
Making Corrugations

Mélanie Theillière

June 10, 2022

Abstract

The aim of this lecture is to provide the mathematical tools for the

construction of corrugated surfaces. We �rst present a fundamental

formula, called the "Corrugation Process" (Section 1), and show how

to apply it to recover the original Thurston's corrugations (Section 2).

We then turn to a more general problem: given one or more di�erential

constraints, how to construct surfaces that satisfy these constraints by

means of the corrugation process? The answer requires the introduction

of the 1-jet space, the notion of di�erential relation (Section 3) and to

distinguish between formal and holonomic solutions (Section 4). Once

this formalism is in place, we apply it to a concrete situation, that of

the desingularization of a cone. The constructive nature of the theory

allows us to provide explicit expressions and numerous visualizations

(Section 6).
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All de�nitions and constructions of this lecture are presented for the case of
surfaces in R3. The case of curves is easily deduced from the case of surfaces.
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1 The Corrugation Process

In this section, we de�ne the Corrugation Process and we give its fundamental
properties.

De�nition 1. Let f0 : [0, 1]
2 → R3 be a smooth map. Let γ : [0, 1]2 ×R/Z →

R3 be a smooth loop family which associates to any point x of [0, 1]2 a loop
γ(x, ·). Let j ∈ {1, 2} the direction of corrugations and N ∈ R∗

+ the number
of corrugations. For any x = (x1, x2), we set

f1(x) := f0(x) +
1

N

∫ Nxj

t=0

(
γ(x, t)− γ(x)

)
dt (1)

where γ(x) :=
∫ 1

0
γ(x, s)ds is the average of the loop γ(x, ·). We say that f1 is

obtained by a Corrugation Process from f0.

Note that we can immediately state the following property:

(P0) for any x where the loop γ(x, ·) is constant, we have f1(x) = f0(x).

In particular, if somewhere the loop family is reduced to a point, then the map
f1 = f0 at this point.

Proposition 2. If the loop family γ satis�es the condition

∀x ∈ [0, 1]2, γ(x) = ∂jf0(x) (2)

then the map f1 satis�es the following properties

(P1) ∥f1 − f0∥∞ = O(1/N)

(P2) for any i ̸= j, we have ∥∂if1 − ∂if0∥∞ = O(1/N)

(P3) ∂jf1(x) = γ(x,Nxj) +O(1/N)

Note that the number of corrugations N allows to control the closeness
between the new map f1 and the source map f0 (Property P1), and also between
the derivatives ∂if1 and ∂if0 if the derivative is not in the direction ∂j of the
corrugation (Property P2). So, modulo a controlled error, we just modify one
partial derivative, and this derivative is close to the image of the loop family
γ (Property P3).

Proof. To have Property P1, we �rst have to note that the map

(x, u) 7−→
∫ u

t=0

(
γ(x, t)− γ(x)

)
dt

is 1-periodic for the variable u, so bounded and we have

f1(x) = f0(x) +
1

N
.O(1) = f0(x) +O

(
1

N

)
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which is Property P1. Now considering the partial derivatives for ∂i ̸= ∂j, we
have

∂if1(x) = ∂if0(x) +
1

N
∂i

(∫ Nxj

t=0

γ(x, t)− γ(x)dt

)
= ∂if0(x) +O

(
1

N

)
.

This shows Property P2. For Property P3, by derivating we have:

∂jf1(x) = ∂jf0(x) +
1

N
∂j

(∫ Nxj

t=0

γ(x, t)− γ(x)dt

)
= ∂jf0(x) + γ(x,Nxj)− γ(x) +

1

N

∫ Nxj

t=0

∂j

(
γ(x, t)− γ(x)

)
dt

= ∂jf0(x) + γ(x,Nxj)− γ(x) +O

(
1

N

)
.

Since γ(x)− ∂jf0(x) = 0, we obtain P3.

2 First example: Thurston's corrugations

In this section, we use the Corrugation Process to get the Thurston's formula
of corrugation [2]. In particular in this section we set

γ(x, t) = −r4π cos(4πt) + ir4π cos(2πt).

In the following, we denote

Γ : (x, u) 7−→
∫ u

t=0

(
γ(x, t)− γ(x)

)
dt

and its components Γ1 + iΓ2 given by

Γ1(x, u) = −r sin(4πu), Γ2(x, u) = 2r sin(2πu).

Basic example. Let f0 : x 7→ x+i0 be the map that parametrizes a segment
in the complex plane. The Corrugation Process writes

f1(x) = f0(x) +
1

N

[
Γ1(x,Nx) + iΓ2(x,Nx)

]
.

The image of f1 depends on N and r. In [2], Thurston summarizes this formula
by the following picture

+ =
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where Γ1, Γ2 are the component of the eight-shaped curve. By applying the
Corrugation Process, we can build

In this picture N = 2 and r = 1/2, 1/4, 1/8.

There is a threshold r∗ such that the image has no self-intersection if r < r∗.
Modifying N is close to zoom in or zoom out.

For any regular curve f0. Let now consider a map f0 : [0, 1] → C such
that for any x ∈ [0, 1] we have f ′

0(x) ̸= 0. We add corrugations to f0 in the
following way:

f1(x) = f0(x) +
1

N

[
Γ1(x,Nx)

f ′
0(x)

∥f ′
0(x)∥

+ Γ2(x,Nx)i
f ′
0(x)

∥f ′
0(x)∥

]
If f0(x) = exp(i2πx), N = 8 and r = 2, we obtain

If we corrugate the segment a second time, with (N1, r1) = (2, 1
8
) and (N2, r2) =

(20, 1
16
) we obtain

For any curve f0, regular or singular. One of the aims of this construc-
tion is to remove singular points, so let us now consider a singular map f0. In
particular there exists (at least) one point x0 such that f ′

0(x0) = 0. This means

the previous formula, whose corrugations are de�ned for (
f ′
0(x)

∥f ′
0(x)∥

, i
f ′
0(x)

∥f ′
0(x)∥

), is

now not well-de�ned at x0. To replace the tangent unit vector �eld
f ′
0(x)

∥f ′
0(x)∥

we

have to choose a unit vector �eld α(x). We now set

f1(x) = f0(x) +
1

N

[
Γ1(x,Nx)α(x) + Γ2(x,Nx)iα(x)

]
Testing it on a segment, we obtain
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for N = 2, r = 1/2, α(x) = 1 and α(x) = exp(i2π/6).

Let us now consider f0(x) = cos3(πx)+ i sin3(πx) which is singular for x = 0, 1
2

and 1.

Setting α(x) = −1, r = 0.8 and for N = 4 and 20 we obtain

3 The 1-jet space and di�erential relations

In this section, we introduce the basic objects needed to formalize the con-
straints that the surface undergoes: the 1-jet space and the notion of di�er-
ential relation. As an illustration, we consider two historical constraints: the
immersion and the ϵ-isometric constraints.

De�nition 3. The 1-jet space J1([0, 1]2,R3) of maps from [0, 1]2 to R3 is the
set de�ned to be

J1([0, 1]2,R3) := [0, 1]2 × R3 × (R3)2.

De�nition 4. The 1-jet of a C1-map f : [0, 1]2 → R3 is the map given by

j1f : [0, 1]2 −→ J1([0, 1]2,R3)
x 7−→ (x, f(x), ∂1f(x), ∂2f(x))

De�nition 5. A di�erential relation of order 1 is a subset R of the 1-jet space
J1([0, 1]2,R3).

A map f is regular or is an immersion if, for any x, its partial derivatives
∂1f(x), ∂2f(x) are linearly independents, or equivalently if, for any x, the rank
of its di�erential dfx is maximal.

The relation of Immersions is given by

I := {(x, y, v1, v2) | v1, v2 are linearly independents}
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So if f is an immersion, then for any x,

j1f(x) = (x, f(x), ∂1f(x), ∂2f(x)) ∈ I.

In the case of curves, ie for m = 1, we have

I := {(x, y, v1) | v1 ̸= 0} = [0, 1]× R3 × (R3\{0})

Recall that a metric g : [0, 1]2 → M2(R) is a map which associates to any
x ∈ U a symmetric de�nite-positive matrix often denoted by

g =

(
E F
F G

)
with EG − F 2 > 0 and E > 0. For the sake of clarity, in the following we
denote

g = (gij) =

(
g11 g12
g21 g22

)
which is a symmetric positive-de�nite matrix, so g12 = g21, g11g22 − g212 > 0
and g11 > 0.

A map f : ([0, 1]2, g) → (R3, ⟨·, ·⟩), with g a metric, is isometric if it pre-
serves the length of curves. This condition writes

∀x ∈ [0, 1]2, ∀i, j, gij = ⟨∂if(x), ∂jf(x)⟩

The isometric relation is very constraining. Traditionally, we associate to it a
less constraining relation, the one of ϵ-isometric maps.

For ϵ > 0, the relation of ϵ-Isometric Immersions from ([0, 1]2, g), with
g a metric, to (R3, ⟨·, ·⟩) is given by

Is(ϵ) := {(x, y, v1, v2) | |gij − ⟨vi, vj⟩| < ϵ}.

For m = 1, ie if we consider the relation of ϵ-Isometric Immersions Is for
curves, we have

Is(ϵ) := {(x, y, v1) | |g11 − ∥v1∥2| < ϵ} = [0, 1]× R3 × S

with S the ball of radius
√
g11 + ϵ minus the ball of radius

√
g11 − ϵ. So S is a

thickening of the sphere of radius
√
g11.

4 Formal and holonomic solutions

In a pioneering work, Nash used the idea of corrugations to solve the isometric
relation [3]. About �fteen years later, Gromov understood how to generalize
Nash's approach to solve large families of di�erent constraints: the convex inte-
gration theory was born [1]. This theory deforms a kind of sub-solution, called
formal solution, into a real solution. This deformation is built by successively
applying a Corrugation Process.
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Formal and holonomic solutions. Let R be a di�erential relation and let

σ : [0, 1]2 −→ J1([0, 1]2,R3)
x 7−→ (x, f(x), v1(x), v2(x))

De�nition 6. The map σ is a formal solution of R if its image lies in R. If
moreover there exists a map f : [0, 1]2 → R3 such that σ = j1f then σ is a
holonomic solution.

The idea is to deform a formal solution to a holonomic one by using corru-
gations.

On the top curve, the navy blue vector �eld v is not the derivative of the curve, but on the

bottom curve the navy blue vector �eld v is the derivative of the curve.

The Corrugation Process is essentially a 1-dimensional deformation. Then we
restrict the relation to only one direction.

De�nition 7. Let R be a di�erential relation, σ = (x, y, v1, v2) be a point of
this relation. The slice of R over σ in the direction 1 is the subset

R(σ, ∂1) := {w ∈ R3 | (x, y, w, v2) ∈ R}

and in the direction 2

R(σ, ∂2) := {w ∈ R3 | (x, y, v1, w) ∈ R}

Examples of slices. If m = 1, the slice is just the projection on the third
component of the 1-jet space. Let us consider m = 2 and j = 1. The slice of
the relation of immersions I for surfaces in the direction 1 is

I(σ, ∂1) := {w ∈ R3 | (x, y, w, v2) ∈ I}
= {w ∈ R3 |w and v2 lin. independents}
= R3\Rv2

And the slice of ϵ-isometric maps Is(ϵ) for surfaces in the direction 1 is

Is(ϵ, σ, ∂1) := {w ∈ R3 | (x, y, w, v2) ∈ Is(ϵ)}
= {w ∈ R3 | |g11 − ∥w∥2| < ϵ and |g12 − ⟨w, v2⟩| < ϵ}
= S ∪H(ϵ)

7



with S a thickening of the sphere of radius
√
g11 and with H(ϵ) an ϵ-thickening

of the hyperplane

H := {v | ⟨v, v2⟩ = g12}.
So the slice of isometric maps for surfaces in R3 is

‖w‖2 = g11

〈w, v2〉 = g12

Deformation of a formal solution to a holonomic one. So to build a
holonomic solution, we will deform a formal solution by using the Corrugation
Process. Precisely let σ : x 7→ (x, f(x), v1(x), v2(x)) be a formal solution.
Assuming there exists a loop family

γ1 : [0, 1]2 × R/Z −→ R3

(x, t) 7−→ γ1(x, t)

such that

(a) for any x, the image of γ1(x, ·) lies in R(σ(x), 1);

(b) for any x, the average γ1(x) = ∂1f(x);

then, by the Corrugation Process, we build a map f1 such that

σ1 : x 7→ (x, f1(x), ∂1f1(x), v2(x)) ∈ R

if the relation is open and if the number N1 of corrugations is large enough.
Then, assuming the existence of a loop family γ2 with similar properties, we
can build by corrugation a map f2 such that

σ2 = j1f2 : x 7−→ (x, f2(x), ∂1f2(x), ∂2f2(x)) ∈ R.

So we have obtain a holonomic solution of R.

The question of the properties that the relation has to satisfy to ensure the
existence of such a loop family is not addressed in this lecture.

5 In�uence of the choice of γ

The Corrugation Process requires choosing a path γ satisfying the two prop-
erties (a) and (b). These two properties being not very constraining, there is
a large degree of freedom in the choice of γ. In this paragraph we show the
in�uence of the modi�cation of some parameters on the shape of the resulting
surface.
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Modi�cation of the image of γ. We can modify the shape of the image
of γ provided its image lies in the relation and its average satis�es (b). In the
two pictures below, we consider the two following choices

γ1(t) = eiα0 cos(2πt), γ2(t) = cos(2πt) + i sin(2πt)

where α0 is chosen such that γ1 = 0.

At the left: an arc-of-circle-shaped loop; at the right: a circle-shaped loop.

Modi�cation of the parametrization of γ. Here we consider the two
following parametrization of an arc of circle of angle π/3:

γ3(t) = exp(i
π

3
cos(2πt)) + c3, γ4(t) = exp(i g(t)) + c4

where c3 and c4 are constants such that the loops satisfy property (b), and
where g(t) a piecewise linear map which is equal to π

3
on [0, 1

4
− η] ∪ [3

4
+ η, 1]

and is equal to −π
3
on [1

4
+η, 3

4
−η]. The �gures below show the corresponding

corrugations.

At the left: corrugations obtained with γ3, at the right: with γ4.

6 Explicit constructions on a cone

In this paragraph, we will show the power of Convex Integration through a
very simple example, that of the desingularization of a cone. This is obviously
a "toy" example since such a desingularization is not a mathematical problem.
But the consideration of this example allows to easily illustrate the variety
of solutions o�ered by the Convex Integration, this variety being itself the
consequence of the vast degree of freedom allowed by the choice of the loop
family γ.
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Initial map. Let f0 : [0, 1] × [−1, 1] → R3 be the parametrization of a
truncated cone given by

f0 : [0, 1]× [−1, 1] −→ R3

(x1, x2) 7−→ (x2 cos(2πx1), x2 sin(2πx1), x2)

Computing the partial derivatives, we obtain

∂1f0(x1, x2) = (−2πx2 sin(2πx1), 2πx2 cos(2πx1), 0)

∂2f0(x1, x2) = (cos(2πx1), sin(2πx1), 1)

Direction of corrugation. Note that the partial derivative ∂1f0 vanishes
for (x1, x2) ∈ [0, 1] × {0}. To have an immersion, we will build a new map
f1 adding corrugations on f0 in the direction ∂1 such that the new partial
derivative ∂1f1 does not vanish and is linearly independent to ∂2f0 (which is
almost unchanged by the Corrugation Process).

Formal solution. As the partial derivative ∂2f0 never vanishes, it is enough
to �nd a vector �eld v1 which does not vanish and is linearly independent to
∂2f0 to have a formal solution

σ = ((x1, x2), f0, v1, ∂2f0)

of the relation of immersions. By modifying ∂1f0 we can choose

v1(x) := (− sin(2πx1), cos(2πx1), 0)

which never vanishes and which is linearly independent to ∂2f0. In the follow-
ing, we will use

n(x) :=
v1(x) ∧ ∂2f0(x)

∥v1(x) ∧ ∂2f0(x)∥

which coincides with the normal vector of the cone where it is well-de�ne.

Loop family for immersions (1). To build an immersion, we have to
choose a loop whose image lies in the slice

I(σ, ∂1) := {w ∈ R3 | (x, y, w, ∂2f0) ∈ I}
= {w ∈ R3 |w and ∂2f0 lin. independents}
= R3\R∂2f0

and whose average is ∂1f0. Let us consider

γ : (x, t) 7→ γ(x, t) = r(x)
[
cos(2πt)

v1(x)

∥v1(x)∥
+ sin(2πt)n(x)

]
+ ∂1f0(x)

be a circle of radius r(x) and of center ∂1f0(x).
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R∂2f0(x)

∂1f0(x)

The condition on the average is satis�ed, we have γ(x) = ∂1f0(x), and we have
to choose r(x) such that

r(x) > dist(∂1f0(x), ∂2f0(x)) =
√
(2πx2)2 + 2

This condition will allow to ensure the circle does not intersect the line spanned
by ∂2f0(x). As x2 ∈ [−1, 1], for example we can choose

r(x) := 4π.

Corrugated map (1). By using the Corrugation Process with the previous
parameters, we build from a cone the following surface

The corrugated map f1 with N = 6.

By looking the corrugated surface on the subsets [0, 1] × [−1,−1 + 1
6
],

[0, 1]× [−1,−1 + 3
6
],... we obtain
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View from the top View from the bottom
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Loop family for immersions (2). By curiosity, we can switch the roles of
v1(x)

∥v1(x)∥ and n(x), then we consider

γ : (x, t) 7→ γ(x, t) = r(x)
[
cos(2πt)n(x) + sin(2πt)

v1(x)

∥v1(x)∥

]
+ ∂1f0(x).
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Corrugated map (2). With the previous parameters, we obtain

The corrugated map f1 with N = 6.

Restricting f1 to [0, 1]×[−1,−1+ 1
6
], [0, 1]×[−1,−1+ 3

6
], [0, 1]×[−1,−1+ 5

6
]

we have

View from the top View from the bottom
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Loop family for immersions (3). Let us now consider an arc-shaped loop
family

γ : (x, t) 7→ r(x)
[
cos(α cos(2πt))

v1(x)

∥v1(x)∥
+ sin(α cos(2πt))n(x)

]
+ ∂1f0(x).

In this case,

γ(x) = r(x)

∫ 1

t=0

cos(α cos(2πt))dt
v1(x)

∥v1(x)∥

= r(x)J0(α)
v1(x)

∥v1(x)∥
+ ∂1f0(x)

where J0 is the Bessel function of order 0. So for α ≈ 2.4 the �rst zero of J0,
the loop γ satis�es the average condition.

R∂2f0(x)

∂1f0(x)

Loop family for immersions (4). Let us now consider an arc-shaped loop
family

γ : (x, t) 7→ r(x)
[
(cos(g(t))− 8

π
ϵ)

v1(x)

∥v1(x)∥
+ sin(g(t))n(x)

]
+ ∂1f0(x).

with g(t) a piecewise linear map given by

g(t) =



π
2

t ∈ [0, 1
4
− ϵ]

− π
2ϵ
t+ 1

4
π
2ϵ

t ∈ [1
4
− ϵ, 1

4
+ ϵ]

−π
2

t ∈ [1
4
+ ϵ, 3

4
+ ϵ]

π
2ϵ
t− 3

4
π
2ϵ

t ∈ [3
4
− ϵ, 3

4
+ ϵ]

π
2

t ∈ [3
4
− ϵ, 1]
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The average of the loop is

γ(x) = ∂1f0(x)

R∂2f0(x)

∂1f0(x)∂1f0(x)

Corrugated map (4). With the previous parameters, we obtain

The corrugated map f1 with N = 6.
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Remark on these examples. Note that we have only modi�ed the loop
family without change the formal solution (here the vector �eld v1). For exam-
ple, we can choose a formal solution which equals to the 1-jet of f0 except in
a neighborhood of its singular point. This choice allows to modify only locally
the surface (see my webpage or my PhD thesis [4] for such examples).
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