
Jacquet-Langlands in weight 1
In this section we will prove the main theorem of our paper. Firstly, we
introduce the concept of slopes of modular forms, which will be useful for us.
Let f be a normalized eigenform; either a classical modular form or an
overconvergent modular form. We define the slope of f to be the normalized
p-valuation of the eigenvalue of Up acting on f .

Theorem 1 (Coleman) Let f be a classical modular eigenform of weight k. Then the
normalized p-slope of f is less than or equal to k − 1.
Conversely, if f is a p-adic overconvergent modular form of weight k with normalized
slope strictly less than k − 1, then f is a classical modular form.

We see that there is a slight asymmetry in this result; if an overconvergent
modular eigenform of weight k has normalized slope exactly k − 1, then it can
be either classical or non-classical. There are examples of both; we will see this
in weight 1 in Section . The question of telling whether an overconvergent form
of weight k and slope k − 1 is classical or not is raised by Coleman, and is still
open in general.
We now state the main theorem of this poster; that the standard
Jacquet-Langlands correspondence can be extended to weight 1.
Theorem 2 Let N be a positive odd integer and let i be either 0 or 1.
If f ∈ S2i−new

1 (Γ1(N) ∩ Γ0(2
i+1)), then there exists an overconvergent automorphic

form fA ∈ SD,†
1 (U1(N) ·G) with the same Hecke eigenvalues as f (if i = 0, then there is

no extra level structure at 2, and if i = 1 then G = 1 + m). Conversely, if fA is an
overconvergent automorphic form of weight 1, then there exists an overconvergent
modular form f of weight 1 with the same Hecke eigenvalues as fA.
We note that a version of this is true in more generality, for other subgroups
of D? of finite index, but we will not need this for the section on approximation
eigenforms.

Approximating eigenforms
In this section we will give an account of how to actually find approximations
to overconvergent automorphic eigenforms of weight 1, using PARI programs.
We also indicate how this method can be generalized to find other forms.
This method is a development of the work of Gouvêa and Mazur, where they
find overconvergent 5-adic modular eigenforms of weight 0 by iterating the
action of the U5 operator. This in turn builds on the work of Atkin and O’Brien
which pioneered this technique for finding p-adic eigenforms for p = 13.
On the modular side, we will consider the space of classical modular forms
S4−new

1 (Γ1(11)∩ Γ0(4)); this can be checked to be one-dimensional, and it is in fact
generated by the η-product f := η(q2)η(q22), which is necessarily a Hecke
eigenform. This has Fourier expansion at ∞ given by

f (q) = q
∞∏

n=1

(1− q2n)(1− q22n) = q − q3 − q5 + q11 + q15 + O(q23);

in particular, it has 11-slope 0, which shows that it is in the interesting case left
open by the theory of Coleman, where the slope is k − 1. By the
Ramanujan-Petersson Conjecture, the Fourier coefficients ap of f (q)
satisfy |ap| < 2.
We use code based on the work of Jacobs outlined above to find the slopes of
the U11 operator acting on weight 1 overconvergent automorphic forms of
level U0(11) · (1 + m). This tells us that the lowest slopes are 0, 0, 1, 2, 2, 2 with
that multiplicity.
Because we know from background work and Theorem 2 that there should be
two automorphic forms related to the classical modular form f appearing on
the automorphic side, and from above we see that f has slope 0, we see that the
two slope 0 automorphic forms are the ones that correspond to f , and all of the
others do not correspond to classical forms.

The technical details
Let {hi} be the set of simultaneous eigenforms for SD

1 (U1(11) · (1 + m)), so let g1

be a random nonzero element of this space. We can think of g1 as a triple of
power series in z, because we know that an automorphic form is determined
by its values on the tuple {di}. (In fact, to aid the calculations we can just
choose a triple of polynomials, and make two of them zero).
We assume that we can write g1 as a linear combination of these eigenforms:

g1 = αh0 + βh1 + γh2 + · · · ,

where h0 and h1 are the two slope 0 forms. We now compute the action of UN
11

on g1, for some large integer N . We see that UN
11(g1) will be congruent

to αh0 + βh1 modulo pN , because the action of UN
11 on the other hi will include a

multiplication by pN at least. This means that we have an approximant to the
sum of the eigenvectors h0 and h1.
We now choose a second random element g2 and compute UN

11(g2). This will
also be congruent to a linear combination of h0 and h1 modulo pN ; with very
high probability, these two linear combinations are linearly independent, and
we can now use linear algebra to find h0 and h1 modulo pN from them.
Finally, to find eigenforms for all of the Hecke operators, we consider the action
of the W operator, the analogue of a diamond operator in the classical setting,
which is defined to be

Wf = [U(1 + i)U ]f.

The action of this operator splits the 2-dimensional eigenspace for U11 into two
one-dimensional eigenspaces. Basis elements for each of these eigenspaces are
eigenforms for all of the Hecke operators T` (for ` a prime not equal to 2 or 11)
and U11.

Future developments
It would be interesting if one could find simultaneous eigenforms for Up and
for the other Hecke operators exactly (rather than approximately) by a similar
process, given the eigenvalues. In this example, we know that such an
eigenform has U11-eigenvalue 1, so it satisfies an equation of the form

f (z) = 1 · f (z) = (U11f )(z) =
11∑
i=0

f (γiz) · (ciz + di)
−1,

where the γi =
(

ai bi
ci di

)
are a set of matrices that represent the Hecke

operator U11. We can write down similar recurrence relations for each of the
Hecke operators. It would be interesting to be able to solve these explicitly.
This process can be performed in more generality, to find approximations to
eigenforms of slope 0 and of higher slope. The higher-slope cases are more
delicate; we cannot use the same techniques as above in general because we
need to divide by powers of p, which will reduce the accuracy at which we are
working. The same methods do work for slope 1, because we gain more
accuracy by iterating the U11 operator than we lose by dividing by p.
For higher slopes, a generalization of the methods used by Loeffler would
seem more appropriate. These use the properties of an inner product on the
space of 5-adic overconvergent modular forms to compute spectral expansions
of eigenfunctions for the U5 operator.
We note here that the methods we have outlined will also work for higher
weight forms; let k be a positive integer. We can find any automorphic forms of
slope 0 using exactly this procedure; these will be classical automorphic forms,
so they will be determined by a tuple of polynomials. After subtracting these
out, we will be able to find forms of higher slope, and this will enable us to
approximate overconvergent automorphic forms of weight k.

Telling classical from non-classical automorphic forms
It is well-known that p-adic modular forms of weight k and slope exactly k − 1
can be either classical or non-classical. Examples of both can be exhibited; the
form f from the previous section was classical, and we exhibit an example of a
non-classical form below.
Using the same approximation techniques as above, we can find an
approximation to an overconvergent automorphic form of slope 0, weight 1
and level U1(7) (with no level condition at 2). We know that such a form must
exist because we can compute the slopes of U7 acting on weight 1
overconvergent automorphic forms, and we find that these are 0, 1, 1, 2, 2, 2.
This means that there is a unique form g (which aids the calculations) with
eigenvalue 1 + 5 · 7 + 4 · 72 + 5 · 73 + O(74). This is not a classical modular form,
because we can check that there are no classical modular cuspforms of weight 1
and level Γ1(7) ∩ Γ0(2).
Using work on families of modular forms we can find classical automorphic
forms of weight 1 + (p− 1)pn, for any non-negative integer n, which lie in the
same Hida family as our weight 1 form, whether or not it is classical; in fact,
because the slope is 0, using the theorem of Coleman quoted above we can see
that the only form in the family for which there is a doubt as to whether it is
classical is the weight 1 form.
It would be interesting to have a method for telling an overconvergent
automorphic form which comes from a classical modular form (via a
generalized Jacquet-Langlands correspondence) from an overconvergent
automorphic form which does not come from a classical modular form.
In some circumstances, we may know that a classical modular form will appear
with multiplicity two on the automorphic side, but we would like to have a
more intrinsic criterion. Also, we may not be given all of the automorphic
forms; we would like a method that only requires us to consider one form.
If we are willing to invoke both a Jacquet-Langlands correspondence and the
Ramanujan-Petersson conjecture on coefficients of classical modular forms,
then we can show that certain automorphic forms are not coming from a
classical modular form. The Ramanujan-Petersson conjecture tells us that,
if f (q) =

∑
n∈N anq

n is the Fourier expansion of a normalized cuspidal modular
eigenform of weight k, and ` is a prime, then

|a`| ≤ 2p
k−1

2 .

This was conjectured by Ramanujan, generalized by Petersson, and proved by
Deligne as a consequence of the Weil conjectures.
We can approximate the eigenvalues of the Hecke operators acting on
automorphic forms to a high degree of accuracy using our computer programs,
and if we can show that these eigenvalues are not algebraic numbers, then we
are done. We can bound the maximum degree that these algebraic numbers can
have by dimension considerations. We can use this criterion to show that the
weight 1 form at level U1(7) is not classical; however, we are using several very
high-level results to obtain this.
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