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Abstract

The aim of this lecture is to provide the mathematical tools for the
construction of corrugated surfaces. We first present a fundamental
formula, called the "Corrugation Process" (Section 1), and show how
to apply it to recover the original Thurston’s corrugations (Section 2).
We then turn to a more general problem: given one or more differential
constraints, how to construct surfaces that satisfy these constraints by
means of the corrugation process? The answer requires the introduction
of the 1-jet space, the notion of differential relation (Section 3) and to
distinguish between formal and holonomic solutions (Section 4). Once
this formalism is in place, we apply it to a concrete situation, that of
the desingularization of a cone. The constructive nature of the theory
allows us to provide explicit expressions and numerous visualizations
(Section 6).
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All definitions and constructions of this lecture are presented for the case of

surfaces in R3. The case of curves is easily deduced from the case of surfaces.



1 The Corrugation Process

In this section, we define the Corrugation Process and we give its fundamental
properties.

Definition 1. Let fj : [0,1]> — R® be a smooth map. Let v : [0,1]* x R/Z —
R3 be a smooth loop family which associates to any point z of [0,1]? a loop
y(z,-). Let j € {1,2} the direction of corrugations and N € R* the number
of corrugations. For any x = (z1,z5), we set
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where J(z) := fol v(x, s)ds is the average of the loop vy(x,-). We say that f; is
obtained by a Corrugation Process from f;.
Note that we can immediately state the following property:
(Py) for any x where the loop 7(z,-) is constant, we have fi(z) = fo(z).

In particular, if somewhere the loop family is reduced to a point, then the map
f1 = fo at this point.

Proposition 2. If the loop family v satisfies the condition
va € (0,1, F(z) = 0;fo(=) (2)
then the map fi satisfies the following properties
(P1) [[f1 = folle = O(1/N)
(P2) for any i # j, we have ||0;f1 — 9 follc = O(1/N)
(P3) 0;fi(x) = ~(z, Naj) + O(1/N)

Note that the number of corrugations N allows to control the closeness
between the new map f; and the source map fy (Property P;), and also between
the derivatives 0;f; and 0, fo if the derivative is not in the direction 0; of the
corrugation (Property P). So, modulo a controlled error, we just modify one
partial derivative, and this derivative is close to the image of the loop family
v (Property P3).

Proof. To have Property P;, we first have to note that the map

(x,u) —> /t:O (fy(x, t) — W(x))dt

is 1-periodic for the variable u, so bounded and we have

1
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file) = fol@)+5-0(1) = fo(z) + O <N)
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which is Property P;. Now considering the partial derivatives for 0; # 0;, we
have

ofia) = o)+ o ( [ e o))

=0

— Bfo(x) + O (%) |

This shows Property P». For Property Ps, by derivating we have:
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difi(x) = 0;fo(x)+ %aj (/t

=0

(o) - w)dt)

1 Nz;
= Oifo(w) 9w Nag) =3() + 7 |05 (2l 1) = 7))o
— 0fle) + (o) - 0) 40 (7).
Since 7(z) — 0; fo(x) = 0, we obtain P;. O

2 First example: Thurston’s corrugations

In this section, we use the Corrugation Process to get the Thurston’s formula
of corrugation [2]. In particular in this section we set

v(x,t) = —rdm cos(4nt) + irdm cos(27t).

In the following, we denote

I (z,u) — t—uo (v(, t) — 7(z))dt

and its components ['y + [’y given by
[y(x,u) = —rsin(dru), Dy(x,u) = 2rsin(2mu).

Basic example. Let fy: x +— x40 be the map that parametrizes a segment
in the complex plane. The Corrugation Process writes

1 )
h@) = fol@)+ 5 Fl(x,N:v)Jrng(x,Nm)].

The image of f; depends on N and r. In [2|, Thurston summarizes this formula

by the following picture




where [';, I'y are the component of the eight-shaped curve. By applying the
Corrugation Process, we can build

B

In this picture N =2 and r =1/2, 1/4, 1/8.

There is a threshold 7* such that the image has no self-intersection if r < r*.
Modifying N is close to zoom in or zoom out.

For any regular curve f). Let now consider a map fy : [0,1] — C such
that for any x € [0, 1] we have f{(z) # 0. We add corrugations to fy in the

following way:
_ 1 fo(z)
i) = fola) + 5 7@

If fo(x) = exp(i2mx), N = 8 and r = 2, we obtain

- Jo(z) ]
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+ I'y(z, Nz)
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If we corrugate the segment a second time, with (Ny,71) = (2, 1) and (N, o) =

(20, 75) we obtain

REREE, = "5

For any curve fj, regular or singular. One of the aims of this construc-
tion is to remove singular points, so let us now consider a singular map fy. In

particular there exists (at least) one point xq such that f{(zo) = 0. This means
@) R
176G~ o ()1l 72
now not well-defined at xy. To replace the tangent unit vector field % we
0

the previous formula, whose corrugations are defined for (

have to choose a unit vector field a(z). We now set

fi(x) = fo(z) + N

Testing it on a segment, we obtain

I'i(z, Nz)a(z) + Iy(z, No)io(x)
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for N =2,r=1/2, a(z) =1 and a(z) = exp(i27/6).

Let us now consider fy(z) = cos3(7m) + i sin®(mz) which is singular for z =0, 1
and 1.

Setting a(z) = —1, r = 0.8 and for N = 4 and 20 we obtain

o AL

3 The 1-jet space and differential relations

In this section, we introduce the basic objects needed to formalize the con-
straints that the surface undergoes: the 1-jet space and the notion of differ-
ential relation. As an illustration, we consider two historical constraints: the
immersion and the e-isometric constraints.

Definition 3. The 1-jet space J'([0,1]%,R?) of maps from [0, 1]? to R? is the
set defined to be

JH[0,1]%,R?) := [0,1]* x R? x (R*)?.
Definition 4. The 1-jet of a C'-map f : [0,1]> — R? is the map given by

jlf: [0,1]2 — Jl([0,1]2,R3)
x  — (z, f(x),0,f(x),0:f(x))

Definition 5. A differential relation of order 1 is a subset &% of the 1-jet space
JH([0,1]%, R3).

A map f is reqular or is an immersion if, for any z, its partial derivatives
01 f(x), O2f (x) are linearly independents, or equivalently if, for any x, the rank
of its differential df, is maximal.

The relation of Immersions is given by

I :={(x,y,v1,vq) | v1, vy are linearly independents}
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So if f is an immersion, then for any =z,

3 f(x) = (, f(2),01f(2), s f (x)) € T

In the case of curves, ie for m = 1, we have
J = @y, v) o #£ 0} =[0,1] xR x (R*\{0})

Recall that a metric g : [0,1]*> — M(R) is a map which associates to any
x € U a symmetric definite-positive matrix often denoted by

(5 5)

with EG — F? > 0 and E > 0. For the sake of clarity, in the following we

denote
— () — [ 911 12
9= 9u) ( 921 G922 )

which is a symmetric positive-definite matrix, so gio = g1, g11g22 — g9 > 0
and g1; > 0.

A map f: ([0,1)%,9) = (R3 (-,-)), with g a metric, is isometric if it pre-
serves the length of curves. This condition writes

Vo € [0,1% Vi, j, g = (0:f (), 0;f (x))

The isometric relation is very constraining. Traditionally, we associate to it a
less constraining relation, the one of e-isometric maps.

For € > 0, the relation of e-Isometric Immersions from ([0, 1]?, g), with
g a metric, to (R3, (-,-)) is given by

I3(€) == {(z,y,v1,v2) | |gij — (vi,v3)| < e}

For m = 1, ie if we consider the relation of e-Isometric Immersions % for
curves, we have

I3(e) = {(@,y,v1) g — [nll’| <e} =[0,1] xR® x §

with S the ball of radius /g11 + € minus the ball of radius /g;; —€. So S'is a
thickening of the sphere of radius /g1

4 Formal and holonomic solutions

In a pioneering work, Nash used the idea of corrugations to solve the isometric
relation [3]. About fifteen years later, Gromov understood how to generalize
Nash’s approach to solve large families of different constraints: the convex inte-
gration theory was born [1]. This theory deforms a kind of sub-solution, called
formal solution, into a real solution. This deformation is built by successively
applying a Corrugation Process.



Formal and holonomic solutions. Let £ be a differential relation and let

o: [0,1]* — J([0,1]*,R?)
r o (z, f(z),v1(x),v(x))

Definition 6. The map o is a formal solution of R if its image lies in &. If
moreover there exists a map f : [0,1]* — R3 such that ¢ = j'f then o is a
holonomic solution.

The idea is to deform a formal solution to a holonomic one by using corru-
gations.

W

On the top curve, the navy blue vector field v is not the derivative of the curve, but on the
bottom curve the navy blue vector field v is the derivative of the curve.

The Corrugation Process is essentially a 1-dimensional deformation. Then we
restrict the relation to only one direction.

Definition 7. Let &# be a differential relation, ¢ = (z,y,v1,v2) be a point of
this relation. The slice of £ over ¢ in the direction 1 is the subset

R(0,01) :={w € R®| (2,9, w,v;) € R}
and in the direction 2

R(0,0) :={w € R®| (x,y,v,w) € R}

Examples of slices. If m = 1, the slice is just the projection on the third
component of the 1-jet space. Let us consider m = 2 and j = 1. The slice of
the relation of immersions # for surfaces in the direction 1 is

F(0,0) = {weR|(z,y,w,v) € I}
= {w € R*|w and v, lin. independents}
= RB\RUQ

And the slice of e-isometric maps F(e) for surfaces in the direction 1 is

Fle,0,00) = {weR?|(z,y,w,vy) € H(e)}
= {w e R[gu — [lwl]*| < e and [g12 — (w, va)] < ¢}
= SUH(e)



with S a thickening of the sphere of radius /g1 and with H(e) an e-thickening
of the hyperplane

H :=A{v]|{v,v9) = g12}.
So the slice of isometric maps for surfaces in R? is

(w, Uz> = g12

H"LUH2 = g1

Deformation of a formal solution to a holonomic one. So to build a
holonomic solution, we will deform a formal solution by using the Corrugation
Process. Precisely let o : © — (z, f(x),v1(x),v2(x)) be a formal solution.
Assuming there exists a loop family

m: [0,1*xR/Z — R?
(z,t) — 7(x,t)
such that
(a) for any z, the image of v;(z,-) lies in R (o(x),1);

(b) for any x, the average 7i(z) = 01 f(x);
then, by the Corrugation Process, we build a map f; such that
o1: x> (z, fi(x),01fi(z),ve(x)) € R

if the relation is open and if the number N; of corrugations is large enough.
Then, assuming the existence of a loop family 5 with similar properties, we
can build by corrugation a map fs such that

oy =j'forx— (z, f2(x), 01 fo(x), D2 fo(x)) € R.

So we have obtain a holonomic solution of &.

The question of the properties that the relation has to satisfy to ensure the
existence of such a loop family is not addressed in this lecture.

5 Influence of the choice of ~

The Corrugation Process requires choosing a path v satisfying the two prop-
erties (a) and (b). These two properties being not very constraining, there is
a large degree of freedom in the choice of 4. In this paragraph we show the
influence of the modification of some parameters on the shape of the resulting
surface.



Modification of the image of v. We can modify the shape of the image
of v provided its image lies in the relation and its average satisfies (b). In the
two pictures below, we consider the two following choices

Yy (t) = ef0cos@m) o () = cos(2nt) + i sin(2mt)

where o is chosen such that 77 = 0.

SRS

At the left: an arc-of-circle-shaped loop; at the right: a circle-shaped loop.

Modification of the parametrization of 7. Here we consider the two
following parametrization of an arc of circle of angle 7/3:

(t) = expli cos(2nt)) +es, (t) = explig(t)) + s

where c¢3 and ¢4 are constants such that the loops satisfy property (b), and
where g(t) a piecewise linear map which is equal to ¥ on [0, 3 — ] U [2 + 1, 1]
and is equal to —% on [}l +1, Z% —mn)]. The figures below show the corresponding
corrugations.

AVAVEERAVAY

At the left: corrugations obtained with ~s, at the right: with 4.

6 Explicit constructions on a cone

In this paragraph, we will show the power of Convex Integration through a
very simple example, that of the desingularization of a cone. This is obviously
a "toy" example since such a desingularization is not a mathematical problem.
But the consideration of this example allows to easily illustrate the variety
of solutions offered by the Convex Integration, this variety being itself the
consequence of the vast degree of freedom allowed by the choice of the loop
family ~.



Initial map. Let f; : [0,1] x [-1,1] — R3 be the parametrization of a
truncated cone given by

fo: [0,1] x[-1,1] — R3
(21, 22) — (w9 cos(2mxy), xosin(27my), o)

Computing the partial derivatives, we obtain

O1fo(xr,x0) = (—2mxosin(27xy), 2way cos(2mzy), 0)
Oofo(x1,22) = (cos(2mmxy), sin(27xy), 1)

Direction of corrugation. Note that the partial derivative 0, fy vanishes
for (zy1,29) € [0,1] x {0}. To have an immersion, we will build a new map
f1 adding corrugations on fy in the direction 0; such that the new partial
derivative 0y f; does not vanish and is linearly independent to 0y fo (which is
almost unchanged by the Corrugation Process).

Formal solution. As the partial derivative 0, fy never vanishes, it is enough
to find a vector field v; which does not vanish and is linearly independent to
05 fo to have a formal solution

o = ((z1,2), fo, v1, %2fo)
of the relation of immersions. By modifying 0, fo we can choose
v1(z) := (—sin(27xy), cos(2mzy ), 0)

which never vanishes and which is linearly independent to s fy. In the follow-
ing, we will use

n(x) = vi(7) A Oz fo()
(@) A Oafo()]

which coincides with the normal vector of the cone where it is well-define.

Loop family for immersions (1). To build an immersion, we have to
choose a loop whose image lies in the slice
I(0,01) = {weR’|(2,y,w,d:f0) € I}
= {w € R*|w and O, f; lin. independents}
R*\RD, fo

and whose average is 0; fo. Let us consider

Ul(l’)
[or ()]

be a circle of radius r(x) and of center 0, fo(x).

v (x,t) — ~y(x,t) =r(x)| cos(2nt) + sin(27t)n(x)| + 01 fo(z)
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The condition on the average is satisfied, we have 7(z) = 0, fo(x), and we have
to choose r(x) such that

T(I) > dlSt(@lfo(I), 82f0(1‘)) = (27T(L’2)2 + 2

This condition will allow to ensure the circle does not intersect the line spanned
by Oafo(z). As xy € [—1,1], for example we can choose

r(x) = 4m.

Corrugated map (1). By using the Corrugation Process with the previous
parameters, we build from a cone the following surface

b 4B

The corrugated map f; with N = 6.

By looking the corrugated surface on the subsets [0,1] x [-1,—1 + 2],

6
[0,1] x [=1, =1+ 2],... we obtain
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View from the top View from the bottom
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Loop family for immersions (2). By curiosity, we can switch the roles of

—ngg” and n(x), then we consider

v1(z)

[or ()]

v (z,t) — ~y(z,t) =r(x)|cos(2rt)n(x) + sin(27t) + 01 fo(x).
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Corrugated map (2). With the previous parameters, we obtain

The corrugated map f; with N = 6.

Restricting f1 to [0, 1] x [—1, —=1+¢], [0, 1] x [=1,=1+3], [0,1] x [-1, —=1+42]
we have

View from the top View from the bottom

0 ¢
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Loop family for immersions (3). Let us now consider an arc-shaped loop
family

v1 ()

m + sin(a cos(27t))n(x) | + 01 fo(z).

vio(x,t) — r(m)[cos(acos(Zwt))

In this case,

~ = r(x 1 cos(a cos(2m Ul(x)
Wz) = rla) / (o cos(2mt)di T
vy ()
MOy Gy Ol

where Jy is the Bessel function of order 0. So for o & 2.4 the first zero of .Jy,
the loop v satisfies the average condition.

Loop family for immersions (4). Let us now consider an arc-shaped loop
family

8 . vi(x )
i @) o @) (eosol®) - 20 sin(g(t)n(@)] + 01 fola).
™ [lor ()]
with ¢(f) a piecewise linear map given by
P, . (€0
—%t‘f‘zi tE[Z—G,Z‘f‘E]
gty =¢ -Z tel;+ed+¢
s 3T 3 3
%t—zfe te[g—ﬁ,Z‘}'G]
b) t € [Z — €, 1]



The average of the loop is

Corrugated map (4). With the previous parameters, we obtain

24

The corrugated map f; with N = 6.
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Remark on these examples. Note that we have only modified the loop
family without change the formal solution (here the vector field v1). For exam-
ple, we can choose a formal solution which equals to the 1-jet of fy except in
a neighborhood of its singular point. This choice allows to modify only locally
the surface (see my webpage or my PhD thesis [4] for such examples).
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