Computing Bianchi Modular Forms

Mehmet Haluk Sengun

http://www.math.wisc.edu//sengun

THE GOAL

We want to compute Bianchi modular forms and the Hecke action on them.

Bianchi modular forms are modular forms for GL_{2} over imaginary quadratic fields K. They can be seen as

* Certain real analytic functions on the hyperbolic 3 -space \mathcal{H}^{3},
* Regular algebraic cuspidal automorphic representations of $\mathrm{GL}_{2}\left(\mathbb{A}_{K}\right)$,
* Certain classes in the cohomology of quotients of \mathcal{H}^{3} by congruence subgroups of $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$
We use the last approach.

THE ALGORITHM

The sheaf cohomology of the manifold $\Gamma \backslash \mathcal{H}^{3}$ is isomorphic to the group cohomology of its fundamental group Γ.

We compute the group cohomology $H^{1}\left(\operatorname{PSL}_{2}\left(\mathcal{O}_{K}\right), E_{K, I}(K)\right)$.

- use finite presentations of $\operatorname{PSL}_{2}\left(\mathcal{O}_{K}\right)$.
e.g. $\operatorname{PSL}_{2}\left(\mathcal{O}_{-2}\right)=\left\langle a, b, u \mid b^{2},(a b)^{3}, a u a^{-1} u^{-1},\left(b u^{-1} b u\right)^{2}\right\rangle$
- identify cocyles with their images on the generators of $\mathrm{PSL}_{2}\left(\mathcal{O}_{K}\right)$ and find them inside the kernel of a matrix given by the relations of $\mathrm{PSL}_{2}\left(\mathcal{O}_{K}\right)$.
- compute the Hecke operators on cohomology using the Euclidean algorithm.
- use Shapiro's Lemma for $\Gamma<\operatorname{PSL}_{2}\left(\mathcal{O}_{K}\right)$.

THE IMPLEMENTATION

There are two prototype MAGMA functions presented on the author's webpage for $K=\mathbb{Q}(\sqrt{-2})$.

The function DIM (a,b,k,I) computes the dimensions of $H^{1}\left(\Gamma_{0}(a+b \sqrt{-2}), E_{k, 1}(K)\right)$, its cuspidal subspace and the dimensions of the GL_{2}-invariant subspaces of these two spaces.

The function $\operatorname{HECKE}(\mathrm{c}, \mathrm{d}, \mathrm{D})$ computes the characteristic polynomial and the eigenspaces for Hecke operator $T(c+d \sqrt{-2})$ on $H^{1}\left(\Gamma_{0}(a+b \sqrt{-2}), E_{k, l}(K)\right)$.
The input D is a record that gives the vector space that is computed by the DIM function.

AN EXAMPLE

We take a look at $H^{1}\left(\Gamma_{0}(1+\sqrt{-2}), E_{3,3}(K)\right)$.
>load "PATH1/bianchi.m";
> data:=DIM (1,1,3,3);
full, cusp [4, 2]
plus, cusp-plus [2, 0]
We see that the full space is 4 dimensional with a 2 dimensional cuspidal subspace. Moreover, the GL_{2}-invariant part of the cuspidal subspace is trivial. The relevant data is stored as a record that we named "data" which will be an input for the next function

AN EXAMPLE, cont'd

We compute the operator $T(1-\sqrt{-2})$ on this space.

```
    > load "PATH2/hecke.m";
    > HECKE(1,-1,data);
[ <$.1 - 6, 2>, <$.1 + 14, 2> ]
[* Echelonized basis:
(1 0 1/140481*(1940*w + 10240) 1/140481*(1552*w + 8192))
(0 1 1/5203*(-307*w + 96) 1/26015*(-1228*w + 384)), 6,
    Echelonized basis:
(1 0 0 0)
(0 0 0 1), -14
*]
```

We see from the factored characteristic polynomial that there are two eigenvalues 6 and -14 . We see the vectors associated to these eigenvalues.

