
TD1

Dans ce TD, on va déformer des courbes avec la formule

$$f_1(x) := f_0(x) + \frac{1}{N}\Gamma(x, Nx)$$

avec $f_0: [0,1] \to \mathbb{R}^2$ une courbe de départ, $\Gamma(x,u)$ avec $x \in [0,1]$, $u \in \mathbb{R}/\mathbb{Z}$ (ie Γ est 1-périodique sur le paramètre u) qui nous donnera une façon de corruguer, et $N \in \mathbb{N}^*$ le nombre de corrugations.

Courbe initiale. Choisir une courbe à déformer

1. Construire f_0 et dessiner son graphe.

La corrugation de Thurston. On commence avec:

$$\Gamma(x, u) = -r\sin(4\pi u)\mathbf{t}(x) + 2r\sin(2\pi u)\mathbf{n}(x)$$

avec $\mathbf{t}(x)$ le vecteur tangent unitaire de f_0 et $\mathbf{n}(x)$ le vecteur normal de f_0 .

- **2.** Calculer \mathbf{t} et \mathbf{n} , et construire f_1 .
- **3.** Calculer f_1' .

La corrugation des ϵ -isométries. On choisit maintenant

$$\Gamma(x,u) = r \int_{t=0}^{u} \left[\cos(\alpha \cos(2\pi t)) - J_0(\alpha) \right] dt \mathbf{t}(x) + r \int_{t=0}^{u} \sin(\alpha \cos(2\pi t)) dt \mathbf{n}(x)$$

4. Construire f_1 avec ce nouveau Γ . On pourra utilsier

$$J = special.jv(0,2.4) print(J)$$

5. Calculer f'_1 et $||f'_1||$.

Itérer une des deux formules de corrugation.