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Abstract. We give a proof that there exists a universal constant K such that
the disc graph associated to a surface S forming a boundary component of a
compact, orientable 3-manifold M is K-quasiconvex in the curve graph of S.
Our proof does not require the use of train tracks.

10.

10.1. Introduction. Given a closed, connected, orientable surface S, the associ-
ated curve graph, CpSq, has as its vertex set the set of isotopy classes of essential
simple closed curves in S, with an edge between two distinct vertices if the cor-
responding isotopy classes have representatives that are disjoint. The definition
is due to Harvey [6]. The curve graph has been a significant tool in the study of
mapping class groups, Teichmüller spaces and hyperbolic 3-manifolds. If S has
genus at least 2, CpSq is connected, and Masur and Minsky showed in [8] that it
has infinite diameter and is hyperbolic in the sense of Gromov. More recently,
it was shown in independent proofs by Aougab [1], Bowditch [3], Clay, Rafi and
Schleimer [4] and Hensel, Przytycki and Webb [7] that the constant of hyperbol-
icity can be chosen to be independent of the surface S. If S has genus 1, then no
two distinct isotopy classes of curves can be realised disjointly. In this case, it is
usual to modify the definition so that curves are adjacent in CpSq if they intersect
exactly once. The resulting graph is the Farey graph, which is connected. As for
the higher genus cases, it is hyperbolic, with infinite diameter.

When S is a boundary component of a compact, orientable 3-manifold M , we
can consider the subset of the vertex set of CpSq which consists of those curves
which bound embedded discs in M . Equivalently, by Dehn’s lemma, these are the
essential simple closed curves in S which are homotopically trivial in M . The disc
graph, DpM,Sq, is the full subgraph spanned by these vertices. This has appli-
cations to the study of handlebody groups and Heegaard splittings. In a further
paper of Masur and Minsky [9], it was proved that DpM,Sq is K-quasiconvex in
CpSq (see Section 2 for a definition), for some K depending only on the genus of S.
The proof relies on a study of nested train track sequences. More specifically, to
any pair of vertices of DpM,Sq, Masur and Minsky associate a sequence of curves
in DpM,Sq, and a nested train track sequence whose vertex cycles are close in
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CpSq to the curves of this sequence. They prove that the sets of vertex cycles of
nested train track sequences are quasiconvex in CpSq, and the result follows.

This result was improved by Aougab, who showed in [2] that the constants of
quasiconvexity for nested train track sequences can be taken to be quadratic in
the complexity of the surface, obtaining as a corollary that there exists a function
Kpgq “ Opg2q such that DpM,Sq is Kpgq-quasiconvex in CpSq, where g is the
genus of S. That this bound can be taken to be uniform in the genus of S follows
from work of Hamenstädt [5]. In Section 3 of [5], it is shown that the sets of vertex
cycles of train track splitting sequences give unparametrised quasigeodesics in CpSq
with constants independent of the surface S. Along with the uniform hyperbolicity
of the curve graphs, this implies that such subsets are uniformly quasiconvex in
CpSq. In this note, we give a direct proof of the uniform quasiconvexity of DpM,Sq
in CpSq, without using train tracks.

Theorem 10.1.1. There exists K such that, for any compact, orientable 3-manifold
M and boundary component S of M , the disc graph, DpM,Sq, is K-quasiconvex
in CpSq.

For the main case, where the genus of S is at least 2, this uses an observation that
the disc surgeries of [9] give a path of “bicorn curves”, as described by Przytycki
and Sisto in [11]. These were introduced by analogy with the “unicorn arcs” of
[7] in order to give a short surgery proof of the uniform hyperbolicity of the curve
graphs. The lower genus case is straight-forward, and is discussed in Section 10.3.
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and the referee for helpful comments. This work was supported by an Engineering
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10.2. Preliminaries. A simple closed curve in a surface S is said to be essential
if it does not bound a disc in S. We will assume from now on that all curves are
essential simple closed curves. Two curves, α and β, intersecting transversely, are
in minimal position if the number of their intersection points is minimal over all
pairs α1, β1 isotopic to α, β respectively. This is equivalent to the condition that
α and β do not form a bigon, that is, an embedded disc in S whose boundary is
a union of one arc of each of α and β. Abusing notation, we shall also denote the
isotopy class of a curve α by α. The intersection number, ipα, βq, is the number of
intersections between representatives of the isotopy classes of α and β which are
in minimal position.

If Y is a subset of a geodesic metric space X, we denote the closed K-neighbour-
hood of Y in X by NXpY,Kq. We say that Y is K-quasiconvex in X if, for any
two points y and y1 in Y , any geodesic in X joining y and y1 is contained within
NXpY,Kq. The metric on the curve graph, CpSq, is given by setting each edge to
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have length 1, and we denote the distance between vertices α and β by dSpα, βq.
This makes CpSq into a geodesic metric space.

Given two curves α and β in minimal position, a bicorn curve between α and
β is a curve constructed from one arc a of α and one arc b of β such that a and b
meet precisely at their endpoints (see Figure 10.1 and [11]). Since α and β are in
minimal position, all bicorn curves between them will be essential, as otherwise α
and β would form a bigon.

Figure 10.1. Examples of bicorn curves.

10.3. Exceptional cases. Let M be a compact, orientable 3-manifold. If a
boundary component S has genus at most one then the associated disc graph,
DpM,Sq, is very simple. Firstly, since there are no essential simple closed curves
on the sphere, the curve graph of the sphere is empty, so we can ignore any sphere
boundary components. We shall see that for a torus boundary component S,
DpM,Sq contains at most one vertex.

Suppose S is a torus boundary component of the 3-manifold M . Suppose an
essential curve δ in S bounds an embedded disc D in M . Take a closed regular
neighbourhood N of S Y D in M . This is homeomorphic to a solid torus with
an open ball removed. Suppose some other curve δ1 in S bounds an embedded
disc D1 in M . We can assume that D1 intersects the sphere boundary component
of N transversely in simple closed curves. Repeatedly performing surgeries along
innermost discs to reduce the number of such curves eventually gives a disc with
boundary δ1 which is completely contained in N . Therefore, an essential curve in
S bounds an embedded disc in M if and only if it bounds an embedded disc in N .
In S, there is, up to isotopy, no curve other than δ which bounds an embedded
disc in N , since such a curve must be trivial in the first homology group of N . We
hence find that for any torus boundary component S, DpM,Sq is at most a single
point. In this case, DpM,Sq is 0-quasiconvex, or convex, in the curve graph of S
(which is the Farey graph, as described in the introduction).

10.4. Proof of the main result. Now let S be a boundary component of genus
at least 2 of a compact, orientable 3-manifold M , and DpM,Sq the associated disc
graph.

The following criterion for hyperbolicity appears in several places in slightly dif-
ferent forms, for example as Theorem 3.15 of [10]. For our purposes, the important
result is the final clause on Hausdorff distances, which appears in the statement of
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Proposition 3.1 of [3]. This criterion is used in [11] to show that the curve graphs
of closed surfaces of genus at least 2 are uniformly hyperbolic.

Proposition 10.4.1. For all h ě 0, there exist k and R such that the following
holds. Let G be a connected graph with vertex set V pGq. Suppose that for every
x, y P V pGq there is a connected subgraph Lpx, yq Ď G, containing x and y, with
the following properties:

(1) for any x, y P V pGq with dGpx, yq ď 1, the diameter of Lpx, yq in G is at
most h,

(2) for all x, y, z P V pGq, Lpx, yq Ď NGpLpx, zq Y Lpy, zq, hq.
Then G is k-hyperbolic. Furthermore, for all x, y P V pGq, the Hausdorff distance
between Lpx, yq and any geodesic from x to y is at most R.

We first note that a slightly more general statement is true.

Claim 10.4.2. The requirement that each Lpx, yq be connected can be replaced by
the weaker condition that there exist h1 such that, for all x, y P V pGq, NGpLpx, yq, h1q
is connected.

To see this, suppose subgraphs Lpx, yq satisfy all the hypotheses of Proposition
10.4.1, except that the connectedness assumption is replaced as described in the
claim. Define L1px, yq “ NGpLpx, yq, h1q. This is a connected subgraph of G con-
taining x and y. For any x, y P V pGq with dGpx, yq ď 1, the diameter of L1px, yq in
G is at most h`2h1, and for any x, y, z P V pGq, L1px, yq Ď NGpL1px, zqYL1py, zq, hq.
Hence, the conclusion of Proposition 10.4.1 holds, except with constants now de-
pending on h and h1, proving Claim 10.4.2.

Given two curves α and β in S, we shall define Θpα, βq to be the set containing
the isotopy classes of α, β and all bicorn curves between α and β.

Przytycki and Sisto define in [11] an “augmented curve graph”, CaugpSq, where
two curves are adjacent if they intersect at most twice. Such curves cannot fill S
(which has genus at least 2) so are at distance at most 2 in CpSq. Given two curves
α and β in minimal position, ηpα, βq is defined in [11] to be the full subgraph of
CaugpSq spanned by Θpα, βq. This is shown to be connected for all α and β. It is
further verified that the hypotheses of Proposition 10.4.1 are satisfied when G is
CaugpSq, Lpα, βq is ηpα, βq for each α, β, and h is 1, independently of the surface S.

Since ηpα, βq is connected in CaugpSq, for any γ, γ1 P Θpα, βq, there is a se-
quence γ “ γ0, γ1, . . . , γn “ γ1 of curves in Θpα, βq, where dSpγi´1, γiq ď 2 for each
1 ď i ď n. Hence, NCpSqpΘpα, βq, 1q is a connected subgraph of CpSq. Moreover, if
dSpα, βq ď 1, then α and β are disjoint, so Θpα, βq contains no other curves and its
diameter in CpSq is at most 1. Finally, since ηpα, βq Ă NCaugpSqpηpα, δqYηpβ, δq, 1q
for any curves α, β, δ, we have Θpα, βq Ă NCpSqpΘpα, δq YΘpβ, δq, 2q.

Using Proposition 10.4.1 with the modification of Claim 10.4.2, this proves the
following lemma.
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Lemma 10.4.3. There exists R such that, for any closed, orientable surface S of
genus at least 2, and any curves α, β in S, the Hausdorff distance in CpSq between
Θpα, βq and any geodesic in CpSq joining α and β is at most R.

We now show that, moreover, any geodesic between α and β in CpSq lies in a
uniform neighbourhood of any path within Θpα, βq connecting α and β.

Lemma 10.4.4. Let α, β be two curves in S, P pα, βq a path from α to β in CpSq
with all vertices in Θpα, βq, and g a geodesic in CpSq joining α and β. Then g is
contained in the p2R ` 2q-neighbourhood of P pα, βq.

Proof. This uses a well known connectedness argument. From Lemma 10.4.3,
P pα, βq is contained inNCpSqpg,Rq. Take any vertex γ in g. Let g0 be the subpath of
g from α to γ and g1 the subpath from γ to β. Then the three sets NCpSqpg0, R`1q,
NCpSqpg1, R ` 1q and P pα, βq intersect in at least one vertex, say δ. Let γ0 in
g0 and γ1 in g1 be such that dSpγ0, δq ď R ` 1 and dSpγ1, δq ď R ` 1. Now
dSpγ0, γ1q ď 2R ` 2 and γ is in the (geodesic) subpath of g from γ0 to γ1, so
dSpγ, γiq ď R ` 1 for either i “ 0 or i “ 1. Hence, dSpγ, δq ď 2R ` 2. Since γ was
an arbitrary vertex in g and δ is in P pα, βq, we have g Ă NCpSqpP pα, βq, 2R`2q. �

Given that α and β bound embedded discs in M , we now describe how to choose
P pα, βq so that all curves in the path are also vertices of DpM,Sq, following Section
2 of [9].

Assume curves α and β are fixed in minimal position and choose a subarc J Ă
α. Masur and Minsky define several curve replacements, of which we shall need
only the following. A wave curve replacement with respect to pα, β, Jq is the
replacement of α and J by α1 and J1 as follows (see Figure 10.2). Let w be a
subarc of β with interior disjoint from α, and endpoints p, q in the interior of
J . Suppose that w meets the same side of J at both p and q; then w is called
a wave. Let J1 be the (proper) subarc of J with endpoints p, q, and define α1

to be the curve w Y J1. This is an essential curve since α and β are in minimal
position, so, in particular, no subarc of J and subarc of β can form a bigon. Where
intpJqXβ “ ∅, we define a curve replacement with respect to pα, β, Jq by α1 “ β,
J1 “ ∅.

Figure 10.2. A wave curve replacement. The dashed curve is α1.

Remark 10.4.5. In [9], it is arranged that α1 and β must intersect transversely
and be in minimal position by requiring an additional condition on the wave w
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and by slightly isotoping w Y J1 to be disjoint from w. However, this will not be
necessary here, so we choose to simplify the exposition by removing this condition.

Notice that since α does not intersect intpwq, ipα, α1q “ 0. Moreover, α1 X β
consists of the arc w and a set of points which are all contained in the interior of
J1, and |β X intpJ1q| ă |β X intpJq| whenever |β X intpJq| is non-zero.

We can iterate this process as follows. Athough α1 and β coincide in an arc,
any intersections within the subarc J1 are still transverse. Moreover, no subarc of
J1 can form a bigon with a subarc of β, since α and β are in minimal position.
Hence, we may still define a wave curve replacement with respect to pα1, β, J1q
as for pα, β, Jq above and obtain an essential curve. A nested curve replacement
sequence is a sequence tpαi, Jiqu of curves α “ α0, α1, . . . , αn and subarcs α Ą J0 Ą
J1 Ą ¨ ¨ ¨ Ą Jn, such that J0 contains all points of α X β in its interior, and such
that αi`1 and Ji`1 are obtained by a curve replacement with respect to pαi, β, Jiq.
We will allow only wave curve replacements in the sequence and not the other
curve replacements possible in [9]. We always have ipαi, αi`1q “ 0, as for α and
α1. Observe that all curves αi in this sequence are bicorn curves between α and
β, since the nested arcs Ji ensure that they are formed from exactly one arc of α
and one of β.

The following is a case of Proposition 2.1 of [9]. We include a proof for com-
pleteness, with the minor modification of the slightly different curve replacements.

Proposition 10.4.6. Let S be a boundary component of a compact, orientable
3-manifold M , and let α and β be two curves in S in minimal position, each of
which bounds an embedded disc in M . Let J0 Ă α be a subarc containing all points
of α X β in its interior. Then there exists a nested curve replacement sequence
tpαi, Jiqu, with α0 “ α, such that:

‚ each αi bounds an embedded disc in M ,
‚ the sequence terminates with αn “ β.

Proof. Suppose that α and β bound properly embedded discs A and B respectively.
We can assume that A and B intersect transversely, so their intersection locus is
a collection of properly embedded arcs and simple closed curves. Furthermore, we
can remove any simple closed curve components by repeatedly performing surgeries
along innermost discs, so that A and B intersect only in properly embedded arcs.
We will perform surgeries on these discs to get a sequence of discs Ai with BAi “ αi.
Throughout the surgeries, we will keep A and B fixed, and each Ai, except A0 “ A
and An “ B, will be a union of exactly one subdisc of each of A and B.

Suppose the sequence is constructed up to αi “ BAi. If β X αi is empty, then
αi`1 “ β “ BB by definition, so the sequence is finished.

Suppose β intersects αi (as illustrated in the example of Figure 10.3). Let
Ai “ Di Y Ei, where Di is a subdisc of A and Ei is a subdisc of B. If i “ 0, then
Ei is empty. If i ą 0, let Ji be the arc of BDi which is contained in BAi. Any
point of intersection of β and Ji is an endpoint of an arc of intersection of B and
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Figure 10.3. The disc surgeries of Proposition 10.4.6. The hori-
zontal disc is Ai, shown with arcs of intersection with B.

Di. Let Ei`1 be a disc in B such that the boundary of Ei`1 is made up of an
arc e in intpDiq X B and a subarc w of β, and such that the interior of Ei`1 is
disjoint from Ai (that is, Ei`1 is an outermost component of BzpAi X Bq). This
in particular means that the interior of w is disjoint from αi, that the endpoints
p, q of w lie in the interior of Ji, and that w meets the same side of Ji at both of
these endpoints, so w is a wave. Let Ji`1 be the subarc of Ji with endpoints p, q.
Let Di`1 be the disc in Ai bounded by eY Ji`1. This disc is contained in Di and
hence in A. The curve wY Ji`1, with interval Ji`1, is the wave curve replacement
αi`1 obtained from pαi, β, Jiq, and it is also the boundary of the embedded disc
Ai`1 “ Di`1 Y Ei`1.

Since at each stage |βXintpJiq| decreases, this terminates with |βXintpJn´1q| “ 0
and αn “ β. �

This sequence defines the vertices of a path P pα, βq in CpSq, with these ver-
tices contained in both DpM,Sq and Θpα, βq. By Lemma 10.4.4, there exists K,
independent of S, α and β, such that any geodesic g joining α and β in CpSq is
contained in the closed K-neighbourhood of P pα, βq. Hence, g is contained in the
closed K-neighbourhood of DpM,Sq, completing the proof of Theorem 10.1.1.
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