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Recall: the mapping class group

S = Sg ,p a connected, oriented, finite type surface

MCG(S) = {orientation-preserving homeomorphisms S → S}/isotopy



Recall: Dehn twists

To define a Dehn twist about a curve a, we consider an annular

neighbourhood of a.



Generating the mapping class group

Theorem (Lickorish generators for MCG(Sg ,0))

For g ≥ 1 the mapping class group MCG(Sg ,0) is generated by

Dehn twists about the 3g − 1 curves pictured.

To sketch a proof of this, we will introduce two important tools in

the study of the mapping class group:

• graphs of curves

• the Birman exact sequence

Notation: For a curve b, we will write Tb for the (left) Dehn twist

about b.



The curve graph

The curve graph C(S) of S has:

• a vertex for every isotopy class of curves in S

• an edge joining two vertices if the isotopy classes have disjoint

representative curves

This is a (locally infinite) simplicial complex, and we can make it a

metric space by giving each edge length 1.

MCG(S) acts on the curve graph by

• simplicial automorphisms • isometries



The curve graph is connected

Proposition

Let S be such that it contains pairs of disjoint curves (i.e. S is not

S0,p, p ≤ 4 or S1,p, p ≤ 1). Then the curve graph of S is connected.

Sketch of proof: Let a, b be two curves, arranged to intersect

minimally. Let a, b intersect n times. We use an induction on n to

prove that there is a path from a to b.

Orient a and consider two points of a ∩ b consecutive along b.

We use a curve surgery.



The curve graph is connected

Exercise:

• Base case of induction: if a and b intersect at most once then

they are connected by a path in C(S). (Hint: consider the

boundary of a small regular neighbourhood of a ∪ b in S .)

• Case 1

• a′ is a single simple closed curve.

• a′ ∩ b has fewer points than a ∩ b (in minimal position).

• a and a′ intersect exactly once.

• a′ is essential and non-peripheral. (Hint: use the preceding

item.)



The curve graph is connected

Exercise:

• Case 2

• a′ is a pair of simple closed curves.

• a′ ∩ b has fewer points than a ∩ b.

• a and a′ are disjoint.

• Either at least one component of a′ is essential and

non-peripheral, or there is another pair of intersections

where we will get an essential non-peripheral curve using

these surgeries (Hint: if this was not the case, what would

the options be for S?)



Properties of the curve graph

Exercise: (assume S admits pairs of disjoint non-isotopic curves, i.e,

S is not S0,p, p ≤ 4 or S1,p, p ≤ 1)

1. Convince yourself that each vertex of the curve graph C(S) has

infinite degree.

2. Prove that the quotient of C(S) by the natural action of the

mapping class group is a finite graph. (Hint: use the “change of

coordinates” idea from the end of the last lecture.)



The Birman exact sequence: the forgetful map

For this, we will consider the pure mapping class group PMCG(S).

This is the subgroup of MCG(S) that fixes each puncture of S .

Let S = Sg ,p with p ≥ 1 and choose a puncture y . If we “forget” the

puncture y we get the surface Sg ,p−1.

Suppose that f is a mapping class in PMCG(S). Since f is a pure

mapping class, it does not swap y with any other puncture of S .

Hence f still makes sense when we forget y , and we get an element

of PMCG(Sg ,p−1).



The Birman exact sequence: kernel of the forgetful map

Let F : Sg ,p → Sg ,p−1 be the map forgetting the puncture y and

F∗ : PMCG(Sg ,p)→ PMCG(Sg ,p−1) be the induced map on pure

mapping class groups.

What does the kernel of F∗ look like?

Consider the fundamental group of Sg ,p−1 based at the place where

the puncture y is in Sg ,p.

Let a be a loop in π1(Sg ,p−1, y). We are going to do a point push

along the loop a.



The Birman exact sequence

A point push involves dragging the puncture y around the loop a

until it gets back to where it started.

Exercise: Suppose a is a simple (i.e. embedded) loop. If c is the

inner boundary component in the picture above and d is the outer

boundary component, then the point push Push(a) = TcT
−1
d .



The Birman exact sequence: point pushing

The point push along a is a non-trivial mapping class of Sg ,p (as long

as a is not homotopically trivial).

But when we forget the puncture y and go to Sg ,p−1, the point push

is isotopic to the identity, and hence is trivial in PMCG(Sg ,p−1).



The Birman exact sequence

Theorem (Birman Exact Sequence)

Let F : Sg ,p → Sg ,p−1 be the map forgetting the puncture y and F∗

the induced map on pure mapping class groups. We have a short

exact sequence:

1→ π1(Sg ,p−1, y)
Push−−−→ PMCG(Sg ,p)

F∗−→ PMCG(Sg ,p−1)→ 1.



Constructing the Lickorish generating set

Now we can start proving that the Lickorish twists generate

MCG(Sg ), where Sg = Sg ,0. (NB: the proof will follow the one in A

Primer on Mapping Class Groups.) We will use an induction on g ,

starting from:

Fact

MCG(S1,0) is generated by Dehn twists about the following two

curves:



Constructing the Lickorish generating set

Assume g ≥ 2. We are going to use the following fact to reduce

checking the generating set for MCG(S) to a lower genus.

Fact

Suppose

• X connected simplicial graph (no loops or double edges)

• G acts on X by simplicial automorphisms

• G acts transitively on ordered pairs of adjacent vertices of X

Let v , w be adjacent vertices of X and let h ∈ G so that h(w) = v .

Then G = 〈h, StabG (v)〉, where StabG (v) = {g ∈ G | g(v) = v}.



Constructing the Lickorish generating set

We will apply the fact from the previous slide to MCG(S), using a

variation of the curve graph of S .

Let N (S) be the graph with:

• a vertex for every isotopy class of non-separating curves

• an edge between two vertices if the curves intersect exactly once

Exercise: Prove that N (S) is connected, using a similar surgery

argument to that for the curve graph. (Hint: for “Case 2”, try

looking at three consecutive intersections instead of just two.)



Constructing the Lickorish generating set

Let N (S) be the graph with:

• a vertex for every isotopy class of non-separating curves

• an edge between two vertices if the curves intersect exactly once

Remark: Why N (S) instead of the normal curve graph, or the graph

of non-separating curves with edges for disjointness?

Well, to apply the Fact, we want the mapping class group to act

transitively on edges. Last week we saw that MCG(S) acts

transitively on pairs of non-separating curves intersecting exactly

once (“change of coordinates”). This is not true for pairs of disjoint

(non-separating) curves.



Constructing the Lickorish generating set

Fact

Suppose

• X connected simplicial graph (no loops or double edges)

• G acts on X by simplicial automorphisms

• G acts transitively on ordered pairs of adjacent vertices of X

Let v , w be adjacent vertices of X and let h ∈ G so that h(w) = v .

Then G = 〈h, StabG (v)〉, where StabG (v) = {g ∈ G | g(v) = v}.

G = MCG(S), X = N (S) satisfy the hypotheses.

Let a, m be adjacent vertices of N (S), i.e. non-separating curves

intersecting exactly once.

Exercise: TaTm(a) = m.

Hence MCG(S) is generated by Ta, Tm and the stabiliser of m.



Constructing the Lickorish generating set

We have just seen that if a and m are two curves intersecting exactly

once, then MCG(S) is generated by Ta, Tm and the stabiliser of m.

Let a = ag and m = mg . The twists around ag and mg are in the set

we are trying to prove generate MCG(Sg ).

So it remains to prove: StabMCG(Sg )(mg ) is generated by the twists

around the curves in the picture.

We want to reduce this to a question about MCG(Sg−1).



Constructing the Lickorish generating set

Instead of looking at the full stabiliser of mg , it will be convenient to

stabilise mg , with orientation. We denote the group that does this

by StabMCG(Sg )( ~mg ).

StabMCG(Sg )(mg ) is generated by StabMCG(Sg )( ~mg ), plus an element

that reverses the orientation of mg .

Exercise: TagT
2
mg

Tag preserves mg but reverses its orientation.

This element can be formed from our set of Lickorish twists, so it

suffices to check that StabMCG(Sg )( ~mg ) is generated by these twists.



Constructing the Lickorish generating set

Lemma: StabMCG(Sg )( ~mg ) = PMCG(S −mg )× 〈Tmg 〉



Constructing the Lickorish generating set

S −mg
∼= Sg−1,2

We have reduced the genus. The induction hypothesis tells us that if

we forget the two punctures m+ and m−, MCG(Sg−1) is generated

by a1, . . . , ag−1, m1, . . . ,mg−1, c1, . . . cg−2.

So now we want to compare PMCG(Sg−1,2) with

MCG(Sg−1) = PMCG(Sg−1).



Constructing the Lickorish generating set

We can use the Birman exact sequence twice:

1→ π1(Sg−1,1,m−)
Push−−−→ PMCG(Sg−1,2)

F∗−→ PMCG(Sg−1,1)→ 1

1→ π1(Sg−1,m+)
Push−−−→ PMCG(Sg−1,1)

F∗−→ PMCG(Sg−1)→ 1



Constructing the Lickorish generating set

1→ π1(Sg−1,1,m−)
Push−−−→ PMCG(Sg−1,2)

F∗−→ PMCG(Sg−1,1)→ 1

1→ π1(Sg−1,m+)
Push−−−→ PMCG(Sg−1,1)

F∗−→ PMCG(Sg−1)→ 1

What needs to be done to finish the proof is to carefully choose

generating sets for π1(Sg−1,m+) and π1(Sg−1,1,m−) and to prove

that the point pushes around each of the loops in the generating set

can be written as a product of Lickorish twists.



Other applications of curve graphs: homological properties of

mapping class groups

Curve graph C(S) (assume S admits pairs of disjoint curves):

• a vertex for every isotopy class of curves in S

• an edge joining two vertices if curves are disjoint

We can make the curve graph into a flag complex by adding a

n-simplex for every (n + 1)-clique in the graph. In fact this is the

original definition of the curve complex but for many purposes we

just think about the 1-skeleton.

Harer used the curve complex to prove various results about

homological properties of the mapping class groups12.

1Stability of the homology of the mapping class groups of orientable surfaces,

Ann. Math. 121 (1985)
2The virtual cohomological dimension of the mapping class group of an orientable

surface, Invent. Math. 84 (1986)



Other applications of curve graphs: algebraic properties of map-

ping class groups

Ivanov showed3 (for genus at least 2; Korkmaz and Luo proved the

remaining cases) that the group of simplicial automorphisms of the

curve graph C(S) is the extended mapping class group MCG±(S).

This is defined just like the mapping class group except that we allow

orientation-reversing homeomorphisms.

A consequence is that the automorphism group of MCG(S) is equal

to MCG±(S) and every automorphism MCG(S)→ MCG(S) is given

by conjugation. In fact any isomorphism Γ1 → Γ2, where Γ1, Γ2 are

finite index subgroups of MCG(S), is given by conjugation by some

element of MCG±(S).

3Automorphism of complexes of curves and of Teichmüller spaces,

Int. Math. Res. Not. 14 (1997)



Other applications of curve graphs: algebraic properties of map-

ping class groups

Different variations of the curve graph have been used to prove

similar results for different normal subgroups of the mapping class

group, notably in work of Brendle and Margalit4.

4Normal subgroups of mapping class groups and the metaconjecture of Ivanov,

J. Amer. Math. Soc. 32 (2019)



Other applications of curve graphs: large scale geometry of

mapping class groups

To make C(S) into a metric space, we give each edge length 1.

Theorem (Masur–Minsky5)

C(S) is a δ-hyperbolic infinite diameter metric space.

MCG(S) acts on C(S) by isometries. This action is not properly

discontinuous (the infinite cyclic group generated by a Dehn twist

about a fixes the vertex a).

5Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999)



Other applications of curve graphs: large scale geometry of

mapping class groups

Masur and Minsky later showed6 that the word metric on the

mapping class group of S can be estimated by a sum of distances in

curve graphs of subsurfaces of S .

To compare distances in MCG(S) with distances in curve graphs, we

model MCG(S) by a graph M(S) whose vertices are collections of

curves that cut S into discs and once punctured discs, with

appropriate edges. The Alexander method can be used to show that

MCG(S) acts properly discontinuously and cocompactly – so that

M(S) is quasi-isometric to MCG(S).

6Geometry of the complex of curves II: Hierarchical structure,

Geom. Funct. Anal. 10 (2000)


