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Introduction

Holonomic Approximation Theorem and Convex Integration are two pillars
of the h-principle techniques.
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Introduction

Holonomic Approximation Theorem and Convex Integration are two pillars
of the h-principle techniques.This two techniques each have their own
flavor and scope.

The goal of this talk is to bring some new perspective on this topic by
proving the Holonomic Approximation Theorem for 1-order jets using
Convex Integration.
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Introduction

Holonomic Approximation Theorem and Convex Integration are two pillars
of the h-principle techniques.This two techniques each have their own
flavor and scope.

The goal of this talk is to bring some new perspective on this topic by
proving the Holonomic Approximation Theorem for 1-order jets using
Convex Integration.

To prove it, we will show that Holonomic Approximation for 1-order jets
can be reduced to proving the h-principle for some specific relation. Then
we prove this relation is solvable using Convex Integration.
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1-jet space and differential constraints

For a map f : R9 — R”", we denote by

J'f i p— (p. f(p), dfy)

the 1-jet of f
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1-jet space and differential constraints

For a map f : R9 — R”", we denote by
S o p e (p, f(p), dfy)
the 1-jet of f defined from RY to the 1-jet space

JHRI,R™) == {(p,y,L)|p€RY, y e R", L€ Z(T,RI, T,R")}
~ RY x R" x (R")?
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1-jet space and differential constraints

For a map f : R9 — R”", we denote by
S o p e (p, f(p), dfy)
the 1-jet of f defined from RY to the 1-jet space

JHRI,R™) == {(p,y,L)|p€RY, y e R", L€ Z(T,RI, T,R")}
~ RY x R" x (R")?

A differential constraint of order 1 is a relation

¢(p, f(p), dfp) >0 (or =0)

A o
where ¢ : J*(R9,R") — R.
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1-jet space and differential constraints

For a map f : R9 — R”", we denote by
S o p e (p, f(p), dfy)
the 1-jet of f defined from RY to the 1-jet space

JHRI,R™) == {(p,y,L)|p€RY, y e R", L€ Z(T,RI, T,R")}
~ RY x R" x (R")?

A differential constraint of order 1 is a relation
¢(p, f(p),dfp) >0 (or =0)
where ¢ : J1(R9,R") % R. In coordinates,

o(p, f(p),Orf(p),...,0qf(p)) >0 (or =0).
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1-jet space and differential constraints

Let
o: RI — JYRI,R")
p > (p,f(p), Lp)
be a section of the bundle J'(RY, R") — RY.
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1-jet space and differential constraints

Let
o: RI — JYRI,R")
p > (p,f(p), Lp)
be a section of the bundle J'(RY, R") — RY.
Definition

We say that o is a holonomic section if for every p € R9 we have

L, = df,.
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1-jet space and differential constraints

Let
o: RI — JYRI,R")
p > (p,f(p), Lp)
be a section of the bundle J'(RY, R") — RY.
Definition

We say that o is a holonomic section if for every p € R9 we have

L, = df,.
In dimension g = 1,
a section o # jIf, a holonomic section o = jf.
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1-jet space and differential constraints

Finding a section o : p+— (p, f(p), Lp) satisfying the differential constraint

¢(a(p)) = o(p, f(p), Lp) >0

is easier than finding a holonomic section j'F (or a map F) satisfying

oL F(p)) = o(p, F(p), dFp)) > 0.
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1-jet space and differential constraints

Finding a section o : p+— (p, f(p), Lp) satisfying the differential constraint

o(o(p)) = o(p. f(p), Lp) >0
is easier than finding a holonomic section j'F (or a map F) satisfying
o' F(p)) = ¢(p, F(p), dFp)) > 0.

Question: From a section o satisfying ¢, can we find a holonomic section
j1F (homotopic to o) satisfying ¢?
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1-jet space and differential constraints

Finding a section o : p+— (p, f(p), Lp) satisfying the differential constraint

¢(a(p)) = o(p, f(p), Lp) >0

is easier than finding a holonomic section j'F (or a map F) satisfying

O(LF(p)) = 6(p, F(p), dFp)) > 0.

Question: From a section o satisfying ¢, can we find a holonomic section
j1F (homotopic to o) satisfying ¢?
e Answer of the Convex Integration: yes if the differential constraint
has some convex properties.
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1-jet space and differential constraints

Finding a section o : p+— (p, f(p), Lp) satisfying the differential constraint

¢(a(p)) = o(p, f(p), Lp) >0

is easier than finding a holonomic section j'F (or a map F) satisfying

O(LF(p)) = 6(p, F(p), dFp)) > 0.

Question: From a section o satisfying ¢, can we find a holonomic section
j1F (homotopic to o) satisfying ¢?
e Answer of the Convex Integration: yes if the differential constraint
has some convex properties.
o Answer of the Holonomic Approximation: yes if we have a positive
codimension for the source space.
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Convex Integration

To the differential constraint "¢((p, f(p), Lp)) > 0" we associate the subset

Ao = {(p,y, L) [ 4((p,y, L)) > 0} € J'(R,R").
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Convex Integration

To the differential constraint "¢((p, f(p), Lp)) > 0" we associate the subset

Ao = {(p,y, L) [ 4((p,y, L)) > 0} € J'(R,R").

Definition

We call differential relation any subset & of J*(R9,R").
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Convex Integration

To the differential constraint "¢((p, f(p), Lp)) > 0" we associate the subset

Ao = {(p,y, L) [ 4((p,y, L)) > 0} € J'(R,R").

Definition
We call differential relation any subset & of J*(R9,R").
Examples

® Ry is the relation associated to ¢;

o 7 :={(p,y,L) | the rank of L is maximal} is the relation of
immersions.
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Convex Integration

Let & be a relation and o be a section written in coordinates
o= (p,f,Li,...,Lg) where Ly = L(ex) for some basis (ey, ..., €q).
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Convex Integration

Let & be a relation and o be a section written in coordinates
o= (p,f,Li,...,Lg) where Ly = L(ex) for some basis (ey, ..., €q).

For j€{1,...,q}, ois a j-solution of % if for any p € RY

U(p) = (P, f(p), nf(p),... 78jf(p)7 Lita,..., LQ)G R.
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Convex Integration

Let & be a relation and o be a section written in coordinates
o= (p,f,Li,...,Lg) where Ly = L(ex) for some basis (ey, ..., €q).

For j€{1,...,q}, ois a j-solution of % if for any p € RY
a(p) = (p,f(p),0if(p),....0if(p), Lit1,...,Lg)E A.

An arbitrary section needs not be a 0-solution (or formal solution), because
it must at least satisfy, for any p, o(p) = (p, f(p), Lp)c %.
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Convex Integration

Let & be a relation and o be a section written in coordinates
o= (p,f,Li,...,Lg) where Ly = L(ex) for some basis (ey, ..., €q).

For j€{1,...,q}, ois a j-solution of % if for any p € RY

U(p) = (P, f(p), nf(p),... 78jf(p), Lita,..., LQ)G R.

An arbitrary section needs not be a 0-solution (or formal solution), because
it must at least satisfy, for any p, o(p) = (p, f(p), Lp)c %.

Definition

If for any p we have o(p)=j'f(p) € %, we say that o is a holonomic
solution of %.
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Convex Integration

Under some assumptions on the relation % (we'll see soon) and from a
0-solution g = (p, fo, L), Convex Integration allows to build a sequence

fo—=fh—- ===
such that, Vj, the section

071 p s (p.6(P) D1 F(p). . OF(P). Lisa.- . Lg) € R
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Convex Integration

Under some assumptions on the relation % (we'll see soon) and from a
0-solution g = (p, fo, L), Convex Integration allows to build a sequence

fo—=fh—- ===
such that, Vj, the section
gj:p(p,fi(p), 0 fi(p),...,0ifi(p), Lis1,...,Lq) € R.
Applying iteratively Convex Integration, we build

UO(p) = (pu ﬂl(P)) L17 L27 SRR Lq) ER
oi(p) = (p, f(p), Oifi(p), Lo, ey Ly) €ER

calp) = (b0 fulp) Ofs(p), Oaf(p)s ... Dufy(p)) €%
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Convex Integration

Under some assumptions on the relation % (we'll see soon) and from a
0-solution g = (p, fo, L), Convex Integration allows to build a sequence

fo—=fh—- ===
such that, Vj, the section
gj:p(p,fi(p), 0 fi(p),...,0ifi(p), Lis1,...,Lq) € R.
Applying iteratively Convex Integration, we build

UO(p) = (pu ﬂl(P)) L17 L27 SRR Lq) ER
oi(p) = (p, f(p), Oifi(p), Lo, ey Ly) €ER

calp) = (b0 fulp) Ofs(p), Oaf(p)s ... Dufy(p)) €%

Eventually the section o, = jf; is a holonomic solution of Z.
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Convex Integration

To solve the step "f,_; — £;", there was several formulas (given here in
dimension 1, ie p =t € R, for the sake of clarity):
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Convex Integration

To solve the step "f,_; — £;", there was several formulas (given here in
dimension 1, ie p =t € R, for the sake of clarity):

Nash’s formula (codim 2, isometric case)

fi(t) = fo(t) + %h[rl(Nt)m(t) + Fo(Nt)na(t))] \@ ‘J—u

with 1 (Nt) = cos(Nt), T'2(Nt) = sin(Nt), h a parameter depending on the
problem, ny, ny two unit normal vectors and N € N.
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Convex Integration

To solve the step "f,_; — £;", there was several formulas (given here in
dimension 1, ie p =t € R, for the sake of clarity):

Nash’s formula (codim 2, isometric case)

fi(t) = fo(t) + %h[rl(Nt)m(t) + Fo(Nt)na(t))] \@ ‘J—u

with 1 (Nt) = cos(Nt), T'2(Nt) = sin(Nt), h a parameter depending on the
problem, ny, ny two unit normal vectors and N € N.

Kuiper’s formula (codim 1, isometric case)

(1) = (e + AL (VKD + Da(Vn(e)] S L

with T1(Nt) = =Z50@ND ro(ne) = asin(Ne — Z50C@ND) p and 5

parameters depending on the problem, t a unit tangent vector and n a unit
normal vector.
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Convex Integration

Thurston’s formula (Immersions Theory)

f(t) ;= fo(t) + h[T1(Nt) + il (Nt)]

g@

with h € R, 1 (Nt) = —sin(4wNt), [2(Nt) = 2sin(27Nt) and N € N.
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Convex Integration

Thurston’s formula (Immersions Theory)

f(t) := fo(t) + h [T (Nt) + iTo(Nt)] 8 = (Z)
with h € R, 1 (Nt) = —sin(4wNt), [2(Nt) = 2sin(27Nt) and N € N.
Conti-De Lellis-Székelyhidi's formula (codim 1, isometric case)

1) = () +  [T1(t NeH(2) + To(t, Neyn(0)]
with 1 (Nt) fo hcos(asin(2ms)) — 1ds,

Ma(Nt) = fo hsin(asin(2ws))ds, h and a parameters depending on the
problem, t a unit tangent vector and n a unit normal vector.
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Convex Integration

Gromov’s formula (Convex Integration Theory)

fi(t) :== f(0) + /io vs(Ns)ds

with a family of loops (v¢): and N € N.
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Convex Integration

Gromov’s formula (Convex Integration Theory)
t
f() = #(0) +/ ++(Ns)ds
s=0

with a family of loops (v¢): and N € N.

A variant of Gromov'’s formula (T. 2019)

6 = 500) + 3 [ (30(5) 75 )s
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Convex Integration

Gromov’s formula (Convex Integration Theory)
A(t) = f(0) +/ +o(Ns)ds
s=0

with a family of loops (v¢): and N € N.

A variant of Gromov'’s formula (T. 2019)
i) =)+ = [ (36(5) ~7,)d
1P1=0P+/ YplS) —7p)ds
N s=0 P i

If for any p € R9 we have 7, = 0;fy(p), these formulas satisfy:
o [|A—follco=0(§) and 9fi(t) =p(Np;) + O(5)

Meélanie Theilliére The h-principle and beyond 1-5 Nov., 2021 - IAS



Convex Integration

Gromov’s formula (Convex Integration Theory)
A(t) = f(0) +/ +o(Ns)ds
s=0

with a family of loops (v¢): and N € N.

A variant of Gromov'’s formula (T. 2019)

A(p) == fo(p) + % /SI_V:J ('yp(S) —7,,) ds

If for any p € R9 we have 7, = 0;fy(p), these formulas satisfy:

o [|A—follco=0(§) and 9fi(t) =p(Np;) + O(5)
o ||0ifi — Oifol|co = O(4;) where i # j.

Meélanie Theilliére The h-principle and beyond 1-5 Nov., 2021 - IAS



Convex Integration

Using these formulas, we build a map f; from f,_;, and the sections

ojiv:p—=( p, fim1, Oifia, ..., Ojafii, L, Ligr, ... )
{ { {
p}_)( p, fja alﬁ? AR aj*lfj-', Lj? Lj+17 )

are close if O(1/N) is small enough.
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Convex Integration

Using these formulas, we build a map f; from f,_;, and the sections

ojiv:p—=( p, fim1, Oifia, ..., Ojafii, L, Ligr, ... )
{ { {
p}_)( p, fja alﬁ? AR aj*lfj-', Lj? Lj+17 )

are close if O(1/N) is small enough. Now setting
gjip— (pv 6’,816’, oo 78j71f_}a ajfj_(p) = ’YP(ij)a Lj+1) . )

we have to find (7¢): such that o;(p) € % for any p.
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Convex Integration

Definition
Let 0 = (p,f, L1,..., L) whose image lies in & and let j € {1,...,q}.
We define the slice of % in the direction e; over o as

g?j’g = {W e R" ’ (p,y, L1,...,Lj,1, w, Lj+1,...,Lq) S 9?}
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Convex Integration

Definition

Let 0 = (p,f, L1,..., L) whose image lies in & and let j € {1,...,q}.
We define the slice of % in the direction e; over o as

9?]'70 = {W e R" ’ (p,y, L1,...,Lj,1, w, Lj+1,...,Lq) S 9?}

For example, for the relation

%:{(P,_}/,Ll,Lz) | (Ll)e{ZO7 r—ESHLlHSr—{—E}

the slice in the direction e; over o is

IL/
] )
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Convex Integration

Rephrasing of the definition

Let o = (p,f,L): M — R C J}(M,N) and H C T,M be a hyperplane.
The slice of % for H over o is

Rro ={Le L(TyM, TyN) | Ly=Lyand (p,y,L) € R}
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Convex Integration

Rephrasing of the definition
Let o = (p,f,L): M — R C J}(M,N) and H C T,M be a hyperplane.
The slice of & for H over o is

Rro ={Le L(TyM, TyN) | Ly=Lyand (p,y,L) € R}

Remark. For M =R9, N =R" and H = Span(ey,...,§,...,eq), we have
the previous definition. Indeed the condition L|y = L|y implies

L(e,-) = L(e,-) = L,' Ve,- 7é €.
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Convex Integration

Rephrasing of the definition

Let o = (p,f,L): M — R C J}(M,N) and H C T,M be a hyperplane.
The slice of % for H over o is

Rro ={Le L(TyM, TyN) | Ly=Lyand (p,y,L) € R}
Remark. For M =R9, N =R" and H = Span(ey,...,§,...,eq), we have
the previous definition. Indeed the condition L|y = L|y implies

Z(e,-) = L(e,-) = L,' Ve,- 7é €.
So

PFuo~{LeR" | (py,L1, .., Li_1,Lj,Ljy1,...,Ly) € R}
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Convex Integration

For a slice, if there exists a loop t + 7(t) such that

partial derivative to be modified

9ifi(z)

then Convex Integration builds a map f; from f;_;.
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Convex Integration

For a slice, if there exists a loop t + 7(t) such that

partial derivative to be modified

9ifi(z)

then Convex Integration builds a map f; from f;_;.

Definition
A relation & is ample if each slice satisfies one of these conditions:
@ the slice is empty;
@ the convex hull of each path-component of the slice is the entire fiber.

In the last case, the loop v always exists!
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Convex Integration

The slice of the relation of immersions for surfaces. Let o be a
section whose image o(p) = (p, fo(p), L1, L2) lies in 7.
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Convex Integration

The slice of the relation of immersions for surfaces. Let o be a
section whose image o(p) = (p, fo(p), L1, L2) lies in 7.

Fo = {weR[(p,fo(p),w,L2) € I} ={w € R"|w ¢ RL}

)
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Convex Integration

The slice of the relation of immersions for surfaces. Let o be a
section whose image o(p) = (p, fo(p), L1, L2) lies in 7.

Fre = {wER|(p,fo(p) w, L) € T} = {w € R"| w ¢ RL}

RLo

81 f()

codimension 0
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Convex Integration

The slice of the relation of immersions for surfaces. Let o be a
section whose image o(p) = (p, fo(p), L1, L2) lies in 7.

Fre = {wER|(p,fo(p) w, L) € T} = {w € R"| w ¢ RL}

RLo

81 f()

codimension 0 codimension 1 (or more)
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Convex Integration

A famous result of Gromov’s Convex Integration Theory is:
Theorem (Gromov)

Let & be an open ample relation. For any section o = (p, fy, L) whose
image belongs to %, there exists a holonomic solution j!f; of Z.
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Convex Integration

A famous result of Gromov’s Convex Integration Theory is:
Theorem (Gromov)

Let & be an open ample relation. For any section o = (p, fy, L) whose
image belongs to %, there exists a holonomic solution j!f; of Z.

For example, the relation of immersions in codimension > 1 is ample.

Meélanie Theilliére The h-principle and beyond 1-5 Nov., 2021 - IAS



Convex Integration

A famous result of Gromov’s Convex Integration Theory is:
Theorem (Gromov)

Let & be an open ample relation. For any section o = (p, fy, L) whose
image belongs to %, there exists a holonomic solution j!f; of Z.

For example, the relation of immersions in codimension > 1 is ample.

Note that the relation of e-isometric maps, for € > 0, is not ample!
The previous construction is possible if the map fy : (M, g) — (N, h) is
short, ie satisfies

h—fyg>0

which is the key assumption of the Nash-Kuiper Cl-isometric Theorem.
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Holonomic Approximation

Instead of looking for a holonomic section satisfying a differential
constraint, the Holonomic Approximation aims to find a holonomic section
J1F which is close to a given section o:

I'F ol <e
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Holonomic Approximation

Instead of looking for a holonomic section satisfying a differential
constraint, the Holonomic Approximation aims to find a holonomic section
J1F which is close to a given section o:

I'F ol <e

This approach completely ignores the differential constraint!
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Holonomic Approximation

Instead of looking for a holonomic section satisfying a differential
constraint, the Holonomic Approximation aims to find a holonomic section
J1F which is close to a given section o:

I'F =0l <e
This approach completely ignores the differential constraint!
Note that, over a point, a section can be approximated by the 1-jet of a

Taylor polynomial map, while, over a submanifold, the problem is usually
unsolvable.
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Holonomic Approximation

Let A=[0,1]" x {0} CR™ xR and p = (x,t) € R™ x R.

Al Op(A) |
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Holonomic Approximation

Let A=[0,1]" x {0} CR™ xR and p = (x,t) € R™ x R.

Al Op(A) |

Holonomic Approximation Theorem for 1-jets and A = [0, 1] x {0}

Let o = ((x,t),fo, L) : Op(A) — JH(R™ x R,R") be a section. For every
e > 0, there exists

@ a function ¢ : R™ — R such that ||J]| < ¢, and we set

As = {(x,6(x)) | x € [0,1]"} = | Ahchs

@ a map f; defined near As such that ||j'f; — o/ co < € on a sufficiently
small open neighborhood of As.
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Holonomic Approximation

For any subset A, we denote by Op(A) an open neighborhood of A.
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Holonomic Approximation

For any subset A, we denote by Op(A) an open neighborhood of A.

Holonomic Approximation Theorem (Eliashberg - Mishachev)

Let r € N. Let A C RY be a polyhedron of positive codimension k > 0 and
o: 0Op(A) — J(RT,R")

be a section. For every € > 0 there exists

o a function § : RI=k — R such that ||§|| < ¢, and we set

As ={(x,6(x)) | (x,04) € A}

@ a holonomic section j"f; : Op(As) — J"(R9,R") such that

/" — olop(as)llco < e
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Example of the Mountain Path

For m=1and A=[0,1] x {0}, let
o : Op(A) — J(Op(A), R)

be the section given by
fo:(x,t)=x, Ln=0

for every (x, t) € Op(A).
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Example of the Mountain Path

Holonomic
Approximation
Theorem

Holonomic Approximation: there exists a perturbation A; | “7~7"o

of A and there exists a holonomic solution j1f such that

' = ol opag || < €.
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Slice of the Mountain Path

Let

o: R — R? x R x R?2
(X7t) — ((X7 t),fo(X, t):Xa L(x,t):O)
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Slice of the Mountain Path

Let

o: R — R? x R x R?2
(X7t) — ((X7 t),fo(X, t):Xa L(x,t):O)

the associated relation is

Z={((x,t),y,vi,v2) | lly=xll<e vl <e}
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Slice of the Mountain Path

Let

o: R — R? x R x R?2
(X7t) — ((X7 t),fo(X, t):Xa L(x,t):O)

the associated relation is
Z={((x,t),y,vi,v2) | lly=x|<e vl <e}
and the slice in the direction 1 is
R ={weR | |w|<e}

which is not ample !
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Holonomic Approximation through Convex Integration

Theorem (Massot-T. 2021)

Every problem solvable by Holonomic Approximation for 1-order jets can be
solved using Convex Integration.
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Holonomic Approximation through Convex Integration

Theorem (Massot-T. 2021)

Every problem solvable by Holonomic Approximation for 1-order jets can be
solved using Convex Integration.
The proof splits in two parts:

@ a rewriting of the Holonomic Approximation as a relation %p,;

@ a proof that R, is open and ample.
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Part | - The rewriting

Our aim

From a section o = ((x, t), fo, L) : Op(A) — J*(Op(A),R"), for any € > 0,
we are looking for a function ¢ and a map f; such that

H(SH <€, H./lfl - U‘Op(A(;)H <e€

where As is a perturbation | 575 | of A.
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Part | - The rewriting

Our aim

From a section o = ((x, t), fo, L) : Op(A) — J*(Op(A),R"), for any € > 0,
we are looking for a function ¢ and a map f; such that

H(SH <€, H./lfl - U‘Op(A(;)H <e€

where As is a perturbation | 575 | of A.

Writing j1f over As = {(x,6(x))} we have

JHRx8(x) = ((x6(x)), Alx,0(x)), (dA) o) )
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Part | - The rewriting

Our aim

From a section o = ((x, t), fo, L) : Op(A) — J*(Op(A),R"), for any € > 0,
we are looking for a function ¢ and a map f; such that

H(SH <€, H./lfl - U‘Op(A(;)H <e€

where As is a perturbation | 575 | of A.

Writing j1f over As = {(x,6(x))} we have

JHRx8(x) = ((x6(x)), Alx,0(x)), (dA) o) )

and we would like to rewrite it under the form

FEw)x) = (x, (0(x), w(x)), (dox, dwy) )
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Part | - The rewriting

Note that if we find x — (d(x), w(x)) then we can find f; on As setting

(x,0(x)) — w(x) = fi(x,0(x))
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Part | - The rewriting

Note that if we find x — (d(x), w(x)) then we can find f; on As setting
(x,6(x)) — w(x) = fi(x, 6(x))
Let 7, be the projection on the mth coordinates, we can write

W o Tmla; = fila;
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Part | - The rewriting

Note that if we find x — (d(x), w(x)) then we can find f; on As setting
(x,6(x)) — w(x) = fi(x, 6(x))
Let 7, be the projection on the mth coordinates, we can write

W o Tmla; = fila,

Differentiating this relation gives

dwy o Tm|TA; = (dfl)(x,é(x))|TA5
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Part | - The rewriting

Note that if we find x — (d(x), w(x)) then we can find f; on As setting
(x,8(x)) = w(x) = fi(x,6(x))
Let 7, be the projection on the mth coordinates, we can write
W o Tmla; = fila,
Differentiating this relation gives
dwy © Tm| 1as = (df)(x.60x))| TAs
So from the previous condition
I8l <, [*A —olall <e(= 1A~ fll <e lldh — Ll <e
now we have

16 <& flw—=fF( 00D <€ [l(dwomm = L)|7asll < e.
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Part | - The rewriting

Lemma

Holonomic Approximation for 1-order jets can be rewritten as the
differential relation

<o the=floni<e )
% = ) ’ ’ Y’ w
ha {(X (y W) ( )) H(W OTm — L(x,y))‘TAyH <€

Remark. Observe that %, C JL(R™ R x R") while o € J}(R™ x R, R").
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Part Il - Ampleness

Now we are going to show the realtion %, is (open) ample, ie slices of

Iyl <e lw=F(xy)| <e }
% = X, , W), Y, W
ha {( s w): S WD w0y — L))l Il < €

are empty or its convex hull of each path-component is the entire fiber.
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Part Il - Ampleness

Now we are going to show the realtion %, is (open) ample, ie slices of

Iyl <e lw=F(xy)| <e }
% = X, , W), Y, W
ha {( s w): S WD w0y — L))l Il < €

are empty or its convex hull of each path-component is the entire fiber.

The main lemma of this part is

Lemma

For n =1, the slice R, (1,5, is the interior of a hyperbola, so ample.
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Part Il - Ampleness

Now we are going to show the realtion %, is (open) ample, ie slices of

Iyl <e lw=F(xy)| <e }
% = X, , W), Y, W
ha {( s w): S WD w0y — L))l Il < €

are empty or its convex hull of each path-component is the entire fiber.

The main lemma of this part is

Lemma

For n =1, the slice R, (1,5, is the interior of a hyperbola, so ample.

Then, it is enough to apply this lemma n times to show that &, is ample.
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Part Il - Ampleness

Let 1 = (x, (yo, wn), (Yo, Wp)) be a section of &, and let H be a
hyperplane of T,R™.

By definition the slice is

Rha,(Hyp) = {(Y, W) e Z(R™ R x R")

[((Womm—L)|7a,l <e }
(Y, W)[u = (Yo, Wo)|n
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Part Il - Ampleness

Let 1 = (x, (yo, wn), (Yo, Wp)) be a section of &, and let H be a
hyperplane of T,R™.

By definition the slice is

Rha,(Hyp) = {(Y, W) e Z(R™ R x R")

[((Womm—L)|7a,l <e }
(Y, W)[u = (Yo, Wo)|n

Let (u, ") € T,R™ with u € H. From the second condition, we can set

Y(u, o)y = You+ad, W(u,u)=Wou+pd, (a,B)€RxR".
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Part Il - Ampleness

Let 1 = (x, (yo, wn), (Yo, Wp)) be a section of &, and let H be a
hyperplane of T,R™.

By definition the slice is

Rha,(Hyp) = {(Y, W) e Z(R™ R x R")

[((Womm—L)|7a,l <e }
(Y, W)[u = (Yo, Wo)|n

Let (u, ") € T,R™ with u € H. From the second condition, we can set
Y(u, o)y = You+ad, W(u,u)=Wou+pd, (a,B)€RxR".

Then

%ha,(H,u) = {(a75) €R xR”

[(Womm—L)la,l <e€ }
Y:(Y07a)7 W:(W()’B)
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Part Il - Ampleness

Developing and making suitable changes of variables (a, 8) <+ (a, b) and
(Yo, W(]) &~ (Yo, Wo) we obtain

W(u, o) € (R™1 x R)\{0}, }

(a,b) = _
lu'b+ Woul? < 62(u'2 +lulf? + (ad’ + You)2>

Poha(H) = { € RxR"
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Part Il - Ampleness

Developing and making suitable changes of variables (a, 8) <+ (a, b) and
(Yo, W(]) &~ (Yo, Wo) we obtain

W(u, o) € (R™1 x R)\{0}, }

(a,b) = _
lu'b+ Woul? < 62(u'2 +lulf? + (ad’ + You)2>

Poha(H) = { € RxR"

For m =1, we have

(a, b)
Pha(Hu) = { ER X R

Vo' € R\{0}, }

|u/b]]2 < 62(u'2 + (au')2)
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Part Il - Ampleness

Developing and making suitable changes of variables (a, 8) <+ (a, b) and
(Yo, W(]) &~ (Yo, Wo) we obtain

W(u, o) € (R™1 x R)\{0}, }

(a,b) = _
lu'b+ Woul? < 62(u'2 +lulf? + (ad’ + You)2>

‘%MWWV’{eRan

For m =1, we have

(a, b)
Pha(Hu) = {ERXR”

Vo' € R\{0}, }

|u/b]]2 < 62(u'2 + (au')2)

12

{(a.b) | [Ib]? — €%a® < ¢}

which is the interior of a hyperbola, so ample.
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Part Il - Ampleness

Lemma

For n = 1, there exists ¢, ¢, c3 € R such that the slice
Rhampy ~ {(a,b) ER xR | (b— aa) - <ci}
is the interior of a hyperbola.

But the proof is technically not straightforward.
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Part Il - Ampleness

Lemma

For n = 1, there exists ¢, ¢, c3 € R such that the slice
Rhampy ~ {(a,b) ER xR | (b— aa) - <ci}
is the interior of a hyperbola.

But the proof is technically not straightforward.

So the relation &}, is ample, in particular we can solve the problem of the
Mountain Path using Convex Integration.
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The Mountain Path via Convex Integration

Convex
Integra-
tion
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Thank you for your attention !
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