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Notation
We will let D be the quaternion algebra of discriminant 2; this is the
Hamiltonian quaternions.
Let Af be the finite adeles over Q; we define Df = D ⊗Q Af ; this can be
thought of as the restricted product over all primes l of D ⊗Ql; if g ∈ Df then
the component gp of g at the prime p can be viewed as an element of M2(Qp),
for p 6= 2.
Let U be an open compact subgroup of D×

f . It is well known that one can
write D×

f as a finite union of disjoint double cosets, of the form

D×
f =

∐
i∈I

D×diU.

These can be computed efficiently, for instance by PARI programs first written
by Daniel Jacobs.
If M is a positive integer, then we define U1(M) to be the open compact
subgroup of D×

f whose elements g have component gp = ( a b
c d ) at p with c ≡ 0

mod p and d ≡ 1 mod p, and can be arbitrary at all other places. If G is a
subgroup of D× of finite index, we also define the open subgroup U1(M) ·G to
be the subgroup of U1(M) whose image at primes dividing δ is in G.
If α ≥ 1, we define Mα to be the monoid consisting of 2 by 2 matrices ( a b

c d )
over Zp with nonzero determinant such that pα|c and p - d.
Let K be a complete subfield of Cp (the p-adic completion of Qp). Let Lk be the
space of polynomials over K in one variable z of degree at most k − 2. We will
equip this with an action of Mα; let γ := ( a b

c d ) and let h ∈ Lk. Then we define the
right action by

(h|γ)(z) := (cz + d)k−2 · h
(

az + b

cz + d

)
.

Automorphic Forms
Let M be an odd positive integer. We define SD

k (U1(M)) to be the space of
classical automorphic forms of level U1(M) and weight k for D, which is
defined to be{

f : D×
f → Lk : f (dgu) = f (g)up for all d ∈ D×, u ∈ U1(M)

}
Because we can write D×

f as a finite union, we can determine f ∈ SD
k (U1(M)) by

its values on the {di}; in other words, by the finite set {f (d1), . . . , f (d2)}. We will
use this later to perform calculations.
We also note that we can define Hecke operators on automorphic forms in
terms of double cosets, in the same way that we define them on modular forms.

The Jacquet-Langlands Correspondence
Here is an explicit version of the correspondence.

Theorem 1 (Jacquet-Langlands, Arthur) Let k ≥ 3 be an integer and let N ≥ 5 be a
positive integer. There is an isomorphism between the space of modular
forms Sk(Γ1(N) ∩ Γ0(2)) and the space of automorphic forms SD

k (U1(N)). If k = 2 then
the space of modular forms is isomorphic to the quotient of the space of automorphic
forms by the norm form.

We note that this correspondence respects the action of the Hecke operators; in
other words, the Hecke operator Tp has the same eigenvalues for
corresponding automorphic forms and modular forms.

Weight 1
This statement of Jacquet-Langlands leaves a natural question open — what
happens in weight 1? Firstly, we need to work out what is going on on the
automorphic side. The classical definition involves polynomials of degree at
most k − 2; how do we make sense of polynomials of degree −1?
An insight of Buzzard is to consider p-adically convergent power series in one
variable; polynomials form a subspace of these, and the classical theory
generalizes to this much larger situation.

Families of modular forms
We can define collections of modular forms called families. Let g be a particular
modular form of weight k and let p be a prime number. We say that the set gi of
modular forms forms a p-adic family if the weight of gi is k + (p− 1) · pi, and the
Fourier expansion of each of the gi satisfies

g(q) ≡ gi(q) mod pi,

where we say that two Fourier series are congruent modulo pn if the Fourier
coefficients of their difference all vanish modulo pn.
The canonical example of families of modular forms is given by Eisenstein
series;
We can define similar families of automorphic forms of weight k + (p− 1) · pi,
related by their eigenvalues for the Tp.

Convergent power series
In order to deal with weight 1, we will have to extend our idea of what
automorphic forms are. We first introduce convergent power series.
Let K be a complete subfield of Cp. Then we define Ak,1 to be the ring K〈z〉 of
power series

∑
n∈N anz

n such that an →∞ as n →∞. We call these convergent
power series.
We see that the right action by elements of Mα on Ak,1, extending the right
action of Mα on Lk,

(h|γ)(z) := (cz + d)k−2 · h
(

az + b

cz + d

)

does send Ak,1 to itself, so this action is well-defined.

Overconvergent automorphic forms
We can now define overconvergent automorphic forms.
Let M be a positive integer which is prime to δ. We define SD,†

k (U1(M)) to be the
space of overconvergent automorphic form s of level U1(M) and weight k for D,
which is {

f : D×
f → Ak,1 : f (dgu) = f (g)up for all d ∈ D×, u ∈ U1(M)

}
.

We can define overconvergent automorphic forms for other open compact
subgroups in a similar way.
We see that these spaces are infinite-dimensional, and also that they contain the
spaces of classical automorphic forms, because a polynomial is certa inly a
convergent power series. On the other hand, we can determine an
overconvergent form f by its values on the {di}; in other words, by the tuple of
convergent power series {f (d1), . . . , f (dn)}.
We also note that the action of the Hecke operators Tl and Up is well-defined;
we use the same definitions as we used in the classical case, ext ending the
weight k action from polynomials to convergent power series.

Overconvergent automorphic forms versus overconvergent
modular forms
It is emphasized in the introduction to Buzzard’s paper on familes that one
advantage of considering overconvergence for automorphic forms is that the
ge ometric aspects of the definition are much simpler than those in the
definition of overconvergent modular forms; we simply change the base ring to
def ine overconvergent automorphic forms, whereas we need to set up a lot of
machinery to define overconvergent modular forms.

Checking computations
If we are computing spaces of classical automorphic forms p-adically, then
because these are finite-dimensional we can actually compute the action of
Hecke operators on them exactly, because we know that their characteristic
power series have integral coefficients of bounded size. We compute them to a
sufficiently high p-adic precision, and then we can rewrite these p-adic
numbers as rational integers.
Let us consider some numerical examples. Firstly, we compute the Hecke
polynomial of T3 acting on the space SD

5 (U1(7)) of classical automorphic forms;
it is

(x4 + 288x2 + 20448) · (x4 + 18x3 + 39x2 − 1242x + 4761).

It can be verified that the Hecke polynomial of T3 acting on the space of
classical modular forms S2−new

5 (Γ1(7) ∩ Γ0(2)) is the same as this.
Using MAGMA, we can compute the Hecke polynomial of U11 acting on the
spaces S2−new

3 (Γ1(11) ∩ Γ0(2)) and S4−new
3 (Γ1(11)) ∩ Γ0(4)) of classical modular

forms, and we see that these polynomials are x2 − 14x + 121 and x2 + 22x + 121,
respectively. Using PARI, we see that the Hecke polynomial of U11 on the space
of automorphic forms SD

3 ((1 + ) · U1(11)) is given by

(x2 − 14x + 121) · (x2 + 22x + 121)2,

as predicted (we see the part which comes from 4-new forms appearing with
multiplicity two here).
We can also compute automorphic forms with more restrictive level structure
at 2. The characteristic polynomial of the Hecke operator U5 acting on the space
of automorphic forms of weight 2 and level Γ0(5) with level structure 1 + m3 at 2
is given by

(x2 − 4x + 5)4 · (x2 + 2x + 5)2 · (x2 − 2x + 5)3 · (x− 1)3 · (x + 1)2 · (x− 5),

where the x− 5 comes from the norm form (because k = 2), the (x− 1)3 and
the x2 + 2x + 5 factors come from classical modular forms of level Γ0(40),
the (x + 1)2 from modular forms of level Γ0(20), and the quadratic
factors (x2 − 4x + 5)4 and (x2 − 2x + 5)3 come from classical modular forms of
level Γ0(80).
One important feature of these calculations is that they give us an independent
way to check that the modular forms algorithms in MAGMA are giving the
correct answers. Those algorithms use the theory of modular symbols and
were programmed independently to the current work, so because we are using
two different algebra packages and two different sets of programs, and still
getting the same answer, we can be more certain that our programs are giving
the correct results.


