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Overview

Let F be a real quadratic field of class number 1 with ring of
integers O. Let Γ be a congruence subgroup of GL2(O).

The cohomology group H3(Γ; C) contains the cuspidal cohomology
corresponding to cuspidal Hilbert modular forms of parallel weight
2.

We describe a technique to compute the action of the Hecke
operators on the cohomology H3(Γ; C), giving a way to compute
the Hecke action on these Hilbert modular forms.



A motivating example

Let H be the upper half-plane in the complex numbers

H = {x + iy | y > 0}.

Let Γ0(N) ⊆ SL2(Z) the subgroup of matrices that are upper
triangular modulo N.

The group SL2(R) acts on H via fractional linear transformations[ a b
c d

]
· z =

az + b

cz + d
.



Related geometric object

Y0(N) = Γ0(N)\H is a punctured Riemann surface.

Figure: Tessellation of H with Y0(5) shown in red, cusps shown in green.



Modular forms and cohomology

H1(Y0(N); C) ' S2(N)⊕ S2(N)⊕ Eis2(N).

We can study Hecke eigenvalues by understanding the action of
Hecke operators on the cohomology.



Hecke operators

Let g ∈ Comm(Γ). Decompose the double coset ΓgΓ into a finite
disjoint union

ΓgΓ =
∐
s∈S

Γs.

Then the Hecke correspondence associated to g carries a point
Γx ∈ Γ\X to the finite set of points {Γsx}s∈S . The Hecke operator
associated to g is the induced map Tg on cohomology.



Modular symbols

Modular symbols for SL2(Z) (Manin 1972) can be defined as a
pair of cusps {α, β}, or the geodesic joining them, viewed as a
homology class in H1(X0(N)).

Hecke operators act on the space of modular symbols.

There is a group of unimodular symbols that is finite modulo
SL2(Z) and a reduction algorithm for writing a general modular
symbol as a linear combination of unimodular symbols.

{0, 12/5} = {0,∞}+ {∞, 2}+ {2, 5/2}+ {5/2, 12/5}.
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Figure: Unimodular symbols



Figure: The modular symbol {0, 12/5} is shown in green.



Figure: The reduction is shown in red.

{0, 12/5} = {0,∞}+ {∞, 2}+ {2, 5/2}+ {5/2, 12/5}.



Summary of motivational example

I One wants to understand the action of Hecke operators on
spaces of modular forms.

I There is a geometric object Y , attached to G = SL2(R) and
Γ whose cohomology “sees” modular forms.

I Compute Hecke operators on objects related to cohomology of
Y . e.g. Modular symbols (Manin)



Hilbert modular forms over real quadratic fields

Let F/Q be a real quadratic field with ring of integers O and with
class number 1. Let Γ ⊆ GL2(O)+ be a congruence subgroup.

A holomorphic function f : H2 → C is a Hilbert modular form of
weight k = (k1, k2) if

f (γ · z) =
(∏

det(γi )
−ki/2(cizi + di )

ki

)
f (z)

for every γ =
[ a b

c d

]
∈ Γ.



Hilbert modular forms and cohomology

Let G = ResF/Q(GL2). The associated symmetric space is
X ' H× H× R. Then Y = Γ\X is a circle bundle over a Hilbert
modular surface, possibly with orbifold singularities if Γ has torsion.

We will compute Hecke operators on Hilbert modular forms by
computing the Hecke action on the corresponding cohomology
groups H∗(Y ).



Related results: totally different technique

Socrates and Whitehouse (2005), Dembélé (2005, 2007), an
Dembélé-Donnelly (2008) compute the Hecke action on Hilbert
modular forms using the Jaquet-Langlands correspondence.



Sharbly complex

For our case, ν = 4, but the cuspidal cohomology occurs in degrees
2 and 3. Modular symbols compute in degree ν, and hence will not
see the cuspidal cohomology.

The sharbly complex S∗(Γ), a homology complex with modular
symbols in degree 0, provides the proper setting in which to study
H∗(Y ;M) (Ash, Gunnells, Lee-Szczarba)1. There is a natural
action of Hecke operators on S∗(Γ).

1The name of this complex is due to Lee Rudolph, in honor of On the
homology and cohomology of congruence subgroups by Lee and Szczarba.



Outline

1. The sharbly complex provides a model for the cohomology.

2. There is an analogue of the tessellation of H by ideal triangles
for X . It comes from viewing points in X as quadratic forms
modulo homothety (Koecher, Ash). This gives rise to a notion
of reduced sharblies.

3. Reduced 1-sharblies, which look like triples of cusps, will span
the cohomology in degree 3.

4. There is a reduction algorithm (Gunnells-Y) which works in
practice, to express a 1-sharbly as a linear combination of
reduced 1-sharblies.



X as quadratic forms

Let G = G(R). The two real embeddings of F into R give rise to
an isomorphism

G
∼−→ GL2(R)×GL2(R).

Thinking of GL2(R)/ O(2) as the cone C of positive definite
quadratic forms via g O(2) 7→ g tg , we get a map

G/KAG → (C × C )/R>0.



Rational boundary components

For v ∈ F 2, let R(v) be the ray R>0 · v tv ⊂ C × C . Equivalence
classes of these rays in C × C correspond to the usual cusps of the
Hilbert modular variety.

One has a decomposition of C × C into Voronǒı-cones which
descends to a tessellation of X with vertices contained in R(F 2).



Voronǒı polyhedron

Figure: The facets of the Voronǒı polyhedron for SL2(Z).



Sharbly complex

Let Sk , k ≥ 0, be the Γ-module Ak/Ck , where Ak is the set of
formal C-linear sums of symbols [v ] = [v1, · · · , vk+2], where each
vi is in F 2, and Ck is the submodule generated by

1. [vσ(1), · · · , vσ(k+2)]− sgn(σ)[v1, · · · , vk+2],

2. [v , v2, · · · , vk+2]− [w , v2, · · · vk+2] if R(v) = R(w), and

3. [v ], if v is degenerate, i.e., if v1, · · · , vk+2 are contained in a
hyperplane.

We define a boundary map ∂ : Sk+1 → Sk by

∂[v1, · · · , vk+2] =
k+2∑
i=1

(−1)i [v1, · · · , v̂i , · · · , vk+2]. (1)

This makes S∗ into a homological complex, called the sharbly
complex.



Γ-coinvariants

The boundary map commutes with the action of Γ, and we let
S∗(Γ) be the homological complex of coinvariants. Specifically,
Sk(Γ) is the quotient of Sk by relations of the form γ · v− v, where
γ ∈ Γ and v ∈ Sk .

A theorem of Borel and Serre gives that

H4−k(Γ; C) ' Hk(S∗(Γ)).

Moreover, there is a natural action of the Hecke operators on
S∗(Γ).

Thus to compute H3(Γ; C), which will realize cuspidal Hilbert
modular forms over F of weight (2, 2), we work with 1-sharblies.



1-sharblies

We think of a 1-sharbly v as a triangle, with vertices labeled by the
spanning vectors of v. The boundary 0-sharblies correspond to the
edges of the triangle.

•

•







•

111111111111

v1

v2 v3

Figure: A 1-sharbly



1-sharbly chain in S1(Γ)

Thus a 1-sharbly chain ξ =
∑

a(v)v can be thought of a collection
of triangles with vertices labeled by rays in C × C . If ξ becomes a
cycle in S1(Γ), then its boundary must vanish modulo Γ.



Voronǒı reduced sharblies

Definition
A k-sharbly [v1, · · · , vk+2] is Voronǒı reduced if its spanning
vectors {R(vi )} are a subset of the vertices of a Voronǒı cone.



Main step in reduction algorithm

We must take a general 1-sharbly cycle ξ and to modify it by
subtracting an appropriate coboundary to obtain a homologous
cycle ξ′ that is closer to being Voronǒı reduced.

By iterating this process, we eventually obtain a cycle that lies in
our finite-dimensional subspace S red

1 (Γ).

Unfortunately, we are unable to prove that at each step the output
cycle ξ′ is better than the input cycle ξ, in other words that it is
somehow “more reduced.” However, in practice this always works.



The reduction algorithm

Definition
Given a 0-sharbly v, the size Size(v) of v is given by the absolute
value of the norm determinant of the 2× 2 matrix formed by
spanning vectors for v.

The basic strategy

Voronǒı reduced 1-sharblies tend to have edges of small size. Thus
our first goal is to systematically replace all the 1-sharblies in a
cycle with edges of large size with 1-sharblies having smaller size
edges.



Reducing points

Definition
Let v be a non-reduced 0-sharbly with spanning vectors {x , y}.
Then u ∈ O2 r {0} is a reducing point for v if the following hold:

1. R(u) 6= R(x),R(y).

2. R(u) is a vertex of the unique Voronǒı cone σ (not necessarily
top-dimensional) containing the ray R(x + y).

3. If x = ty for some t ∈ F×, then u is in the span of x .

4. Of the vertices of σ, the point u minimizes the sum of the
sizes of the 0-sharblies [x , u] and [u, y ].



Reducing points (ctd.)

Given a non-Voronǒı reduced 0-sharbly v = [x , y ] and a reducing
point u, we apply the relation

[x , y ] = [x , u] + [u, y ]

in the hopes that the two new 0-sharblies created are closer to
being Voronǒı reduced.

Remark
Note that choosing u uses the geometry of the Voronǒı
decomposition instead of (a variation of) the continued fraction
algorithms of (Manin, Cremona, Ash-Rudolph).



Γ-invariance

The reduction algorithm proceeds by picking reducing points for
non-Voronǒı reduced edges. We make sure that this is done
Γ-equivariantly; in other words that if two edges v, v′ satisfy
γ · v = v′, then if we choose u for v we need to make sure that we
choose γu for v′.

We achieve this by attaching a lift matrix to each edge, and
making sure that the choice of reducing point for v only depends
on the lift matrix M that labels v.

•

•







•
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Algorithm

Let T be a non-degenerate 1-sharbly. The method of subdividing
depends on the number of edges of T that are Voronǒı reduced.

Remark
The reduction algorithm can be viewed as a two stage process.

I If T is“far” from being Voronǒı reduced, one tries to replace
T by a sum of 1-sharblies that are more reduced in that the
edges have smaller size.

I If T is “close” to being Voronǒı reduced, then one must use
the geometry of the Voronǒı cones more heavily.



(I) Three non-reduced edges

•
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•

111111111111

v1

v2 v3

M3

M1

M2 7−→

•

•







•

111111111111

v1

v2 v3

•u3

•u1

•u2

11
11

11 



(II) Two non-reduced edges.
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(III) One non-reduced edge.
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(IV) All edges Voronǒı reduced

•
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•
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Comment

First, we emphasize that the reducing point u of works in practice
to shrink the size of a 0-sharbly v, but we have no proof that it will
do so. The difficulty is that the reducing point is chosen using the
geometry of the Voronǒı polyhedron Π and not the size of v
directly. Moreover, our experience with examples shows that this
use of the structure of Π is essential.



Testing

Let ξ be a 1-sharbly cycle. The reduction algorithm is a local
computation that tries to reduce each triangle contributing to ξ.
While the algorithm does not use the fact that ξ is a cycle, by
using the lift data for the edges, each step of the algorithm
maintains this property.



Example:

Let F = Q(
√

5) and let O be the ring of integers of F .

level norm 31 41 49 61 71

rank of H3 4 4 4 5 4

Table: The cohomology of GL2(O).

The action of the Hecke operator Tp on H3 is diagonalizable. The
eigenspaces consist of a 3-dimensional piece with corresponding
eigenvalue N(p) + 1 coming from Eisenstein series and the
remaining part coming from parallel weight (2, 2) Hilbert cusp
forms.



Example (ctd.)

level norm 31 41 49 61 71

rank of H3 4 4 4 5 4

Table: The cohomology of GL2(O).

The eigenvalues for Tp were computed for small values of p and
match the data of Dembélé’s tables. The eigenvalues are in Q for
norm level 31, 41, 49, 71 and in Q(

√
5) for norm level 61,

explaining the 2-dimensional contribution of the cusp forms to the
cohomology.



Implementation Details



Voronǒı polyhedron

Figure: The facets of the Voronǒı polyhedron for SL2(Z).



Steps

1. Compute Voronǒı polyhedron data (depends on the field
F = Q(

√
d)).

2. Set level and compute cohomology.

3. Compute Hecke action.



Construct Voronǒı polyhedron

1. Facets correspond to perfect binary quadratic forms over F .

2. Once an initial perfect form is found, a complete set of
GL2(O)-class representatives can be computed
algorithmically.

3. Work of Kitaoka guarantees a perfect form of the form
f (x , y) = α(x2 − xy + y2).

Figure: The well-rounded binary quadratic forms.



Set level and compute cohomology

To compute the Γ0(N)-classes of Voronǒı-face σ, we want to
compute

Γ0(N)\GL2(O)/Stab(σ) = Γ0(N)\(σ-type faces)

= P1(O/NO)/Stab(σ).

Translate between projecive orbits and sharblies.



Compute Hecke action

1. Fix a basis for H3(Γ0(N)).

2. Translate each basis vector to 1-sharbly cycle.

3. Act by Hecke operator.

4. Reduce.

5. Translate back to cohomology.



Current limitations of implementation

1. Very slow.

2. Voronǒı polyhedron must be simplicial in low degrees.

3. Voronǒı polyhedron grows complicated very quickly as
F = Q(

√
d) varies. E.g. for d = 46, there are 4306 top

dimensional cones.


