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Introduction

Holonomic Approximation Theorem and Convex Integration are two pillars

of the h-principle techniques.

This two techniques each have their own

�avor and scope.

The goal of this talk is to bring some new perspective on this topic by

proving the Holonomic Approximation Theorem for 1-order jets using

Convex Integration.

To prove it, we will show that Holonomic Approximation for 1-order jets

can be reduced to proving the h-principle for some speci�c relation. Then

we prove this relation is solvable using Convex Integration.
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1-jet space and di�erential constraints

For a map f : Rq → Rn, we denote by

j1f : p 7−→ (p, f (p), dfp)

the 1-jet of f

de�ned from Rq to the 1-jet space

J1(Rq,Rn) := {(p, y , L) | p ∈ Rq, y ∈ Rn, L ∈L(TpRq,TyRn)}
' Rq × Rn × (Rn)q

A di�erential constraint of order 1 is a relation

φ(p, f (p), dfp) > 0 (or = 0)

where φ : J1(Rq,Rn)
C0

−→ R. In coordinates,

φ(p, f (p), ∂1f (p), . . . , ∂qf (p)) > 0 (or = 0).
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1-jet space and di�erential constraints

Let

σ : Rq −→ J1(Rq,Rn)
p 7−→ (p, f (p), Lp)

be a section of the bundle J1(Rq,Rn)→ Rq.

De�nition

We say that σ is a holonomic section if for every p ∈ Rq we have

Lp = dfp.

In dimension q = 1,

a section σ 6= j1f , a holonomic section σ = j1f .
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1-jet space and di�erential constraints

Finding a section σ : p 7→ (p, f (p), Lp) satisfying the di�erential constraint

φ(σ(p)) = φ(p, f (p), Lp) > 0

is easier than �nding a holonomic section j1F (or a map F ) satisfying

φ(j1F (p)) = φ(p,F (p), dFp)) > 0.

Question: From a section σ satisfying φ, can we �nd a holonomic section

j1F (homotopic to σ) satisfying φ?

Answer of the Convex Integration: yes if the di�erential constraint

has some convex properties.

Answer of the Holonomic Approximation: yes if we have a positive

codimension for the source space.
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Convex Integration

To the di�erential constraint "φ((p, f (p), Lp)) > 0" we associate the subset

Rφ := {(p, y , L) |φ((p, y , L)) > 0} ⊂ J1(Rq,Rn).

De�nition

We call di�erential relation any subset R of J1(Rq,Rn).

Examples

Rφ is the relation associated to φ;

I := {(p, y , L) | the rank of L is maximal} is the relation of

immersions.
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Convex Integration

Let R be a relation and σ be a section written in coordinates

σ = (p, f , L1, . . . , Lq) where Lk = L(ek) for some basis (e1, . . . , eq).

For j ∈ {1, . . . , q}, σ is a j-solution of R if for any p ∈ Rq

σ(p) = (p, f (p), ∂1f (p), . . . , ∂j f (p), Lj+1, . . . , Lq)∈R.

An arbitrary section needs not be a 0-solution (or formal solution), because

it must at least satisfy, for any p, σ(p) = (p, f (p), Lp)∈R.

De�nition

If for any p we have σ(p)= j1f (p) ∈R, we say that σ is a holonomic

solution of R.
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Convex Integration

Under some assumptions on the relation R (we'll see soon) and from a

0-solution σ0 = (p, f0, L), Convex Integration allows to build a sequence

f0 → f1 → · · · → fj → · · · → fq

such that, ∀j , the section

σj : p 7→ (p, fj(p), ∂1fj(p), . . . , ∂j fj(p), Lj+1, . . . , Lq) ∈R.

Applying iteratively Convex Integration, we build

σ0(p) = (p, f0(p), L1, L2, . . . , Lq) ∈R

σ1(p) = (p, f1(p), ∂1f1(p), L2, . . . , Lq) ∈R

. . .
σq(p) = (p, fq(p), ∂1fq(p), ∂2fq(p), . . . , ∂qfq(p)) ∈R

Eventually the section σq = j1fq is a holonomic solution of R.
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Convex Integration

To solve the step "fj−1 → fj", there was several formulas (given here in

dimension 1, ie p = t ∈ R, for the sake of clarity):

Nash's formula (codim 2, isometric case)

f1(t) := f0(t) +
1

N
h [Γ1(Nt)n1(t) + Γ2(Nt)n2(t)]

with Γ1(Nt) = cos(Nt), Γ2(Nt) = sin(Nt), h a parameter depending on the

problem, n1, n2 two unit normal vectors and N ∈ N.

Kuiper's formula (codim 1, isometric case)

f1(t) := f0(t) +
1

N
h [Γ1(Nt)t(t) + Γ2(Nt)n(t)]

with Γ1(Nt) = −a2 sin(2Nt)
8

, Γ2(Nt) = a sin(Nt − a2 sin(2Nt)
8

), h and a
parameters depending on the problem, t a unit tangent vector and n a unit

normal vector.
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Convex Integration

Thurston's formula (Immersions Theory)

f1(t) := f0(t) + h [Γ1(Nt) + iΓ2(Nt)] + =

with h ∈ R, Γ1(Nt) = − sin(4πNt), Γ2(Nt) = 2 sin(2πNt) and N ∈ N.

Conti-De Lellis-Székelyhidi's formula (codim 1, isometric case)

f1(t) := f0(t) +
1

N
[Γ1(t,Nt)t(t) + Γ2(t,Nt)n(t)]

with Γ1(Nt) =
∫ Nt
0

h cos(a sin(2πs))− 1ds,

Γ2(Nt) =
∫ Nt
0

h sin(a sin(2πs))ds, h and a parameters depending on the

problem, t a unit tangent vector and n a unit normal vector.
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Convex Integration

Gromov's formula (Convex Integration Theory)

f1(t) := f0(0) +

∫ t

s=0

γs(Ns)ds

with a family of loops (γt)t and N ∈ N.

A variant of Gromov's formula (T. 2019)

f1(p) := f0(p) +
1

N

∫ Npj

s=0

(
γp(s)− γp

)
ds

If for any p ∈ Rq we have γp = ∂j f0(p), these formulas satisfy:

‖f1 − f0‖C0 = O( 1

N ) and ∂j f1(t) = γp(Npj) + O( 1

N )

‖∂i f1 − ∂i f0‖C0 = O( 1

N ) where i 6= j .
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Convex Integration

Using these formulas, we build a map fj from fj−1, and the sections

σj−1 : p 7→ ( p, fj−1, ∂1fj−1, . . . , ∂j−1fj−1, Lj , Lj+1, . . . )
↓ ↓ ↓

p 7→ ( p, fj , ∂1fj , . . . , ∂j−1fj , Lj , Lj+1, . . . )

are close if O(1/N) is small enough.

Now setting

σj : p 7→ (p, fj , ∂1fj , . . . , ∂j−1fj , ∂j fj(p) = γp(Npj), Lj+1, . . .)

we have to �nd (γt)t such that σj(p) ∈R for any p.
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Convex Integration

De�nition

Let σ = (p, f , L1, . . . , Lq) whose image lies in R and let j ∈ {1, . . . , q}.
We de�ne the slice of R in the direction ej over σ as

Rj ,σ := {w ∈ Rn | (p, y , L1, . . . , Lj−1,w , Lj+1, . . . , Lq) ∈R}.

For example, for the relation

R = {(p, y , L1, L2) | (L1)e′1 ≥ 0, r − ε ≤ ‖L1‖ ≤ r + ε}

the slice in the direction e1 over σ is

p
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Convex Integration

Rephrasing of the de�nition

Let σ = (p, f , L) : M →R ⊂ J1(M,N) and H ⊂ TpM be a hyperplane.

The slice of R for H over σ is

RH,σ := {L̃ ∈L(TpM,TyN) | L̃|H = L|H and (p, y , L̃) ∈R}

Remark. For M = Rq, N = Rn and H = Span(e1, . . . , ěj , . . . , eq), we have

the previous de�nition. Indeed the condition L̃|H = L|H implies

L̃(ei ) = L(ei ) = Li ∀ei 6= ej .

So

RH,σ ' {L̃j ∈ Rn | (p, y , L1, . . . , Lj−1, L̃j , Lj+1, . . . , Lq) ∈R}
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Convex Integration

For a slice, if there exists a loop t 7→ γ(t) such that

the loop lies in the slice the average of the loop is the

partial derivative to be modi�ed

∂jfj−1(x)

then Convex Integration builds a map fj from fj−1.

De�nition

A relation R is ample if each slice satis�es one of these conditions:

the slice is empty;

the convex hull of each path-component of the slice is the entire �ber.

In the last case, the loop γ always exists!
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Convex Integration

The slice of the relation of immersions for surfaces. Let σ be a

section whose image σ(p) = (p, f0(p), L1, L2) lies in I.

I1,σ := {w ∈ Rn | (p, f0(p),w , L2) ∈ I} = {w ∈ Rn |w /∈ RL2}

RL2

∂1f0

codimension 0

RL2

∂1f0
γ

codimension 1 (or more)
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Convex Integration

A famous result of Gromov's Convex Integration Theory is:

Theorem (Gromov)

Let R be an open ample relation. For any section σ = (p, f0, L) whose

image belongs to R, there exists a holonomic solution j1fq of R.

For example, the relation of immersions in codimension ≥ 1 is ample.

Note that the relation of ε-isometric maps, for ε > 0, is not ample!

The previous construction is possible if the map f0 : (M, g)→ (N, h) is

short, ie satis�es

h − f ∗0 g > 0

which is the key assumption of the Nash-Kuiper C 1-isometric Theorem.
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Holonomic Approximation

Instead of looking for a holonomic section satisfying a di�erential

constraint, the Holonomic Approximation aims to �nd a holonomic section

j1F which is close to a given section σ:

‖j1F − σ‖ < ε

This approach completely ignores the di�erential constraint!

Note that, over a point, a section can be approximated by the 1-jet of a

Taylor polynomial map, while, over a submanifold, the problem is usually

unsolvable.
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Holonomic Approximation

Let A = [0, 1]m × {0} ⊂ Rm × R and p = (x , t) ∈ Rm × R.

A Op(A)

Holonomic Approximation Theorem for 1-jets and A = [0, 1]m × {0}
Let σ = ((x , t), f0, L) : Op(A)→ J1(Rm × R,Rn) be a section. For every

ε > 0, there exists

a function δ : Rm → R such that ‖δ‖ < ε, and we set

Aδ := {(x , δ(x)) | x ∈ [0, 1]m} =

a map f1 de�ned near Aδ such that ‖j1f1 − σ‖C0 < ε on a su�ciently

small open neighborhood of Aδ.

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Holonomic Approximation

Let A = [0, 1]m × {0} ⊂ Rm × R and p = (x , t) ∈ Rm × R.

A Op(A)

Holonomic Approximation Theorem for 1-jets and A = [0, 1]m × {0}
Let σ = ((x , t), f0, L) : Op(A)→ J1(Rm × R,Rn) be a section. For every

ε > 0, there exists

a function δ : Rm → R such that ‖δ‖ < ε, and we set

Aδ := {(x , δ(x)) | x ∈ [0, 1]m} =

a map f1 de�ned near Aδ such that ‖j1f1 − σ‖C0 < ε on a su�ciently

small open neighborhood of Aδ.

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Holonomic Approximation

For any subset A, we denote by Op(A) an open neighborhood of A.

Holonomic Approximation Theorem (Eliashberg - Mishachev)

Let r ∈ N. Let A ⊂ Rq be a polyhedron of positive codimension k > 0 and

σ : Op(A)→ J r (Rq,Rn)

be a section. For every ε > 0 there exists

a function δ : Rq−k → Rk such that ‖δ‖ < ε, and we set

Aδ := {(x , δ(x)) | (x , 0k) ∈ A}

a holonomic section j r f1 : Op(Aδ)→ J r (Rq,Rn) such that

‖j r f1 − σ|Op(Aδ)‖C0 < ε.
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Example of the Mountain Path

A

For m = 1 and A = [0, 1]× {0}, let

σ : Op(A)→ J1(Op(A),R)

be the section given by

f0 : (x , t) 7→ x , L(x ,t) = 0

for every (x , t) ∈ Op(A).
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Example of the Mountain Path

A

Holonomic

Approximation

Theorem

99K

Aδ

Holonomic Approximation: there exists a perturbation Aδ

of A and there exists a holonomic solution j1f1 such that

‖j1f1 − σ|Op(Aδ)‖ < ε.
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Slice of the Mountain Path

Let

σ : R2 −→ R2 × R× R2

(x , t) 7−→ ((x , t), f0(x , t) = x , L(x ,t) = 0)

the associated relation is

R := {((x , t), y , v1, v2) | ‖y − x‖ < ε, ‖vi‖ < ε}

and the slice in the direction 1 is

R1 := {w ∈ R | ‖w‖ < ε}

which is not ample !

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Slice of the Mountain Path

Let

σ : R2 −→ R2 × R× R2

(x , t) 7−→ ((x , t), f0(x , t) = x , L(x ,t) = 0)

the associated relation is

R := {((x , t), y , v1, v2) | ‖y − x‖ < ε, ‖vi‖ < ε}

and the slice in the direction 1 is

R1 := {w ∈ R | ‖w‖ < ε}

which is not ample !

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Slice of the Mountain Path

Let

σ : R2 −→ R2 × R× R2

(x , t) 7−→ ((x , t), f0(x , t) = x , L(x ,t) = 0)

the associated relation is

R := {((x , t), y , v1, v2) | ‖y − x‖ < ε, ‖vi‖ < ε}

and the slice in the direction 1 is

R1 := {w ∈ R | ‖w‖ < ε}

which is not ample !

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Holonomic Approximation through Convex Integration

Theorem (Massot-T. 2021)

Every problem solvable by Holonomic Approximation for 1-order jets can be

solved using Convex Integration.

The proof splits in two parts:

a rewriting of the Holonomic Approximation as a relation Rha;

a proof that Rha is open and ample.
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Part I - The rewriting

Our aim

From a section σ = ((x , t), f0, L) : Op(A)→ J1(Op(A),Rn), for any ε > 0,

we are looking for a function δ and a map f1 such that

‖δ‖ < ε, ‖j1f1 − σ|Op(Aδ)‖ < ε

where Aδ is a perturbation of A.

Writing j1f1 over Aδ = {(x , δ(x))} we have

j1f1(x , δ(x)) = ( (x , δ(x)), f1(x , δ(x)), (df1)(x ,δ(x)) )

and we would like to rewrite it under the form

j1(δ,w)(x) = ( x , (δ(x),w(x)), (dδx , dwx) )
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Part I - The rewriting

Note that if we �nd x 7→ (δ(x),w(x)) then we can �nd f1 on Aδ setting

(x , δ(x)) 7−→ w(x) = f1(x , δ(x))

Let πm be the projection on the mth coordinates, we can write

w ◦ πm|Aδ
= f1|Aδ

Di�erentiating this relation gives

dwx ◦ πm|TAδ
= (df1)(x ,δ(x))|TAδ

So from the previous condition

‖δ‖ < ε, ‖j1f1 − σ|Aδ
‖ < ε (⇒ ‖f1 − f ‖ < ε, ‖df1 − L‖ < ε

now we have

‖δ‖ < ε, ‖w − f (·, δ(·))‖ < ε, ‖(dw ◦ πm − L)|TAδ
‖ < ε.
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Part I - The rewriting

Lemma

Holonomic Approximation for 1-order jets can be rewritten as the

di�erential relation

Rha :=

{
(x , (y ,w), (Y ,W ))

∣∣∣∣ ‖y‖ < ε, ‖w − f (x , y)‖ < ε
‖(W ◦ πm − L(x ,y))|TAy ‖ < ε

}

Remark. Observe that Rha ⊂ J1(Rm,R×Rn) while σ ∈ J1(Rm ×R,Rn).
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Part II - Ampleness

Now we are going to show the realtion Rha is (open) ample, ie slices of

Rha :=

{
(x , (y ,w), (Y ,W ))

∣∣∣∣ ‖y‖ < ε, ‖w − f (x , y)‖ < ε
‖(W ◦ πm − L(x ,y))|TAy ‖ < ε

}
are empty or its convex hull of each path-component is the entire �ber.

The main lemma of this part is

Lemma

For n = 1, the slice Rha,(H,µ) is the interior of a hyperbola, so ample.

Then, it is enough to apply this lemma n times to show that Rha is ample.
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Part II - Ampleness

Let µ = (x , (y0,w0), (Y0,W0)) be a section of Rha and let H be a

hyperplane of TxRm.

By de�nition the slice is

Rha,(H,µ) =

{
(Y ,W ) ∈L(Rm,R× Rn)

∣∣∣∣ ‖(W ◦ πm − L)|TAy ‖ < ε
(Y ,W )|H = (Y0,W0)|H

}

Let (u, u′) ∈ TxRm with u ∈ H. From the second condition, we can set

Y (u, u′) = Y0u + αu′, W (u, u′) = W0u + βu′, (α, β) ∈ R× Rn.

Then

Rha,(H,µ) =

{
(α, β) ∈ R× Rn

∣∣∣∣ ‖(W ◦ πm − L)|TAy ‖ < ε
Y = (Y0, α), W = (W0, β)

}

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Part II - Ampleness

Let µ = (x , (y0,w0), (Y0,W0)) be a section of Rha and let H be a

hyperplane of TxRm.

By de�nition the slice is

Rha,(H,µ) =

{
(Y ,W ) ∈L(Rm,R× Rn)

∣∣∣∣ ‖(W ◦ πm − L)|TAy ‖ < ε
(Y ,W )|H = (Y0,W0)|H

}
Let (u, u′) ∈ TxRm with u ∈ H. From the second condition, we can set

Y (u, u′) = Y0u + αu′, W (u, u′) = W0u + βu′, (α, β) ∈ R× Rn.

Then

Rha,(H,µ) =

{
(α, β) ∈ R× Rn

∣∣∣∣ ‖(W ◦ πm − L)|TAy ‖ < ε
Y = (Y0, α), W = (W0, β)

}

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Part II - Ampleness

Let µ = (x , (y0,w0), (Y0,W0)) be a section of Rha and let H be a

hyperplane of TxRm.

By de�nition the slice is

Rha,(H,µ) =

{
(Y ,W ) ∈L(Rm,R× Rn)

∣∣∣∣ ‖(W ◦ πm − L)|TAy ‖ < ε
(Y ,W )|H = (Y0,W0)|H

}
Let (u, u′) ∈ TxRm with u ∈ H. From the second condition, we can set

Y (u, u′) = Y0u + αu′, W (u, u′) = W0u + βu′, (α, β) ∈ R× Rn.

Then

Rha,(H,µ) =

{
(α, β) ∈ R× Rn

∣∣∣∣ ‖(W ◦ πm − L)|TAy ‖ < ε
Y = (Y0, α), W = (W0, β)

}

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Part II - Ampleness

Developing and making suitable changes of variables (α, β)↔ (a, b) and

(Y0,W0)↔ (Ỹ0, W̃0) we obtain

Rha,(H,µ) '

{
(a, b)
∈ R×Rn

∣∣∣∣∣ ∀(u, u′) ∈ (Rm−1 × R)\{0},
‖u′b + W̃0u‖2 < ε2

(
u′2 + ‖u‖2 + (au′ + Ỹ0u)2

) }

For m = 1, we have

Rha,(H,µ) '

{
(a, b)
∈ R× Rn

∣∣∣∣∣ ∀u
′ ∈ R\{0},

‖u′b‖2 < ε2
(
u′2 + (au′)2

) }

'
{

(a, b)
∣∣ ‖b‖2 − ε2a2 < ε2

}
which is the interior of a hyperbola, so ample.
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Part II - Ampleness

Lemma

For n = 1, there exists c1, c2, c3 ∈ R such that the slice

Rha,(H,µ) '
{

(a, b) ∈ R× R
∣∣ (b − c1a)2 − c22a

2 < c23
}

is the interior of a hyperbola.

But the proof is technically not straightforward.

So the relation Rha is ample, in particular we can solve the problem of the

Mountain Path using Convex Integration.
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The Mountain Path via Convex Integration

A

Convex

Integra-

tion

99K

Mélanie Theillière The h-principle and beyond 1-5 Nov., 2021 - IAS



Thank you for your attention !
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