k+1}, \dots, v_1 = \frac{2}{3}, 1\right\}, \quad k \in \{1, \dots, n\}$$

montrer que c_1 n'est pas rectifiable.

(2) Soit $c_2:[0,1]\to\mathbb{R}^2$ la courbe donnée par

$$c_2(t) = (t, t^2 \sin(\pi/t))$$

pour $t \in]0,1]$ et $c_2(0) = (0,0)$. Majorer la longueur de la courbe c_2 sur $[\epsilon,1]$, avec $\epsilon > 0$. (Pour comparer, on peut aussi regarder ce que donne une majoration similaire pour c_1).

(3) Montrer que c_2 est rectifiable.

Exercice 2. La courbe de Koch. Un algorithme récursif pour construire la courbe de Koch à partir du segment [0, 1] est donné par :

- (i) On divise le segment en trois segments de longueurs égales;
- (ii) On construit un triangle équilatéral ayant pour base le segment médian de la première étape;
- (iii) On supprime la base du triangle obtenue dans l'étape (ii);
- (iv) Retour à l'étape (i) pour chaque segment obtenu.
- (1) Dessiner les premières étapes de la courbe de Koch.
- (2) Soit P_n la courbe obtenue en répétant n fois les étapes (i) (iii). Exprimer la longueur de P_n en fonction de la longueur de P_{n-1} , puis de P_0 .
- (3) Soit $c = \lim_n P_n$ la courbe de Koch. Montrer que c n'est pas rectifiable.

Feuille V - Repère de Frenet, Courbure, Torsion

Exercice 1. On considère la courbe

$$\gamma(t) = \left(2t^3 - 6t, 3\sqrt{3}t^2, 3t^2\right), \quad t \in \mathbb{R}$$

- (a) Montrer que γ est une courbe doublement régulière pour tout $t \in \mathbb{R}$.
- (b) Calculer le repère de Frenet, la courbure et la torsion de γ .

Exercice 2. On considère la courbe suivante (l'hélicoïde)

$$c(t) = (r\cos(t), r\sin(t), \alpha t), \quad t \in \mathbb{R}$$

avec r > 0 et $\alpha \in \mathbb{R}$ des constantes.

- (a) Dessiner la courbe pour $\alpha = 0$, α petit et α grand.
- (b) Calculer la courbure de c au point c(t).
- (c) Etudier la courbure en fonction de α et trouver la valeur de α pour laquelle la courbure de c est maximale (resp. minimale).
- (d) Calculer le repère de Frenet et la torsion de la courbe c.

Exercice 3. Soit $c:[a,b] \to \mathbb{R}^3$ une courbe doublement régulière. On considère le plan P passant par c(a) et orthogonal au vecteur B(a), c'est-à-dire

$$P = \{v \in \mathbb{R}^3 \text{ tel que } \langle v - c(a), B(a) \rangle = 0\}$$

On s'intéresse aux propriétés suivantes :

- $(i): c(t) \in P$ pour tout t,
- (ii): B(t) est constant pour tout t.
- (a) Soit $g(t) = \langle c(t) c(a), B(a) \rangle$. Dans cette question, on suppose (i).
 - (1) Sous l'hypothèse (i), que peut-on dire de g?
 - (2) En dérivant g, que peut-on dire de T(t) et B(a)?
 - (3) En dérivant à nouveau, que peut-on dire de (T(t), N(t), B(a))?
 - (4) En conclure que $(i) \Rightarrow (ii)$.
- (b) Montrer que $(ii) \Rightarrow (i)$ en étudiant la fonction $f(t) = \langle c(t) c(a), B(t) \rangle$.

Soit (iii): $\tau(t) = 0$ pour tout t.

(c) Montrer que $(ii) \Leftrightarrow (iii)$.

Feuille VI - Courbure orientée

Rappel. Pour une courbe plane régulière c, on peut poser le vecteur tangent unitaire sous la forme $T(t) = (\cos(\alpha(t)), \sin(\alpha(t)))$, et écrire $T'(t) = \alpha'(t)\mathbf{J}(T(t))$ avec $J(v_1, v_2) = (-v_2, v_1)$. Puis on peut définir la courbure orientée par

$$k(t) = \frac{\alpha'(t)}{\|c'(t)\|}.$$

- **Exercice 1.** Soit $c = (c_1, c_2) : I \to \mathbb{R}^2$ une courbe régulière de classe \mathcal{C}^2 . (a) Sachant que $T = c'/\|c'\|$, exprimer T' en fonction des vecteurs c' et c'' (sans expliciter $(\|c'\|)'$).
- (b) Sachant que $T = (\cos(\alpha), \sin(\alpha))$, montrer que $\langle T', J(T) \rangle = \alpha'$.
- (c) Montrer que

$$k(t) = \frac{c_1'(t)c_2''(t) - c_2'(t)c_1''(t)}{\parallel c'(t) \parallel^3}.$$

Exercice 2. Soient a, b > 0. On considère l'ellipse

$$c(t) = (a\cos t, b\sin t), \quad t \in \mathbb{R}.$$

- (a) Trouver la courbure orientée de c pour tout $t \in \mathbb{R}$.
- (b) Une paramétrisation classique du cercle de courbure en t=0 est donné par

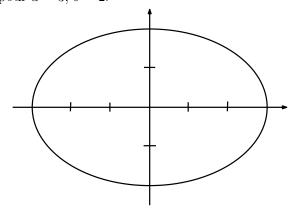
$$C(s) = m(0) + R(0)(\cos s, \sin s).$$

Calculer le centre m(0) et le rayon R(0) du cercle de courbure avec les définitions du cours.

(c) Trouver un changement de paramètre linéaire $\varphi(s) = \alpha s + \beta$ tel que la nouvelle paramétrisation du cercle de courbure $\gamma = \mathcal{C} \circ \varphi$ qui vérifie

$$\gamma(0) = c(0), \quad \gamma'(0) = c'(0).$$

(d) Dessiner ce cercle pour a = 3, b = 2.



Exercice 3. Soit la courbe $c: \mathbb{R} \to \mathbb{R}^2$ donnée par

$$c(t) = e^t(-\sin(t), \cos(t)).$$

Calculer la courbure orientée de c.

Feuille VII - La développée, Le théorème de Tait-Kneser

Notation. Pour un vecteur v = (x, y) de \mathbb{R}^2 , on pose J(v) = (-y, x).

Exercice 1. Soit a > 0 et

$$\begin{array}{cccc} \gamma: & [-a,a] & \longrightarrow & \mathbb{R}^2 \\ & s & \longmapsto & (s,\cosh s) \end{array}$$

- 1. Montrer que γ est régulière et calculer la courbure orientée.
- 2. Calculer la développée définie par

$$s \mapsto \Gamma(s) = \gamma(s) + \frac{1}{k(s)}J(T(s)).$$

Est-ce que Γ est régulière ?

3. Calculer la longueur de Γ pour $s \in [-a, a]$. (Rappel : $2 \cosh s \sinh s = \sinh 2s$)

Exercice 2. ¹ Calculer la développée de la courbe $c: \mathbb{R} \to \mathbb{R}^2$ donnée par

$$c(s) = (s, s^2).$$

Exercice 3. Soit $\gamma:[0,1]\to\mathbb{R}^2$ une courbe régulière, \mathbb{C}^2 , paramétrée à vitesse unitaire.

- 1) Le but est de montrer que : Si γ est à courbure k constante non-nulle, alors l'image de γ est un arc de cercle.
 - a) En remarquant que "k(s) constant" \Rightarrow "k(s) croissant et k(s) décroissant", utiliser le théorème de Tait-Kneser pour montrer que le cercle de courbure $\mathcal{C}_{\gamma}(s)$ est constant. On pourra noter $D_{\gamma}(s)$ le disque de bord $\mathcal{C}_{\gamma}(s)$.
 - b) Donc le centre du cercle de courbure est constant, donné par

$$C(s) = \gamma(s) + \frac{1}{k}J(T(s)) = C_0.$$

Etudier $||C_0 - \gamma(s)||$. En déduire que l'image de γ appartient à un cercle dont on précisera le centre et le rayon.

2) On considère ici une courbe γ de courbure non-nulle croissante et qui vérifie

$$\iota \circ \gamma(s) = \gamma(1-s)$$

avec $\iota(x,y)=(-x,y)$, ie la réflexion par rapport à la droite Oy.

- a) Dessinez une courbe qui vérifie " $\iota \circ \gamma(s) = \gamma(1-s)$ ", sans se soucier de la courbure. Indiquez les points $\gamma(0)$, $\gamma(1)$, puis choisir un s et ajoutez les points $\gamma(s)$ et $\gamma(1-s)$.
- b) Calculez la nouvelle courbe

$$\overline{\gamma}(s) = (\iota \circ \gamma)(1-s).$$

En exprimant de deux manières différentes la courbure orientée \overline{k} de γ et celle de γ , notée k, montrer que la courbure k de γ est constante non-nulle. En déduire que γ est un arc de cercle.

^{1.} Pour réviser.

Feuille VIII - Exemple : Les courbes de Bézier

Vidéo - Les courbes de Bézier, par Frédéric Le Roux, Les 5 minutes Lebesgue https://www.youtube.com/watch?v=Ccxd6qzqFms

Définition. Soient trois points p^0 , p^1 , p^2 de \mathbb{R}^n . On définit le **morceau de Bézier de degré 2** de points de contrôles p^0 , p^1 , p^2 par

$$\alpha(t) = (1-t)^2 p^0 + 2(1-t)tp^1 + t^2 p^2, \quad t \in [0,1].$$

Remarque. Les morceaux de Bézier existent pour des ordres $n \ge 2$, en utilisant les polynômes de Bernstein de degré n.

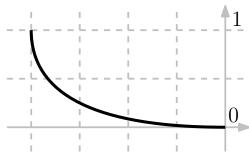
Exercice 1. Soit α le morceau de Bézier de degré 2 de la définition.

- 1. Calculer $\alpha(0)$, $\alpha(1)$, $\alpha'(0)$, $\alpha'(1)$ en fonction de p^0 , p^1 , p^2 .
- 2. Interpréter géométriquement le rôle des points p^0 , p^1 , p^2 .

Exercice 2. Soient

$$B_0 = (1-t)^2$$
, $B_1 = 2(1-t)t$, $B_2 = t^2$ et $c(t) = (c_x = 2t^2 - 2, c_y = t^2 - 2t + 1)$, $t \in [0, 1]$.

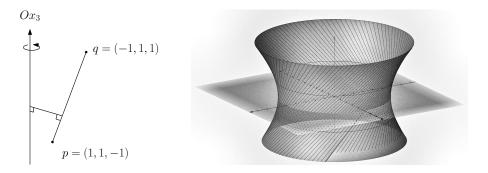
- 1. Exprimer les polynômes 1, t, t^2 dans la base $\{B_0, B_1, B_2\}$.
- **2.** Exprimer c_x et c_y dans la base $\{B_0, B_1, B_2\}$. En déduire les points de contrôle de c et les indiquer sur la figure ci-dessous :



Feuille IX - Paramétrisation des surfaces

Exercice 1. (Une surface de révolution)

- 1. Soient p = (1, 1, -1) et q = (-1, 1, 1). Donner une paramétrisation c du segment \overline{pq} .
- 2. Paramétrer la surface obtenue par la rotation de \overline{pq} autour de l'axe Ox_3 .

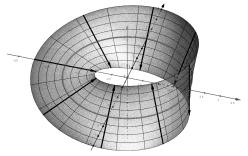


Exercice 2. (Le ruban de Moebius) Soient $r, R \in \mathbb{R}$ tels que 0 < r < R. Soit

$$\gamma_{\theta}(t) = (R, 0, 0) + tr(\sin \theta, 0, \cos \theta), \quad t \in [-1, 1]$$

le segment obtenu comme translation de (R, 0, 0) du segment $t \mapsto t \, r(\sin \theta, 0, \cos \theta)$.

- 1. Montrer que $\gamma_{\pi+\theta}(-t) = \gamma_{\theta}(t)$. Que peut-on dire sur leur image?
- 2. Paramétrer la surface $f(t,\theta)$ obtenue en faisant tourner le segment γ_{θ} autour de Oz pour un angle 2θ , pour $(t,\theta) \in [-1,1] \times [0,\pi]$. Quelle courbe obtient-on si on fixe t=0?



Exercice 3. (Une surface tubulaire) Soit la spirale

$$\gamma(t) = (3\cos(t), 3\sin(t), 2t), \ t \in \mathbb{R}$$

de repère de Frenet

$$T(t) = \frac{1}{\sqrt{13}}(-3\sin t, 3\cos t, 2), \quad N(t) = (-\cos t, -\sin t, 0), \quad B(t) = \frac{1}{\sqrt{13}}(2\sin t, -2\cos t, 3)$$

En posant Y:=N et $\widehat{Y}:=B$, paramétrer la surface tubulaire de rayon 1 autour de γ .

Exercice 4. (Une surface réglée) Soit $\alpha : \mathbb{R} \to \mathbb{R}^3$ et $\beta : \mathbb{R} \to \mathbb{R}^3$ des courbes données par $\alpha(t) = (0,0,t), \quad \beta(t) = (\cos t, \sin t, t).$

- 1. Paramétrer la surface réglée associée à ces courbes.
- 2. Quels sont les points réguliers de cette surface?

Feuille X - Tenseur métrique

Exercice 1. Soit le cylindre donné par

$$f(u) = f(u_1, u_2) = (\cos u_1, u_2, \sin u_1), \quad u \in D = [0, 2\pi] \times [-\pi, \pi]$$

- 1. Etudier la régularité de f.
- 2. Calculer le tenseur métrique de f.
- 3. Sur ce cylindre, on considère la courbe $\gamma = f \circ c$ avec

$$c(t) = (\pi + \rho \cos t, \, \rho \sin t), \quad t \in [0, 2\pi], \quad 0 < \rho < \pi.$$

- a. Donner explicitement la paramétrisation de γ .
- **b.** Calculer la longueur de γ par la méthode classique.
- c. Calculer la longueur de γ à l'aide du tenseur métrique.

Exercice 2. Considérons la sphère unité de \mathbb{R}^3 paramétrée par

$$f: [0, 2\pi] \times \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}^3$$

$$(u_1, u_2) \longmapsto (\cos u_2 \cos u_1, \cos u_2 \sin u_1, \sin u_2)$$

- 1. Calculer le tenseur métrique de la surface.
- 2. On regarde deux courbes sur la sphère, $\eta = f \circ a$ et $\gamma = f \circ b$ avec

$$a(s) = (0, s) \text{ pour } s \in [0, \pi/4],$$
 $b(t) = (t, h(t)) \text{ pour } t \in [0, \pi/4]$

avec h une fonction dérivable vérifiant h(0) = 0. Les courbes η et γ s'intersectent pour s = t = 0. En utilisant le tenseur métrique, exprimer l'angle entre ces deux courbes en ce point en fonction de h'(0).

3. Pour $\theta \in]0, \pi/2[$ fixé, on pose

$$\Omega_{\theta} = [0, 2\pi] \times] - \theta, \theta[.$$

On admet que f est injective sur Ω_{θ} . Calculer l'aire de $f(\Omega_{\theta})$.

Exercice 3. Soit U un ouvert de \mathbb{R}^2 et soit $\phi: U \to \mathbb{R}$ une fonction C^{∞} . On pose

$$f(u_1, u_2) = (u_1, u_2, \phi(u_1, u_2)), \quad u \in U.$$

- a) Est-ce que la surface f peut avoir un/des points singuliers? Sous quelle(s) condition(s)?
- b) Calculer le tenseur métrique de f.
- c) Trouver ϕ tel que la paramétrisation f conserve les longueurs.
- d) Trouver ϕ tel que f conserve les angles.
- e) Trouver ϕ tel que f conserve les aires.

Exercice +. Soit une surface régulière $f: D \to \mathbb{R}^3$, avec $D \subset \mathbb{R} \times]0, +\infty[$, de tenseur métrique

$$G(u) = \begin{bmatrix} \frac{1}{u_2^2} & 0\\ 0 & \frac{1}{u_2^2} \end{bmatrix}, \quad u \in D.$$

Soit la courbe $c:[a,b] \to D$, avec 0 < a < b, définie par c(t) = (0,t) et la courbe $\gamma = f \circ c$.

- 1. Calculer la longueur $\ell(\gamma)$ de la courbe γ .
- **2.** Que vaut $\ell(\gamma)$ lorsque a tend vers 0?

Feuille XI - Vecteur normal, Seconde forme fondamentale

Exercice 1. On considère le paramétrage régulier du tore $f: D \to \mathbb{R}^3$ donné par

$$f(u) = ((R + \rho \cos u_1) \cos u_2, (R + \rho \cos u_1) \sin u_2, \rho \sin u_1)$$

avec $R > \rho > 0$ et $D = [0, 2\pi] \times [0, 2\pi]$.

1. Calculer le vecteur normal n.

Dans la suite, on suppose $u = (\pi, \pi)$ et $A = (-1/\rho, 0)$.

- **2.** Calculer $v = f_{*,u}(A)$ dans $T_{f(u)}f(D)$.
- **3.** Soit P le plan engendré par (v, n(u)) et passant par f(u). Donner la définition, en terme d'ensemble, de P. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, quelle est la condition sur x_2 pour que $x \in P$?
- **4.** Soit $c(t) = (\pi \frac{t}{\rho}, \pi)$. En particulier

$$c(0) = u, \quad c'(0) = A.$$

On considère l'image de c sur le tore $\gamma = f \circ c$.

- **a.** Montrer que γ est dans P.
- **b.** Calculer la courbure normale du tore au point f(u) dans la direction v.

Exercice 2. On considère le paramétrage régulier du cylindre $f:D\to S\subset\mathbb{R}^3$ donné par

$$f(u_1, u_2) = (\cos u_1, \sin u_1, u_2), \quad D = [0, 2\pi] \times [-1, 1].$$

- a) Calculer la seconde forme fondamentale de f.
- b) Soit

$$v = v_1 f^1(\pi, 0) + v_2 f^2(\pi, 0) \in T_{f(\pi, 0)} S$$

Quelle relation v_1 et v_2 doivent vérifier pour que v soit unitaire?

- c) Pour $v \in T_{f(\pi,0)}S$ unitaire, calculer la courbure normal $k_{f(\pi,0)}(v)$ de S au point $f(\pi,0)$ dans la direction v et l'exprimer en fonction de v_2 .
- d) Trouver les $v \in T_{f(\pi,0)}S$ unitaires où la courbure normal $k_{f(0,\pi)}(v)$ atteint son maximum ou son minimum.

Nom / Prénom :
Exercice 1. (2 points) Donner un paramétrage du segment entre $p_1 = (2,3)$ et $p_2 = (-5,4)$, avec $t \in [0,1]$. $\Box c_1(t) = (2-7t,3+t), \Box c_2(t) = (2+7t,3-t), \Box c_3(t) = (-5-7t,4+t).$
Exercice 2. (2 points) Donner un paramétrage du cercle de rayon 1 de centre (3,3).
Exercice 3. (3 points) Trouver un changement de paramétrage linéaire $\varphi:[0,4]\to[1,2]$ qui change le sens de parcours de la courbe.
Exercice 4. (3 points) Calculer la longueur $\ell(c)$ de la courbe
$ \begin{array}{ccc} c & [0,1] & \longrightarrow & \mathbb{R}^3 \\ t & \longmapsto & (\cos(\frac{8}{3}t^{3/2}), \sin(\frac{8}{3}t^{3/2}), 2t - t^2). \end{array} $

Nom / Prénom :	
Exercice 1. (2 points) Donner une matrice de rotation d'angle $ heta$ autour de l'ax	e Ox
Exercice 2. (3 points) Etudier et justifier la régularité de	
$f(u,v) = (uv, u, v^2), (u,v) \in [-1,1] \times [-1,1]$	
	. .
	. .

$\beta(t) = (t, 0, t^2)$
Quel champ de vecteur $Y(t)$ peut-on utiliser parmi les vecteurs suivants ? Pourquoi ?
$Y_1(t) = (1, 0, 0), Y_2(t) = (0, 1, 0), Y_3(t) = (0, 0, 1).$
Exercice 4. (3 points) Soit
$f(u,v) = (u, v, \frac{u^2}{2} - \frac{v^2}{2}), (u,v) \in \mathbb{R}^2$
Calculer la matrice du tenseur métrique de f .

Exercice 3. (2 points) On veut construire un voisinage tubulaire de la courbe

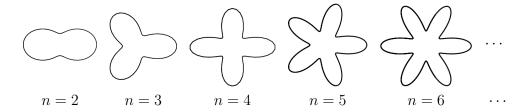
Nom / Prénom	:		
Exercice 1. Par	ramétrer la surface réglée asso	ociée à	
	$\alpha(t) = (0, t^3, t^2 - 1),$	$\beta(t) = (0, t^3, t^2)$	
	ner le tenseur métrique de $f(u,v) = (uv,u,v^2)$		

Exercice 3. Soit $f : [1, 2] >$	$\langle [-1,0] \to \mathbb{R}^3 \text{ une}$	surface de tenseur	métrique	
	$G(u,v) = \bigg($	$\left(\begin{array}{cc} u^2 & 0 \\ 0 & v^2 \end{array}\right)$		
Calculer l'aire de cette surfa	ace.			

Devoir Maison 1 (/10)

Exercice 1. (5 points) Soit n un entier tel que $n \ge 2$. Soit la courbe

$$c_1(t) = \Big((2 + \cos(nt))\cos(t), (2 + \cos(nt))\sin(t) \Big), \ t \in \mathbb{R}$$



- 1. Donner le(s) point(s) d'intersection entre c_1 et le cercle de centre (0,0) de rayon 2.
- **2.** Pour n=2, calculer l'angle entre c_1 et le cercle au point $c_1(\pi/4)$.

Exercice 2. (5 points) Soit la courbe de \mathbb{R}^3 :

$$c_2(t) = (e^t \cos t, e^t \sin t, 0), \quad t \in [0, \pi].$$

- 1. Calculer la longueur de c_2 .
- 2. Calculer le repère de Frenet de c_2 . Calculer sa courbure k(t) et sa torsion $\tau(t)$.

Devoir Maison 2 (/10)

Exercice 1. (7 points) Soient

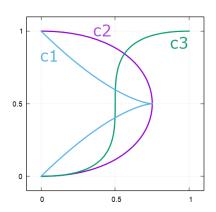
$$A = (0,0), \quad B = (1,0), \quad C = (1,1), \quad D = (0,1)$$

1a. (2pts) Donner une expression des morceaux de Bézier de degré 3 $\alpha = (x_{\alpha}, y_{\alpha})$ des points de contrôles $p^0 = A$, $p^1 = B$, $p^2 = C$, $p^3 = D$. Est-ce que α est régulière?

1b. (2pts) Montrer que α est symétrique par rapport à la droite y=1/2, ie qu'on a

$$x_{\alpha}(1-t) = x_{\alpha}(t), \quad (y_{\alpha}(1-t) - \frac{1}{2}) = -(y_{\alpha}(t) - \frac{1}{2})$$

- **2.** (2pts) Donner une expression des morceaux de Bézier de degré 3 β des points de contrôles $p^0 = A$, $p^1 = C$, $p^2 = B$, $p^3 = D$. Est-ce que β est régulière?
- 3. (1pt) Identifier α et β sur l'image ci-dessous.



Exercice 2. (3 points) Soit la courbe plane

$$c: \mathbb{R} \longrightarrow \mathbb{R}^2$$
$$t \longmapsto (\cos^3 t, \sin^3 t)$$

- 1. Est-ce que la courbe c est régulière? En quels points?
- 2. Calculer la courbure orientée de c (là où elle est définie).

Devoir Maison 2 (/10)

Exercice 1. (4 points) Soit la courbe plane

$$c: \mathbb{R} \longrightarrow \mathbb{R}^2$$

$$t \longmapsto (\cos^3 t, \sin^3 t)$$

- 1. Est-ce que la courbe c est régulière? En quels points?
- **2.** Calculer la courbure orientée de c (là où elle est définie).

Exercice 2. (3 points) Soient

$$A = (0,0), \quad B = (0,1), \quad C = (1,1).$$

- 1. Dessiner la courbe de Bézier α de points de contrôle $p^0=A, p^1=B, p^2=C$. Sur un autre dessin, représenter la courbe de Bézier β de points de contrôle $p^0=C, p^1=B, p^2=A$. Que peut-on dire de leur image?
- **2.** Donner une expression de α et de β .
- 3. Soit σ une permutation de $\{0,1,2\}$ donnée par

$$\sigma(0) = 2$$
, $\sigma(1) = 1$, $\sigma(2) = 0$.

Montrer que $\alpha_{\sigma}(t) = \sum_{i=0}^{2} B_{\sigma(i)}(t) p^{i}$ a la même image que α (par exemple en trouvant un changement de paramètre φ entre α et α_{σ}). Trouver un changement de paramètre qui envoie β sur α .

Exercice 3.(3 points)

1. Pour

$$B_0(t) = (1-t)^2$$
, $B_1(t) = 2t(1-t)$, $B_2(t) = t^2$,

montrer que $B_0(t) + B_1(t) + B_2(t) = 1$ pour tout t.

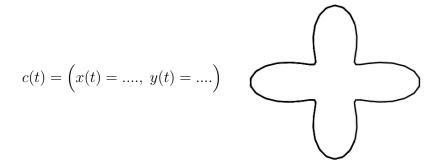
2. Soit une application affine f donnée par

$$\begin{array}{cccc} f: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & x & \longmapsto & ax+b \end{array}$$

avec $a \in \mathbb{R} \setminus \{0\}$ et $b \in \mathbb{R}^2$. Soit $c : [0,1] \to \mathbb{R}^2$ une courbe de Bézier de degré 2 de la forme $c(t) = \sum_{i=0}^2 B_i(t)p^i$. Montrer que considérer l'image par f de la courbe de Bézier c de points de contrôle p^0, p^1, p^2 revient à considérer la courbe de Bézier de points de contrôle $f(p^0), f(p^1), f(p^2)$. Calculer les points de contrôle de $f \circ c(t)$.

Devoir Maison (pas obligatoire) : Le but est d'écrire un exercice de la forme :

Exercice. Soit la courbe $c(t): \ldots \to \mathbb{R}^2$ avec



- 1. question 1
- 2. question 2

Instructions pour le Devoir Maison :

- **choisir une courbe** qui n'est pas un cercle ou un segment (par exemple sur mathcurve -> courbes 2D ou courbe 3D).
- fixer les paramètres, ie pas de "c(t) = (at, 0) avec $a \in \mathbb{R}$ " mais choisir a.
- $\mathbf{param\acute{e}trisation}$ euclidienne +
image (format png, jpg,...) par exemple tracer la courbe sur

https://www.geogebra.org/graphing?lang=fr

- deux questions telles que : (ensemble des calculs) < 1 page, (ensemble des calculs) < 15 minutes.
- pas de question dont la réponse est "oui" ou "non".

M'envoyer par e-mail:

le / les noms du groupe (1 ou 2 personnes), la paramétrisation, une image, les deux questions.

|--|

Le Lemniscate de Gerono

Exercice.	On	considère	la	courbe	donnée	par
Exercice.	$O_{\rm II}$	considere	1a	COULDE	donnee	pai

$$c(t) = (\sin(t), \sin(t)\cos(t)), \quad t \in [0, 2\pi]$$

$c(t) = (\sin(t), \sin(t)\cos(t)), t \in [0, 2\pi]$
1) Calculer la courbure orientée $k(t)$ de $c(t)$ pour $t=\pi/2$.

		m(t)	$) = c(t) + \frac{1}{k(t)}$	$\frac{1}{(t)}J(T(t))$		
				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
2.2) Calcule	er le rayon du	cercle de d	courbure $R(z)$	$\pi/2$).		
de ce cercle.	(si vous n'ave	ez pas réuss	si les questio	ns précédentes, v	ous pouvez do	
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant		ous pouvez do éométrique)	onner une "idée"
de ce cercle. d'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"
le ce cercle. l'où se trou 2 1.5 0.5 -0.5 -1	(si vous n'ave ave le cercle de	ez pas réuss courbure	si les questio en utilisant	ns précédentes, vesa signification g	ous pouvez do éométrique)	onner une "idée"

Nom	/	Prénom	:

Exercice.	On	considère	la	courbe	donnée	par
-----------	----	-----------	----	--------	--------	-----

$$c(t) = (\frac{1}{\sqrt{2}}t\cos(\ln t), \quad \frac{1}{\sqrt{2}}t\sin(\ln t)), \quad t \in [0.2, 4]$$

1) Calculer la courbure orientée $k(t)$ de $c(t)$ pour $t=1$.

2) Calculer le centre de courbure $m(t)$ en $t=1$, sachant																	
					m(t)	t) = c($(t) + \frac{1}{h}$	$\frac{1}{k(t)}J$	T(T(t))))							
			• • • • •												• • • •	• • • •	• •
			• • • • •										• • • •		• • • •		• •
	• • • • • •		• • • • •		• • • • •		• • • • • •				• • • • • •		• • • •		• • • •	• • • •	• •
> -		_					_	(.)									
2.2)	Calcule	r le ray	yon d	u cerc													
			• • • • •														
១១ \ (Ya ah am	+ ~	1 / . / 2	2 . 0	7 da	aain an	1	mala .	d	ourbure	, do o	on 4		1	***	ala	t
			• • • • •														
	• • • • • •		• • • • •				• • • • • •				• • • • • •		• • • •		• • • •		• •
1.6											(1/sqrt(2))*t*cos(log(t)), (1/sqrt(2))*t*sin(l	og(t))	<u> </u>
1.4	_																<u>.</u>
4.0									١								
1.2																	
1																	
0.8	_								-								
0.6	_																
									/								
0.4								/									
0.2	_																
0				1													
-0.2				/													
V. <u>L</u>					$\overline{}$												