Algebraic Number Theory

Summer Term 2012
Université du Luxembourg
Sara Arias-de-Reyna, Gabor Wiese

sara. ari asdereyna@ni .l u
gabor.wi ese@ni .l u

Version of 21st June 2012



CONTENTS 2

Contents
1 Motivation 4
‘2 Linear algebra in field extensions 9
‘3 Rings of integers 15
‘4 Ideal arithmetic 22
5 Ideals in Dedekind rings 26
‘6 GeometrvofNumberé 32
6.1 INOAUCHON . .« o o oo o e e 23
6.2 Lattices . . . . . . . . e e, 35
6.3 Numberrinqsaslattides ................................. 0 4
6.4 Finiteness of the class number . . . . . . . . . . . . . 42
6.5 DirichletUnit Theorem . . . . . . . . . . . e 47




CONTENTS 3

Preface

These are notes of a one-term course (12 lectures of 90 min each} &ubk University of Lux-
embourg in Summer Term 2012. The lecture builds on the lec@ar@mutative Algebrérom the
previous term, the lecture notes of which are availablatonp: / / mat hs. prat um net .

The lecture provides an introduction to the most basic classical topics b&yEgebraic number
theory:

o first cases of Fermat’s Last Theorem,

e norms, traces and discriminants of field extensions,

rings of integers,

ideal arithemtic and ideal class groups,

Dedekind rings,

fundamentals of the geometry of numbers,

finiteness of the class number,

Dirichlet’s Unit Theorem.

In preparing these lectures we used several sources:

e Neukirch:Algebraische Zahlentheori&pringer-Verlag.
e Samuel:Algebraic Theory of Numbers

e Bas Edixhoven: Théorie algébrique des nombres (200Rkcture notes available on Edix-
hoven’s webpage.

e Peter Stevenhageiumber RingslLecture notes available on Stevenhagen’s webpage.
e Lecture notes of B.H. MatzafAlgebra 1,2(Universitat Heidelberg, 1997/1998).

e Lecture notes of lectures okigebraische Zahlentheortaught at Universitéat Duisburg-Essen
in Winter Term 2009/2010.

Luxembourg, June 2012.
Sara Arias-de-Reyna, Gabor Wiese
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1 Motivation

As a motivation we are going to treat the simples cases of the Fermat equation<LN. Then-th
Fermat equation is
F,(a,b,c) =a" + 0" —c".

What are the zeros of this equation in the (positive) integers?
n = 1: For any ringR, there is the bijection

{(a,b,¢) € R’ | Fi(a,b,¢) =0} < R,

given by sendinda, b, ¢) with F(a,b,c) = a+b—c= 010 (a,b). Its inverse clearly is the map that
sendga, b) to (a, b, a + b). This clearly describes all solutions.

n = 2: Atriple (a,b,c) € N3 such thatFy(a, b, c) = a® + b*> — 2 = 0 is called aPythagorean
triple. It is calledprimitive if ged(a,b,c) = 1 anda is odd (whenceé is even). In last term’s course
on Commutative Algebra you proved on Sheet 5 (almost) that there is the hijectio

{(u,v) € N* | u > v, ged(u,v) =1, 2 | uwv}
« {(a,b,c) € N*| (a,b,c) primitive Pythagorean tripl¢,

sending(u, v) to (u? — v2, 2uv, u? + v?).
We postpone the case= 3 and continue with:
n =4:

Theorem 1.1. There is no(a, b, ¢) € N2, such thata* + b* = ¢*, i.e. F has no solution in positive
integers [recall that positive means strictly bigger th@n

This will immediately follow from the following Proposition.
Proposition 1.2. Let (a, b, c) € Z3 be such that* + bv* = ¢2. Thenabc = 0.

Proof. Since the exponents are all even, we can without loss of generality askat@ a, b, c are
non-negative. We assume that the assertion of the proposition is wrdnggamto get a contradiction.
For that we let: be minimal such that there aieb > 0 satisfyinga* + b* = ¢2.
As c is minimal, we have thatcd(a, b, c) = 1; for, if d is the greatest common divisior, then we
have
a4 b4_a4+b4_c2_ c .2
() + Q) = =g = (%)
becausel? has to divider.
Now we can reinterpret the equation(@s, b?, c) being a primitive Pythagorean triple (after pos-
sibly exchanging: andb so thata? is odd). Hence, we may apply the case= 2. This means that

there areu, v € N such thatu > v, ged(u, v) = 1 and
a2 =u?—0?, b =2, A =u®+0%

Hence,a? + v? = u2, which gives yet another primitive Pythagorean triple, nantely, ) (note
that sincex is odd,v is even). So, we can again apply= 2 to obtainr > s such thaged(r,s) = 1
and

a:r2—52, v = 2rs, u=r?+ s
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Plugging in we get:
b? = 2uv = 4urs, and hence(g)Q = urs. (1.2)

As ged(u,v) = 1, we also have thadcd(u, rs) = 1 (note:w is odd). As, furthermoreged(r, s) = 1,
it follows from Equation[(1.1) that, » ands are squares:

They satisfy:

So, we have found a further solution of our equation. But:
c:u2—|—v2:m4—|—02>:1:42x,
contradicting the minimality of. O

In this proof, the gcd played an important role and we used at sevec@pthatZ is a unique
factorisation domain (UFD), that is, that every non-zero integer is ufydghe product of prime
numbers (and-1).

n > 3 in C[X]: In order to illustrate one quite obvious (but, failing) attempt at proving that the
Fermat equation has no positive solutionss#or 3, we now work for a moment ovet[X |, where
this strategy actually works. Recall tHatX | is a Euclidean ring, just lik&. Below we will show that
this strategy also works for the Fermat equatiroverZ because the ring[(s] with (3 = €2™/3 is
a unique factorisation domain and has ‘few’ roots of unity.

Proposition 1.3. Letn > 3 and leta, b, c € C[X] be such that™ + b™ = ¢". Thena, b andc form
a trivial solution: they are scalar multiples of one polynomia(X) = af(X), b(X) = 8f(X),
c¢(X) =~f(X) for somef(X) € C[X] anda, 3, € C).

Proof. We prove this by obtaining a contradiction. Let us, hence, assume thattteer b, c € C[X]
satisfyinga™ + b" = ¢” such that

max{deg(a), deg(b),deg(c)} > 0 and is minimal among all solutions.

As C[X] is factorial (because it is Euclidean), we can always divide out comnwsods. Thus, by
the minimality assumption the polynomiaisb, c are pairwise coprime. Also note that at most one of
the polynomials can be constant, unless we have a trivial solution.

The principal point of this proof is that we can factor the Fermat equatitmlinear factors
because = ¢2™/" is an element of (this, of course, fails ove¥, whence in the attempt to use
this trick for the original Fermat equation one has to work Véflj], which will not be factorial in
general). The factorisation is this one:

n—1

a"=c"—b" = [J(c— D). (1.2)

J=0
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If you have never seen this factorisation, just consicks a variable and observe tijab aren distinct
roots of the polynomiat™ — 4™ and recall that a polynomial of degreeover an integral domain has
at mostn zeros.

Recall once more thaf[X] is a factorial ring. So it makes sense to ask whether the above
factorisation is into pairwise coprime factors. We claim that this is indeed the clsorder to
verify this, letj, k € {0,...,n — 1} be distinct. We have:

1 : . 1
Thus, any common divisor df: — ¢7b) and(c — ¢*b) necessarily divides bothandc. As these are
coprime, the common divisor has to be a constant polynomial, which is the claim.
We now look again at Equation (1.2) and use the coprimeness of the faktfmi$ows that each
factorc — ¢7b has to be am-th power itself, i.e. there ang; € C[X] such that

(¢ (e = ¢7b) = ¢ F(e— ("))

Yy =c— b
forall j € {0,...,n —1}. Of course, the coprimeness of the- (/b immediately implies thay; and
yx for j £ k have no common non-constant divisor. If the degreesaridb are different, then the
degree ofy; is equal to the maximum of the degreescandb divided by~ for all j. If the degrees
are equal, then at most one of thiecan have degree strictly smaller than the degrdedifided byn
because this can only happen if the leading coefficienteafuals’ times the leading coefficient of

Asn > 3, we can pick three distingt &,/ € {0,...,n — 1}. We do it in such a way thaj; is
non-constant. Now consider the equation

ay} + By = alc+ ¢b) + Blc + (") = c+ b=y,
which we want to solve fob # «, 5 € C. Thus, we have to solve
a+ 3 =1andad? + g¢* = ¢t
A solution obviously is
<£ . Ck
o = -
7=k

In C we can draws-th roots:ac = ™ andg = 6". Settingr = vyy;, s = dy;, andt = y,, we obtain

andg =1 - a.

48" =1t",

with polynomialsr, s,t € C[X]. Let us first remark that is non-constant. The degreesiog, ¢t are
less than or equal to the maximum of the degredsasfdc divided byn, hence, the degrees afs, ¢

are strictly smaller than the degreeshandc. As the degree af has to be at most the maximum of
the degrees df andc, the degrees of, s, t are strictly smaller than the maximum of the degrees of
a,b,c. So, we found another solution with smaller maximum degree. This contradjmtives the
proposition. Ol

n=3: We will prove a slightly more general statement. First a lemma.



1 MOTIVATION 7

Lemma 1.4. Let( = ¢2™/3 = —1 4 ¥3 ¢ C. ConsiderA := Z[¢] = {a + (b | a,b € Z}.
(@) ¢ is aroot of the irreducible polynomiat? + X + 1 € Z[X].
(b) The field of fractions afl is Q(v/—3).

(c) ThenormmapN : Q(v/—3) — Q, given bya+by/—3 — a®+3b? = (a+by/—3)(a—by/-3) =
(a + byv/=3)(a + by/—3) is multiplicative and sends any elementAnto an element irZ. In
particular, u € A is a unit (i.e. inA*) if and only if N(u) € {1,—1}. Moreover, ifN(a) is + a
prime number, then is irreducible.

(d) The unit groupA* is equal to{+1, ¢, +¢?} and is cyclic of ordes.

(e) The ringA is Euclidean with respect to the norivi and is, hence, by a theorem from last term’s
lecture, a unique factorisation domain.

(f) The elemenk = 1 — ( is a prime element inl and3 = —(2)\2.
(9) The quotientd/()) is isomorphic tdFs.

(h) The image of the set® = {a® | a € A} underm : A — A/(\*) = A/(9) is equal to
{0+ (A1), £1+ (A1), £X3 + (WY}

Proof. Exercise on Sheet 1. O

Theorem 1.5.Leta,b,c € Aandu € A* satisfy
a4+ b3 = ucd.
Thenabe = 0.

Proof. We essentially rely on the result of Lemma 1.4 thais a factorial ring. The proof is again
by obtaining a contradiction. Let us hence assume that we hdve € A andu € A* satisfying
a® + b3 = uc® andabe # 0. By dividing out any common factors, we may and do assumextfiat:
are pairwise coprime. Note that consequently at most orgit: can be divisible by\. Of course,
we will use the factorisation

a® 4+ b3 = (a +b)(a + ¢b)(a + ¢3b). (1.3)

We derive our contradiction in several steps and the factorisation issedthefore (4).

(1) We show | abe.

Suppose this is not the case. Thenb® andc?® are+1in A/(\*) by Lemma 1.4. Consider the
equationa® +b% = uc? in A/(\?). The left hand side is thus f(\*), 2+ (A1), =2+ (A1)}, the right
hand side istu + (A*). Thusu = +2 (mod (A\*)) (aswu is a unit, the left hand side cannot pg!).
However, the triangle inequality for the absolute valu€ommediately shows thdt < |u £ 2| < 3,
which is smaller thamp\*| = 9, excluding that\* dividesu + 2 (this conclusion uses, of course, that
the absolute value of any nonzeree A is at leastl; but, that is obvious.).

(2) We may (and do) assume without loss of generality thiat.
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If A\ does not divide, then by (1) it has to divide or b (note that it cannot divide both, as it would
then dividec as well). We argue similarly as in (1) and take our equatiod jiiA*). The right hand
side is againtu + (\*). The left hand side is eitherl + (\*) or 1 + £X3 + (A*). Hence, we
get\* dividesu 4+ +1 oru + £1 + £23, But,0 < Ju + £1 + +X3| <24+ v27 <8 < 9 = |\,
so the first possibility is excluded. Because|of+ +1| < 2 < 9 = |A*|, we necessarily have
u = +1, which satisfies:®> = u. So, we have instead consider the equatidor- (uc)® = (—b)3 or
b2 + (uc)® = (—a)d.

(3) We showA? | c. Letr > 2 be such thah™ | cand\™ ! f c.

Suppose\?  c. We do it again similarly and again reduce the equation moatil@he right hand
side is+u\?, but the left hand side is, as in (1), {iiA%), £2 + (A*)}. Hence, again* has to divide
uX3 or ul® £ 2, which are both impossible by the same considerations of absolute valussvas a

(4) Replacing by ¢b or by ¢?b, we may (and do) assumé | (a + b).

The right hand side of Equation 1.3 is divisible h (because of (3)). Thus\? divides one of
the three factors and making one of the mentioned substitutions we assume firist thiee.

(5) We show\ | a + ¢b, A | a + ¢2b, A2 { a + ¢b and A2 § ¢?b.

We only treats + (b, the other one works precisely in the same way. Note¢hatl (mod ())).
Thus,a+¢b=a+b=0 (mod (\)). If \2 | (a + ¢b), then because of? | (a + b), substracting the
two yields\? | b(¢ — 1) = —\b, whence\ | b, which is excluded.

(6) We show that the only common prime divisor of any pait.of b, a + (b, a + (?bis A (up to
multiplying A by units, of course, i.e. up to associates).

This argument is very standard and we only do it for one pair. Suppasé prime elementi
dividesa + b anda + ¢b. Theny divides(a + b) — (a + ¢b) = b, whenceu dividesb. Moreover,u
also divides((a + b) — (a + ¢(b) = —a\, whenceu also divides:. As a andb are coprime, we have a
contradiction.

(7) We show that there are coprimie# a1,b1,c¢1 € A and there isi; € A* such thatsz + bi‘ =
upc; and\” { ¢;.

From (5) and (6) we can write using the factoriality 4f

a+b=eX""203 a4+ b=\, a+Pb=eM
with pairwise coprimey, 5,y and unitseq, eo, e3 € A*. Now we compute
0=+ ¢+ (a+b) = (a+b)+¢(a+¢b) +Clat b)) = MaX %0’ + (5 + es*y°).
Dividing by \(?e3 we obtain
V4 e = ura®
with units e andu;. The same calculations as in (2) yield (taking the equation mothily) that
e = +1, whences? = €. Thus, lettinga; := v, by = ¢3 andc; = a1, we obtain (7).
(8) End of proof.

Repeating steps (1) to (7) with , by, ¢; often enough we can achieve thétt ¢;, which contra-
dicts (3). O

The point is that we used everywhere that the rings in which we workedaatorial! This
property does not persist (see, e.g. Commutative Algebra, Sheet¥si§x2) and, hence, we need to
find a substitute.
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2 Linear algebra in field extensions

Let L/ K be afield extension, i.€< is a subfield ofL. Recall that multiplication in. makesL into a
K-vector space. We speak ofiaite field extensioif [L : K| := dimg (L) < oco. Recall, moreover,

that an element € L is calledalgebraic overK if there is a non-zero polynomiab, € K[X] such

that f(a) = 0. If m, is monic (leading coefficient equal 9 and irreducible, them, is called the
minimal polynomial of: over K. It can be characterised as the unique monic generator of the kernel
of theevaluation map

] f(X)—f(a)

K[X L

Y

which is trivially checked to be & -algebra homomorphism (i.e. a homomorphism of rings and of
K-vector spaces).

We now assume thdi/ K is a finite extension of degrdé : K| = n. Later we will ask it to be
separable, too (which is automatic if the characteristi&dfand hencd.) is 0). Leta € L. Note that
multiplication bya:

T,:L— L, x+— ax

is L-linear and, thus, in particulak -linear. Once we chooseld-basis ofL, we can represefit, by
ann x n-matrix with coefficients ink, also denoted,.

Here is the most simple, non-trivial example. The complex numBérave theR-basis{1, i} and
with respect to this basis, arye C is represented ds; ) = x +iy. Now, takea = (%) = b+ci € C.
We obtain:T, = (®¢), as we can easily check:

Tu(2) = az = (b+ci)(@ + iy) = (be — cy) + (o + by) andTu(z) = (2 5°) (5) = (v ).

As an aside: You may have seen this matrix before; namely, writiag-(cos(¢) +i sin(p)), it looks

like r <§?§((g)) _Cji;(lg‘)’) ) i.e. it is a rotation matrix times a homothety (stretching) factor.

We can now do linear algebra with the matfix € Mat,, (K).

Definition 2.1. Let L/K be a finite field extension. Lete L. Thetrace ofa in L/K is defined as
the trace of the matrif;, € Mat, (K) and thenorm ofa in L/ K is defined as the determinant of the
matrix T, € Mat, (K):

Try i (a) :== Tr(T,) andNormy, /x (a) := det(7,).
Note that trace and norm do not depend on the choice of basis by a stevedalt from linear algebra.

Let L/K = C/Randz = x +iy € C. ThenTr¢/r(z) = 2z = 2R(z) andNormg g (z) =
22 +y? = |z

Lemma 2.2. Let L/ K be a finite field extension. Letc L.

(@) Tr, i defines a group homomorphigih, +) — (K, +), i.e.

Trp k(a+0b) = Trp/k(a) + Try g (D).
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(b) Normy, ki defines a group homomorphigh™,-) — (K*, ), i.e.
/

Normyp, /g (a - b) = Normy, /i (a) - Normy, /g (b).

Proof. (a) The trace of a matrix is additive afdd., = T, + T}, becausel, ;,(z) = (a + b)x =
az + bx = Ty (z) + Ty(x) forall z € L.

(b) The determinant of a matrix is multiplicative afifl, = T, o T, becausel,.,(z) = abx =
To(Ty(z)) forall z € L. O

Lemma 2.3. Let L/ K be a finite field extension. Letc L.

(@ Letf, = X" +b, 1 X" 1+ .-+ b X + by € K[X] be the characteristic polynomial @, €
Mat,(K). ThenTry, k(a) = —bp—1 @andNormyp, /g (a) = (—1)"bo.

(b) Letm, = X% 4 cq_1 X+ 4 1. X + ¢o € K[X] be the minimal polynomial af over K.
Thend = [K(a) : K] and withe = [L : K(a)] one hasn,(X)¢ = f,(X).

Proof. (a) is a general fact from linear algebra that can, for example, beketien the Jordan normal
form of T, over an algebraic closure &f, using the fact that trace and determinant are conjugation
invariants, that is, do not depend on the choice of basis.

X] f(X)—f(a)

(b) It is obvious that the evaluation md{ L defines a field isomorphism

K[X]/(ma(X)) = K(a),

whence the degree ¢f((a) : K] equals the degree of,,(X) and, moreover{1,a,a?,...,a% '}
forms aK-basis ofK (a).

We now compute the matrig!, for the mapK (a) ~—=% K (a) with respect to the chosefi-
basis. Very simple checking shows that it is the following matrix:

00 - 0 —co
10 0 —c1
01 0 —c2

T =

66 - 1 —cas

Note that its characteristic polynomial is precisety(X).
Now let{sy,..., s.} be aK (a)-basis ofL. Then aK-basis ofL is given by

{31, s1a, 31a2, ey sladfl, S92, 820, 32a2, e ,SQCLdil, ce. Se, Seq, seaQ, ceey seadfl}.
K-linear independence is immediately checked and the number of basis elem@htstids is the
way one proves that the field degree is multiplicative in towgts: K| = [L : K(a)|[K (a) : K].

With respect to this basis, the matfly is a block matrix consisting af blocks on the diagonal,
each of them equal t,. This proves (b). O

We need to use some results from field theory. They are gathered in thidipfo this section.

Proposition 2.4. Let L/ K be a finite separable field extensiali, an algebraic closure of con-
taining L. Let, furthermoren € L and f, the characteristic polynomial df,. Then the following
statements hold:
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(@) fa(X) = ngHomK(Lf)(X —o(a)),
(b) TrL/K(a) = ZaeHomK(L,F) o(a), and

(C) NormL/K(a) = HO’EHOIHK(L,?) U(a’)

Proof. Let M = K (a). We use Equation (2.4) and its notation. By Proposition 2.11 in the appendix,
the minimal polynomial of, over K is

ma(X) := [[(X = ai(a)).

iel
Lete = #J. We obtain from Lemmla 2.3:

fa(X) = ma(X)* = [ [(X = 03()* = [ [(X ~7i(a))®

el i€l
=[x -7ien@)= I (xX-oa)
il jed o€Homg (L,K)

This shows (a). Multiplying out, (b) and (c) are an immediate consequdrtbe preceding lemma.
O

Corollary 2.5. Let L/M /K be finite separable field extensions. Then
Trp/x = Trar i 0 Trp e @andNormy, /i = Normyy /g o Normy, /py.
Proof. We use Equation (2.4) from the appendix and its notation. Then

Trp ke (Trayr(a)) = ZUz’(TTM/L(G)) = ZUi(ZTj(@))

iel iel jeJ
=D 7> m(@) =>_> 7iom(a) = Trayx(a)-
i€l jeJ el jed
In the same way, we have

NormL/K(NormM/L HUZ Normyy, 7, (a) HUl HT]
i€l i€l jeJ

= HEZ( HTj(a)) = H Hﬁi oTj(a) = NOHDM/K(CL),

iel  jeJ iel jeJ
showing the statement for the norm. Ol

Definition 2.6. Let L/K be a finite separable field extension of degree= [L : K]|. Further,
let Homg (L, K) = {o1,...,0,} and letay,...,a, € L be aK-basis ofL. Form the matrix

D((Xl, e ,an) = (O’Z‘(aj))lgingn.
Thediscriminant of(«, . .., ) is defined as

disc(a, ..., an) == (det D(ay, . .. ,an))2.
Thetrace pairing on./ K is the bilinear pairing

LXL—)K) ($7y)'_>T‘rL/K(xy)
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Example 2.7.(a) Let0,1 # d € Z be a squarefree integer and considér= Q(/d). Computations
(see Exercise on Sheet 3) show:

disc(1, v/d) = 4d and disc(1,

1+\/ﬁ):d.
2

(b) Letf(X) = X3 +aX + b € Z[X] be an irreducible polynomial and consid&f = Q[X]/(f).
Leta € C be any root off, so that we can identifff’ = Q(«) and1, o, o is aQ-basis ofK.
Computations also shodisc(1, o, o?) = —4a® — 27b%.

(One can make a brute force computation yielding this result. However,dsigeto identify this
discriminant with the discriminant of the polynomi&lX ), which is defined by the resultant ff
and its formal derivative/’. This, however, was not treated in last term’s lecture and we do not
have time for it here either.)

Proposition 2.8. Let L/K be a finite separable field extension of degree= [L : K|. Then the
following statements hold:

(@) LetD := D(ay,...,a,). ThenD¥ D is the Gram matrix of the trace pairing with respect to any
K-basisay, ..., a,. Thatis, DD = (TrL/K(aiaj))l<ij<n'

(b) Letay,...,a, be aK-basis ofL. Then

disc(av, ..., 0p) = det(D)? = det(D" D) = det (Trpk(aiaj))

1<i,j<n’

(c) Letay,..., o, be aK-basis ofL andC' = (¢; j)1<i j<n b€ ann x n-matrix with coefficients
in K and put3; := Cq; fori=1,...,n. Then

disc(B1, ..., fn) = det(C)? disc(an, . . . , ay).

(d) If L =K(a), then

disc(1,a,...,a" 1) = H (Uj(a)—ai(a))27

1<i<j<n
whereo, .. ., o, are theK-homomorphismg — K.
(e) The discriminandlisc(ay, . .., ay,) is non-zero and the trace pairing d/ K is non-degenerate.

Proof. (a) Letoy, ..., o, be theK-homomorphismg, — K. Then we have

n n

DU“D — (Zak(ai>0k<aj>>1§i7j§n = (de(aiaj))ISi’an = (TrL/K(aiaj))lﬁi,jgn'
k=1 k=1

So, the(4, j)-entry of the matrixD" D equalsIr(a;«;). Hence, D' D is the Gram matrix of the trace
pairing with respect to the choséfbasis.

(b) is clear.

(c) Exercise on Sheet 3.
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(d) Exercise on Sheet 3.

(e) We may always choose some L such that, = K (a) (this is shown in any standard course
on Galois theory). From (c) it is obvious that the discrimindist(1,a, ...,a"!) is non-zero and,
hence, the trace pairing dry K is non-degenerate (because by a standard result from linear algebra
bilinear pairing is non-degenerate if and only if its Gram matrix with respectydasis is invertible).
Consequentlylisc(aq, . . ., ) # 0. O

Appendix: Some Galois theory

Let L/K be an algebraic extension of fields (not necessarily finite for the nédititien) and K
an algebraic closure d& containingL. We pre-suppose here the existence of an algebraic closure,
which is not quite easy to prove. However, in the number field case wethawvkich we know to be
algebraically closed, and ifi we can takeQ = {z € C | z algebraic ovefQ}, which is an algebraic
closure ofQQ and also of all number fields.

Let f € K[X] be a polynomial of degree. It is calledseparablsf it hasn distinct roots ink. It
is very easy to see that

f is separable= 1 = ged(f, f),

wheref’ is the formal derivative of . Otherwise, we say thatis inseparable

If char(K) = 0, then every irreducible polynomidlis separable becauged(/’, /) = 1, as the
only monic divisor off of degree< n is 1 anddeg(f’) = n — 1. Moreover, if K is a finite field
of characteristip, then every irreducible polynomigl € K[X] is also separable. The reason is that
the finite fieldL := K[X]/(f(X)) is a splitting field of the polynomiak?" — X € F,[X], where
#L = p™. This implies thatf(X) dividesX?" — X. As the latter polynomial is separable (because
ged((XP" — X)), XP" — X) = ged(—1, XP" — X) = 1), alsof is separable. A field over which every
irreducible polynomial is separable is callpdrfect We have just seen that fields of characterigtic
and finite fields are perfect. However, not every field is perfect. den& = F,(T") = Frac(F,[T])
andf(X) = X? — T € K[X]. The Eisenstein criterion shows thfis irreducible, butged(f’, f) =
ged(pXP~1, XP —T) = ged(0, XP — T) = XP — T # 1, whencef is not separable. In this lecture,
we shall almost entirely be working with number fields, and hence in chaisitid), so that the
phenomenon of inseparability will not occur.

Next we explain how irreducible separable polynomials are related to piepef field exten-
sions. We leHHom g (L, K) be the set of field homomorphisms (automatically injective!)L. — K
such thatr|x = idg, i.e.7(z) = z for all x € K. Such a homomorphism is referred to a&'a
homomorphismWe write[L : K], := #Homg (L, K) and call it theseparable degree df/ K, for
reasons to become clear in a moment.

Let now f € K[X] be an irreducible polynomial and suppase= K[X]/(f). We have the
bijection

{a € K| f(a) =0} — Homg (L, K),

given by sendingy to the K-homomorphism
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Note that it is well-defined becaugéa) = 0. The injectivity of the map is cleart = oo (X +(f)) =
o3(X + (f)) = B. For the surjectivity consider any : K[X]/(f) — K and puty = o(X). As
o(f) = 0, we havef(y) = 0 and it follows thaiv = o, because th&(" + (f) form a K-generating
system of[X]/(f) on whicho ando., agree. We have shown fér= K[X]/(f):

[L: Klsep = #{a € K | f(a) =0} < deg(f) = [L: K].

Now we consider a general algebraic field extendigi’ again. An element € L is called
separable ovelK if its minimal polynomialf, € K[X] is separable. The algebraic field extension
L/K is calledseparablaf every element: € L is separable ovek. As an immediate consequence
every subextension of a separable extension is separable.

The most important technical tool in Galois theory is the following proposition.

Proposition 2.9. Let L/ K be an algebraic field extension arkd an algebraic closure o contain-
ing L. Then anyK -homomorphisner : L — K can be extended to A-homomorphisrr : K — K.

In order to explain the idea behind this proposition, let us thke= L(a) for somea € K,
whenceM = L[X]/(f) with f the minimal polynomial of: over L, and let us extend to M, call
it op7. The polynomialf factors into linear factors ovell, whence we may choose somec K
such thatf(«) = 0. Any element ofM is of the formz‘f:O a; X* + (f) and we send it viar,
to Z?:o o(a;)a’ in K. Using a Zorn's lemma argument, one obtains thagn indeed be extended
to K.

Let now /M /K be algebraic field extensions contained insidand let

Homp (M, K) = {o; | i € I} andHomy (L, K) = {r; | j € J}.
By Proposition 2.9 we may choose : K — K extendings; for i € I. We have
Homg (L, K)={c;07;|i€1,j € J}. (2.4)

This is easy to see:J' is clear. ‘C": Let 7 € Homg (L, K), thent|y; € Homg (M, K), whence
7|m = o, for somei € I. Now conside®; ' o 7 € Homy, (L, K), whence there ig € J such that
T =0;0Tj.
Moreover, the map
IxJ— Homg(L,K), (i,j)r ;0 j

is a bijection. The surjectivity is precisely the inclusian’ ‘shown above. For the injectivity suppose
0; o T; = oy, o 7¢. Restrict this equality td/ and getr; = o5, whencei = k. Having this, multiply
from the left byE;l and obtainr; = 7, whencej = . As consequence we find the multiplicativity
of the separable degree in towers of algebraic field extensions:

[L: Klsep = [L : Klsep[M : Klsep-

This multiplicivity combined with our calculations fat = K[X]/(f) immediately give for a
finite extension. / K:
L/K is separables [L : K| = [L : K]sep,
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and the inequalityL : K| > [L : K] always holds.

One more definition: the sét*® := {z € K | x is separable oveK} is calledthe separable
closure ofK in K. It can be seen as the compositum of all finite separable subextedsidhsside
K, whence it clearly is a field.

Proposition 2.10. Leta € K5 such thatr(a) = a for all o € Homg (K, K), thena € K.

Proof. If a were not inK, then we letf € K[X] be its minimal polynomial and we let € K be a
root of f. Then we haver, : K(a) — K (defined as above) a non-triviai-homomorphism, which
we may extend to a non-trivial, : K — K, contradiction. O

This allows us to write down the minimal polynomial of a separable elemenf{*°P as follows.

Proposition 2.11. Leta € K°°P and consider the set
{01,09,...,0,} = Homg (K (a), K)

withn = [K(a) : K] = [K(a) : K]sp. Then the minimal polynomial efover K is

Proof. We extendr; toa; : K — K and observe(f,) = f. (wherez is applied to the coefficients
of f,) for all K-homomorphism& : K — K, whencef, € K[X]. Here we have used that every
restricted toK (a) is one of thes;, and, hence, application af just permutes the; in the product.
Proposition 2.10 now implies that the coefficientsfefare indeed ink.

It remains to see that the polynomial is irreducible. But that is clear foregegrasons. Of course,
a is a zero off, (one of they; is the identity oru), f,, is monic and its degree is thatdf (a) : K|. O

3 Rings of integers

We recall central definitions and propositions from last term’s coursmommutative algebra.

Definition 3.1. Let R be a ring andS an extension ring of: (i.e. a ring containingR as a subring).
An element: € S is calledintegral overR if there exists a monic polynomigl € R[X] such that

f(a) =0.

Note that integrality is also a relative notion; an element is intemrat some ring. Also note the
similarity with algebraic elements; we just added the requirement that the polylnmemaonic.

Example 3.2.(a) The elements @ that are integral ovefZ are precisely the integers @.
(b) V2 € Ris integral overZ becauseX? — 2 annihilates it.

(c) 13—\/5 € R is integral overZ becauseX? — X — 1 annihilates it.



3 RINGS OF INTEGERS 16

(d) a:= ng € R is not integral ovelZ becausef = X2 — X + % annihilates it. If there were
a monic polynomiahk € Z[X] annihilating a, then we would havé = fg with some monic
polynomialg € Q[X]. But, now it would follow that botlf andg are inZ[ X] (see Sheet 4 of last
term’s lecture on Commutative Algebra), which is a contradiction.

(e) LetK be a field andS a ring containingK (e.g.L = S afield) anda € L. Thena is integral
over K if and only ifa is algebraic overk.

Indeed, asK is a field any polynomial with coefficients ki can be made monic by dividing by
the leading coefficient. So, if we work over a field, then the new notion gfatity is just the
notion of algebraicity from the previous section.

Definition 3.3. Let.S be aring andR C S a subring.

(@) The setRg = {a € S | aisintegral overR} is called theintegral closure of? in S (compare
with the algebraic closure ak in S — the two notions coincide R is a field).

An alternative name isnormalisation ofR in S.

(b) S'is called anintegral ring extension oR if Rg = S, i.e. if every element f is integral overR
(compare with algebraic field extension — the two notions coincideahd .S are fields).

(c) Ris calledintegrally closed inS if Rg = R.

(d) An integral domainR is calledintegrally closedi.e. without mentioning the ring in which the
closure is taken) iR is integrally closed in its fraction field.

(e) Leta; € S fori € I (some indexing set). We |1&a; | i € I] (note the square brackets!) be the
smallest subring of' containingR and all thea;, i € I.

Note that we can seR[a] insideS as the image of the ring homomorphism

d d
o, : R[X]— S, ZciXi — Zciai.
=0 =0

Proposition 3.4. Let R C S C T be rings.

(a) Fora € S, the following statements are equivalent:

() ais integral overR.

(i) Ra] C Sis afinitely generated&?-module.

(b) Letay,...,a, € S be elements that are integral ov&. ThenR[a,,...,a,] C S is integral
over R and it is finitely generated as aR-module.

(c) LetR C S C T be rings. Then ‘transitivity of integrality’ holds:

T/Risintegral < T/S isintegral andS/R is integral.

(d) Rgis asubring ofs.
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(e) Anyt € S that is integral overRg lies in Rg. In other words,Rg is integrally closed inS
(justifying the name).

Definition 3.5. Recall that anumber fieldK is a finite field extension d@). Thering of integers ofK’
is the integral closure of. in K, i.e.Z k. An alternative notation i€ .

Example 3.6. Letd # 0, 1 be a squarefree integer. The ring of integer€h/d) is

(1) Z[Vd],ifd=2,3 (mod 4),

],
(2) Z[Y4,ifd =1 (mod 4).
Proposition 3.7. Every factorial ring (unique factoriation domain) is integrally closed.

Proposition 3.8. Let R be an integral domain/ = Frac(R), L/K a finite field extension and
S := Ry, the integral closure oR? in L. Then the following statements hold:

(@) Everya € L can be written ag = > withs € Sand0 # r € R.
(b) L = Frac(S) andS is integrally closed.
(c) If Risintegrally closed, thels N K = R.
The following proposition was stated but not proved in last term'’s lecture.

Proposition 3.9. Let R be an integral domain which is integrally closed (recall: that means integrally
closed inK = Frac(R)). Let K be an algebraic closure ok and leta € K be separable ovek.
Then the following statements are equivalent:

(i) aisintegral overR.
(i) The minimal polynomiain, € K[X] of a over K has coefficients imR.

Proof. ‘(i) = (i)": Since by assumptiom, € R[X] is a monic polynomial annihilating, by defini-
tion a is integral overR.
‘(i) = (ii)": From Proposition 2.11 we know that the minimal polynomialobver K is

n

ma(X) = [[(X = oi(a)),
=1
Where{01 =id, o9,... ,O’n} = HOII]K(K(CL%F).
We assume thatis integral overR, so there is some monic polynomigl € R[X] annihilatinga.
It follows thatm, dividesg,. Consequentlyy,(c;(a)) = 0i(ga(a)) = 0;(0) = 0foralli =1,...,n,

proving that alsars(a),o3(a),...,o,(a) are integral oveR. Hence,m, has integral coefficients
over R (they are products and sums of #hga)). As R is integrally closed ink, the coefficients lie
in R. O

We now apply norm and trace to integral elements.
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Lemma 3.10. Let R be an integrally closed integral domaif; its field of fractions /K a separable
finite field extension and the integral closure oR in L. Lets € S. Then the following statements
hold:

(a) TI'L/K(S) S RandNormL/K(s) € R.
(b) s € §* < Normy /i (s) € R*.

Proof. (a) directly follows fromS N K = R.

(b) ‘=" Let s,t € S* such thatts = 1. Thenl = Normy x(1) = Normp g(st) =
Normy x (s)Normy (), exhibiting an inverse aRormy, i (s) in R.

‘<" AssumeNormy g (s) € R*. Thenl = rNormp r(s) = r[],cnomyrm) o(s) =
(r Tliasocttomy (1.7 7(5)) s = ts, exhibiting an inverse te in S. O

Next we use the discriminant to show the existence of an integral basisligdreninant will also
be important in the proof of the Noetherian-ness of the ring of integersafreer field.

Lemma 3.11. Let R be an integrally closed integral domaif; its field of fractions /K a separable
finite field extension anf the integral closure oR in L.

(a) For any K-basisay,...,a, of L, there is an element € R\ {0} such thatra; € S for all
1=1,...,8.

(b) Letay,...,a, € S be aK-basis ofL and letd = disc(ay, ..., ;) be the discriminant of this
basis. ThenlS C Rajg + - - - + Ray,.

Proof. (a) By Proposition 3.8 (a), we can writg = ?* with ; € Rands; € Sforalli =1,...,n.
Hence,we may take =ry - ... 7,.

(b) Lets = 377, zja; be an element of with z; € K for j = 1,...,n. We showds €

Ray + -+ - + Ra,,. Note that the elementary properties of the norm yield
Trp i (qis) = ZTT(%O&J')OE]’ € SNK=R.
j=1

Trp g (eiar) - Trp g (ocron)
We can rewrite this in matrix form usin/ = D" D = : : . Now:
TI“L/K(Oc"Oq) TI“L/K(OtnOcn)

1 >y Tr(eoy)z;
M( : ) = : € R".
Tn Z;L:I Tr(anaj);

Multiplying through with the adjoint matri®/# yields

M#M Cl> = det(M) Cl> =d (:1> € R"

Thus,dz; € Rforalli =1,...,n and, consequentlys € Raj + - - - + Ray,. O
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We now need a statement that is very simple and could have been provet@mids course on
commutative algebra (but, it wasn’t). We give a quick proof.

Theorem 3.12. Let R be a principal ideal domain and/ a finitely generated?-module. Then the
following statements hold:

(a) Assume that/ is a free R-module of rankn. Then any submodull¥ of M is finitely generated
and free of rank< m.

(b) An elementn € M is calledtorsion elemenif there isO # r € R such thatrm = 0. The set
Miorsion = {m € M | mis atorsion element is an R-submodule of\/, the order of which is
finite.

(c) M is afreeR-modules Miosion = {0}.
(d) There is an integei such that

M = Miorsion PR® ... D R.

m times

The integem is called theR-rankof M.

(e) Leto - N — M — @ — 0 be a short exact sequence of finitely generafethodules. Then
I'kR(M) = rkR(N) + rkR(Q)

Proof. (a) We give a proof by induction om. The casen = 0 is clear (the only submodule of the
zero-module is the zero-module).

Now letm = 1. ThenM = R and the submodules @i/ are the ideals ok under the isomor-
phism. AsR is a principal ideal domain, the rank of the submodules/ois thus equal td, unless it
is the zero-ideal.

Now, suppose we already know the statement for all ranks up-tal and we want to prove it for
M of rankm. After an isomorphism, we may suppode=R® ... o R. Letr : M =R®...®& R

\ﬁ,—/
be them-th projection. It sits in the (trivial) exact sequence mimes
0—-R®...0R— M R—0.
———

m—1 times

Let now N < M be a submodule and set

Ni:=NNnkerr=NNR®...®R.
—_——

m—1 times

By induction assumptiony; is a freeR-module of rank at most — 1. Moreover,7(N) is a submod-
ule of R, hence, by the case = 1, itis free of rank0 or 1. We have the exact sequence:

O—>N1—>N1>7T(N)—>O,
As(N) is free, it is projective and this sequence splits, yielding

N = Ny @ w(N),
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showing thatV is free of rank at mostm — 1) + 1 = m.

(b) is trivial.

(c) ‘=": Let zy,...,z, be afree system of generatorsidf. Letz =" , riz; € M. If re =0
with R > r # 0, thenrr; = 0 for all 4, thusr; = 0 for all 7, whencer = 0.

‘<" Let z4,...,x, be any system of generators df and letzy,...,x,, with m < n be a

maximal free subset (possibly after renumbering).mlf= n, then M is free, which we want to
show. Assume, hence, that < n. Then for allm + 1 < i < n, there isO # r; € R such that
T = Z;nzl Tij%j- Settingr =Tl ... T, WE obtain for alli = 1,....n

re; € Re1 @ Reo @ ... 0 Reyp,
and, consequently, for all € M:
rer € Rt1 ® Rrao @ ... 6 Rxyy,.
AS Miorsion = {0}, it follows that the map
M — Rx1® Rro®...® Rxy,, x+— 12,

gives an isomorphism betwedii and ank-submodule of the fre®-moduleRz1 ® Rzo®. . . Rxyp,
whence by (a)V/ is free.
(d) We consider the trivial exact sequence

0 — Mtiorsion = M — M/Mtorsion - Oa

and claim that\/ / Mision IS @ freeR-module. By (c) it suffices to show that the only torsion element
in M /Miorsion 1S 0, which works like this: Letc + Miorsion € M /Miorsion @Nd0 # 7 € R such that
T(SL‘+Mtorsion) = 1T+ Miorsion = 0+ Miorsion € M/Mtorsion- Then, clearlyrz € Miorsion, Whence
there is0 # s € R such thats(rz) = (sr)x = 0, yieldingz € Miorsion, @S desired.

As M /M;qsion 1S R-free, it is projective and, hence, the above exact sequence spkt<m-
mutative Algebra), yielding the desired assertion.

(e) First assume thap is R-free of rankq. Then the exact sequence splits and one §éts:
N @ @, making the assertion obvious. @ = R? ® Qtorsion, then consider the composite map
m: M — RY® Qiorsion — RY. We getrkz(M) = ¢ + rkg(N) with N = ker(r). From the snake
lemma (see exercise) it is obvious tbf‘é)lN = Qtorsion-

From this we want to conclude thait(N) = rk(N), then we are done. We may assume that
Ntorsm = 0 (since the torsion part plays no role for the rank), and, heNgg;ion = 0, so thatv and
N are freeR-modules. Assume that the rank &fis strictly smaller than the rank d¥. We claim
that there is then some € N which is R- linearly independent of the image of. For, if no suchz
existed, then there would e € R suchthat-N C N, hencerk(N) = rk(rN) < rk(N), which
is impossible. Now, by assumption there)isz » € R such that'(x + N) =0+ N, i.e.rx € N,
contradicting the linear independence. O

Definition 3.13. Let R € S be an integral ring extension. ¥ is free as ankR-module, then an
R-basis ofS (i.e. a free generating system) exists and is callethéegral basis of over R.
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We point out that, ifS is an integral domain (as it always will be in this lecture), themRabasis
of S is also aK-basis ofL = Frac(S) with K = Frac(R).

Note that, in general, there is no reason why an integral ring exterssghould be free as an
R-module. This is, however, the case for the rings of integers, as the foigeoposition shows.

Proposition 3.14. Let R be a principal ideal domaink its field of fractions /K a finite separable
field extension and the integral closure oR in L.

Then every finitely generateftsubmodule # M of L is a free R-module of ranKL : K]. In
particular, S possesses an integral basis over

Proof. As principal ideal domains are unique factorisation domains and, henegratly closed, we
may apply Lemma 3.11 to obtainfé-basisa, . .., «,, € S of L and we also havéS C Ray +---+
Ra,, =: N with d = disc(a, . .., o). Note thatV is a freeR-module of ranke = [L : K.
Letmy,...,mp € M be a generating system 8f C L asS-module. As then; are elements
of L, by Proposition 3.8 (a) there isc R such thatrm; € Sforalli =1,...,k, whencerM C S.
Hence,rdM C dS C N. Consequently, Theorem 3/12 yields thdf\/ is a freeR-module of rank
at mostn. Of course, thek-rank of rdM is equal to theR-rank of M. Let0 # m € M. Then
Nm < Sm < M, showing that:, the R-rank of N (which is equal to th&k-rank of Nm) is at most
the R-rank of M, finishing the proof. O

For the rest of this section we specialise to the case of number fields.

Definition 3.15. Let K be a number field. A subrin@ of Z is called anorder of K if O has an
integral basis of lengthi : Q).

Corollary 3.16. Any order in a number field is a Noetherian integral domain of Krull dimensian

Proof. Being a subring of a field) is an integral domain. As the ring extensiBnC O is integral
(being contained in the integral extensidnC Zg), the Krull dimension ofO equals the Krull
dimension ofZ, which is1 (see Commutative Algebra). A8 has an integral basis, we hagk =
7®...&Z. ThatO is Noetherian now follows becaugeis Noetherian and finite direct sums of
N———

[K:Q] times
Noetherian modules are Noetherian (see Commutative Algebra). O

Corollary 3.17. Let K be a number field an@ the ring of integers of. Then the following
statements hold:

(a) Zk is an order ofK, also called thenaximal order off.
(b) Zg is a Dedekind ring.

(c) Let0 C I < Zk be anideal. Thed is a freeZ-module of ranKK : Q] and the quotienZy /1
is finite (i.e. has finitely many elements; equivalently, the index: I) is finite).

Proof. (a) It is a trivial consequence of Proposition 3.14 that is a freeZ-module of ranKK : Q]
becausé. x is aZ-module generated by a single element, namely particularZ i has anintegral
basis and, hence, is an orderkf
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(b) From Corollary 3.16 we know thé&tx is a Noetherian integral domain of Krull dimensibn
It is also integrally closed (being defined as the integral closui® iof K), hence, by definition, a
Dedekind ring.

(c) AsZy is Noetherian, the idedlis finitely generated. Hence, Proposition 3.14 again gives that
I is a freeZ-module of ranK K : Q]. The quotient of any two freg-modules of the same rank is
finite by Theorem 3.12, proving the final statement. O

Definition 3.18. Let K be a number field with ring of integeBx and0 # a C K be a finitely
generatedZ x-module. Thaliscriminant ofa is defined aslisc(ay, .. ., ay,) for any Z-basis of the
freeZ-modulea (see Proposition 3.14). (By Proposition 2.8 (c), this definition does nuemi on the
choice ofZ-basis because the basis transformation matrix is invertible with integral erdrie thus
has determinant-1.)

Thediscriminant ofK is defined aslisc(Zx).

Proposition 3.19. Let K be a number field and x its ring of integers. Le6 # a C b C K be two
Zk-modules. Hence, the indék : a) is finite and satisfies

disc(a) = (b : a)? disc(b).

Proof. Exercise on Sheet 4. O

4 |deal arithmetic

Itis useful, in order to make the set of non-zero ideals of a Dedekindntog group with respect to
multiplication of ideals, to introduce fractional ideals, which will be neededHerinverses.

Definition 4.1. Let R be an integral domain an&” = Frac(R).
e An R-submoduld < K is called afractional ideal ofR (or: fractional R-idea)) if

— I #(0)and
— there isx € K* such thate/ C R.

Note thatr can always be chosen iR \ {0}. Note also that:/ is an ideal ofR (in the usual
sense).

¢ A fractional R-ideal I is called anintegral idealf I C R.

Note that for a subsdt)) # I C K, one trivially has:

I < Ris anideal ofR in the usual sense> I is an integral fractionaR-ideal.

e A fractional R-ideal I is calledprincipalif there isx € K* such thatl = Rx.

e Let/, J be fractional R-ideals. Thadeal quotienof I by J is defined as

I:J=(I:J)={xeK|zJCI}.
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e Theinverse ideabf the fractionalR-ideal I is defined as

I'V:=(R:I)={xc K|xI CR}.

e Themultiplier ring of the fractionalR-ideal I is defined as

r(l):={U:1)={ze K|zl CI}.

Example 4.2. The fractional ideals oF are all of the form/ = 7Z with a,b € Z \ {0}. Hence, all
fractional Z-ideals are principal.

Itis clear that7Z is a fractional ideal. Conversely, Idtbe a fractional ideal such thadtl is an
ideal of Z, whencebl = (a) = aZ, so thatl = $Z.

Let] = $Zand.J = $Z, then

c a ad ad
(I-J)*{JTE@W&ZGgZ}*{xEQWGEZ}*EZ-

In particular, I~ = 2Z andII~' = Z (because, clearlf andl e I1~1).

~a
Lemma 4.3. Let R be an integral domain an& = Frac(R). LetI,J C K be fractional R-ideals.
Then the following sets are fraction&tideals.

e I+ J={z+ylzel,yeJ}
hd IJ:{Z?:lxlyJ |nEN)xl)"'axnGIayla"'aynEJ}a

o ["=1-1-...-1,
—_—

n times

e INJ,
o (I:J).
Proof. Exercise. O

Lemma 4.4. Let R be an integral domain and/, I, J C K fractional R-ideals. Then the following
properties hold:

(@) IJ C InJ(assume here thatand.J are integral ideals),

b H+(I+J)=H+I)+J=H+1+J,

(c) H(IJ) = (HI)J,

(d HI+J)=HI+HJ.

Proof. Exercise. O]

Lemma 4.5. Let R be an integral domain and, J < R be ideals (in the usual sense)Jlf+ J = R,
then we calll and J coprime ideals
Suppose now thdtand.J are coprime. Then the following statements hold:
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(&) I'""andJ™ are coprime for alln, m € N.
(b) INJ=1J.
(¢) R/(IJ) = R/I x R/J (Chinese Remainder Theorem).

(d) If IJ = H" for somen € N, thenl = (I + H)", J = (J + H)"and(I + H)(J + H) = H.

In words: If an ideal is am-th power, then so is each of its coprime factors.

Proof. (a) By assumption = i + j for somei € I and somg € J. Now1 = 1"t™ = (j 4 5)"t" ¢
4 Jm.

(b) The inclusion D’ is clear. We now showC'. Let x € I N J. Again by assumptioh = i + j
for some; € I and someg € J. Hencex = z - 1 = xi + xj, whencer € I.J because:: € I.J and
xjelJ.

(c) That's just a reminder. It was proved in some of your Algebra lesture

(d) We start with the following computation:

(I+H)"=I1"+I""H+I"*H* ...+ TH" ' + H"
:I(In_l—|—In_2H+"'+Hn_1+J)
=IR=1

becauséd” = I.J and.J andI" ! are coprime by the Lemma. Define= I + H andB = J + H.
Then

AB=(I+H)J+H)=1J+IH+JH+H*=H"+1H + JH + H*
—HH"'+I+J+H)=HR=H,

as required. 0

Example 4.6. Let us consider the ring? = Z[/—19]. In this ring, we have the following factorisa-
tions:

182 + 19 = (18 +V/—19)(18 — v/—19) = 343 = 73
Let us take the principal ideals= (18 + +/—19) andJ = (18 — v/—19), then
IJ = (7)3.
The previous lemma now gives:
I=I+(7)3=18++v=19,7)andJ = (J + (7)) = (18 — V=19, 7)3.

But, one can check, by hand, that the elemé&ts /—19 and18 — /—19 are not third powers iR
(just take(a + by/—19)3 = 18 — \/—19 and work out that no such, b € Z exist).

In this example we see that ideals behave better than elements. We will tr¢grttenomenon
that we just saw to the unique factorisation of any ideal in a Dedekind ring irgmduct of prime
ideals.
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Proposition 4.7. Let R be a Noetherian integral domaits’ = Frac(R) and(0) # I C K a subset.
Then the following two statements are equivalent;

(i) Iis afractional R-ideal.
(i) [ is afinitely generatedk-submodule of< (this is the definition in Neukirch’s book).

Proof. ‘(i) =(ii)": By definition, there isr € R\ {0} such that-/ C R, henceyI is an ideal ofR

in the usual sense. AR is NoetherianyI is finitely generated, say by, . . ., a,,. Then[ is finitely
generated ag-submodule ofs by <%, ..., =,

‘(i) =(i)": Supposel is generated aR-submodule of” by %, g Thenr =71y S
such that/ C R. O

This proposition also shows us how we must think about fractidtr&deals, namely, just as
R-linear combinations of a given set of fractio£1§, cee ‘;—Z (where we may choose a common de-
nominator).

Definition 4.8. Let R be an integral domain an& = Frac(R). A fractional R-ideal I is called an
invertible R-idealif there is a fractionalR-ideal J such that/J = R.

Note that the term ‘invertibld?-ideal’ applies only to fractionak-ideals (which may, of course,
be integral).

Lemma 4.9. Let R be an integral domaink = Frac(R) and I a fractional R-ideal. Then the
following statements hold:

(@) II"' C R.

(b) Iisinvertibles IT-! = R.

(c) LetJ be an invertibleR-ideal. Then(I : J) = IJ~ 1.
(d) 1f0 # i c I'suchthat—! € I~!, thenl = (4).

Proof. (a) holds by definition.

(b) ‘=": Let J be afractionaR-ideal such that / = R (exists by definition of being invertible).
Then, on the one hand, by the definition/of we have/ C I—!. Onthe other hand, ! = I~'1J C
RJ = J, showingJ = I~1.

‘<" is trivial.

(c) We show both inclusions dfr € K | 2J C I} = IJ~ L.

‘C" Let z € K suchthateJ C I. Thisimpliesz € tR=xJJ ' C IJL.

‘D" We have(IJ 1) J =1(JJ ') =1C I,whencelJ!C (I:J).

(d) We havel =i(i~1I) CiI~'T CiR= (i) C I. O

We include the next lemma to avoid writing down the Noetherian hypothesis in dteam®llary
and the subsequent definition.

Lemma 4.10. Let R be an integral domain witli = Frac(R). Then any invertiblé?-ideal is finitely
generated.
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Proof. LetIJ = R. In patrticular,1 isin I.J, whence there arg, € [ andj, € Jfork =1,...,n
(somen € N) suchthatl = "), ixji. Letz € I. Then

n

r=x-1= Z(x]k)’tk S iRiky

k=1 k=1
hencel = >, _, Riy. O

Corollary 4.11. Let R be an integral domain. The s&{(R) of invertible fractionalR-ideals forms
an abelian group with respect to multiplication of ideals, withbeing the neutral element, and the
inverse ofl € Z(R) beingl 1.

The setP(R) := {zR | x € K*} of principal fractional R-ideals forms a subgroup @f(R).

Proof. This just summarises what we have seen. Th@R) is a subgroup is clear. O

Definition 4.12. Let R be an integral domain. One call5(R) the group of invertibleR-idealsand
P(R) thesubgroup of principal invertibl&-ideals

The quotient groufp’ic(R) := Z(R)/P(R) is called thePicard group of?.

If K is a number field ané x its ring of integers, one also writedSL(K) := Pic(Zk ), and calls
it theideal class group ok .

Corollary 4.13. Let R be an integral domain an& = Frac(R). Then we have the exact sequence
of abelian groups

1 R* — K> L 7(R) 2% pic(R) — 1,
wheref(x) is the principal fractionalR-ideal z R.

Proof. The exactness is trivially checked. Note, in particular, #at= R (the neutral element in the
group) if and only ifr € R*. O

Corollary 4.14. Let R be a principal ideal domain. TheRic(R) = {R} (the group with one ele-
ment).

Proof. This is the case by definition: that every ideal is principal implies that evaggibnal ideal is
principal, i.e Z(R) = P(R), whence their quotient is the group with one element. O

Example 4.15. The group<CL(Q) = Pic(Z) andPic(K[X]) (for K a field) are trivial.

5 lIdeals in Dedekind rings

We will now giving a ‘local characterisation’ of invertible ideals. Recalltthif R is a ring andp

is a prime ideal, we defined the localisationBfatp as R, := S~'R, where the multiplicatively
closed subset C R is given asS = R\ p (the multiplicative closedness being precisely the property
of p being a prime ideal). For anjt-module, we defined its localisation ptas M, = S~!M.
Consequently, if is a fractionalR-ideal, then/, C K (note thatS—! K = K and thus the embedding

I — K gives rise to an embedding — K). If I < Ris an ideal in the usual sense, thgn=
S~ C S7'R = R, C K. See the lecture on Commutative Algebra for more details on localisation.
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Very concretely, we hav&, = {Z € K |r € R,s € Standl, = {{ € K | i€ I,s € S}.
Moreover, we havél,)~! = (I71),.
We first prove that the invertibility of an ideal is a local property.

Theorem 5.1. Let R be an integral domain and a fractional R-ideal. Then the following statements
are equivalent:

() Iisinvertible.

(i) e Iisfinitely generated aB-submodule of (this assumption is unnecessaryiifs Noethe-
rian by Proposition 4.7) and

e [, is a principal fractional R,-ideal for all maximal idealsn < R.

Proof. ‘=" Let I be invertible. Then Lemma 4.10 implies thais finitely generated. Sincel—! =
R, there are, € I andj, € I fork = 1,...,n and for some: € N such thatl = > e ik
Let m be any maximal ideal. There is some indeguch thati;j,. ¢ m, as otherwisd € m. Hence,
irjr =: s € R\ m,sothati, ' =% ¢ I'. Lemma 4.9 (d) impliegy, = i Rin.

‘<. Let us assume the contrary, i.el~! C R. Then there is a maximal ideal < R such that
IT-' C m. By assumption we havg, = zR,, with somez ¢ I (after clearing denominators). The
finite generation of impliesI = (i1, ...,4,) forsomen € N. Foreachk = 1,... ,nwefindr, € R
and we finds € R \ m such that

r . . .
iy = 1= (same denominator without loss of generality)
S

Hence, we haveR > r, = sipz~! forall k = 1,...,n. Thus, we havesz—'I C R, whence
sz~ e I~1. We concludes € zI~! C IT-! C m, which is a contradiction becauseis not
inm. O

The property (ii) is called: f is locally free of rankl’. In Algebraic Geometry one usually takes
this property as the defining property of invertibility: one defines invertibages as those sheaves
that are locally free of rank.

Example 5.2. We continue Example 4.6. Hende,= Z[v/—19] and we consider the idedl :=
(18 +v/=19,7) = (7,3 — v/—19).

We first show thaf is maximal. That we do as follows. Consider the ring homomorphism
a: Z[X] Rlncly 8
Its kernel clearly i7, X — 3). Moreover, consider the natural projection
7 Z[X] - Z[X])/(X? + 19) 22XV 70/ 79).

Also consider the surjection

¢:Z[\V—-19] — F7, a+bv—19 — @+ b3.
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We note thaty = ¢ o, from which we conclude that the kernel of is the image und#fr(7, X — 3),
hence, is equal t¢7, /—19—3) = I as claimed. Hencd, is maximal because the quotigif ! = F;
is a field.

Next, we compute the localisation bat a maximal ideam <1 Z[y/—19].

First case:m # I. Then there is: € I \ m, so thatl,, = R, becausd,, contains a unit ofR,,,.

Second casen = I. Then we claim thaf,, = 7R,,. For this, we have to show that— \/—19 €
7TRmw. We have:

7= % ”_19(3 —v/—19).

Note thatd ¢ I and3 + /—19 ¢ I (to see the former, observe that in the contrary casd — 7 =
1 € I; to see the latter observe that in the contrary cd@se (3 + v/—19) — (3 —v/—19) =1 € I).
Hence 2= is a unit in R, proving the claim.

Lemma 5.3. Let R be a Noetherian integral domain with field of fractioAS For every ideal) #
I < R, there isn € N and there are non-zero prime ideals, . . . , p,, such that

prop2-...pn C L
Proof. Consider the set
M :={0+#1 < R| the assertion is wrong fat}.

We want to showM = (). So, let us assuma1 # (). We want to apply Zorn’s lemma to obtain a
maximal elemeny/ in M, i.e. an elemenf € M such that for all ideald C I we havel ¢ M.
Note thatM has a partial ordering given by. For Zorn’s Lemma we have to check that every
ascending chain
Il g IQ Q e

with I; € M fori = 1,2,... has an upper bound, that is, an elemert M containing all thel;.
That is the case sinck is Noetherian and, thus, the ideal chain becomes stationary. SbdeM
be such a maximal element. We distinguish two cases.
First case.J is a prime ideal. Thed C J impliesJ ¢ M, contradiction. Hence, we are in the
Second case] is not a prime ideal. Consequently, there are two elemenjse R such that
xy € J butz,y ¢ J. This allows us to consider the ideals

Ji = (J,2) 2 JandJy == (J,y) D J.

Due to the maximality of/ € M, we have that/; and J, are not inM. Consequently, there are
p1,...,pp andqy, ..., g, NONn-zero prime ideals ok such that

plpngjlandqlqmgjg

This implies
pl'“-'pn'ql'-“'qmgJ1J2:(J7$)(J7y)gJa

which is also a contradiction. Henc#&{ = (. O



5 IDEALS IN DEDEKIND RINGS 29

Corollary 5.4. Let R be a local Noetherian integral domain of Krull dimensibnThen every non-
zero ideall < R contains a power of the maximal ideal

Proof. SinceR is a local Noetherian integral domain of Krull dimensibnits only non-zero prime
ideal isp. Hence, the assertion follows directly from Lemma 5.3. O

Corollary 5.5. Let R be a Noetherian integral domain of Krull dimensién Then every non-zero
ideal I < R with I # R is contained in only finitely many maximal ideals®f More precisely, if
p1-...-pp C I, then! is not contained in any maximal ideal different frgm . . ., p,,.

Proof. By Lemma 5.3 there are non-zero prime ideals. . ., p,, such thap; - ...-p, C I. Let now
m be a maximal ideal of? containing/. We want to show that is equal to one of the;, which
proves the assertions. Assume, hence,thi none of they;. As the Krull dimension id, none of
thep; can be contained im. Consequently, for each= 1,...,n the idealp; is coprime tom. There
are thuse; € p; andy; € m such thatl = x; + y;. We conclude

mOpy-...oppd21-...cxp=01—-y1) ...-(1—yn) €1 +m,
which is the desired contradiction. O

Lemma 5.6. Let R be an integral domain and a fractional R-ideal. Then/ =
K.

mJR maximaIIm -

Proof. We show both inclusions.

‘C" is trivial becausd C I, for all prime ideals (and, hence, in particular, all maximal ideals)
asK is an integral domain.

‘D' Let 2 € (qr maximalm @nd consider the ideal := {r ¢ R | rz € I} < R. We want
to showJ = R because them € I. If J # R, thenJ is contained in some maximal ideal < R.
Write ¢z = % with e € I ands € R\ m. Becausesz = a € I, it follows s € J C m, which is a
contradiction. O

Theorem 5.7. Let R be a Noetherian integral domain of Krull dimensibnThen the map
®:I(R) — &y P(Ry), I+ (... Ip,...),
0#p<iR prime ideal

is an isomorphism of abelian groups.

The meaning of this theorem is that any non-zero invertible ifieaR is uniquely determined by
all its localisationd, (at the non-zero prime ideals &j).

Proof. There are four things to show.

e & iswell-defined. First recall that Theorem 5.1 shows fhas a principal ideal. Second, recall
that an element of a direct sum only has finitely many components diffex@ntthe identity;
the identity of P(R,) is (1) = R,.

We first show that the statement is correct for an integral ileal/ < R. Suppose thus that
I, € R,. ThenI C p (all elements ofR \ p are units inR,). Corollary 5.5 implies that there
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are only finitely many such. Now let us suppose thdtis a fractionalR-ideal. Then there is
somer € R\ {0} such that) # rI < R is an integral ideal. Thus, we may (and do) apply
the previous reasoning to the integral idealsand () = r R, and we obtain that for all prime
ideals but possibly finitely many-I), = R, and(r), = 7R, = R,. For any suclp we hence
haveR, = (rl), = (rRy) - Iy = Ry, - I, = I,, proving the assertion.

e & is a group homomorphism. This is a property of localisations (already used préfvious
item): LetS = R\ p. Then(S—111)(S™1L) = S~ (1 15), i.e.®([1I3) = ®(I1)®(I3).

e ®isinjective. Supposé, = R, for all non-zero prime ideals of k. Then we have
I= N I, = N R,=R
0#£p<IR prime ideal 0#£p<1R prime ideal

by Lemma 5.6.

e O s surjective. As® is a group homomorphism, it suffices to construct an invertible ideal
J € Z(R) such that, for given maximal ideal << R and given principal ideal < R.,, we have
Jp = R, for all nonzero prime ideals # m and.J,, = a.

We setJ := RN a. We first claimJ,, = a.
‘C Letr € RNa,thatmeang € a, whencel € aforalls € S = R\ m.

‘O Let ¢ c awitha € Rands € S = R\ m. Thens? = ¢ € an R, whence? ¢ Jy,
proving the claim.

By Corollary| 5.4, there i& € N such thatfmR,,)” C J,. Recall thamR,, is the maximal
ideal of R,. Itis clear that we havev” C (mR,)" N R. Consequentlyn™ C RN (mRy,)" C

Jn N R = J. By Corollary 5.5 we have that ¢ p for all maximal idealsp # m, whence
Jp - Rp.

This concludes the proof. O

We are now going to apply the above to Dedekind rings. For this, we reedibliowing charac-
terisation from the lecture on Commutative Algebra.

Proposition 5.8. Let R be a Noetherian integral domain of Krull dimensi@n Then the following
assertions are equivalent:

() Ris a Dedekind ring.

(i) Risintegrally closed.
(i) R is integrally closed for all maximal ideals <1 R.
(iv) Ry isregular for all maximal idealsn <1 R.

(V) Ry is a principal ideal domain for all maximal ideats < R.

We will mostly be interested in (iv). Hence, it is useful to quickly recall thirdggon of a regular
local ring and the main property of such rings in our case of Krull dimenkion
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Definition 5.9. A Noetherian local ring with maximal ideai is calledregularif dimp /n(m/m?)
equals the Krull dimension k.

Proposition 5.10. Let R be a regular local ring of Krull dimensioi. Then there iz € R such that
all non-zero ideals are of the forifx™) for somen € N.
Such aring is called @iscrete valuation ring

Corollary 5.11. Let R be a regular local ring of Krull dimension and letp be its maximal ideal.
Then there isc € R such that all fractional ideals oR are of the form(xz)" = p™ for somen € Z.
Moreover, the map

Z—I(R), n—p"

is an isomorphism of abelian groups.

Proof. By Proposition 5.10, the unique maximal ideak equal to(z), and, hence, all integral ideals
of R are of the formp™ for somen € N. Itis clear that(z") = p” is invertible with inverse
((2)™) = (z)~". The final statement is an immediate consequence. O

Definition 5.12. Let R be a Dedekind ring and be an invertibleR-ideal. For a maximal ideap <1 R,
by Proposition 5.10, there is a unique integet> 0 such thatl, = (pR,)". We writeord,(I) := n.

Now we can prove unique ideal factorisation.

Theorem 5.13.Let R be a Dedekind ring. The map

®:Z(R) — &y Z, I (... ordp(I),...)
0#p<iR prime ideal

is an isomorphism of abelian groups. Evdrg Z(R) can be uniquely written as

I = H p01rd,J ()

0#p<IR prime ideal

(note that the product is finite).

Proof. The first statement follows from composing the isomorphism of Theoremvéhitli also
implies the finiteness of the product) with the isomorphiBk,) — Z, given byord, (the inverse
to the isomorphism from Corollary 5.11).

It suffices to show the final claim for invertible integral ideals becauseamenrite any fractional
R-ideal as a quotient of two integral oned: < R for somer € R\ {0}, whencel = (rI) - (r)~L.
To see the final claim, fof < R we compute

I= N Iy = M (IpNR) = M (R R)

0#£p<1R prime ideal 0#£p<1R prime ideal 0#£p<1R prime ideal
dp (I dp (I
_ N pords (1) — I pords (1)
0#p<iR prime ideal 0#p<iR prime ideal

where we used Lemma 5.6 and the pairwise coprimeness of the maximal idehé, the intersection
becomes a product. We also uged®,)” N R = p™ (see Remark 5.15). O
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Remark 5.14. Theorem 5.13 is a generalisation of unique factorisation in a principal ideatain.

Remark 5.15. Let I be an invertible integralR-ideal of a Noetherian integral domain of Krull di-
mensiont. For a maximal ideap <t R we definghep-primary component of as/(,) := I,N R. The
calculations made in the proof of Theorem|5.7 show that the localisation atxinmal idealm is the

following one:
1 if p=m,
Tm=9 >
Ry ifp#m.

Moreover, the primary components behave ‘multiplicatively’:

L)) = Ly Jip)

for any invertible integralR-idealsI and J. This is easy to see by working locally at all maximal
idealsp (which suffices by Theorem 5.7): the ideals on both sides have the seahedmponents at
all maximal idealan.

The multiplicativity implies, in particular, that

(pRp)"NR=1p"

for an invertible maximal idegl, which we used in the proof of Theorem 5.13, becaugen R = p
(this equality can either be checked locally or directly, like this:it=  withz € p, » € R and
s € R\ p, thenxz = rs € p, whence € p by the prime ideal property gf).

We finish with one corollary that we should have stated immediately after Rtigmds.8.
Corollary 5.16. Let R be a Dedekind ring. Then any fraction&tideal is invertible.

Proof. By Proposition 5.8 we know that,, is a principal ideal domain for all maximal ideats<1 R.
Hence, given any fractiondt-ideal I, we have thaf., is principal for allm, which by Theorem 5!7)
implies that! is invertible. O

6 Geometry of Numbers

6.1 Introduction

Up to this point, we have been studying Dedekind domains in quite some gendrattjs last part
of the series of lectures, we will focus on the case of rings of integeramber fields.
Recall (cf. Corollary 4.13) that, for any integral domdtnwe have the following exact sequence

Proj

1 RX KX Z(R) Pic(R) —1
where:
o K is the field of fractions of?.

e Z(R) is the group of invertible ideals a.
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e Pic(R) is the Picard group aR, that is to say, the quotient @i R) modulo the groupP(R) of
principal fractionals ideals aR.

e f: K* — Z(R) maps an element € K to the principal fractional ideatR.
e proj : Z(R) — I(R)/P(R) = Pic(R) is the projection.

We want to study this exact sequence in the particular case where i is the ring of integers
of a number field<'. SinceZy is a Dedekind domain, all nonzero fractional ideals are invertible (see
Corollary 5.16). Henc&(Z) is the set of all nonzero fractional ideals. Recall also that we denote
Pic(Zk) = CL(K) and call it theclass groupof K. The exact sequence boils down to:

1 Zy K — 1o T(z) oL CL(K) ——>1 (6.5)

The groupCL(K) measures the failure &I to be a principal ideal domain. More precisely,
if CL(K) has just one element, then the map K* — Z(R) is surjective, so that each nonzero
fractional ideal can be expressed:a? for somex € K*. In other words, every fractional ideal is
principal. On the other hand, the grea€d.(K) is, the further isf from being surjective, meaning
there will be “many” fractional ideals which are not principal.

One of the fundamental results that we will prove is t6at K) is finite (hence, althougf x is
not a principal ideal domain, it is also “not too far” from it). Another impoiteesult will be thaZ
is finitely generated. As a motivation to study., consider the following example.

Example 6.1. Letd be a rational integer which is not a square. Consider the equatios: dy> + 1.
Question: Find all the solutiongr, y) € Z x Z of 22 = dy? + 1.

This equation is calledPell’s equation and was already considered by Archimedes (287? BC-
2127?BC). Actually, Exercise Sheet 8 is devoted to the Problem of the GattieeSun, that Archimedes
proposes in a letter to Eratéstenes of Cirene.

If d < 0, then we can rewrite the equation a5+ (—d)y2 = 1, and it only has the trivial solutions
(£1,0) for d # —1 and (+1,0), (0, £1) for d = —1. Butifd > 0, it is not obvious whether this
equation has a solution (different frofe-1, 0)) or not, much less to find all solutions of the equation.

Actually, without making use of any machinery at all, we can prove thaf fer0 Pell's equation
always admits a nontrivial solution. We need the following auxiliary lemma.

Lemma 6.2. Let d be a positive rational integer which is not a square. There exist infinitelyyma
pairs of integergz, y) such that) < |22 — dy?| < 1+ 2V/d.

Proof. First let us see that there exists a pair of positive integerg) with 0 < |22 —dy?| < 1+2V/4d,
later we will see there are infinitely many. Let > 1 be a positive integer. For eacke {1,...,m},
letz; € Z be such thab < z; —iv/d < 1 (that is to say, we approximatéd by a quotient of integers,
where the denominator . This can always be done: namely, consider the fractional pavfdpf
that is to say{+/d} := v/d — |V/d]. This lies in the interval0, 1). If we cut out the interval iri equal

subintervals, namely
1 1 2 p— 1
0,1) = [0,,) U [) U U [Z , ,1),
1 1 1
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there is a uniqug € {1,...,i} such that{vd} € [£%,%). Theno < I — {Vd} < 1, and
therefored < j — i{v/d} < 1. To approximate/d we just sum and substragty/d|, and we get
0 < (i|Vd] + j) — ivd < 1. We can taker; = i[\v/d| + j.

Now divide the interval

0,1) = [O,ml_l)u [ml_l,m2_1>u---u [m_i 1)

There aren — 1 intervals, butn pairs(z;, ). Hence (byDirichlet's Pidgeonhole Principlg there is
one interval which contains both — iv/d andz; — jv/d with i # j. Assumer; —iv/d > x; — jv/d
(otherwise swap andy). Callz = z; — zj, y =i — j. Hence

z—yVd = (x; —2;) — (i = j)Vd = (2 —iVd) — (¢; — jVd) <

thus
1

ng—y\/gg

Sincel < i, < m, we haved < |y| < m, hencer — yvd < 1+ < ﬁ Now we can bound

0 < |2 — dy?| = [(z + yVd)(z — yVd)| = |(& — yVd + 2yVd)|(z - yVd)

= (z —yVd)? + 2ly|Vd(z — yVd) < 1+2—= ’y‘ f< 1+2}y;\f_1+2f
Moreover we know that, sinagis not a square;® — dy? # 0, and|z? — 32d| # 1 + 2V/d.
Suppose now that the set = {(x,y) € Z x Zsuchthad < |2% — dy?| < 1+ 2Vd} is
finite. Then choosing am € N such thatﬁ is smaller than: — y+/d for all (z,) € A, the
previous construction provides us with a péif,y’) € A satisfyingz’ — 3/vd < —L_ whichis a
contradiction. O

Proposition 6.3. Let d be a positive rational integer which is not a square. There exists pair of
rational integers(z, y) with y # 0 such thatz? — dy? = 1.

Proof. Since the number of integers (a-1 — 2/d, 1 + 2/d) \ {0} is finite, by Lemma 6.2 there
exists onek in this set such that there are infinitely many pairsy) with 22 — dy?> = k. By
definitionk # 0. Moreover, since there are only finitely many residue clas&s k¥, we can assume
that there arev, 3 € Z/kZ such that there are infinitely many paits, y) with 22 — dy? = k and
x =« (mod k),y = 0 (mod k). Take two such pairgy1,y1) and(z2, y2). Consider the product

(z1 — yl\/g)(l? + y2\/&) = (2172 — Y132d) + (12 — £U2y1)\/g'

Note thatk divides bothey (xo —z1) +k+dy1 (y1 — o) = 21 (22 — 1) + (22 —dy?) +dy1 (y1 —y2) =
1T — dy1y2 and(x1 — xQ)yg — (y1 — y2>.%'2 = T1Y2 — T2Y1- Hence we can write

(21 — y1Vd) (w2 + y2Vd) = k(t + uv/d)
for some integers, u. Moreover note that

(z1 + y1Vd) (22 — y2Vd) = k(t — uvd),
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thus
k2 = (2] — yid) (23 — y3d) = k*(t* — u?d),
so that dividing byk (which is nonzero), we get — u?d = 1.
This reasoning is valid for allr1, y1) and(x2, y2) satisfyingy? — dz? = k andz; = « (mod k),
y; = @ (mod k) fori = 1,2. It remains to see that we can chodseg, y1) and(x2, y2) so that the
corresponding: is nonzero. Note that, it = 0, thent = +1, so

(21 — 1 Vd) (w2 + yaVd) = k(t + uVd) = +k
On the other hand we have
(w1 — y1\/§)(a:1 + y1\/g) = x% — y%d = k.

Therefore we get; + y1vVd = % (a2 + y2V/d)

Fix one pair(z1,y1). Since we can choosers, y2) from an infinity of pairs, we can assume,
without loss of generality, thaty + y2v/d # (21 + y1v/d) (just takezy # +x1, y2 # 1), and
hence the solutioft, u) that we obtain satisfies # 0. O

Remark 6.4. Letd be a positive rational integer which is not a square. Consider the ring ofjére
Zi of K = Q(v/d). Recall thatZ is Z[Vd] if d = 2,3 (mod 4), Z[*4] if d = 1 (mod 4) (see
Example 3.6).

In the first case, the elements (fx)* are precisely the set of elementst v/dy such that
2% — dy? = +£1. In the second case the element$Zk ) * are those elements+ yHTﬂ such that

(2 a(2) =

(22 4 y)? — dy® = +4,

that is to say,

In both cases the knowledge of the group of unities of quadratic fieldpletaty determines the
set of solutions of the Pell equation.

The tool that we will use to study the exact sequence (6.5) is called Geoaféditynbers. This
consists of viewing rings of integers as special subséké¢hamely lattices), and using some analytic
tools (computing volumes) to obtain results concerr¥ing

6.2 Lattices

In this section we work witl{R"™), endowed with the following structures:
e A R-vector space structuf®”, +, -), where+ and- are defined componentwise.

e A Z-module structuré¢R™, +), obtained from the vector structure above by forgetting the scalar
multiplication.
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e Anormed vector space structu®”, +, -, [ - [|2), where theR-vector space structure is the one
above and the norm is defined as

[-ll2: R" =R
(as, - an)llz = V]ar? + - + |an|?.

We will denote by{ey, ..., e,} the canonical basis @™ asR-vector space, so th@;ﬂrl a;e; =
(a1,...,ap).
Given a vectorv € R™ and a positive real numbet, we denote byB(v;r) := {w € R" :
|lw — v||2 < 7} the open ball of radius centered at and B(v;r) := {w € R" : ||w — vz < r}
the closed ball of radius centered at. The set of all ball{ B(v;r) : v € R™,r > 0} is a basis for
the topology inR™. We say that a set C R" is bounded if it is contained in some ball centered at
0 € R™. Recall that a set is compact if and only if it is closed and bounded (€heof Heine-Borel).
We will usually work with subgroups ofR, +) which are not subvector spaces. For instance,
Z" is one such subgroup. Given,...,v, € R", we will denote by(vy,...,v,)z the Z-module
generated by, ..., v, insideR™. Note that(vy,...,v,)z is a countable subset, while the vector
space generated hy, . .., v, has cardinalityR|. On the other hand, whenever we talk about linear
dependence of elementsidf, we will always be considering™ with the structure oR-vector space.
Forz € R, we denote by x| the integer part of, that is, the maximumn € Z such thain < z.

Definition 6.5. A half-open parallelotopéesp.closed parallelotopes a subset oR™ of the form

m
P = {vER":v:ZaiviWith0§ai< 1 for all ¢},
=1

m
(resp.P ={veR":v= Zawi with 0 < a; < 1 for all z})
i=1
wherevy, ..., v,, € R™ are linearly independent.

Remark 6.6. Note that closed parallelotopes are compact sets.

The point of this section is to compute volumes of parallelotopeR”in We mean by this the
Lebesgue measudd the parallelotope.

We will denote by the Lebesgue measure &%. We will not recall here its definition, but just
one very important property: it is invariant under translation; that isafianeasurable setd and all
vectorsv € R", the setd + v := {w + v : w € A} is measurable and we have

H(A) = (A + ).

Moreover the measure is normalized so that the measure of the standafbcfib Aie; : 0 < \; <
1} is equal tol.
The following lemma can be proven in an elementary calculus course.

Lemma 6.7. Let P be the parallelotope defined bylinearly independent vectors, ..., v, € R",
where eachy; = Z?:l aije;. Then,u(P) = |det((aij)1§i7j§n)\.
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Definition 6.8. A subgroupH C R™ is calleddiscreteif, for any compact subsét C R", H N K is
a finite set.

Remark 6.9. Since a subset @&” is compact if and only if it is closed and bounded, then a subgroup
H c R™is discrete if and only if for every > 0, H N B(0; ) is finite.

Example 6.10. e Letwy,...,v, € R™ bem linearly independent vectors. Thén,...,v,)z
is a discrete subgroup. Indeed, given any 0, we can show thafvs, ..., v,)z N B(0;r) is
finite as follows:

First of all, completev,, ..., v,, to a basisvy, ..., v, of R™. It suffices to show that the inter-
section(vy, ..., v,)z N B(0;7) is finite.

Consider the linear map
f:R*—=R"

vi— e foralli=1,...n.

ThUSf(Z?Zl )\ivi) = Z?:l /\iei.
Linear maps between finite dimensional finite-dimensi@®zakctor spaces are bounded oper-
ators; that is to say there exists a constdahsuch that, for allv € R™,

[f(@)ll2 < C - lvll2

Indeed, we have that
IFQ - aien)llz <D lal - 1 f(ei)llz < max{jail : 1 < <n}- Y || f(ei)ll2
=1 =1 =1
TakingC' = 3", || f(ei)|l2, it suffices to observe that

n n
> lail? =1 aieilla.
i=1 i=1

max{|a;| : 1 <i<n} <

Therefore, we have that

1D dieilla < C- (1D Awvillo. (6.6)
=1 =1
Assume now that = Y7 | \;u; with some);, > &. Then Equatioh 6/6 implies that
1, < 1
lwlle > S Aieilla > ool > 1
=1
hencev ¢ B(0;r). Thus
<U1, .. .,’Un>Z QE(O;T‘) C {Z Aivi s A < % for all ’L} ,

=1

which is a finite set.
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e Letv € R™ be a nonzero vector. Then, v/2v)7 is not a discrete subgroup & (see Sheet 9).
The first proposition is a characterisation of discrete subgroug$ of

Proposition 6.11. Let H be a discrete subgroup @™. ThenH is generated as &-module bym
linearly independent vectors for some< n.

Proof. We can assume without loss of generality that: {0}. Let
m := max{r : there existy,...,v, € H linearly independent iiR" }. (6.7)

Since the numbenrsappearing in (6.7) are bounded hywe have thatn is a finite number between

andn. SinceH # 0, we have thatn > 1. Now letu, ..., u,, € H bem vectors which are linearly
independent ilR™. Fix anyv € H nonzero. Then the sét., ..., u,,v} is linearly dependent by
the maximality ofm, so there exishi, ..., A, € Rsuchthaw = ;" | A\u,. For eachj € N, we
consider

V1= Z(])\Z — L])\ZJ)UZ = jv — ZU)\IJUZ € H.
=1
Onthe other hand;; € {w € R" : w = """ aju; with 0 < a; < 1} =: P, and the seP is compact
(see Remark 6.6) sg belongs to the finite seif N P. This implies already thall is aZ-module of
finite type (more precisely, we have proven that eveitly H can be written as; + >, [ \;]u;, SO
H is generated asA-module by the finite sef = (H N P) U {u1, ..., un}).

Since the sef{v; : j € N} is finite, there must exisf, k£ different natural numbers such that
vj = vg, thatisd " (Fhi—[JAi)ui = > v, (kXi— kX |)u;. Since they;’s are linearly independent,
we get that for ali, (; — k)\; = [jA:] — |kAi]. In particular, for alki, \; € Q. Since this is valid for
allv € H, we get thatH is a finitely generate@-module contained in th®-vector space generated
by uq,...,uy,. Pick afinite number of generators &f asZ-module (for exampl&;), write each of
themasy ;_, \ju; for \; € Q and pick a common denominatéfor all the coefficients\;’s of all the
generators. Then we havél C (uq,...,uy)z. We now apply Theorem 3.12 to conclude thaf
is a freeZ-module of rank smaller than or equal#eo. Since we know tha# H contains the fre&.-
module generated bju,, . . ., du,,, the rank must be precisely. Letu],...,u,, € dH be such that

(u},...,ul,)z = dH. SincedH contains then linearly independent vectot1, . . . , du,,, it follows
thatu), ..., u), must span &-space of dimensiom, hence they are linearly independent oer
Finally, 2/, ..., Ju!, € H are linearly independent vectors such thiat}, ..., ul )z = H. O

From all the discrete subgroups, we will be interested in those that aszajed byn linearly
independent vectors.

Definition 6.12. e A latticein R™ is a discrete subgroug/ c R™ of rankn as aZ-module.
Equivalently, a lattice irR™ is a Z-module generated hy linearly independent vectors.

e Abasisof a lattice H C R™ will be basis ofH as aZ-module.

Note that a basis of a latticH consists ofn linearly independent vectors &, so in particular
is a basis olR™ asR-vector space.
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Definition 6.13. Let H C R" be a lattice, and/ = {uy,...,u,} a basis ofH. We will say that the
(half-open) parallelotopd”,, determined by/ is afundamental domain fok.

Remark 6.14. One lattice has different fundamental domains; in other words, fundaigotaains
are not unique.

Lemma 6.15. Let H C R™ be a lattice,P, P’ fundamental domains fdd. Thenu(P) = u(P’).

Proof. Let B = {uq,...,u,} (resp.B’ = {u},...,u,}) be a basis off defining P (resp. P’) and
let {e1, ..., e,} the canonical basis @&". Write u; = 377, a;ju; With a;; € Z, u; = 377, bije;,
ug = Y cije; With bij, cij € R and setd = (ai;)1<ij<n B = (bij)i<ij<n, C = (¢ij)1<ij<n-
We haveC' = AB. Since both53 and3’ areZ-bases offf, we havedet((a;j)1<i j<n) = £1. And by
Lemma 6.7

u(P) = | det(B)| = | det(B)| - | det(A)| = |det(C)| = pu(P").

[
Definition 6.16. Let H C R" be a lattice. We define th@lumeof H as
v(H) == p(P),

for some fundamental domain of H.
Lemma 6.17.Let H C R" be a lattice andP be a fundamental domain.

e For eachv € R"™ there exists a unique € P such thaty — u € H.

e R is the disjoint union of the familyP + u},cx.
Proof. See Sheet 9. O

Now we will state the fundamental result of this section. The idea is the followgivgn a lattice
H, if a measurable se§ C R"™ is big enough (with respecto @), no matter what it looks like, it
must contain two elements which are “equivalent modiiy that is to say, two different elements
V1,02 € SWithUl — vy € H.

Theorem 6.18(Minkowsky). Let H C R™ be a lattice andS C R™ be a measurable subset Bf*
satisfyingu(S) > v(H). Then there exist;, vo € S different elements withy — vy € H.

Proof. Sine P is a fundamental domain fal/, Lemma 6.17 implies thaR™ = | |, (P + u).
Intersecting both sides withi yields

S=||(Sn(P+uw).
ueH
Recall thatH is countable. Therefore by the countable additivity.pfve get

w(S) = 37 u(S N (P +u)).

ueH
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Sincey is invariant by translation, we get that, for alke H, (SN (P +u)) = p((S —u)NP).
Now if the family of sets[ (S —u)N P}z Were disjoint, we would get, using the countable additivity
of pagain, thad . u((S —u) N P) = p(|J,e (S —u) N P)) < u(P). Hence

w(S) =S u(S N (P+u) =3 u((S—w)nP)=pu(| (S —u)nP)) < ulP)
ueH ueH ueH
contradicting thatu(S) > v(H). Thus the family{(S — u) N P},cx is not disjoint, that is to
say, there existiy,us € H, up # ug, With (S —u;) N P)N((S —u2) N P) # 0. Letw €
(S—u)NP)N((S—wuz)NP). Thenw = vy —u; = vg — ug for somewvy, vy € S. And
v1 — v = u1 — ug € H is nonzero. O

We will use a particular case of this theorem, wtiehas some special properties.

Definition 6.19. LetS Cc R".

e Siscentrally symmetrigf, forall v € S, —v € S.
e Sisconvexif, for all v1,vy € S, forall A € [0,1], Av; + (1 — X)vg € S.

Corollary 6.20. Let H C R" be a lattice andS C R" be a centrally symmetric, convex, measurable
set such that(S) > 2"v(H). ThenS N (H \ {0}) # 0.

Proof. Let S’ = 15 := {3v : v € S}. Note thatu(S’) = 5= u(S) > v(H). Hence we can apply
Theorem 6.18 t&” and conclude that there are elementsv, € S” with vy — vy, € H \ {0}. Note
furthermore thaw,, v, € S’ implies that2vy,2v, € S, and sinceS is centrally symmetric, also
—2vy € S. The convexity ofS now implies that, — vo = 1(2v1) + (1 — 3) (—2v2) € S. Hence
Ul—UQGSﬁ(H\{O}). O

6.3 Number rings as lattices

Let C be the field of complex numbers. Insi@fewe have the subfield of rational numbé&pswhich
can be characterised as the smallest subfield @dr, in other words, th@rime fieldof C, that is to
say, the intersection of all subfields @J. We also have the subfield &f defined a€) := {z € C :

z is algebraic ove®}. Q is an algebraically closed field, and clearly it is the smallest subfield of
containingQ which is algebraically closed, hence an algebraic closuf@. of

Let K/Q be a number field of degreeand letK be an algebraic closure. Sinééis algebraic
overQ, K is also an algebraic closure @fand hence isomorphic . Fixing one such isomorphism,
we can identifyK with Q and K with a subfield ofQ c C.

Sincechar(K) = 0, K is separable, and therefore (see the Appendix to section 2) therenexist
different ring homomorphism (necessarily injective) frdmto Q fixing Q. Since the image of any
ring homomorphisnr : K — C must be contained i, we have that there are exactiydifferent
ring homomorphisms : K — C fixing Q.

Let o« : C — C be the complex conjugation. Then, for all€¢ Homg(X, C), we have that
a oo € Homg(K,C), anda oo = o if and only if o(K) C R. Call r; the number of ring
homomorphisms : K — C such thatvo o = ¢. The remaining homomorphisms can be collected in
pairs{o, a oo}, sothereis an even number of them. Let us 2allthis number, so that = r; + 275.

Let us enumerate the homomorphisms iflom (K, C) in the following way:
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e Letoy,..., o, bether; homomorphisms with image containedin

e Let us enumerate the, pairs{o, « o o} and, for each pair, choose one of the two homomor-
phisms. The chosen homomorphism of k& pair (I < i < r9) will be o,,;, the other one
will be oy 4rg+i-

Now we can define a ring homomorphism
Dy: K — R™ x C
€T = (Ul(x)a <oy 0ry ($>7 UT1+1(£)7 cee >O'r1+r2($))

Definition 6.21. For z = x + iy € C, denote byRez := x the real part ofz andImz := y the
imaginary part ofz. The mapC — R x R defined ag — (Rez,Imz) is an isomorphism dR-vector
spaces. Define the map

d: K — R x R??

L= (01 (:L')a <y Ory (1’), ReaTlJrl(z)a ImUT1+1($) SRR ReUT1+T2 (l’), ImathTz (l‘))

Remark 6.22. e The map® above is injective (because eaghis injective), and a group ho-
momorphism (of the additive group&’, +) and (R™, +)). Moreover, bothK” andR™ have a
Q-vector space structure, anbl preserves it.

e & provides us with a way to see number fields insiddimensionalR-vector spaces. We are
interested in subgroups &f that give rise to lattices ifR"™.

Proposition 6.23. Let M C K be a freeZ-module of rank:, say with basiqz, ..., x,}. Then
e O(M)is alattice inR™.
o LetA = (Ui(xj))lgi’jgn. Thenv(Q)(M)) = 2_’"2|det A|

Remark 6.24. With the notations above, the discriminant of the tuplg . . ., z,,) € K™ is defined as
the square oflet A. Moreover (see Proposition 2.8-(e)) the discriminantof, . . . , x,,) is nonzero.

Proof. ® : K — R™ is an injective morphism froniK, +) to (R", +), hence it carries fre&-
modules into freZ-modules, and transforn¥-bases intd@-bases. Therefor@()) is aZ-module

of rankn in R™ with basis®(z;), ..., ®(z,). To prove that it is a lattice, we need to see thatithe
vectors®(zy), ..., ®(z,) are linearly independent ov&. The coordinates ob(z;) are
(01 (‘Tl)a <04l (:UZ)’ Reo_rl+1(xi)7 ImUT1+1 (xl) s ReO_T‘1+7"2 (131)7 ImJT1+T2 (:E))

Let B be the matrix withi-th row as above, for all € {1, ..., n}. We will prove thatdet B # 0, thus
showing that the vecto®(z), ..., ®(z,,) are linearly independent ov&:.

Forj = 1,...,ry, call z; the column vector with entrie&s, ;(x;))i=1,...n, and denote the
column vector whose entries are the complex conjugates of the entdgdpf;. Then we have that

)

Zj +Ej
2

Z;—Z;
24

BZ(E‘Rezj‘Imzj‘5>:<5
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Hence

Zj
2

Z5
21

Zj | ZZ

AE3E
5)+det(;

detB:det( :

§>+det(§

+det<§

Zj

2

Zj

Zj | %5
5 .

12

-1 . : 1 o ) 1L : _ -
= gdet (e g 1) e (g a0 ) = graen (a2 )0 )
Repeating this process for al= 1, ..., r,, we get
—1\"
deth(,) det A',
21

whereA’ is the matrix withi-th row given by

(o1(x4),y ooy org1(xs), op 41(xs), 0 0p 4 1(X5) ooy Opy g (T4), O Ty g (1))

Since the columns aft and A’ coincide up to a permutation, we hauéet A’'| = | det A| # 0.
This proves tha® (M) is a lattice. Moreover(®(M)) = | det B| = 27"2| det A|. O
Definition 6.25. Let K be a number field.

Leta C Zg be a nonzero integral ideal. We define tiemofa asN(a) = [Zk : a].

Let/ C K be a nonzero fractional ideal. We define therm of / as N(I) = N(zI)/Ngg(7),
wherex € Zg is some element different from zero such thats an integral ideal.

Remark 6.26. Let K be a number field. TheW : Z(Zx) — Q" isa group homomaorphism (See
Sheet 9).

Corollary 6.27. Let K/Q be a number field of degre = r; + 2r anda an integral ideal ofZy.
Then we have thab(Zg ), ®(a) are lattices ofR™ and

V(D(Zg)) = 272/|disc(Zg)], v(®(a)) = 27"2\/|disc(Zg )| N(a).

Proof. SinceZy is an order ofK (see Corollary 3.17-(a)), it is a fréB-modules of rank:. By
Corollary 3.17-(c)a is also a freeZ-module of rank:. The formula for the volume ob(Zx ) follows
directly from the definition oflisc(Zx ); the formula for the volume ob(a) follows from Proposition
3-19- D

6.4 Finiteness of the class number

Let K be a number field of degree As in the previous section, we denote bythe number of
embeddings oK — R andry = (n —r1)/2.

Proposition 6.28. Leta C Zx be a nonzero integral ideal. There existsc a different from zero
such that

Nia(o)l < (2) VIBERIN )
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Proof. We will apply Corollary 6.20 inR™. First we define the measurable sets follows: Let
A, ..., A, andBy, ..., B,, be some positive real numbers. Consider theSsetR" defined by

S = {(mla‘ . '7:67”17y17y/17‘ . '7yT27y/r2) :
jzi| < Aiforalli=1,...,r,\/y? +y;> < Bjforallj=1,...,r}. (6.8)

The setS is centrally symmetric (clear) and convex: if we have, . ..,z , y1. 91, - -, Yrs» ¥'ry)
and(Z1,..., %, Y1, 915 - - - > Ura» Ury) IN S, then for anyX € (0, 1),

(Azi + (1= N)Zi| <A Jaf + 1= Al - 2] < A,

and

VO + (1= N5)? + O + (L= N)5)* <

VO + )2 + /(L= N)5)% + (1= V)2 <

A= /92 +y +11 = A= /32 + ()% < By

Its Lebesgue measure can be computed as

1 o

1 [
u(S) =[]eA) - [[(=B}) =2 =" [ 4 ][ B;-
i=1 j=1 i=1  j=1
On the other hand, we can emb&d— R" via the map® from Definition/6.21.H = ®(a) is a
lattice of volumev(H) = 2772 /|disc(Zk )| N (a) (Corollary 6.27).
Lete > 0. Choose4,,..., A, , B,..., B,, positive integers such that

T1 T2 2 72
Al B2=(= disc(Zg )| N ,
L[l El ; <7T> |disc(Z )| N (a) + &

and callS. the set defined by (6.8).

Then it holds that (H) > 2™u(S:), so we can apply Corollary 6.20 and conclude that there exists
some nonzere € S. N H. Leta € a such thatb(a) = v. The fact thatb(a) € S. means that, for
alli = 1, o, T, ‘O’Z(G)’ < Ai, and for aII] = 1, o, T, \/(RGUTH_]'(G))Q + (Imarlﬂ-(a))Q < Bj.
Therefore

Nija@l = ]lei@l- [T los(@P < [TAT] B} = (i) VIV (@) + ¢
i=1 j=1 i=1  j=1

Now for all ¢ there exists am € a such that|Ng g(a)| satisfies the inequality above. But
this norm is an integer, so takingsmall enough, we will get an € a such that{ N /g(a)| <
(2)" /|disc(Zk )N (a). O

Proposition 6.29. Leta C Zx a nonzero integral ideal. There existsc a different from zero such

that
Nia(@l < (2) " 2V ERIN )
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Proof. See Sheet 10. O
Proposition 6.28 (or Proposition 6.29) will be a key ingredient in the prétfefollowing result.

Theorem 6.30(Dirichlet). Let K be a number field. The class grol.(K) = Z(Zk)/P(Zk) is
finite.

Before proceeding to the proof, let us establish a technical lemma.

Lemma 6.31. Let K be a number field, and’ € CL(K) be a class of ideals. Then there exists a
nonzero integral idead of Z - which belongs t@’ and satisfies

N < (2) VidseZl

Proof. Let I be a nonzero fractional ideal #l. ThenI~! = {a € Zy : al C Zg} is also a nonzero
fractional ideal. Therefore there existsc K such thab = 1! is a nonzero integral ideal. We can
apply Proposition 6.28 to the ide&] there exist$ € b such that

Niral®) < (2) VIEERING) = (2) VISV ol N (1)

Therefore the ideal = gl belongs to the class and furthermore

N = 2N < (2) izl

 [Ngjo(@)]
OJ

Proof of Theorem 6.30Since every clas§’ € CL(K) contains a nonzero integral ideal of norm
smaller than(2)" /|disc(Zx )| (because of Lemmia 6.31), it suffices to prove that, for &hy N,
there are only finitely many integral ideals of norm smaller théan First of all, note that it suffices
to see that there are only finitely many prime integral ideals of norm smaller ¥hamdeed if
a = [[;_, p;" is a factorisation of into a product of prime ideals, theN(a) = [[;_; N(p:;)*,
so if N(a) is smaller thanV/, the only prime ideals that can occur in the factorisation afe those
with norm smaller thar/, and the exponents that can occur must also be smaller thén

Assume now thap is a prime integral ideal of norm smaller thad, saym. Thenl € Zg /p
satisfies thatn - 1 = 0 € Zg /p, thusm € p. But we know that that there are only a finite number of
maximal ideals ofZ i containing a given ideal (Corollary 5.5). In particular, fof = (m), we get
that there are only finitely many prime ideal®f Zx of normm. O

Remark 6.32. e Let K be a number field. The@L(K) is generated by the classes of the prime
idealsp € Z(Zg) such thatV (p) < (2)" /|disc(Zg)|. This allows one to compute explicitly

the class group of a given number field, provided one knows how toutertipe prime ideals
of given norm.

e The same proof, but using the better bound of Proposition 6.29, shatGSt K) is generated
by the classes of the prime ideals Z(Zx) such thatV (p) < (£)™ 2 /|disc(Zk)].

™ nm
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Remark 6.33. e Let £/ K be an extension of number fields, anddet Zy be a nonzero prime
ideal. The ideapZ g generated by the elementspoihsideZ g need not be prime anymore, but,
sinceZg is a Dedekind domain, it will factor in a unique way as a product of primes

pZe = [ [B5"
=1

The ideals]3; are the prime ideals o¥.p containingpZy (Corollary 5.5). We will say that
PBi,..., PR, are the prime ideals oLz lying abovep.

e More generally, ifA is a Dedekind ringp a nonzero prime ideal ol and B > A a Noetherian
integral domain of Krull dimension 1, we will say that the prime ideal£dying abovep are
the prime idealsp of B such thatp B C ‘3. By Corollary 5.5 we know there are only finitely
many prime ideals aB lying above a nonzero prime ideglof A.

Proposition 6.34. Let A be a Dedekind ring/ its fraction field, E/ K a finite separable extension
of K and B C F the integral closure ofl in E. Assume there existsc€ B such thatB = A[«], and
call f(x) the minimal polynomial of over K.

Letp be a nonzero prime ideal of, letk = A/p be the residue field, lef(X) € k[X] be the
reduction off(X') modp, and let

F) =JaX)
i=1

be a factorisation off (X ) into monic irreducible polynomials ih[ X]. For eachi = 1,...,r, choose
qi(X) € A[X] reducing tog,;(z) modp. Then the prime ideals i® abovep are given by

Bi :==pB + qi(a)B, 1=1,...,7

Proof. Leti € {1,...,r}, and fix aroot3 € k of g;,(X). Consider the ring homomorphism

¢: B = Ala] — k[
a—pB
acA—ack=(A/p).

Let 3 = ker ¢. Sincep is a prime ideal of4, k is a field andk[3] C k is an integral domain. Thus
B/ — k is an integral domain, ari} is a prime ideal. We will now show thg = pB + ¢;(a)B.

2 Clearly¢(a) = 0 forall a € p andé(g;(a)) = ;(8) = 0, hence we have the inclusion.

S Letb € P, sayb = g(a) for someg(X) € A[X]. Then0 = ¢(b) = ¢(g9(a)) = G(¢(a)) =
9(B), whereg(X) € k[X] is the reduction ofj(X) modulop. Thusg(X) is divisible by the
minimal polynomial of3 overk, that isg, (X ), sayg(X) = g;(X)h(X). Takingh(X) € A[X]
reducing toh(X), we have thay(X) — ¢;(X)h(X) € A[X] has coefficients ip, and therefore

g(a) € gi(a) B+ pB. This proves the other inclusion.
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This proves that the primessj3; are primes ofB abovep. Reciprocally, let]3 be a prime over
p, and consider the projectiah: B — B/. We know thatB /B is a field, and we have a natural
inclusionk = A/p — B/%P. Sincef(a) = 0, thenf(a) = 0, thereforea is a root of some of
theg;(X), the projections is the composition of one of the projectionsconsidered above with an
isomorphismB /B; ~ B/ fixing k, sayt o ¢;, andP = ker(7 o ¢;) = ker ¢; = ;. O

Remark 6.35. Let K be a number fieldy € Z a nonzero prime. Then the prime idealsZgf above
(p) are those whose norm is a powerof

Corollary 6.36. Let X be a number field, and assume that there existsZ - such thatZ[a] = Zg.
Call f(X) € Z[X] be the minimal polynomial of overQ. Letp be a prime, letf(X) € F,[X] be
the reduction off (X) modp, and let

Fx) =1lzx)
i=1

be a factorisation off (X) into monic irreducible polynomials if,[X]. For eachi = 1,...,r,
chooseg;(X) € Z[X] reducing tog;(x) modp. Then the prime ideals & of norm equal to a
power ofp are given by

Bi = (p, ¢ ()7, i=1,...,m

Example 6.37. o LetK = Q(\/7). ThenZy = Z[\/7], anddisc(Zy) = 4 - 7. SinceK C R,
ro = 0andn = r; = 2. The quantityC = (2)" 2L, /|disc(Z)| satisfies2 < C < 3,

ThereforeCL(K) is generated by the classes of the nonzero prime idedls.06f norm less
than or equal ta.

— Primeideals of norm a power of 2: We apply Corollary 6.36:a = /7 satisfiesZy =
Z[\/7]. The minimal polynomial af overQis f(z) = 22—7. Nowz?—7 = 2%+1 = (z+
1)2 (mod 2), hence the only prime ideal @i above(2)isp = (2,1+7) = (3+/7).

ThereforeCL(K) is generated by the classes of principal ideals. TOL$K ) = {1}.

o Let K = Q(v/—5). ThenZg = Z[v/—5], anddisc(Zx) = —20. NowK ¢ R, and therefore
n=ry =21 = 0. The quantiyC' = (2)"* 2, /|disc(Z )| satisfie2 < C' < 3. Therefore

CL(K) is generated by the classes of the prime ideals gfof norm equal t@®.

We apply Corollary 6.36 t&; = Z[v/—5] witha = v/—5 and f(z) = 22 + 5. Thenf(z) =
2?2+ 1 = (z +1)? (mod 2), therefore the unique ideal @ above2isp = (2,1 + /-5).
It is easy to check that this ideal is not principal (if it was generated &y, ¢+ b/—5, then
Ng gla + bv/—5) would divideN o (2) = 4, and one immediately sees that= +2, b = 0.
Butl + -5 & (2)).

On the other handp? = (2,1 + /=5) - (2,1 + V/=5) = (4,2 + 2v/=5,—4) = (2) (since
2=2+4y-5—4y/-5=(2+2V/-5)(1 +/—=5) — 4/—5 € p?)

ThereforeCL(K) = ([p]) = {[1], [p]}.
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6.5 Dirichlet Unit Theorem
The aim of this section is to prove the following result:

Theorem 6.38(Dirichlet). Let K be a number field of degree = r; + 2r,. Then there is a group
isomorphism
Ly = pi X 242

whereyx is the (finite) subgroup ¢t consisting of roots of unity.

Remark 6.39. Note that, in bottZ ;- and nx the group structure is written multiplicatively, whereas
in Z"+72—1 the group structure is written additively.

The proof of this theorem will be given gradually through a series ofsstepmmas 6.41 6.42,

6.45,6.46, 6.47 and Corollaries 6143, 6.44).
Consider the following map

K R™ x C2 R1+72

at— (I)O(a) = (Ul(a)v s 707‘1+T2(a)) — (‘Ul(a”’ SRR |UT1+T2(CL)’)7

where®, is the map considered before Definition 6.21 and, in the second jmap,R — R is the
usual absolute value, and| : C — R is the norm given byx + iy| = /22 + y? forall z,y € R.

Definition 6.40. Let K be a number field of degree= r,+2ry. We define thivgarithmic embedding
as the group morphism
Do : K — R
a— (loglo(a)l, ... log|or 4ry(a)]).

Recall that, ifK is a number field and € Z, thena € Zy if and only if N g(a) = 41 (cf.
Lemma 3.10).

Lemma 6.41. Let K be a number field of degree = r; + 27, and B C R"'*"2 a compact set.
Consider the set
B':={a € Z) : Piog(a) € B}.

Then there exists al/ > 1 such that, foralk € B’and alli =1, ..., + 79,

1
i< |oi(a)| < M.

Proof. SinceB is bounded, there exists av such that, for aly = (y1,...,Yr,4r) € B, yi] < N
foralli = 1,...,r +ro. If a € B, then®,(a) € B, and thereforélog|o;(a)|| < N for all
i=1,...,r1 +ro. Hence

e N < |oi(a) < eNforalli=1,...,7 + 7.

TakeM = V. O
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Lemma 6.42. Let K be a number field of degree = r; + 2, and B, B’ as in Lemma 6.41. Then
B’ is finite.

Proof. By Lemma 6.41, there exisf&/ > 1 such that, forali = 1,...,7r1 + 79, |0y(a)| < M for all
a € B'. Sinceo;,, +r,(x) is the complex conjugate of, ., (x) foralli = 1,...,rq, the inequality
loi(a)] < M actually holds foralf = 1,...,r1 + 2ry = n.

For anyz € K, the minimal polynomial of: over@Q is given by

n

FX) = 1(X = 0i())
i=1
(cf. Proposition 2.4). Therefore the coefficients f{fX') are given by theslementary symmetric
polynomialsS;(X1,...,X,) € Z[Xy1,..., Xy, 7 =1,...,n, evaluated atry (), ..., 0,(x). These
polynomials are homogeneous polynomials of degire@d they do not depend ane K. Therefore,
for all a € B’, we have that the coefficients of the minimal polynomiakadver Q are of the form

Sj(o1(a),...,on(a)), and therefore can be bounded in terms ahd/. But these coefficients must
belong toZ. Hence there are only a finite number of possible minimal polynomials @Qver the
elements of8’, thus B’ is finite. O

Corollary 6.43. ®,,(Z}) is a discrete subgroup, hence a fréemodule of rank less than or equal
tory + ro.

Proof. This follows from Proposition 6.11. Ol

Corollary 6.44. The kernel ofb,,4 |, is a finite group, consisting of the roots of unity contained in
K
L.

Proof. Take any compacB of R™*"2 containing0. Thenker(@log\zlx{) C B/, hence itis finite. If

a € Zj belongs to a finite subgroup, it must have finite order, so there exist® with a* = 1. In
other wordsg is a root of unity.

Reciprocally, ifa € Z is a root of unity, then it satisfies that, for some N, a®* = 1. Therefore,
foralli =1,...,7 +ry, 0i(a)® = 1, thuslog |o;(x)| = log 1 = 0, and®j,g(a) = 0. O

Lemma 6.45. Let K be a number field. Then
Ly = pixc X Puog(Zie)
Proof. We have the exact sequence of groups
1— ker(@loglz}x() — Ly — Piog(Zy) — 0.

By Corollary 6.44 we know thdter(@]()g‘z;() = pui, and by Corollary 6.43 we know thét,g(Zj;)
is a freeZ-module, hence the exact sequence splits. Ol

Lemma 6.46. Let K’ be a number field of degree= ry + 2r;. The rank ofP),.(Z;;) is less than or
equal tory + ro — 1.
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Proof. Leta € Z;(. Then the norm of: is +1, thus

r1+r2

+1 = Ng/g(a) HUz - ][ eila)(aoai)(a)

i=r1+1

wherea : C — C denotes the complex conjugation. Applyilag | - | to both sides, we get

r1 r1+72
0="> logloi(a)| +2 Y logloi(a)
i=1 i=ri1+1

Therefore®.,(a) belongs to the subspad® := {(y1,...,yr4r,) € R?H72 : 3701 oy +
2371772y = 0}. Therefore®;og(a) must have rank smaller than or equaldiong W = r; +
ro — 1. [

Up to this point, we have proven that: is not very big, that is, it is finitely generated, and we
even have a bound for the number of generators of the free partwhisahe easy part. Note that, up
to now, we have not used Minkowsky’'s Theorem 6.18 or its corollarg fdrd part is to show that,
indeed, the torsion-free part of the graipg hasr; +r, — 1 free generators; and for this we will need

Corollary 6.20.

Lemma 6.47. Let K be a number field of degree = r; + 2ry. The rank of®,,(Z ) is equal to
r1+ 19 — 1.

Proof. We already know one inequality by Lemma 6.46. To show the other inequalityilverove
that ®1,,(Z ) cannot be contained in any proper vector subspacd’of= {(yi,...,¥r +r) €
Rtz 3Ty 4+23 000 g = 0}

Assume then that there exidt§ C R"*"2 a proper subvector spacef containing®oe(Z ).
The projectiodV — R™* 2~ given by (y1, .. ., Yry 1) = (Y1, - - - Yy +ro—1) IS @ isomorphism of
R-vector spaces. Via this projectioi], corresponds to a subvector spac@®6ft2—1, In particular,
there exists a vectdey, .. ., ¢, 1mn—1) € R™1F7271 such that, for alkw € W, Z””Q Leaw; = 0.
We will find anu € Zj such that

ri+ro—1

Z cilog|oi(u)| # 0.

=1
Let us fix some constant v
2
M > <) |disc(Zg)|-
T

The main step in the proof of this lemma is to show that, for any téple (Aq,..., Ay 4r—1) €
R’;O*”” of positive real numbers, there exists@g Zy such thai Ny g(a)| < M and

ri+ra—1 ri+r2—1 ri+ra—1
Y cilogloi(a)| = Y cilog A < ) ei|log M. (6.9)
i=1 i=1 i=1
We proceed as follows: giveA = (Ay, ..., Ay +ry—1), SEL

7’1+7“2 = 1
\/H 2A ng T1+1
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Then, like in the proof of Proposition 6.28, we consider theSset R"1+2"2 defined by

S = {(xla‘ . '7$T17y17y/17‘ . '7yT27y/r2) :

|2 §Aif0rallz’:1,...,r1,\/yj2+y92SAjforallj:r1+1,...,r1+r2}.

We already saw in the proof of Proposition 6.28 thas a centrally symmetric and convex set of
Lebesgue measure

T1 T2 71 r1+7e2
w(S) =J@4) - [[(=B}) =27 [[ 4 [ 4F=2"n"M > 277 "20(D(Zk)).
=1 7j=1 =1 j=r1+1

Therefore by Corollary 6.20 there existg € Zy such thatb(aa) € S. That means that
|O'Z‘(CLA)| < A;foralli= 1,...,r1 4+ 19

Now we will play around with these inequalities. First note that

r1+r2 r1+7r2
Nk glaa)| = H loi(an)| = H|0'z aa)| H |oi(aa))? < HA H A =M. (6.10)
=1 i=r1+1 =1 1=r1+1

To complete the main step, we need to check that Equatioh (6.9) holds-far, .
On the one hand, sinegey € Zg, its norm satisfie$NK/@(aA)| > 1, and on the other hand,
sinceap € S, we have that

-1 -1

loi(aa)l = [Ngjolas)l - | [Tlojaa)l | =1- [ [[loj(aa)l | =AM~
J# J#i

Therefore we have, forall=1, ..., n,
AMT < |oi(an)| < A;
We now take logarithms in this equation (recall thatllare positive numbers)
log A; —log M <log|oi(aa)| < log A;
Multiplying by —1 and summindog A; we obtain that, forall = 1,....,n

0 <log A; —log|o;(a)| <log M.

Now we can estimate the difference betweeli!"> ™! ¢;log|o;(aa)| and Y7127 ¢;log A; as
follows:
ri+reo—1 ri+ro—1
Z cilogloi(aa)| — Z cilog A;
i=1 =1
ri+ro—1 ri+ro—1

Z i(log|oi(aa)| — log A;)| < Z |lci| log M.

=1 =1
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This completes the main step.
Let My > sz{”’l |cillog M. Now we will apply the main step to the following tuples:
For eachm € N, chooseAgm), . ‘7A7("T-izr2—1 > 0 such thaty 71271 ¢; log Agm) = 2mM;, and

setA(m = (A . A ). Then (by the main step) there exists € Zx satisfying that

ri+ro—1

|Nk/g(am)] < M and Equation (6.9), that is to say,

ri+ro—1
Z cilogloi(am)| — 2Mim| < M.
i=1

Therefore we have that
ri14+re—1

> cilogloi(am)| € ((2m — 1)My, (2m + 1)My).
=1

This implies that the sequence of numb{egij’“r1 ¢ilog |o;i(am)|}men is strictly increasing.

But, on the other hand, the principal idealsZx have all norm bounded b¥/, and we know
that there are only a finite number of integral ideals with bounded normtlisegroof of Theorem
6.30). Therefore there exist; # mg such thaiu,,,, Zx = an,Zk. Hence there is a unit € Zj;
such that,,, = ua,,,, and

rit+re—1 ritre—l1
Z cilogloi(am,)| = Z cilog|oj(uam, )| =
i=1 i=1
ri+ra—1 ritre—1
Z cilog o (u)| + Z cilogl|oi(am,)|,
i=1 =1
thus
ri+ro—1 ri+ro—1 ri+rg—1

Z ¢ilog|oi(u)| = Z cilog|oi(am,)| — Z cilog|oi(am,)| # 0.

=1 =1 =1
This shows that: ¢ W, and concludes the proof of Theorem 6.38

O
Definition 6.48. Let K be a number field of degree= ry + 2.
We will say that a tuplégy, . .., & +r—1) € (Z3)" 271 is afundamental system of unit for
all u € Zy; there exist a root of unity € Zx andn, ..., ny +r,—1 € Z such that
U= - 5?1 ..... g:;}_:;Q__ll .

To finish this section we will see how Dirichlet Unit Theorem applies to the ofseal quadratic
fields, allowing a complete description of the solutions of the Pell equatioridayesl in Example
6.1.

Letd € Z be a squarefree, positive number, anddet= Q(v/d). For the rest of the section, fix
an embedding<d — R. We have that := [K : Q] = 2, and, sincek C R, 7, = 0 andr; = 2.
Thereforer; + o — 1 = 1, and from Dirichlet Unit Theorem we obtain:
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Corollary 6.49. Let K be a real quadratic field. Theh ;- ~ ux x Z.

Note that the only roots of unity iR are+1 (since them-th roots of unity inC aree%, r =
1,...,m, and of these only-1 are real). In particular, sinck C R, the only roots of unity of< are
+1. Hence

Ly ~{£1} x Z.

For each: € Z%, we have that-z, 2~ !, —z~! also belong t& .. Assume that > 0 (otherwise,
interchanger and—z). Thenz~! > 0, —z, —2~! < 0. Moreover, ifz # 1, one of the two numbers
z, 2~ must be greater thah the other smaller thah Interchanging: andz~! if necessary, we can
assume: > 1. Then

1

2>1>21>0>—-2"1>—-1>—2.

If we consider only the units which ate 0, then these form a group isomorphicﬁosayzfﬂw.
There are two elements z~! ¢ Zy -, that generate the group (those corresponding toc Z).
The neutral element i@, which is0, corresponds to the neutral eIementZ@f 50 which is1, so
z # 1, and therefore one of the two numbets—! € R is greater than, and the other smaller than
1. Denote byZ -1 the units that are- 1. We call thefundamental unit of. the generator of;
that belongs t&x - (note that this terminology differs slightly from Definition 6.48, and note also
that it depends on our choice of embeddiigz R). Thus in order to find all units &, itis enough
to find the fundamental unit; = a; + b;Vd € Z?<,>1; then

Zi = {+(a1 +biVd)™ : m € Z}

Kso={(a1+b1Vd)™ :m € Z}
ZF o1 = {(a1 + bi1Vd)™ : m € N}
Note that, since
NK/Q(ZI) = (al + bl\/g)(al — bl\/g) = :|:1,
eitherz; ! = a; —bvVd (and—z; ' = —a; +bVd), orz;! = —ap +-b1vVd (@nd—2; ! = ay — b1 V).
We have
{21,277t =21, —27 '} = {a1 + bVd, a1 — bVd, —ai 4+ b1Vd, —ay — b1 Vd}.

Of these four numbers the biggestis| + |b1|v/d. Therefore we conclude that,b; > 0, and the
equationt-1 = a? — b3d, together with the fact that; # 0, implies thath; > 0.
call z,,, = a,, + b,,V/d, then

Am+1 = ama1 + dbpyby
bmt1 == amb1 + a1by,

Note that the sequend®,, }.cn is increasing. Henck, := min{b € N : 3a € N such that? —
db* = £1}. In this way one can explicitly find the fundamental unit

We now distinguish two cases:

e d=2,3 (mod 4). ThenZy = Z[V/d).

There are two possibilities:
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— If Ng/g(z1) = 1, then the equation® — db* = —1 does not have solutions i, and
a+bVdeZ) = a—dn? =1.
— If Ng/g(21) = —1, then
a+b\/&€ZIX(<:}a2—db2:il.
and the subgroup-1, z3) C Zj- corresponds to the solutions @f — db* = 1.

e d=1 (mod 4). ThenZy = Z[1£Y4].

We can writeZ g as

1 d 1 1
{a—l—b +f'a,b€Z}:{x+2y\/g:x,y€Zandy—:UEO (modZ)}

’ 2

If we havel(z + yV/d) € Z}, then it holds that? — dy* = +4.
o {z1" : m € N}. Call

Letz; = %(z1 + y1V/d) be the fundamental unit & . ThenZj ., =

Zm = %(xm +ym\/g) = 27"

— If N/g(21) = 4, then the equation® — dy* = —4 does not have solutions i, and
1
i(x—i-y\/g) €L & 2* —dy® =4

— If Ngg(z1) = —4, then

1
§(x+y\/g) €L} & x* —dy* = +4.
and the subgroup-1, z;) C Zx- corresponds to the solutions.of — dy* = 4.

But we are interested in the solutionsagf— dy? = +1. There are two possibilities:
— If z; andy; are both even, then calling, = Jz; andy] = 1y, we have thafz})? —
d(y})? = +1, and all solutions of? — dy? = +1 are obtained as

{l’{m:
Y :

Taking the sign into account, we obtain:
x If NK/Q(ZI) =4, then
@) —dy)2 =12 +yVde (-1,2) CLL.

+
:I:y

ZTm
2
gm
2

* If Nig(z1) = —4, then
() —d(y)? =12 +yVde (-1,z)C L.
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— If 1 andy; are odd, then

1 1 22+ 2z 1 22+ 42d
=52 (x1+y1\f) ( ! 2y1 lyl\[) (%*Fxlyl\f)

Note that, sincel = 1 (mod 4), 2 + y2d is divisible once and only once & hence
To = $1+y1 andy, = z1y; are both odd.

1
=53 (xl + yl\f) (xl + 3x1y1d + (3$1y1 + y1d)\/g) =

1
§($1(x% + 3yid) + y1 (322 + yld)Vd)

Now bothz? +3y2d = (£4+y2d) +3y?d = 4(+1+y1d) and3z? +y?d = 322 + (£4+
z1) = 4(21 £ 1) are divisible bys, hencexs, y3 are both even, and; = % andy; = £
is a solution ofr? — dy? = +1. In this case, the solutions of — dy? = il are given by

[

Taking the sign into account, we obtain:
* If Nig(21) = 4, then

Ng
“‘3 “”‘3

+4
+%

(@) —dy)? =12 +yVde (—1,23) C L.
x |f NK/Q(ZI) = —4, then
(@) —d(y)? =1e 2 +yVde (—1,z) C L.

Remark 6.50. The smallest solution to the Problem of the Cattle of the Sun (see Example 6.1
and Sheet 8) has 206545 digits (in base ten).
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1. Let¢ = e2mi/3 — _1 1 j¥3 ¢ C. Considerd := Z[¢] = {a + (b | a,b € Z}. Show the following
statements:

(@) ¢ is aroot of the irreducible polynomi&l? + X + 1 € Z[X].
(b) The field of fractions ofd is Q(v/—3) = {a + bv/—3 | a,b € Q} C C.
(c) ThenormmapN : Q(v/—3) — Q, given by

a+bv—=3 a4+ 3b* = (a + bv/—=3)(a — bvV/=3) = (a + bv/=3)(a + bv/—3)

is multiplicative and sends any elementdnto an element irZ. In particular,u € A is a unit
(i.e. in AX) if and only if N(u) € {1,—1}. Moreover, if N(a) is + a prime number, then is
irreducible.

(d) The unit groupd* is equal to{+1, +¢, +¢?} and is cyclic of ordes.

(e) The ringA is Euclidean with respect to the norivi and is, hence, by a theorem from last term’s
lecture, a unique factorisation domain.

Hint: Consider the lattice i© spanned byt and¢. Compute (or bound from above) the maximum
distance between any point@hand the closest lattice point. Use this to show that a division with
remainder exists.

(f) The element = 1 — ( is a prime element il and3 = —(?)\2.

(9) The quotientd /() is isomorphic tdFs.

(h) The image of the seti® = {a® | a € A} underr : A — A/(\*) = A/(9) is equal to
{0+ (A1), £1+ (M%), £X3 + (WY}

2. Show that4 (from the previous exercise) is the ring of integer€Jgt/—3).

We recommend reading Simon Singh’s novel (not a textbook!) on Fermass Theorem in order to
know how the story continues after the cases 2, 3, 4 treated in the lecture.
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1. (a) Show that there exist infinitely many prime numhees —1 mod 3.
Hint: Imitate Euclid’s proof of the infinitude of the number of primes. (You dax@ed any com-
mutative algebra here.)

(b) Leta,n € N with n > 2 such thaia™ — 1 is a prime number. Show that= 2 andn is a prime
number. Such primes are callltersenne primes.

2. (a) Let0,1 # d € Z be a squarefree integer and I§t= Q(v/d). It is a quadratic field extension
of Q. For a general element= a + bv/d with a,b € Q computeTr g o (z) andNormg ().

(b) Leta = V2 and letK = Q(a). Itis a cubic field extension of). For a general element
z = a+ ba + ca® with a, b, ¢ € Q computeTr kg () andNorm g /g ().
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1. (a) Let0,1 # d € Z be a squarefree integer and consiier= Q(1/d). Show:

1+Vd
9

disc(1, V/d) = 4d and disc(1, ) =d.

(b) Leta = v/2 and letK = Q(«). Itis a cubic field extension @@ with Q-basisl, a, o
Computedisc(1, o, a?).

2. (a) LetL/K afinite separable field extensiam, . .., o, a K-basis ofL andC' = (¢;;)i<i j<n @n
n X n-matrix with coefficients in. We viewC' as aK-linear mapL — L via the fixed choice of
basis, and put; := C(«;) fori =1,...,n.

Thendisc(By, . . ., 3n) = det(C)? disc(ay, . . ., o).
(b) LetL/K be a finite separable field extension of degtee [L : K] and denote by, ..., 0, the
K-homomorphismg, — K. AssumeL = K (a) for somea € L. Show:

disc(1,a,...,a" 1) = H (oj(a) — ai(a))g.

1<i<j<n

Hint: One obtains a Vandermonde determinant.
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1. Find an integral ring extensidh C S such thatS is not free agZ.-module.

2. Shake lemma. Let R be a ring, letM;, N; for i = 1,2,3 be R-modules, and lep; : M; — N; be
R-module homomorphisms such that the diagram

0 M, Mo M3 0
l¢1 l@ lfbs
0 Ny No N3 0

is commutative and has exact rows. Show that there is an exact sequence
0 — ker(¢1) — ker(¢o) — ker(¢s) LN coker(¢1) — coker(¢pe) — coker(ps) — 0.

(The cokernel of a homomorphism: M — N is defined asV/im(«).)
3. Let K be a number field and x its ring of integers. Led # a C b C K be twoZx-modules.

Show that the indexb : a) is finite and satisfies

disc(a) = (b : a)? disc(b).
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1. Let K be a number field anf0} # O C Zk be a subring. Show that the following statements are
equivalent:

(i) Ois an order ofK.
(i) Frac(O) = K.

2. Let R be an integral domain and = Frac(R). LetI,J C K be fractionalR-ideals. Show that the
following sets are fractionak-ideals ofR.

@I+J={z+yl|lzeclyecl}
o) I7={3"zyj|neNx,...,en€L,y1,...,yn € J},
(cyimr=1-1-...-1,

—_———

n times

d) I1nJ,
(e) (I:).
3. LetR be an integral domain anll, I, J C K fractional R-ideals. Show that the following properties
hold:
() IJ C InJ (assume here thdtand.J are integral ideals),
) H+(I+J)=H+I1)+J=H+1+J,
(c) H(IJ) = (HI)J,
(d HI+J)=HI+HJ.
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1. Let R be a ring. Show thaR is a principal ideal domain if and only ik is a Dedekind ring with
Pic(R) = 0.
Hint: It suffices to combine propositions and theorems from the lecture.

2. Consider the rind? = Z[/—61]. Show that(2,3 + \/—61) and(5,3 + /—61) are invertible ideals
in R and determine their order iPic(R).

3. Consider the ringk = Z[/—19]. Use for this exercise tha&ic(R) is a finite group of ordeB.
Determine all integral solutions of the equatioh+ 19 = ¢/°.
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1. Let R be a Noetherian integral domain of Krull dimensibrand (0) # I < R be an ideal. For a
maximal ideaim of R, let I,y := I, N R be them-primary part of /.
Show that/ has aprimary decomposition, i.e.7 = (57 I(m)-

2. LetK be afield. A subring? C K is called avaluation ring of K if for eachxz € K* we haver € R
orz~! e R.

(a) Show that every valuation ring &f is a local ring.

(b) Show that every valuation ring &f is integrally closed.

3. (a) Alocal integral domair is called adiscretevaluation ring if there ist € R such that all non-zero
ideals of R are of the form(n"™) for somen € N. Let R be a discrete valuation ring arfd its
field of fractions. Denote byrd(r) for » € R\ {0} the maximum integer such that- € (7").
Forz = © ¢ K* (withr € Rands € R\ {0}), letord(z) := ord(r) — ord(s). Finally, let
ord(0) := oo.
Show that the map

v:K —7Z, x~ ord(x) (1)
satisfies
v(l)=0
v(zy) =v(z) + v(y) forallz,y € K. 2)

v(x 4+ y)) > min(v(z),v(y)) forallz,ye K.
The mapv is called adiscrete valuation.
(b) Let K be a field together with a discrete valuatioas in (1) satisfying the three statements in (2).
Show that
R, :={z € K |v(z) >0}
is a discrete valuation ring. What is its maximal ideal?

(c) Show that every discrete valuation ring is a valuation ring.
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1. First exerciseThe problem of the cattle of the Sun

From Archimedes to Eratéstenes of Cirene:

“If thou art diligent and wise, O stranger, compute the nundieattle of the Sun, who once upon a
time grazed on the fields of the Thrinacian isle of Sicily,idiéd into four herds of different colours,
one milk white, another a glossy black, a third yellow and lget dappled. In each herd were
bulls, mighty in number according to these proportions: &msthnd, stranger, that the white bulls
were equal to a half and a third of the black together with thele of the yellow, while the black
were equal to the fourth part of the dappled and a fifth, tagretéith, once more, the whole of the
yellow. Observe further that the remaining bulls, the dagpWere equal to a sixth part of the white
and a seventh, together with all of the yellow. These wereptbgortions of the cows: The white
cows were precisely equal to the third part and a fourth ofwthele herd of the black; while the
black cows were equal to the fourth part once more and wittiiitrapart of the dappled, when all,
including the bulls, went to pasture together. Now the degbjglows were equal in number to a fifth
part and a sixth of the yellow herd. Finally the yellow cowsrg&vén number equal to a sixth part
and a seventh of the white herd. If thou canst accurately@ed#itranger, the number of cattle of the
Sun, giving separately the number of well-fed bulls and mga¢ number of females according to
each colour, thou wouldst not be called unskilled or ignbodmumbers, but not yet shalt thou be
numbered among the wise.

But come, understand also all these conditions regardimgadtile of the Sun. When the white bulls
mingled their number with the black, they stood firm, equati@pth and breadth, and the plains
of Thrinacia, stretching far in all ways, were filled with thenultitude. Again, when the yellow
and the dappled bulls were gathered into one herd they stosdch a manner that their number,
beginning from one, grew slowly greater till it completediarngular figure, there being no bulls of
other colours in their midst nor none of them lacking. If trestiable, O stranger, to find out all these
things and gather them together in your mind, giving all #dations, thou shalt depart crowned with
glory and knowing that thou hast been adjudged.”

() LetWy, By, Yy, Dy (resp. W, B., D, Y.) the number of white, black, yellow and dappled bulls
(resp. cows). Write out the seven equations indicated in the first p#regiroblem that relate
these quantities.

(b) Check (using a computer!) that the solutions of the system of the piep@ragraph in terms of

Y}, is given by 543694
178 P TTERC
o178 461043
b= g9 Vb . 2402120,
I "7 1383129 °
T T y, . 604357
o 1580 ¢ 461043 °
PRES b

125739



(c) Observe that the system has more than one solution (one for eaetof&ly. On the other hand,
not every solution of the system is a solution of the problem, since the nurhbati® and the
number of cows must be integers! Write out an infinite family of integer solutibtise problem,
depending on a parametethat takes values ifi.

If you have done the exercise so far, you are not unskilled or igh@famumbers. But you have not
yet proved that you are wise!

(d) The two conditions in the second paragraph of the problem involvenpolial equations of
degree 2. Write out what these extra conditions look like for a generic nreofilyeur infinite
family. (Hint: Triangular numbers are those of the farx + 1)/2)

(e) Substituting one equation into the other one, merge your two equationsmteqoiation of the
form Au? = Bu(v + 1) for someA, B € Z and some variables andv. Using the equality
v(v+1) = (v+ 1) — 1 you can rewrite your equation a2u)? = B((2v + 1)2 — 1).

(f) Making an adequate change of variables, rewrite your equatief asdy? + 1 for some integer
d, in such a way that integer solutiof8, y) € Z allow you to find an integer number of bulls
satisfying the conditions.

We have not yet solved the problem! But we have transformed it into aatieguwhose integer
solutions will be studied in the rest of the semester. Hopefully at the end o il be counted
among the wise...

The main difficulty of the problem, as you have seen, is that we do not weng@ution, but only
those that are natural numbers. This kind of question goes back to Dityshaf Alexandria, who wrote
a book calledArithmetica, which consists of a list of problems of the kind: find an integer solution to the
following (set of) algebraic equations. The solutions that he gives igtdyhsubtle and clever. It is in
the margin of his copy of thArithmetica where Fermat wrote his famous Last Theorem (and many other
theorems).

If you cannot wait for the end of the semester to learn how to solve thdeunobf the cattle of the
sun, you can check the references

e Lenstra, Hendrik W., Jr. “Solving the Pell equation. Algorithmic number tyrelattices, number
fields, curves and cryptography”, 1-2@ath. Sci. Res. Inst. Publ., 44, Cambridge Univ. Press,
Cambridge, 2008.

e http://www.math.nyu.edu/ ~ crorres/Archimedes/Cattle/Statement.html
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1. Letv € R™ be a nonzero vector. Prove that v/2v)z is not a discrete subgroup Bf*.
Hint: /2 can be approximated by rational numbers with as much precision as you like.

2. LetH c R" be a lattice and® be a fundamental domain.

(&) Prove that for each € R"™ there exists a unique € P such thaty — v € H.

(b) Prove thaiR™ is the disjoint union of the famil{ P + u},cm.

3. LetK be anumberfieldy C Zx a nonzero integral ideal. We define ti@mofaasN(a) = [Zx : a].

(@) Letx € Z different from0. Prove that the norm of the principal id€al) equalsNg g (z).
Hint: Consider aZ-basis ofZg, say{yi,...,yn}, such that there existy,..., A\, € Z with
{\My1,- .-, \nyn} @Z-basis of theZ-submodulerZy C Zg. Relate the maff, : Zx — Zg
defined byT,(z) = xz with the mapf : Zx — Zx defined byy; — \;y; fori =1,...,n.

(b) Prove that ifm is a maximal ideal oZ x, thenN (a - m) = N(a) - N(m).
Hint: Call k¥ = Zg /m; show thata/(a - m) is a k-vector space of dimension one, and hence
isomorphic toZ i /m ask-vector spaces.

(c) Letb C Zx be another nonzero integral ideal. Prove tNdt - b) = N(a) - N(b).

(d) Let!I C K be a nonzer fractional ideal. We define ti@mof I asN (/) = N(zI)/|Ngq(z)l,
wherex € Zg is some element such thaf is a nonzero integral ideal. Show that the norm of a
fractional ideal is well-defined.

(e) ShowthatV : Z(Zx) — Q* is a group homomorphism.
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1. Let K be a number field and let C Zx be a nonzero integral ideal. Prove that there exists a
different from zero such that

Nige(@l < () 2RIV @),

™
Hints: Use (without proving them) the following results:

e Letry,rp € N,n =r1 + 2ro. For eacht € R, define the set

T1 T2
St = {(-rlw"7$T17y17y/17'"7y7’27y/r2) eR": Z |$Z| +22 \/ y]2 +y/j2 < t}
i=1 j=1

Then ra 41
T\ T2
;) = 2 (7) v
e (Arithmetic Mean-Geometric Mean inequality): For @y, ...,z y1,¥'1, ..., ¥ry, ¥',,) € R™,
it holds that

n 1 T2
2 1
[Tl [T +05) | < | D lmil+2>\Jvi +v75
' i=1 j=1

2. Let K be a number field different frofd. Prove thatdisc(Zx) > 1. In particular, there exists a
rational primep such thap|disc(Z).

Hints:

e Use Exercise 1.
e Use thatr < 4 andn? > 8.

e You may want to prove, as an auxiliary lemma, that the function N — R defined by
f(n) = (Z)" (%) is strictly increasing.
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1. LetK = Q(+/=5). Prove thaCL(K) has ordep.

2. LetK = Q(v/—19). Prove thaCL(K) = {1}.

3. LetK be a number fieldy € Zx and f(X) € Z[X] the minimal polynomial ofy, and letA = Z[a].
Letp € Z be a prime number, Igt(X) € F,[X] be the reduction of (X) (mod p), and let

f(X) = H@'(X)
i=1

be a factorisation of (X) into irreducible polynomials iff,,[ X] with leading coefficient. For each
i=1,...,r choose;(X) € Z[X] reducing tog;(z) (mod p). Then the prime ideals id above(p)
are given by

pi = (p,qi(@))a, i=1,...,7

4. In this exercise we will complete the study of the integral solutiong’ef 19 = y° that we started in
Exercise 3 of Sheet 6.

(@) Show that the mag : Q(/—19) — R? (Definition 7.1 of the Lecture notes) mag@s$,/—19]
into a latticeH = ®(Z[/—19]) of volumev(H) = /19.

(b) Knowing thatPic(Z[/—19]) is generated by the classes of invertible prime integral ideals of
norm less than or equal to

<72T)\/W<6

(which, if you like, you can check by following the proofs of Propositioh 8hd Lemma 8.4 of
the Lecture notes, and adapt them to this case), and knowing that théAdeal /—19) is not
invertible, prove thaPic(Z[v/—19]) is a group of ordes.

Hints:
e Use Exercise 2 above.

e To prove that the class of a nonprincipal idéahas ordes, it suffices to prove that? is
principal (because thef? cannot be principal).



