Computing Hecke Operators On Drinfeld Cusp Forms

Ralf Butenuth

Universität Duisburg-Essen, Essen

Bristol, 2008-08-22

2 Drinfeld modular forms and harmonic cocycles on ${\mathcal T}$

3 Computing Hecke operators on harmonic cocycles

Notation

- $k := \mathbb{F}_q$ with $q = p^r$
- *K* := Quot(*k*[*T*])
- v_{∞} valuation of K at the place ∞ , i.e. $v_{\infty}(\frac{f}{g}) = \deg(g) - \deg(f), v_{\infty}(0) = \infty$
- K_{∞} the completition of K at v_{∞} , i.e. $K_{\infty} = k((\pi_{\infty}))$ the laurent series ring where π_{∞} is the uniformizer T^{-1} .

•
$$\mathcal{O}_{\infty} := \{x \in \mathcal{K}_{\infty} \mid v_{\infty}(x) \ge 0\}$$

Definition of \mathcal{T}

- Let X(T) be the equivalence classes of O_∞-lattices in K²_∞. Each such equivalence class defines a vertex of T.
- Let $\Lambda, \Lambda' \in X(\mathcal{T})$ and choose a lattice $L \in \Lambda$. Λ and Λ' are connected in \mathcal{T} iff there exists a $L' \in \Lambda'$ such that $L' \subseteq L$ and $L/L' \simeq \mathcal{O}_{\infty}/\pi_{\infty}\mathcal{O}_{\infty}$. The set of directed edges of \mathcal{T} is called $Y(\mathcal{T})$.

Theorem about the structure of ${\mathcal T}$

T is a q + 1-regular tree, i.e. T is a connected, cycle-free tree, where every vertix has q + 1 neighbours.

Example for q = 3

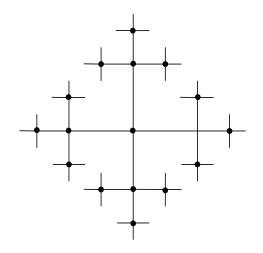


Figure: The Bruhat-Tits-Tree for $k = \mathbb{F}_3$

Operation of $GL_2(k[T])$ on T

• There is a bijection

$$X(\mathcal{T}) \longrightarrow \operatorname{GL}_2(\mathcal{K}_\infty) / \operatorname{GL}_2(\mathcal{O}_\infty) \mathcal{K}^\star_\infty$$

• There is a bijection

$$Y(\mathcal{T}) \longrightarrow \mathsf{GL}_2(\mathcal{K}_{\infty})/\mathsf{\Gamma}_{\infty}\mathcal{K}_{\infty}^{\star}$$

with $\mathsf{\Gamma}_{\infty} := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{GL}_2(\mathcal{O}_{\infty}) \mid v_{\infty}(c) > 0 \}$

- $\operatorname{GL}_2(k[\mathcal{T}])\setminus \mathcal{T}$ is just a half-line. Reason: $\operatorname{GL}_2(k[\mathcal{T}])\setminus \operatorname{GL}_2(\mathcal{K}_\infty)/\operatorname{GL}_2(\mathcal{O}_\infty)\mathcal{K}_\infty^\star \cong \{\begin{pmatrix} 1 & 0\\ 0 & \pi^n \end{pmatrix} \mid n \in \mathbb{N}\}$
- We write Λ_n for the class of the lattice $\mathcal{O}_\infty \oplus \pi_\infty^n \mathcal{O}_\infty$

Let $N \in \mathbb{F}_q[T]$ be normalized.

•
$$\Gamma(N) := \{ \gamma \in \operatorname{GL}_2(k[T]) \mid \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \}$$

A subgroup of GL₂(k[T]) containig Γ(N) for any N ∈ k[T] is called a congruence subgroup.

•
$$\Gamma_0(N) := \{ \gamma \in \operatorname{GL}_2(k[T]) \mid \gamma \equiv \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mod N \}$$

• $\Gamma_1(N) := \{ \gamma \in \operatorname{GL}_2(kT]) \mid \gamma \equiv \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mod N \}$

• Congruence subgroups are of finite index in $\operatorname{GL}_2(\mathbb{F}_q[\mathcal{T}])$, since $\Gamma(N) \setminus \operatorname{GL}_2(k[\mathcal{T}]) \cong \begin{pmatrix} k^* & 0 \\ 0 & 1 \end{pmatrix} \operatorname{SL}_2(k[\mathcal{T}]/N).$

- $\Gamma \setminus T$ is a covering of $GL_2(k[T]) \setminus T$
- $GL_2(k[T]) \setminus T$ is a simple half line.
- $\operatorname{GL}_2(k[T]) \setminus T : \Lambda_0 \to \Lambda_1 \to \Lambda_2 \to \dots$
- Elements of Γ\T are Γ-orbits of T. Every GL₂(k[T])-orbit of T decomposes into finitly many Γ-orbits, since Γ\GL₂(k[T]) is finite.
- We need to know Stab_{GL2(k[T])}(Λ_i) to see how an GL₂(k[T])-orbit decomposes.

Algorithm for the calculation of $\Gamma \setminus T$

- Let $G_i := \operatorname{Stab}_{\operatorname{GL}_2(k[T])}(\Lambda_i)$. A simple calculation shows, that $G_0 = \operatorname{GL}_2(k)$ and $G_i = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, d \in k^*, b \in k[T], \operatorname{deg}(b) \leq i \}.$
- Let $S = \{s_1, \ldots, s_n\}$ be a set of representatives of $\Gamma \setminus GL_2(k[T])$.
- Let Υ be the standard half line $\Lambda_0 \to \Lambda_1 \to \Lambda_2 \to \ldots$ and $s_i(\Upsilon)$ the halfline $s_i(\Lambda_0) \to s_i(\Lambda_1) \to s_i(\Lambda_2) \to \ldots$
- Then $\Gamma \setminus T$ can be obtained by taking the halflines $s_1(\Upsilon), \ldots, s_m(\Upsilon)$ and identify vertices and edges using the following rules:
 - Only identify vertices and edges of the same level.
 - 2 $s_i(\Lambda_n) \sim s_j(\Lambda_n)$ iff there exists a $g \in G_n$ such that $s_i g s_j^{-1} \in \Gamma$.
 - **3** $s_i((\Lambda_0, \Lambda_1)) \sim s_j((\Lambda_0, \Lambda_1))$ iff there exists a $g \in G_0 \cap G_1$ such that $s_i g s_i^{-1} \in \Gamma$.
 - $s_i((\Lambda_n, \Lambda_{n+1})) \sim s_j((\Lambda_n, \Lambda_{n+1}))$ iff there exists a $g \in G_n$ such that $s_i g s_j^{-1} \in \Gamma$ for $n \ge 1$.

Example: q = 2, $\Gamma_1(T^2) \setminus T$

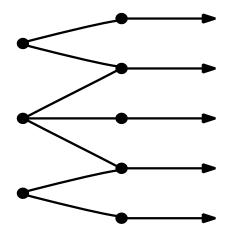


Figure: The Quotient $\Gamma_1(T^2) \setminus T$ for $k = \mathbb{F}_2$

Example: q = 3, $\Gamma_1(T^2) \setminus T$

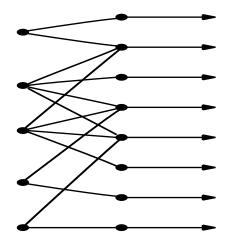


Figure: The Quotient $\Gamma_1(T^2) \setminus T$ for $k = \mathbb{F}_3$

Definition of harmonic cocycles

- For an edge e ∈ Y(T) let e^{*} denote the same edge with orientation reversed.
- For an vertex $v \in X(T)$ we write $e \mapsto v$ if v is the target of e
- Let *M* be any vector space with a GL₂(*k*[*T*])-operation and Γ ⊆ GL₂(*k*[*T*]) a congruence subgroup.
 - A function c : Y(T) → M is called an M-valued harmonic cocycle, if
 for all vertices v ∈ X(T) we have ∑ c(e) = 0.

2 $c(e^*) = -c(e)$ for all edges $e \in Y(T)$.

- ② A function c : Y(T) → M is called Γ-equivariant, if for all γ ∈ Γ we have c(γe) = γc(e)
- A Γ-equivariant harmonic cocycle c is called cuspidal, if there exist a finite subgraph Z ⊂ Γ\T with c(e) = 0 for all e ∉ Y(π⁻¹(Z)).

Theorem: Automatic cuspidality

Let M be a finite-dimensional vector-space over a field of characteristic p with a $GL_2(k[T])$ -operation. Then every M-valued Γ -equivariant harmonic cocycle is cuspidal.

Ralf Butenuth (Uni Essen)

Theorem (Teitelbaum, 1990)

There is an explicit $k[\Gamma]$ -module V_m (with $\dim_k V_m = m - 1$ and independent of Γ), such the following holds: Let Γ be a congruence subgroup of $GL_2(k[T])$ and let $S_m(\Gamma)$ be the space of Drinfeld cusp forms of level $m \ge 2$ for Γ . Then there is a (Hecke-equivariant) isomorphism from $S_m(\Gamma)$ to $C_{har}(\Gamma, V_m)$.

Stable Edges

- From now on let Γ be one of Γ₁(N) or Γ(N), i.e. Γ is p'-torsion-free for p' ≠ p.
- An edge e ∈ Y(T) (or a vertex v ∈ X(T)) is called Γ-stable, if Stab_Γ(e) = {1} (or Stab_Γ(v) = {1}). (So, i.e. there are no GL₂(k[T])-stable edges!)
- Fact: The stable part of the tree is connected in $\Gamma \setminus \mathcal{T}$.
- Fact: A vertex v ∈ X(T) is stable if and only if its image in Γ\T has exactly q + 1 neighbours. An edge v ∈ Y(T) is stable, if and only if one of the adjacent vertices is stable (except for the case Γ₁(T)).
- Fact: For every unstable edge e ∈ Y(T) there is a finite and easy to compute set Source(e) of stable edges of T such that

$$c(e) = \sum_{e' \in \mathsf{Source}(e)} c(e')$$

- So a harmonic cocycle c is determined by the values of c on the stable part of $\Gamma \backslash \mathcal{T}$
- Let $n = \deg(N)$. Then an edge in the covering over $(\Lambda_i, \Lambda_{i+1})$ with $i \ge n$ is unstable.
- In fact a harmonic cocycle is determined by the values of c on the stable edges over the edge (Λ_0, Λ_1) , and for every stable vertix over Λ_0 we get one relation between these edges.

Example: q = 2, $\Gamma_1(T^2) \setminus T$

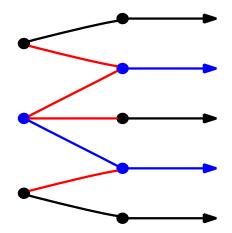


Figure: Colored: Stable edges and vertices. Red: Minimal set of edges, that determine a harmonic cocycle.

Hecke Operators on $C_{har}(\Gamma, V_m)$

• Translating the Hecke-action to the tree gives:

$$T_{p}(c)(e) = \sum_{\delta \in (\Gamma \cap \Gamma_{0}(p)) \setminus \Gamma} \delta^{-1} \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}^{-1} c(\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \delta e).$$

• Let $e = (\gamma \Lambda_0, \gamma \Lambda_1)$ be given. To evaluate $c\begin{pmatrix} p & 0\\ 0 & 1 \end{pmatrix} \delta e$ we consider the matrices $\begin{pmatrix} p & 0\\ 0 & 1 \end{pmatrix} \delta \gamma$ and $\begin{pmatrix} p & 0\\ 0 & 1 \end{pmatrix} \delta \gamma \begin{pmatrix} 1 & 0\\ 0 & \pi \end{pmatrix}$.

- Writing both these matrices in the form $\gamma' \begin{pmatrix} 1 & 0 \\ 0 & \pi^k \end{pmatrix} \alpha$ with $\alpha \in K_{\infty}^* \operatorname{GL}_2(\mathcal{O}_{\infty})$ and $\gamma' \in \operatorname{GL}_2(k[T])$ we find the new edge $\gamma'(\Lambda_k, \Lambda_{k+1})$.
- Write $\gamma' = \gamma_0 s_j$ with $\gamma_0 \in \Gamma$ and $s_j \in S$ and use the Γ -equivariance of c to obtain an edge in the pre-stored quotient graph $\Gamma \setminus T$.
- If this edge is stable, than we know the value of *c* at this edge. If not, than we have to sum over the source of the edge.

Ralf Butenuth (Uni Essen)

- J.P. Serre: Trees, Springer Verlag (1980)
- **J.T. Teitelbaum:** The Poisson Kernel For Drinfeld Modular Curves, Journal Of The American Mathematical Society **4**, (1991), **491-511**
- **J.T. Teitelbaum:** Rigid Analytic Modular Forms: An Integral Transform Approach, In: *The Arithmetic of Function Fields, edited by D. Goss, D. R. Hayes, and M. I. Rosen, deGruyter Press* (1992)

my master's thesis (Diplomarbeit)