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Surfaces

Surface:

2-dimensional real manifold, connected, oriented and finite type

Classification of surfaces → S = Sg ,p: genus g surface with p points

removed (p punctures), g and p finite (in Z≥0)



Definition of mapping class group

Homeo+(S) = {orientation-preserving homeomorphisms S → S}

Homeo+(S) forms a group under composition, but it is uncountable.

Mapping class group: MCG(S) = Homeo+(S)/ ∼

f ∼ g if f and g are isotopic. This means that there is a homotopy

F : S × [0, 1]→ S so that:

• F (·, 0) = f

• F (·, 1) = g

• F (·, t) is a homeomorphism for all t



Definition of mapping class group

Mapping class group: MCG(S) = Homeo+(S)/ ∼

f ∼ g if f and g are isotopic.

The mapping class group is a countable group, in fact it is finitely

presented.

We will call an element of the mapping class group a

mapping class. That is, a mapping class is an isotopy class of

orientation-preserving self-homeomorphisms of S .
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Surfaces with boundary

Sometimes we will allow surfaces to have boundary as well as/instead

of punctures.

In this case, when defining MCG(S), we restrict to homeomorphisms

that fix the boundary ∂S pointwise. The isotopies should also fix ∂S

pointwise.

MCG(S) = Homeo+(S , ∂S)/ ∼



Example: MCG(D)

Let D be the closed disc.

MCG(D) = 1

That is, every homeomorphism f : D→ D which fixes ∂D pointwise

is isotopic to IdD.

This is sometimes called the Alexander trick.



Example: MCG(D)

The fact that MCG(D) is trivial turns out to be very useful. We will

see later an important tool that involves cutting a surface into

topological discs and then applying the fact that discs have trivial

mapping class group.

If we remove one point from D (add a puncture) the mapping class

group is still trivial.



Example: braid groups

The braid group on n strands is equal to the mapping class group of

the n times punctured disc.



Example: MCG(T 2)

We can think of T 2 as a quotient R2/ ∼, where (x , y) ∼ (x + 1, y),

(x , y) ∼ (x , y + 1).

It turns out that: MCG(T 2) ∼= SL(2,Z).



Studying the mapping class group: curves

A curve in S is an embedding of the circle a : S1 → S .

simple essential non-peripheral

A curve c is separating if S − c is disconnected, and

non-separating if S − c is connected.

Example:
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Studying the mapping class group: curves

We typically consider curves up to isotopy. Two curves a, b : S1 → S

are isotopic if there is a homotopy between them so that every

intermediate map is an embedding.

• Homeomorphisms take curves to curves.

• If φ1, φ2 are isotopic homeomorphisms (i.e. representing the

same element of MCG(S)) and α1, α2 are isotopic curves, then

φ1(α1) is isotopic to φ2(α2).

→ There is a well defined action of MCG(S) on the set of isotopy

classes of curves in S .
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Minimal position

• c1 and c2 (isotopy classes of) curves in S

• γ1, γ2 fixed representatives of the isotopy classes c1, c2,

i.e. actual embeddings of S1 not considered up to isotopy

We say γ1 and γ2 are in minimal position if the number of

intersections in γ1 ∩ γ2 is the minimal possible for two curves in the

isotopy classes of c1 and c2.



Minimal position

• c1 and c2 (isotopy classes of) curves in S

• γ1, γ2 fixed representatives of the isotopy classes c1, c2,

i.e. actual embeddings of S1 not considered up to isotopy

We say γ1 and γ2 are in minimal position if the number of

intersections in γ1 ∩ γ2 is the minimal possible for two curves in the

isotopy classes of c1 and c2.

Fact: If c1, . . . , ck is a collection of curves in S , we can realise them

so that every pair is simultaneously in minimal position.

Exercise: 1. Prove this for the torus T 2. (Hint: we can realise T 2 as

a quotient of the Euclidean plane, and in each isotopy class of curves

there is a representative which is a straight line.)

2. Try to prove for surfaces of negative Euler characteristic using the

fact that these admit a hyperbolic metric.



Dehn twists: the building blocks of the mapping class group

Next week we will see how to generate MCG(S) using Dehn twists.

To define a Dehn twist about a curve a, we consider an annular

neighbourhood of a.



Dehn twists: the building blocks of the mapping class group

For each curve, we have a left Dehn twist and a right Dehn twist,

and these are inverses of each other.



When is a mapping class trivial?

The identity element Id ∈ MCG(S) is the class of all

self-homeomorphisms of S isotopic to the identity homeomorphism.

If f = Id ∈ MCG(S) then f (a) is isotopic to a for every curve a in S .

If we know that f fixes certain curves (up to isotopy), can we

guarantee that f = Id?



The Alexander method: set up

Let’s try to understand mapping classes of S by cutting S up into

smaller pieces.

Recall: Let D be the closed disc and D∗ the once punctured disc.

Then MCG(D) and MCG(D∗) are both trivial.

So does this mean that if we add enough curves to cut S into discs

and once punctured discs then a mapping class f fixing all of these

curves must be trivial?

Well, not quite: f could still permute or rotate the discs.

Let’s see some examples.



The Alexander method: set up

The curves are preserved but the two discs swap places.



The Alexander method: set up

Each disc (square) is preserved, but each is rotated by a half turn.



The Alexander method

Let c1, . . . , cn be distinct oriented curves in S .

Assume c1, . . . , cn are realised in minimal position and let Γ =
⋃

i ci .

This is an oriented graph in S . Also assume:

• Γ cuts S into a disjoint union of discs and once punctured discs

• for any distinct i , j , k , one of ci ∩ cj , cj ∩ ck , ck ∩ ci is empty

→ we can realise Γ in a canonical way (up to isotopy)

Let f ∈ MCG(S) and suppose that f preserves the collection of

curves c1, . . . , cn as a set. Then after possibly applying an isotopy, f

preserves the graph Γ, and induces a graph automorphism f∗ : Γ→ Γ.

Remark: There is something to check here. Namely, we are given

that a representative homeomorphism φ of the mapping class f takes

each ci to a curve isotopic to some cj . But we need that there is a

single isotopy that works for all ci at once, so that we can take φ(Γ)

to Γ by an isotopy.



The Alexander method

Let c1, . . . , cn be distinct oriented curves in S .

Assume c1, . . . , cn are realised in minimal position and let Γ =
⋃

i ci .

This is an oriented graph in S . Also assume:

• Γ cuts S into a disjoint union of discs and once punctured discs

• for any distinct i , j , k , one of ci ∩ cj , cj ∩ ck , ck ∩ ci is empty

→ we can realise Γ in a canonical way (up to isotopy)

Let f ∈ MCG(S) and suppose that f preserves the collection of

curves c1, . . . , cn as a set. Then after possibly applying an isotopy, f

preserves the graph Γ, and induces a graph automorphism f∗ : Γ→ Γ.

1. If f∗ is the identity, i.e. preserving each each edge of Γ with

orientation, then f = Id ∈ MCG(S).

2. The set {f ∈ MCG(S) | f preserves
⋃
ci} is a finite group. In

particular, any f preserving the set of ci has finite order.



The Alexander method

Exercise:

1. (Part of the proof of item 1.) Let c1, . . . , cn be a collection of

curves as in the statement of the Alexander method. Suppose

that φ is a homeomorphism of S that acts as the identity on⋃
ci (actually fixing the curves pointwise, not up to isotopy).

Use the fact that MCG(D) and MCG(D∗) are trivial to deduce

that φ is isotopic to the identity.

2. Use item 1. to prove that the map

{f ∈ MCG(S) | f preserves
⋃

ci} → Aut(Γ)

is injective, and deduce item 2.



The Alexander method: back to first example

The oriented graph is preserved, but the individual edges are not.

Alexander method → this mapping class has finite order: indeed we

can see it has order 2.

If every edge of the graph was preserved with orientation, then we

would have the identity.



Example: relations in the mapping class group

We can use the Alexander method to check relations in the mapping

class group.

Alexander method → we only need to check the relation on a finite

collection of curves, and the graph they form.

NB: We apply mapping classes from right to left.

NB: I will use the convention that a positive (not inverse) Dehn twist

will twist left in the picture.

Example: The “braid relation”. If a and b are two curves

intersecting once, and Ta, Tb are the Dehn twists about a, b

respectively, then TaTbTa = TbTaTb.



Aside: “change of coordinates”

Example: Braid relation. a, b intersect once → TaTbTa = TbTaTb.

Crucial observation: We don’t need to check every pair a, b of

curves intersecting once.

Claim: for any two pairs a, b and a′, b′ with each pair intersecting

once, there exists f ∈ MCG(S) so that f (a) = a′ and f (b) = b′.

Assuming the claim, we have:

• Ta′ = Tf (a) = f Taf
−1

• Tb′ = Tf (b) = f Tbf
−1

And hence TaTbTa = TbTaTb ⇐⇒ Ta′Tb′Ta′ = Tb′Ta′Tb′ .

Exercise: Use the definition of Dehn twist in terms of an annular

neighbourhood of a to check Tf (a) = f Taf
−1.



Aside: “change of coordinates”

• Classification of surfaces → there exists a homeomorphism

φ : Sa,b → Sa′,b′

• Isotope φ so that it

• takes arcs of a to arcs of a′

• takes arcs of b to arcs of b′

• respects how the arcs are glued up

• glue back together, and we have a homeo. taking a, b to a′, b′



Example: relations in the mapping class group

Example: Braid relation. a, b intersect once → TaTbTa = TbTaTb.

For simplicity assume S has no punctures. Fix a set of curves cutting

S into discs, with no three curves pairwise intersecting.



Example: relations in the mapping class group

Exercises:

1. Make an oriented graph Γ from the curves in the braid relation

example and check what happens to this when we do the twists.

Check the induced automorphisms of Γ are the same for TaTbTa

and TbTaTb.

2. Check the case where S has genus at least 1 and might have

punctures (add some more curves to satisfy the hypotheses of

the Alexander method).

3. Convince yourself that two curves on a surface of genus 0 cannot

intersect exactly once – so there is nothing to check here.


