Holonomic Approximation through Convex Integration

Mélanie Theillière, University of Luxembourg joint work with Patrick Massot, Université Paris-Saclay

Introduction

Yesterday, we had an overview of Gromov's Convex Integration Theory:
M. Gromov

Introduction

Yesterday, we had an overview of Gromov's Convex Integration Theory:

- we deformed singular surfaces to build immersions;
M. Gromov

Introduction

Yesterday, we had an overview of Gromov's Convex Integration Theory:

- we deformed singular surfaces to build immersions;
- we deformed surfaces with too short lengths to build isometric maps.
M. Gromov

Introduction

Yesterday, we had an overview of Gromov's Convex Integration Theory:

- we deformed singular surfaces to build immersions;
- we deformed surfaces with too short lengths to build isometric maps.

This idea of deformation is at the basis of the h-principle established by Gromov in the 1970's.
M. Gromov

Introduction

The idea of the h-principle is

- we start with an initial map f_{0} and "false" derivatives (vector fields satisfying the differential constraint instead of the $\partial_{i} f_{0}$);
- if the problem satisfies some conditions, we deform the map f_{0} to a solution f.

Introduction

The idea of the h-principle is

- we start with an initial map f_{0} and "false" derivatives (vector fields satisfying the differential constraint instead of the $\partial_{i} f_{0}$);
- if the problem satisfies some conditions, we deform the map f_{0} to a solution f.

Convex Integration is one of the main techniques to prove a h-principle.

Introduction

Y. Eliashberg

N. Mishachev

Another main theory is the Holonomic Approximation. This theory was developed in 2002 by Eliashberg and Mishachev.

Introduction

Y. Eliashberg

Another main theory is the Holonomic Approximation. This theory was developed in 2002 by Eliashberg and Mishachev.

In this talk, we start by presenting the h-principle and its proof using Convex Integration, then we proof the Holonomic Approximation for differential constraints of order 1 through Convex Integration.

I - The h-principle with the Convex Integration
A differential constraint of order 1 can be written as

$$
\phi\left(p, f(p), d f_{p}\right)>0 \quad(\text { or }=0)
$$

I - The h-principle with the Convex Integration

A differential constraint of order 1 can be written as

$$
\phi\left(p, f(p), d f_{p}\right)>0 \quad(\text { or }=0)
$$

In coordinate, we have

$$
\phi\left(p, f(p), \partial_{1} f(p), \ldots, \partial_{q} f(p)\right)>0 \quad(\text { or }=0) .
$$

I - The h-principle with the Convex Integration

A differential constraint of order 1 can be written as

$$
\phi\left(p, f(p), d f_{p}\right)>0 \quad(\text { or }=0)
$$

In coordinate, we have

$$
\phi\left(p, f(p), \partial_{1} f(p), \ldots, \partial_{q} f(p)\right)>0 \quad(\text { or }=0) .
$$

For a $\operatorname{map} f: \mathbb{R}^{q} \rightarrow \mathbb{R}^{n}$, we note by

$$
j^{1} f: p \longmapsto\left(p, f(p), d f_{p}\right)
$$

the 1 -jet of f

I - The h-principle with the Convex Integration

A differential constraint of order 1 can be written as

$$
\phi\left(p, f(p), d f_{p}\right)>0 \quad(\text { or }=0)
$$

In coordinate, we have

$$
\phi\left(p, f(p), \partial_{1} f(p), \ldots, \partial_{q} f(p)\right)>0 \quad(\text { or }=0) .
$$

For a map $f: \mathbb{R}^{q} \rightarrow \mathbb{R}^{n}$, we note by

$$
j^{1} f: p \longmapsto\left(p, f(p), d f_{p}\right)
$$

the 1 -jet of f defined from \mathbb{R}^{q} to the 1 -jets space

$$
\begin{aligned}
J^{1}\left(\mathbb{R}^{q}, \mathbb{R}^{n}\right) & :=\left\{(p, y, L) \mid p \in \mathbb{R}^{q}, y \in \mathbb{R}^{n}, L \in \mathscr{L}\left(T_{p} \mathbb{R}^{q}, T_{y} \mathbb{R}^{n}\right)\right\} \\
& \simeq \mathbb{R}^{q} \times \mathbb{R}^{n} \times\left(\mathbb{R}^{n}\right)^{q}
\end{aligned}
$$

I - The h-principle with the Convex Integration

Let $\sigma: p \mapsto\left(p, f(p), L_{p}\right)$ be a section of the 1-jet space. We now can consider

$$
\phi(\sigma)=\phi\left(\left(p, f(p), L_{p}\right)\right)
$$

I - The h-principle with the Convex Integration

Let $\sigma: p \mapsto\left(p, f(p), L_{p}\right)$ be a section of the 1-jet space. We now can consider

$$
\phi(\sigma)=\phi\left(\left(p, f(p), L_{p}\right)\right)
$$

To ϕ we associate

$$
\mathscr{R}_{\phi}:=\{(p, y, L) \quad \mid \quad \phi((p, y, L))>0\} \subset J^{1}\left(\mathbb{R}^{q}, \mathbb{R}^{n}\right) .
$$

I - The h-principle with the Convex Integration

Let $\sigma: p \mapsto\left(p, f(p), L_{p}\right)$ be a section of the 1-jet space. We now can consider

$$
\phi(\sigma)=\phi\left(\left(p, f(p), L_{p}\right)\right)
$$

To ϕ we associate

$$
\mathscr{R}_{\phi}:=\{(p, y, L) \quad \mid \quad \phi((p, y, L))>0\} \subset J^{1}\left(\mathbb{R}^{q}, \mathbb{R}^{n}\right) .
$$

Definition

We call differential relation any subset \mathscr{R} of $J^{1}\left(\mathbb{R}^{q}, \mathbb{R}^{n}\right)$.

I - The h-principle with the Convex Integration

Let $\sigma: p \mapsto\left(p, f(p), L_{p}\right)$ be a section of the 1-jet space. We now can consider

$$
\phi(\sigma)=\phi\left(\left(p, f(p), L_{p}\right)\right)
$$

To ϕ we associate

$$
\mathscr{R}_{\phi}:=\{(p, y, L) \quad \mid \quad \phi((p, y, L))>0\} \subset J^{1}\left(\mathbb{R}^{q}, \mathbb{R}^{n}\right) .
$$

Definition

We call differential relation any subset \mathscr{R} of $J^{1}\left(\mathbb{R}^{q}, \mathbb{R}^{n}\right)$.
For example, the subset $\mathscr{F}:=\{(p, y, L) \mid$ the rank of L is maximal $\}$ is the relation of immersions.

I - The h-principle with the Convex Integration
Finding a section σ of image in \mathscr{R}, ie

$$
p \longmapsto \sigma(p)=\left(p, f(p), L_{p}\right) \in \mathscr{R}
$$

is easier than finding a 1 -jet $j^{1} F$ (or a map F) of image in \mathscr{R}, ie

$$
p \longmapsto j^{1} F(p)=\left(p, F(p), d F_{p}\right) \in \mathscr{R} .
$$

I - The h-principle with the Convex Integration

Finding a section σ of image in \mathscr{R}, ie

$$
p \longmapsto \sigma(p)=\left(p, f(p), L_{p}\right) \in \mathscr{R}
$$

is easier than finding a 1 -jet $j^{1} F$ (or a map F) of image in \mathscr{R}, ie

$$
p \longmapsto j^{1} F(p)=\left(p, F(p), d F_{p}\right) \in \mathscr{R} .
$$

Definition We call σ a formal solution of \mathscr{R} and $j^{1} F$ a holonomic solution of \mathscr{R}.

I - The h-principle with the Convex Integration
Finding a section σ of image in \mathscr{R}, ie

$$
p \longmapsto \sigma(p)=\left(p, f(p), L_{p}\right) \in \mathscr{R}
$$

is easier than finding a 1 -jet $j^{1} F$ (or a map F) of image in \mathscr{R}, ie

$$
p \longmapsto j^{1} F(p)=\left(p, F(p), d F_{p}\right) \in \mathscr{R} .
$$

Definition We call σ a formal solution of \mathscr{R} and $j^{1} F$ a holonomic solution of \mathscr{R}.

In dimension $q=1$, we have $\sigma=$ (points, a curve, a vector field):

a formal solution,

a holonomic solution.

I - The h-principle with the Convex Integration

The property of the h-principle
Let \mathscr{R} be a relation. If each formal solution σ can be homotopically deformed, in the space of sections of \mathscr{R}, to a holonomic solution $j^{1} F$, then the relation \mathscr{R} satisfies the h-principle.

I - The h-principle with the Convex Integration

The idea of Convex Integration is to consider a formal solution and to change partial derivatives of f_{0} one by one

$$
\begin{aligned}
& \sigma_{0}(p)=\left(p, \quad f_{0}(p), \quad L_{1}, \quad L_{2}, \quad \ldots, L_{q}\right) \in \mathscr{R} \\
& \sigma_{1}(p)=\left(p, \quad f_{1}(p), \quad \partial_{1} f_{1}(p), \quad L_{2}, \quad \ldots, \quad L_{q}\right) \in \mathscr{R} \\
& \sigma_{2}(p)=\left(p, \quad f_{2}(p), \quad \partial_{1} f_{2}(p), \quad \partial_{2} f_{2}(p), \ldots, L_{q}\right) \in \mathscr{R}
\end{aligned}
$$

I - The h-principle with the Convex Integration

The idea of Convex Integration is to consider a formal solution and to change partial derivatives of f_{0} one by one

$$
\begin{aligned}
& \sigma_{0}(p)=\left(p, \quad f_{0}(p), \quad L_{1}, \quad L_{2}, \quad \ldots, L_{q}\right) \in \mathscr{R} \\
& \sigma_{1}(p)=\left(p, \quad f_{1}(p), \quad \partial_{1} f_{1}(p), \quad L_{2}, \quad \ldots, \quad L_{q}\right) \in \mathscr{R} \\
& \sigma_{2}(p)=\left(p, \quad f_{2}(p), \quad \partial_{1} f_{2}(p), \quad \partial_{2} f_{2}(p), \ldots, L_{q}\right) \in \mathscr{R}
\end{aligned}
$$

to a holonomic solution

$$
\sigma_{q}(p)=\left(p, \quad f_{q}(p), \quad \partial_{1} f_{q}(p), \quad \partial_{2} f_{q}(p), \quad \ldots, \quad \partial_{q} f_{q}(p)\right) \in \mathscr{R}
$$

I - The h-principle with the Convex Integration
To build the map f_{j} from f_{j-1} we can use several formula (here given in dimension 1 , where we note $p=t$):

I - The h-principle with the Convex Integration
To build the map f_{j} from f_{j-1} we can use several formula (here given in dimension 1 , where we note $p=t$):

Nash's formula (codim 2, isometric case)

$$
f_{j}(t):=f_{j-1}(t)+\frac{1}{N} h\left[\Gamma_{1}(N t) \mathbf{n}_{1}(t)+\Gamma_{2}(N t) \mathbf{n}_{2}(t)\right]
$$

with $\Gamma_{1}(\cdot)=\cos (\cdot), \Gamma_{2}(\cdot)=\sin (\cdot), h$ a parameter of the problem, $\boldsymbol{n}_{1}, \boldsymbol{n}_{2}$ two normal vectors and $N \in \mathbb{N}$.

I - The h-principle with the Convex Integration
To build the map f_{j} from f_{j-1} we can use several formula (here given in dimension 1 , where we note $p=t$):

Nash's formula (codim 2, isometric case)

$$
f_{j}(t):=f_{j-1}(t)+\frac{1}{N} h\left[\Gamma_{1}(N t) \mathbf{n}_{1}(t)+\Gamma_{2}(N t) \mathbf{n}_{2}(t)\right]
$$

with $\Gamma_{1}(\cdot)=\cos (\cdot), \Gamma_{2}(\cdot)=\sin (\cdot), h$ a parameter of the problem, $\boldsymbol{n}_{1}, \boldsymbol{n}_{2}$ two normal vectors and $N \in \mathbb{N}$.

Kuiper's formula (codim 1, isometric case)

$$
f_{j}(t):=f_{j-1}(t)+\frac{1}{N} h\left[\Gamma_{1}(N t) \mathbf{t}(t)+\Gamma_{2}(N t) \mathbf{n}(t)\right]
$$

with $\Gamma_{1}(N t)=\frac{-a^{2} \sin (2 N t)}{8}, \Gamma_{2}(N t)=a \sin \left(N t-\frac{a^{2} \sin (2 N t)}{8}\right), h$ and a parameters of the problem, \mathbf{t} a tangent vector and \mathbf{n} a normal vector.

I - The h-principle with the Convex Integration
Gromov's formula (Convex Integration Theory in 1D)

$$
f_{j}(t):=f_{j-1}(0)+\int_{s=0}^{t} \gamma_{s}(N s) d s
$$

with a loop family $\left(\gamma_{t}\right)_{t}$ et $N \in \mathbb{N}$.

I - The h-principle with the Convex Integration
Gromov's formula (Convex Integration Theory in 1D)

$$
f_{j}(t):=f_{j-1}(0)+\int_{s=0}^{t} \gamma_{s}(N s) d s
$$

with a loop family $\left(\gamma_{t}\right)_{t}$ et $N \in \mathbb{N}$.
Corrugation Process (T. 2020)

$$
f_{j}(p):=f_{j-1}(p)+\frac{1}{N} \int_{s=0}^{N_{p_{j}}}\left(\gamma_{p}(s)-\bar{\gamma}_{p}\right) d s
$$

I - The h-principle with the Convex Integration
Gromov's formula (Convex Integration Theory in 1D)

$$
f_{j}(t):=f_{j-1}(0)+\int_{s=0}^{t} \gamma_{s}(N s) d s
$$

with a loop family $\left(\gamma_{t}\right)_{t}$ et $N \in \mathbb{N}$.
Corrugation Process (T. 2020)

$$
f_{j}(p):=f_{j-1}(p)+\frac{1}{N} \int_{s=0}^{N p_{j}}\left(\gamma_{p}(s)-\bar{\gamma}_{p}\right) d s
$$

If, for every $p \in \mathbb{R}^{q}$, we have $\bar{\gamma}_{p}=\partial_{j} f_{j-1}(p)$, then these formulas satisfy:

- $\partial_{j} f_{j}(p)=\gamma_{p}\left(N p_{j}\right)+O(1 / N)$
- $f_{j}(p)=f_{j-1}(p)+O(1 / N)$
- $\partial_{i} f_{j}(p)=\partial_{i} f_{j-1}(p)+O(1 / N)$, for every $i \neq j$

I - The h-principle with the Convex Integration

With these formulas we build f_{j} and

$$
\left.\begin{array}{rl}
\sigma_{j-1}: p \mapsto\left(\begin{array}{cccccccc}
p, & f_{j-1}, & \partial_{1} f_{j-1}, & \ldots, & \partial_{j-1} f_{j-1}, & L_{j}, & L_{j+1}, & \ldots
\end{array}\right) \\
& \downarrow \\
\downarrow & \downarrow
\end{array} \begin{array}{ccccccc}
p, & f_{j}, & \partial_{1} f_{j}, & \ldots, & \partial_{j-1} f_{j}, & L_{j}, & L_{j+1},
\end{array}, \ldots\right)
$$

are close up to $O(1 / N)$.

I - The h-principle with the Convex Integration

With these formulas we build f_{j} and

$$
\begin{aligned}
& \sigma_{j-1}: p \mapsto\left(\begin{array}{cccccccc}
p, & f_{j-1}, & \partial_{1} f_{j-1}, & \ldots, & \partial_{j-1} f_{j-1}, & L_{j}, & L_{j+1}, & \ldots
\end{array}\right) \\
& \downarrow \\
& \downarrow \downarrow \\
& \downarrow \downarrow\left(\begin{array}{cccccc}
p, & f_{j}, & \partial_{1} f_{j}, & \ldots, & \partial_{j-1} f_{j}, & L_{j}, \\
L_{j+1}, & \ldots
\end{array}\right)
\end{aligned}
$$

are close up to $O(1 / N)$. We now set

$$
\sigma_{j}: p \mapsto\left(p, f_{j}, \partial_{1} f_{j}, \ldots, \partial_{j-1} f_{j}, \partial_{j} f_{j}(p)=\gamma_{p}\left(N p_{j}\right), L_{j+1}, \ldots\right)
$$

so we have to find loops $\left(\gamma_{p}\right)_{p}$ such that $\sigma_{j}(p) \in \mathscr{R}$ for every p.

I - The h-principle with the Convex Integration

Definition

Let $\sigma=\left(p, f, L_{1}, \ldots, L_{q}\right)$ of image in \mathscr{R} and $j \in\{1, \ldots, q\}$. We define the slice of \mathscr{R} in the direction ∂_{j} over σ as

$$
\mathscr{R}_{j, \sigma}:=\left\{w \in \mathbb{R}^{n} \quad \mid \quad\left(p, f(p), L_{1}, \ldots, L_{j-1}, w, L_{j+1}, \ldots, L_{q}\right) \in \mathscr{R}\right\} .
$$

I - The h-principle with the Convex Integration

Definition

Let $\sigma=\left(p, f, L_{1}, \ldots, L_{q}\right)$ of image in \mathscr{R} and $j \in\{1, \ldots, q\}$. We define the slice of \mathscr{R} in the direction ∂_{j} over σ as

$$
\mathscr{R}_{j, \sigma}:=\left\{w \in \mathbb{R}^{n} \quad \mid \quad\left(p, f(p), L_{1}, \ldots, L_{j-1}, w, L_{j+1}, \ldots, L_{q}\right) \in \mathscr{R}\right\} .
$$

If we are not using coordinates, we can also define the slice fora section $\sigma=(p, f, L)$ and a hyperplane $H \subset T_{p} \mathbb{R}^{q}$ setting
$\mathscr{R}_{H, \sigma}:=\left\{\widetilde{L} \in \mathscr{L}\left(T_{p} \mathbb{R}^{q}, T_{f(p)} \mathbb{R}^{n}\right) \quad|\quad \widetilde{L}|_{H}=L_{H}\right.$ et $\left.(p, f(p), \widetilde{L}) \in \mathscr{R}\right\}$

I - The h-principle with the Convex Integration

Definition

Let $\sigma=\left(p, f, L_{1}, \ldots, L_{q}\right)$ of image in \mathscr{R} and $j \in\{1, \ldots, q\}$. We define the slice of \mathscr{R} in the direction ∂_{j} over σ as

$$
\mathscr{R}_{j, \sigma}:=\left\{w \in \mathbb{R}^{n} \quad \mid \quad\left(p, f(p), L_{1}, \ldots, L_{j-1}, w, L_{j+1}, \ldots, L_{q}\right) \in \mathscr{R}\right\} .
$$

If we are not using coordinates, we can also define the slice fora section $\sigma=(p, f, L)$ and a hyperplane $H \subset T_{p} \mathbb{R}^{q}$ setting $\mathscr{R}_{H, \sigma}:=\left\{\widetilde{L} \in \mathscr{L}\left(T_{p} \mathbb{R}^{q}, T_{f(p)} \mathbb{R}^{n}\right) \quad|\quad \widetilde{L}|_{H}=\left.L\right|_{H}\right.$ et $\left.(p, f(p), \widetilde{L}) \in \mathscr{R}\right\}$

I - The h-principle with the Convex Integration

For a slice, if there exists a loop $t \mapsto \gamma(t)$ such that

- the image of γ is in the slice

- the average of γ equals to the derivative we want to modify

then we can build f_{j} from f_{j-1}.

I - The h-principle with the Convex Integration

For a slice, if there exists a loop $t \mapsto \gamma(t)$ such that

- the image of γ is in the slice
- the average of γ equals to the derivative we want to modify

then we can build f_{j} from f_{j-1}.
In particular, if the convex hull of each path-component of the slice is the entire fiber, then the loop γ always exists. Such a relation is called ample.

I - The h-principle with the Convex Integration
The slice of the relation of immersions for surfaces. Let σ be a section whose image $\sigma=\left(p, f_{0}, L_{1}, L_{2}\right)$ is in \mathscr{F}.

I - The h-principle with the Convex Integration

The slice of the relation of immersions for surfaces. Let σ be a section whose image $\sigma=\left(p, f_{0}, L_{1}, L_{2}\right)$ is in \mathscr{F}.

$$
\mathscr{J}_{1, \sigma}:=\left\{w \in \mathbb{R}^{n} \mid\left(p, f_{0}(p), w, L_{2}\right) \in \mathscr{J}\right\}=\left\{w \in \mathbb{R}^{n} \mid w \notin \mathbb{R} L_{2}\right\}
$$

I - The h-principle with the Convex Integration
The slice of the relation of immersions for surfaces. Let σ be a section whose image $\sigma=\left(p, f_{0}, L_{1}, L_{2}\right)$ is in \mathscr{F}.

$$
\mathscr{I}_{1, \sigma}:=\left\{w \in \mathbb{R}^{n} \mid\left(p, f_{0}(p), w, L_{2}\right) \in \mathscr{F}\right\}=\left\{w \in \mathbb{R}^{n} \mid w \notin \mathbb{R} L_{2}\right\}
$$

codimension 0

I - The h-principle with the Convex Integration
The slice of the relation of immersions for surfaces. Let σ be a section whose image $\sigma=\left(p, f_{0}, L_{1}, L_{2}\right)$ is in \mathscr{F}.

$$
\mathscr{I}_{1, \sigma}:=\left\{w \in \mathbb{R}^{n} \mid\left(p, f_{0}(p), w, L_{2}\right) \in \mathscr{I}\right\}=\left\{w \in \mathbb{R}^{n} \mid w \notin \mathbb{R} L_{2}\right\}
$$

codimension 0

codimension 1 (or more)

I - The h-principle with the Convex Integration

Convex Integration Theorem (ample case)

Let \mathscr{R} be an open and ample relation. Any formal solution σ can be deformed (homotopically in the space of sections in \mathscr{R}) to a holonomic solution $j^{1} f_{q}$.

I - The h-principle with the Convex Integration

Convex Integration Theorem (ample case)

Let \mathscr{R} be an open and ample relation. Any formal solution σ can be deformed (homotopically in the space of sections in \mathscr{R}) to a holonomic solution $j^{1} f_{q}$.

The relation of immersions in codimension ≥ 1 is ample.

I - The h-principle with the Convex Integration

Convex Integration Theorem (ample case)

Let \mathscr{R} be an open and ample relation. Any formal solution σ can be deformed (homotopically in the space of sections in \mathscr{R}) to a holonomic solution $j^{1} f_{q}$.

The relation of immersions in codimension ≥ 1 is ample.
The relation of ϵ-isometric maps is not ample! Nevertheless the initial map is assumed to be short so belongs to the convex hull of the slice.

I - The h-principle with the Convex Integration

Convex Integration Theorem (ample case)

Let \mathscr{R} be an open and ample relation. Any formal solution σ can be deformed (homotopically in the space of sections in \mathscr{R}) to a holonomic solution $j^{1} f_{q}$.

The relation of immersions in codimension ≥ 1 is ample.
The relation of ϵ-isometric maps is not ample! Nevertheless the initial map is assumed to be short so belongs to the convex hull of the slice.

So these two relations satisfy the h-principle.

II - Holonomic Approximation through Convex Integration

The question of Holonomic Approximation

Let σ be a section. The aim of Holonomic Approximation is to directly find a holonomic section $j^{1} F$ close to σ :

$$
\left\|j^{1} F-\sigma\right\|<\epsilon
$$

II - Holonomic Approximation through Convex Integration

The question of Holonomic Approximation

Let σ be a section. The aim of Holonomic Approximation is to directly find a holonomic section $j^{1} F$ close to σ :

$$
\left\|j^{1} F-\sigma\right\|<\epsilon
$$

without considering any differential relation \mathscr{R} !

II - Holonomic Approximation through Convex Integration

The question of Holonomic Approximation

Let σ be a section. The aim of Holonomic Approximation is to directly find a holonomic section $j^{1} F$ close to σ :

$$
\left\|j^{1} F-\sigma\right\|<\epsilon
$$

without considering any differential relation \mathscr{R} !
Note that, over a point $p, \sigma(p)$ can be approximated by the jet of a Taylor polynomial map, while, over a submanifold, the problem is usually unsolvable.

II - Holonomic Approximation through Convex Integration

 Let $A=[0,1]^{m} \times\{0\} \subset \mathbb{R}^{m} \times \mathbb{R}$ and $p=(x, t) \in \mathbb{R}^{m} \times \mathbb{R}$.

II - Holonomic Approximation through Convex Integration
Let $A=[0,1]^{m} \times\{0\} \subset \mathbb{R}^{m} \times \mathbb{R}$ and $p=(x, t) \in \mathbb{R}^{m} \times \mathbb{R}$.

Holonomic Approximation theorem for order 1 and $A=[0,1]^{m} \times\{0\}$
Let $\sigma=\left((x, t), f_{0}, L\right): O p(A) \rightarrow J^{1}\left(O p(A), \mathbb{R}^{n}\right)$ be a section. For any $\epsilon>0$, there exists

- a function $\delta: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $\|\delta\|<\epsilon$, and we set

- a map f_{1} defined near A_{δ} such that $\left\|j^{1} f_{1}-\sigma\right\|_{C^{0}}<\epsilon$ on a sufficiently small open neighborhood of A_{δ}.

II - Holonomic Approximation through Convex Integration

 For any subset A, we denote by $\operatorname{Op}(A)$ an open neighborhood of A.II - Holonomic Approximation through Convex Integration
For any subset A, we denote by $\operatorname{Op}(A)$ an open neighborhood of A.
Holonomic Approximation theorem (Eliashberg - Mishachev)
Let $r \in \mathbb{N}$. Let $A \subset \mathbb{R}^{q}$ be a polyhedron of positive codimension $k>0$ and

$$
\sigma: O p(A) \rightarrow J^{r}\left(O p(A), \mathbb{R}^{n}\right)
$$

be a section. For every $\epsilon>0$ there exists

- a function $\delta: \mathbb{R}^{q-k} \rightarrow \mathbb{R}^{k}$ such that $\|\delta\|<\epsilon$, and we set

$$
A_{\delta}:=\left\{(x, \delta(x)) \quad \mid \quad\left(x, 0_{k}\right) \in A\right\}
$$

- a holonomic section $j^{r} f_{1}: O p\left(A_{\delta}\right) \rightarrow J^{r}\left(\mathbb{R}^{q}, \mathbb{R}^{n}\right)$ such that

$$
\left\|j^{r} f_{1}-\left.\sigma\right|_{O p\left(A_{\delta}\right)}\right\|_{C^{0}}<\epsilon .
$$

II - Holonomic Approximation through Convex Integration

Example of the mountain path:

$$
\begin{array}{r}
\text { For } m=1 \text { and } A=[0,1] \times\{0\} \text {, let } \\
\qquad \sigma: O p(A) \rightarrow J^{1}(O p(A), \mathbb{R})
\end{array}
$$

be the section given by

$$
f_{0}:(x, t) \mapsto x, \quad L_{(x, t)}=0
$$

for every $(x, t) \in O p(A)$.

II - Holonomic Approximation through Convex Integration

Holonomic Approximation Theorem
$--\rightarrow$

There exists a perturbation A_{δ}

of A and there exists a holonomic solution $j^{1} f_{1}$ such that

$$
\left\|j^{1} f_{1}-\left.\sigma\right|_{O p\left(A_{\delta}\right)}\right\|<\epsilon
$$

II - Holonomic Approximation through Convex Integration

Slice of the mountain path: let

$$
\begin{array}{ccc}
\sigma: \mathbb{R}^{2} & \longrightarrow & \mathbb{R}^{2} \times \mathbb{R} \times \mathbb{R}^{2} \\
(x, t) & \longmapsto\left((x, t), f_{0}(x, t)=x, L_{(x, t)}=0\right)
\end{array}
$$

II - Holonomic Approximation through Convex Integration

Slice of the mountain path: let

$$
\begin{array}{ccc}
\sigma: & \mathbb{R}^{2} & \longrightarrow \\
(x, t) & \longmapsto\left((x, t), f_{0}(x, t)=x, L_{(x, t)}=0\right)
\end{array}
$$

the associated relation is

$$
\mathscr{R}:=\left\{\left((x, t), y, v_{1}, v_{2}\right) \quad \mid \quad\|y-x\|<\epsilon, \quad\left\|v_{i}\right\|<\epsilon\right\}
$$

II - Holonomic Approximation through Convex Integration

Slice of the mountain path: let

$$
\begin{array}{ccc}
\sigma: & \mathbb{R}^{2} \times \mathbb{R} \times \mathbb{R}^{2} \\
(x, t) & \longmapsto\left((x, t), f_{0}(x, t)=x, L_{(x, t)}=0\right)
\end{array}
$$

the associated relation is

$$
\mathscr{R}:=\left\{\left((x, t), y, v_{1}, v_{2}\right) \quad \mid \quad\|y-x\|<\epsilon, \quad\left\|v_{i}\right\|<\epsilon\right\}
$$

and the slice in the direction 1 is

$$
\mathscr{R}_{1}:=\{w \in \mathbb{R} \quad \mid \quad\|w\|<\epsilon\}
$$

which is not ample !

II - Holonomic Approximation through Convex Integration

Theorem (Massot-T. 2021)
Every problem solvable by Holonomic Approximation for 1-order jets can be solved using Convex Integration.

II - Holonomic Approximation through Convex Integration

Theorem (Massot-T. 2021)

Every problem solvable by Holonomic Approximation for 1-order jets can be solved using Convex Integration.

The proof splits in two parts:

- a rewriting of the Holonomic Approximation as a relation $\mathscr{R}_{h a}$;
- a proof that $\mathscr{R}_{h a}$ is open and ample.

Part I - The rewriting

What we're looking for:
From a section $\sigma=\left((x, t), f_{0}, L\right): O p(A) \rightarrow J^{1}\left(O p(A), \mathbb{R}^{n}\right)$, for every $\epsilon>0$, we are looking for a function δ and a map f_{1} such that

$$
\|\delta\|<\epsilon, \quad\left\|j^{1} f_{1}-\left.\sigma\right|_{O_{p}\left(A_{\sigma}\right)}\right\|<\epsilon
$$

where A_{δ} is a perturbation
 of A.

Part I - The rewriting

What we're looking for:
From a section $\sigma=\left((x, t), f_{0}, L\right): O p(A) \rightarrow J^{1}\left(O p(A), \mathbb{R}^{n}\right)$, for every $\epsilon>0$, we are looking for a function δ and a map f_{1} such that

$$
\|\delta\|<\epsilon, \quad\left\|j^{1} f_{1}-\left.\sigma\right|_{O_{P}\left(A_{s}\right)}\right\|<\epsilon
$$

where A_{δ} is a perturbation

By writing $j^{1} f_{1}$ over $A_{\delta}=\{(x, \delta(x))\}$ we have

$$
j^{1} f_{1}(x, \delta(x))=\left((x, \delta(x)), f_{1}(x, \delta(x)),\left(d f_{1}\right)_{(x, \delta(x))}\right)
$$

Part I - The rewriting

What we're looking for:
From a section $\sigma=\left((x, t), f_{0}, L\right): O p(A) \rightarrow J^{1}\left(O p(A), \mathbb{R}^{n}\right)$, for every $\epsilon>0$, we are looking for a function δ and a map f_{1} such that

$$
\|\delta\|<\epsilon, \quad\left\|j^{1} f_{1}-\left.\sigma\right|_{O_{P}\left(A_{\delta}\right)}\right\|<\epsilon
$$

where A_{δ} is a perturbation

By writing $j^{1} f_{1}$ over $A_{\delta}=\{(x, \delta(x))\}$ we have

$$
j^{1} f_{1}(x, \delta(x))=\left((x, \delta(x)), f_{1}(x, \delta(x)),\left(d f_{1}\right)_{(x, \delta(x))}\right)
$$

and we would like to rewrite it under the form

$$
j^{1}(\delta, w)(x)=\left(x,(\delta(x), w(x)),\left(d \delta_{x}, d w_{x}\right)\right)
$$

Part I - The rewriting

Note that if we find $x \mapsto(\delta(x), w(x))$ then for every $(x, \delta(x)) \in A_{\delta}$, we have f_{1} by setting

$$
(x, \delta(x)) \longmapsto w(x)=f_{1}(x, \delta(x))
$$

Part I - The rewriting

Note that if we find $x \mapsto(\delta(x), w(x))$ then for every $(x, \delta(x)) \in A_{\delta}$, we have f_{1} by setting

$$
(x, \delta(x)) \longmapsto w(x)=f_{1}(x, \delta(x))
$$

Let π_{m} be the projection on the m-th first coordinates, we can write

$$
\left.w \circ \pi_{m}\right|_{A_{\delta}}=\left.f_{1}\right|_{A_{\delta}}
$$

Part I - The rewriting

Note that if we find $x \mapsto(\delta(x), w(x))$ then for every $(x, \delta(x)) \in A_{\delta}$, we have f_{1} by setting

$$
(x, \delta(x)) \longmapsto w(x)=f_{1}(x, \delta(x))
$$

Let π_{m} be the projection on the m-th first coordinates, we can write

$$
\left.w \circ \pi_{m}\right|_{A_{\delta}}=\left.f_{1}\right|_{A_{\delta}}
$$

Differentiating this relation gives

$$
\left.d w_{x} \circ \pi_{m}\right|_{T A_{\delta}}=\left.\left(d f_{1}\right)_{(x, \delta(x))}\right|_{T A_{\delta}}
$$

Part I - The rewriting

Note that if we find $x \mapsto(\delta(x), w(x))$ then for every $(x, \delta(x)) \in A_{\delta}$, we have f_{1} by setting

$$
(x, \delta(x)) \longmapsto w(x)=f_{1}(x, \delta(x))
$$

Let π_{m} be the projection on the m-th first coordinates, we can write

$$
\left.w \circ \pi_{m}\right|_{A_{\delta}}=\left.f_{1}\right|_{A_{\delta}}
$$

Differentiating this relation gives

$$
\left.d w_{x} \circ \pi_{m}\right|_{T A_{\delta}}=\left(d f_{1}\right)_{(x, \delta(x))} \mid T A_{\delta}
$$

So from the previous condition

$$
\|\delta\|<\epsilon, \quad\left\|j^{1} f_{1}-\left.\sigma\right|_{A_{\delta}}\right\|<\epsilon\left(\Rightarrow\left\|f_{1}-f\right\|<\epsilon, \quad\left\|d f_{1}-L\right\|<\epsilon\right)
$$

Part I - The rewriting

Note that if we find $x \mapsto(\delta(x), w(x))$ then for every $(x, \delta(x)) \in A_{\delta}$, we have f_{1} by setting

$$
(x, \delta(x)) \longmapsto w(x)=f_{1}(x, \delta(x))
$$

Let π_{m} be the projection on the m-th first coordinates, we can write

$$
\left.w \circ \pi_{m}\right|_{A_{\delta}}=\left.f_{1}\right|_{A_{\delta}}
$$

Differentiating this relation gives

$$
\left.d w_{x} \circ \pi_{m}\right|_{T A_{\delta}}=\left.\left(d f_{1}\right)_{(x, \delta(x))}\right|_{T A_{\delta}}
$$

So from the previous condition

$$
\|\delta\|<\epsilon, \quad\left\|j^{1} f_{1}-\left.\sigma\right|_{A_{\delta}}\right\|<\epsilon\left(\Rightarrow\left\|f_{1}-f\right\|<\epsilon, \quad\left\|d f_{1}-L\right\|<\epsilon\right)
$$

now we have

$$
\|\delta\|<\epsilon, \quad\|w-f(\cdot, \delta(\cdot))\|<\epsilon, \quad\left\|\left.\left(d w \circ \pi_{m}-L\right)\right|_{T_{A}}\right\|<\epsilon .
$$

Part I - The rewriting

Lemma

Holonomic Approximation for 1-order jets can be rewritten as the differential relation

$$
\mathscr{R}_{h a}:=\left\{\begin{array}{l|l}
(x,(y, w),(Y, W)) & \begin{array}{l}
\|y\|<\epsilon, \quad\|w-f(x, y)\|<\epsilon \\
\left\|\left(W \circ \pi_{m}-L_{(x, y)}\right)| |_{T A_{y}}\right\|<\epsilon
\end{array}
\end{array}\right\}
$$

Part I - The rewriting

Lemma

Holonomic Approximation for 1-order jets can be rewritten as the differential relation

$$
\mathscr{R}_{h a}:=\left\{\begin{array}{l|l}
(x,(y, w),(Y, W)) & \begin{array}{l}
\|y\|<\epsilon, \quad\|w-f(x, y)\|<\epsilon \\
\left\|\left(W \circ \pi_{m}-L_{(x, y)}\right)| |_{T A_{y}}\right\|<\epsilon
\end{array}
\end{array}\right\}
$$

Observe that $\sigma \in J^{1}\left(\mathbb{R}^{m} \times \mathbb{R}, \mathbb{R}^{n}\right)$ but $\mathscr{R}_{h a} \subset J^{1}\left(\mathbb{R}^{m}, \mathbb{R} \times \mathbb{R}^{n}\right)$.

Part II - Ampleness

Now we are going to show the relation $\mathscr{R}_{h a}$ is (open) ample, ie slices of

$$
\mathscr{R}_{h a}:=\left\{\begin{array}{l|l}
(x,(y, w),(Y, W)) & \begin{array}{l}
\|y\|<\epsilon, \quad\|w-f(x, y)\|<\epsilon \\
\left\|\left(W \circ \pi_{m}-L_{(x, y)}\right)| |_{T A_{y}}\right\|<\epsilon
\end{array}
\end{array}\right\}
$$

are empty or the convex hull of each path-component is the entire fiber.

Part II - Ampleness

Now we are going to show the relation $\mathscr{R}_{h a}$ is (open) ample, ie slices of

$$
\mathscr{R}_{h a}:=\left\{\begin{array}{l|l}
(x,(y, w),(Y, W)) & \begin{array}{l}
\|y\|<\epsilon, \quad\|w-f(x, y)\|<\epsilon \\
\left\|\left(W \circ \pi_{m}-L_{(x, y)}\right)| |_{T A_{y}}\right\|<\epsilon
\end{array}
\end{array}\right\}
$$

are empty or the convex hull of each path-component is the entire fiber.
The main lemma of this part is

Lemme

For $n=1$, the slice $\mathscr{R}_{h a,(H, \mu)}$ is the interior of a hyperbola, so ample.

Part II - Ampleness

Now we are going to show the relation $\mathscr{R}_{h a}$ is (open) ample, ie slices of

$$
\mathscr{R}_{h a}:=\left\{\begin{array}{l|l}
(x,(y, w),(Y, W)) & \begin{array}{l}
\|y\|<\epsilon, \quad\|w-f(x, y)\|<\epsilon \\
\left\|\left(W \circ \pi_{m}-L_{(x, y)}\right)| |_{T A_{y}}\right\|<\epsilon
\end{array}
\end{array}\right\}
$$

are empty or the convex hull of each path-component is the entire fiber.
The main lemma of this part is

Lemme

For $n=1$, the slice $\mathscr{R}_{h a,(H, \mu)}$ is the interior of a hyperbola, so ample.
The final result of ampleness comes from applying the previous lemma n times, component to component on the variable belonging to \mathbb{R}^{n}.

Part II - Ampleness

Let $\mu=\left(x,\left(y_{0}, w_{0}\right),\left(Y_{0}, W_{0}\right)\right)$ be a section of $\mathscr{R}_{h a}$ and H be a hyperplane of $T_{x} \mathbb{R}^{m}$.

By definition the slice is
$\mathscr{R}_{h a,(H, \mu)}=\left\{(Y, W) \in \mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R} \times \mathbb{R}^{n}\right) \left\lvert\, \begin{array}{l}\left\|\left.\left(W \circ \pi_{m}-L\right)\right|_{T A_{y}}\right\|<\epsilon \\ \left.(Y, W)\right|_{H}=\left.\left(Y_{0}, W_{0}\right)\right|_{H}\end{array}\right.\right\}$

Part II - Ampleness

Let $\mu=\left(x,\left(y_{0}, w_{0}\right),\left(Y_{0}, W_{0}\right)\right)$ be a section of $\mathscr{R}_{h a}$ and H be a hyperplane of $T_{X} \mathbb{R}^{m}$.

By definition the slice is
$\mathscr{R}_{h a,(H, \mu)}=\left\{(Y, W) \in \mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R} \times \mathbb{R}^{n}\right) \left\lvert\, \begin{array}{l}\left\|\left.\left(W \circ \pi_{m}-L\right)\right|_{T A_{y}}\right\|<\epsilon \\ \left.(Y, W)\right|_{H}=\left.\left(Y_{0}, W_{0}\right)\right|_{H}\end{array}\right.\right\}$
Let $\left(u, u^{\prime}\right) \in T_{x} \mathbb{R}^{m}$ with $u \in H$. From the second condition, we can set

$$
Y\left(u, u^{\prime}\right)=Y_{0} u+\alpha u^{\prime}, \quad W\left(u, u^{\prime}\right)=W_{0} u+\beta u^{\prime}, \quad(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{n}
$$

Part II - Ampleness

Let $\mu=\left(x,\left(y_{0}, w_{0}\right),\left(Y_{0}, W_{0}\right)\right)$ be a section of $\mathscr{R}_{h a}$ and H be a hyperplane of $T_{x} \mathbb{R}^{m}$.

By definition the slice is
$\mathscr{R}_{h a,(H, \mu)}=\left\{(Y, W) \in \mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R} \times \mathbb{R}^{n}\right) \left\lvert\, \begin{array}{l}\left\|\left.\left(W \circ \pi_{m}-L\right)\right|_{T A_{y}}\right\|<\epsilon \\ \left.(Y, W)\right|_{H}=\left.\left(Y_{0}, W_{0}\right)\right|_{H}\end{array}\right.\right\}$
Let $\left(u, u^{\prime}\right) \in T_{x} \mathbb{R}^{m}$ with $u \in H$. From the second condition, we can set

$$
Y\left(u, u^{\prime}\right)=Y_{0} u+\alpha u^{\prime}, \quad W\left(u, u^{\prime}\right)=W_{0} u+\beta u^{\prime}, \quad(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{n}
$$

Then

$$
\mathscr{R}_{h a,(H, \mu)}=\left\{\begin{array}{l|l}
(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{n} & \begin{array}{l}
\|\left(W \circ \pi_{m}-L\right) \mid \\
Y=\left(Y_{0}, \alpha\right),
\end{array} \|<\epsilon \\
W=\left(W_{0}, \beta\right)
\end{array}\right\}
$$

Part II - Ampleness

Developing and making suitable changes of variables $(\alpha, \beta) \leftrightarrow(a, b)$ and $\left(Y_{0}, W_{0}\right) \leftrightarrow\left(\widetilde{Y_{0}}, \widetilde{W_{0}}\right)$ we obtain
$\mathscr{R}_{h a,(H, \mu)} \simeq\left\{\begin{array}{l|l}(a, b) & \forall\left(u, u^{\prime}\right) \in\left(\mathbb{R}^{m-1} \times \mathbb{R}\right) \backslash\{0\}, \\ \in \mathbb{R} \times \mathbb{R}^{n} & \left\|u^{\prime} b+\widetilde{W}_{0} u\right\|^{2}<\epsilon^{2}\left(u^{2}+\|u\|^{2}+\left(a u^{\prime}+\widetilde{Y}_{0} u\right)^{2}\right)\end{array}\right\}$

Part II - Ampleness

Developing and making suitable changes of variables $(\alpha, \beta) \leftrightarrow(a, b)$ and $\left(Y_{0}, W_{0}\right) \leftrightarrow\left(\widetilde{Y_{0}}, \widetilde{W}_{0}\right)$ we obtain
$\mathscr{R}_{h a,(H, \mu)} \simeq\left\{\begin{array}{l|l}(a, b) & \forall\left(u, u^{\prime}\right) \in\left(\mathbb{R}^{m-1} \times \mathbb{R}\right) \backslash\{0\}, \\ \in \mathbb{R} \times \mathbb{R}^{n} & \left\|u^{\prime} b+\widetilde{W}_{0} u\right\|^{2}<\epsilon^{2}\left(u^{2}+\|u\|^{2}+\left(a u^{\prime}+\widetilde{Y}_{0} u\right)^{2}\right)\end{array}\right\}$
For $m=1$, we have

$$
\mathscr{R}_{h a,(H, \mu)} \simeq\left\{\begin{array}{l|l}
(a, b) & \forall u^{\prime} \in \mathbb{R} \backslash\{0\} \\
\in \mathbb{R} \times \mathbb{R}^{n} & \left\|u^{\prime} b\right\|^{2}<\epsilon^{2}\left(u^{\prime 2}+\left(a u^{\prime}\right)^{2}\right)
\end{array}\right\}
$$

Part II - Ampleness

Developing and making suitable changes of variables $(\alpha, \beta) \leftrightarrow(a, b)$ and $\left(Y_{0}, W_{0}\right) \leftrightarrow\left(\widetilde{Y}_{0}, \widetilde{W}_{0}\right)$ we obtain
$\mathscr{R}_{h a,(H, \mu)} \simeq\left\{\begin{array}{l|l}(a, b) & \forall\left(u, u^{\prime}\right) \in\left(\mathbb{R}^{m-1} \times \mathbb{R}\right) \backslash\{0\}, \\ \in \mathbb{R} \times \mathbb{R}^{n} & \left\|u^{\prime} b+\widetilde{W}_{0} u\right\|^{2}<\epsilon^{2}\left(u^{2}+\|u\|^{2}+\left(a u^{\prime}+\widetilde{Y}_{0} u\right)^{2}\right)\end{array}\right\}$
For $m=1$, we have

$$
\begin{aligned}
\mathscr{R}_{h a,(H, \mu)} & \simeq\left\{\begin{array}{l|l}
(a, b) & \forall u^{\prime} \in \mathbb{R} \backslash\{0\}, \\
\in \mathbb{R} \times \mathbb{R}^{n} & \left\|u^{\prime} b\right\|^{2}<\epsilon^{2}\left(u^{\prime 2}+\left(a u^{\prime}\right)^{2}\right)
\end{array}\right\} \\
& \simeq\left\{(a, b) \mid\|b\|^{2}-\epsilon^{2} a^{2}<\epsilon^{2}\right\}
\end{aligned}
$$

which is the interior of a hyperbola, so ample.

Part II - Ampleness

Lemma

For $n=1$, there exists $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that the slice

$$
\mathscr{R}_{h a,(H, \mu)} \simeq\left\{(a, b) \in \mathbb{R} \times \mathbb{R} \mid\left(b-c_{1} a\right)^{2}-c_{2}^{2} a^{2}<c_{3}^{2}\right\}
$$

is the interior of a hyperbola.
(but the proof is technically not straightforward)

Part II - Ampleness

Lemma
For $n=1$, there exists $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that the slice

$$
\mathscr{R}_{h a,(H, \mu)} \simeq\left\{(a, b) \in \mathbb{R} \times \mathbb{R} \mid\left(b-c_{1} a\right)^{2}-c_{2}^{2} a^{2}<c_{3}^{2}\right\}
$$

is the interior of a hyperbola.
(but the proof is technically not straightforward)
So the relation $\mathscr{R}_{h a}$ is ample, in particular we can solve the problem of the mountain path using Convex Integration.

II - Holonomic Approximation through Convex Integration

Convex
Integration

Thank you for your attention!

