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Notation

Notation

k :� Fq with q � pr

K :� QuotpkrT sq

v8 valuation of K at the place 8, i.e.
v8p

f
g q � degpgq � degpf q, v8p0q � 8

K8 the completition of K at v8, i.e. K8 � kppπ8qq the laurent
series ring where π8 is the uniformizer T�1.

O8 :� tx P K8 | v8pxq ¥ 0u
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The Bruhat-Tits-Tree T

Definition of T
Let X pT q be the equivalence classes of O8-lattices in K 2

8. Each such
equivalence class defines a vertex of T .

Let Λ,Λ1 P X pT q and choose a lattice L P Λ. Λ and Λ1 are connected
in T iff there exists a L1 P Λ1 such that L1 � L and
L{L1 � O8{π8O8. The set of directed edges of T is called Y pT q.

Theorem about the structure of T
T is a q � 1-regular tree, i.e. T is a connected, cycle-free tree, where
every vertix has q � 1 neighbours.
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Example for q � 3

Figure: The Bruhat-Tits-Tree for k � F3
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Operation of GL2pkrT sq on T

There is a bijection

X pT q ÝÑ GL2pK8q{GL2pO8qK
�
8

There is a bijection

Y pT q ÝÑ GL2pK8q{Γ8K �
8

with Γ8 :� t

�
a b
c d



P GL2pO8q | v8pcq ¡ 0u

GL2pkrT sqzT is just a half-line.

Reason: GL2pkrT sqzGL2pK8q{GL2pO8qK
�
8 � t

�
1 0
0 πn



| n P Nu

We write Λn for the class of the lattice O8 ` πn
8O8
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Congruence subgroups

Let N P FqrT s be normalized.

ΓpNq :� tγ P GL2pkrT sq | γ �

�
1 0
0 1



mod Nu

A subgroup of GL2pkrT sq containig ΓpNq for any N P krT s is called a
congruence subgroup.

Γ0pNq :� tγ P GL2pkrT sq | γ �

�
a b
0 d



mod Nu

Γ1pNq :� tγ P GL2pkT sq | γ �

�
1 b
0 1



mod Nu

Congruence subgroups are of finite index in GL2pFqrT sq, since

ΓpNqzGL2pkrT sq �

�
k� 0
0 1



SL2pkrT s{Nq.
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Calculation of ΓzT with Γ a congruence subgroup, Idea

ΓzT is a covering of GL2pkrT sqzT
GL2pkrT sqzT is a simple half line.

GL2pkrT sqzT : Λ0 Ñ Λ1 Ñ Λ2 Ñ . . .

Elements of ΓzT are Γ-orbits of T . Every GL2pkrT sq-orbit of T
decomposes into finitly many Γ-orbits, since ΓzGL2pkrT sq is finite.

We need to know StabGL2pkrT sqpΛi q to see how an GL2pkrT sq-orbit
decomposes.
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Algorithm for the calculation of ΓzT

Let Gi :� StabGL2pkrT sqpΛi q. A simple calculation shows, that

G0 � GL2pkq and Gi � t

�
a b
0 d



| a, d P k�, b P krT s, degpbq ¤ iu.

Let S � ts1, . . . , snu be a set of representativs of ΓzGL2pkrT sq.

Let Υ be the standard half line Λ0 Ñ Λ1 Ñ Λ2 Ñ . . . and si pΥq the
halfline si pΛ0q Ñ si pΛ1q Ñ si pΛ2q Ñ . . .

Then ΓzT can be obtained by taking the halflines s1pΥq, . . . , smpΥq
and identify vertices and edges using the following rules:

1 Only identify vertices and edges of the same level.
2 si pΛnq � sjpΛnq iff there exists a g P Gn such that sigs�1

j P Γ.
3 si ppΛ0,Λ1qq � sjppΛ0,Λ1qq iff there exists a g P G0 X G1 such that

sigs�1
j P Γ.

4 si ppΛn,Λn�1qq � sjppΛn,Λn�1qq iff there exists a g P Gn such that
sigs�1

j P Γ for n ¥ 1.
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Example: q � 2, Γ1pT
2qzT

Figure: The Quotient Γ1pT
2qzT for k � F2
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Example: q � 3, Γ1pT
2qzT

Figure: The Quotient Γ1pT
2qzT for k � F3
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Definition of harmonic cocycles

For an edge e P Y pT q let e� denote the same edge with orientation
reversed.
For an vertex v P X pT q we write e ÞÑ v if v is the target of e
Let M be any vector space with a GL2pkrT sq-operation and
Γ � GL2pkrT sq a congruence subgroup.

1 A function c : Y pT q ÝÑ M is called an M-valued harmonic cocycle, if
1 for all vertices v P X pT q we have

°

e ÞÑv

cpeq � 0.

2 cpe�q � �cpeq for all edges e P Y pT q.
2 A function c : Y pT q ÝÑ M is called Γ-equivariant, if for all γ P Γ we

have cpγeq � γcpeq

A Γ-equivariant harmonic cocycle c is called cuspidal, if there exist a
finite subgraph Z � ΓzT with cpeq � 0 for all e R Y pπ�1pZ qq.

Theorem: Automatic cuspidality

Let M be a finite-dimensional vector-space over a field of characteristic p
with a GL2pkrT sq-operation. Then every M-valued Γ-equivariant harmonic
cocycle is cuspidal.
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Connection with Drinfeld cusp forms

Theorem (Teitelbaum, 1990)

There is an explicit krΓs-module Vm (with dimkVm � m � 1 and
independent of Γ), such the following holds: Let Γ be a congruence
subgroup of GL2pkrT sq and let SmpΓq be the space of Drinfeld cusp forms
of level m ¥ 2 for Γ. Then there is a (Hecke-equivariant) isomorphism
from SmpΓq to Char pΓ,Vmq.
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Stable Edges

From now on let Γ be one of Γ1pNq or ΓpNq, i.e. Γ is p1-torsion-free
for p1 � p.

An edge e P Y pT q (or a vertex v P X pT q) is called Γ-stable, if
StabΓpeq � t1u (or StabΓpvq � t1u). (So, i.e. there are no
GL2pkrT sq-stable edges!)

Fact: The stable part of the tree is connected in ΓzT .

Fact: A vertex v P X pT q is stable if and only if its image in ΓzT has
exactly q � 1 neighbours. An edge v P Y pT q is stable, if and only if
one of the adjacent vertices is stable (except for the case Γ1pT q).

Fact: For every unstable edge e P Y pT q there is a finite and easy to
compute set Sourcepeq of stable edges of T such that

cpeq �
¸

e1PSourcepeq

cpe 1q

Ralf Butenuth (Uni Essen) Hecke Operators On Drinfeld Cusp Forms Bristol 2008 14 / 18



Stable Edges, cont.

So a harmonic cocycle c is determined by the values of c on the
stable part of ΓzT
Let n � degpNq. Then an edge in the covering over pΛi ,Λi�1q with
i ¥ n is unstable.

In fact a harmonic cocycle is determined by the values of c on the
stable edges over the edge pΛ0,Λ1q, and for every stable vertix over
Λ0 we get one relation between these edges.
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Example: q � 2, Γ1pT
2qzT

Figure: Colored: Stable edges and vertices. Red: Minimal set of edges, that
determine a harmonic cocycle.
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Hecke Operators on CharpΓ, Vmq

Translating the Hecke-action to the tree gives:

Tppcqpeq �
¸

δPpΓXΓ0ppqqzΓ

δ�1

�
p 0
0 1


�1

cp

�
p 0
0 1



δeq.

Let e � pγΛ0, γΛ1q be given. To evaluate cp

�
p 0
0 1



δeq we consider

the matrices

�
p 0
0 1



δγ and

�
p 0
0 1



δγ

�
1 0
0 π



.

Writing both these matrices in the form γ1
�

1 0
0 πk



α with

α P K �
8 GL2pO8q and γ1 P GL2pkrT sq we find the new edge

γ1pΛk ,Λk�1q.
Write γ1 � γ0sj with γ0 P Γ and sj P S and use the Γ-equivariance of
c to obtain an edge in the pre-stored quotient graph ΓzT .
If this edge is stable, than we know the value of c at this edge. If not,
than we have to sum over the source of the edge.
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