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Preface

These are notes of a one-term course (12 lectures of 90 min each) taught at the University of Lux-
embourg in Summer Term 2012. The lecture builds on the lectureCommutative Algebrafrom the
previous term, the lecture notes of which are available onhttp://maths.pratum.net.

The lecture provides an introduction to the most basic classical topics of (global) algebraic number
theory:

• first cases of Fermat’s Last Theorem,

• norms, traces and discriminants of field extensions,

• rings of integers,

• ideal arithemtic and ideal class groups,

• Dedekind rings,

• fundamentals of the geometry of numbers,

• finiteness of the class number,

• Dirichlet’s Unit Theorem.

In preparing these lectures we used several sources:

• Neukirch:Algebraische Zahlentheorie, Springer-Verlag.

• Samuel:Algebraic Theory of Numbers.

• Bas Edixhoven:Théorie algébrique des nombres (2002), Lecture notes available on Edix-
hoven’s webpage.

• Peter Stevenhagen:Number Rings, Lecture notes available on Stevenhagen’s webpage.

• Lecture notes of B.H. Matzat:Algebra 1,2(Universität Heidelberg, 1997/1998).

• Lecture notes of lectures onAlgebraische Zahlentheorietaught at Universität Duisburg-Essen
in Winter Term 2009/2010.

Luxembourg, June 2012.
Sara Arias-de-Reyna, Gabor Wiese
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1 Motivation

As a motivation we are going to treat the simples cases of the Fermat equation. Let n ∈ N. Then-th
Fermat equation is

Fn(a, b, c) = an + bn − cn.

What are the zeros of this equation in the (positive) integers?
n = 1: For any ringR, there is the bijection

{(a, b, c) ∈ R3 | F1(a, b, c) = 0} ↔ R2,

given by sending(a, b, c) with F1(a, b, c) = a + b− c = 0 to (a, b). Its inverse clearly is the map that
sends(a, b) to (a, b, a + b). This clearly describes all solutions.

n = 2: A triple (a, b, c) ∈ N3 such thatF2(a, b, c) = a2 + b2 − c2 = 0 is called aPythagorean
triple. It is calledprimitive if gcd(a, b, c) = 1 anda is odd (whenceb is even). In last term’s course
on Commutative Algebra you proved on Sheet 5 (almost) that there is the bijection

{(u, v) ∈ N2 | u > v, gcd(u, v) = 1, 2 | uv}
↔ {(a, b, c) ∈ N3 | (a, b, c) primitive Pythagorean triple},

sending(u, v) to (u2 − v2, 2uv, u2 + v2).
We postpone the casen = 3 and continue with:
n = 4:

Theorem 1.1. There is no(a, b, c) ∈ N3
>0 such thata4 + b4 = c4, i.e.F4 has no solution in positive

integers [recall that positive means strictly bigger than0].

This will immediately follow from the following Proposition.

Proposition 1.2. Let (a, b, c) ∈ Z3 be such thata4 + b4 = c2. Thenabc = 0.

Proof. Since the exponents are all even, we can without loss of generality assumethat alla, b, c are
non-negative. We assume that the assertion of the proposition is wrong and want to get a contradiction.
For that we letc be minimal such that there area, b > 0 satisfyinga4 + b4 = c2.

As c is minimal, we have thatgcd(a, b, c) = 1; for, if d is the greatest common divisior, then we
have

(a
d

)4
+
( b
d

)4
=

a4 + b4

d4
=

c2

d4
=
( c

d2

)2
,

becaused2 has to dividec.
Now we can reinterpret the equation as(a2, b2, c) being a primitive Pythagorean triple (after pos-

sibly exchanginga andb so thata2 is odd). Hence, we may apply the casen = 2. This means that
there areu, v ∈ N such thatu > v, gcd(u, v) = 1 and

a2 = u2 − v2, b2 = 2uv, c2 = u2 + v2.

Hence,a2 + v2 = u2, which gives yet another primitive Pythagorean triple, namely(a, v, u) (note
that sincea is odd,v is even). So, we can again applyn = 2 to obtainr > s such thatgcd(r, s) = 1

and
a = r2 − s2, v = 2rs, u = r2 + s2.
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Plugging in we get:

b2 = 2uv = 4urs, and hence
( b
2

)2
= urs. (1.1)

As gcd(u, v) = 1, we also have thatgcd(u, rs) = 1 (note:u is odd). As, furthermore,gcd(r, s) = 1,
it follows from Equation (1.1) thatu, r ands are squares:

u = x2, r = y2, s = z2.

They satisfy:
x2 = u = r2 + s2 = y4 + z4.

So, we have found a further solution of our equation. But:

c = u2 + v2 = x4 + v2 > x4 ≥ x,

contradicting the minimality ofc.

In this proof, the gcd played an important role and we used at several places thatZ is a unique
factorisation domain (UFD), that is, that every non-zero integer is uniquely the product of prime
numbers (and−1).

n ≥ 3 in C[X]: In order to illustrate one quite obvious (but, failing) attempt at proving that the
Fermat equation has no positive solutions forn ≥ 3, we now work for a moment overC[X], where
this strategy actually works. Recall thatC[X] is a Euclidean ring, just likeZ. Below we will show that
this strategy also works for the Fermat equationF3 overZ because the ringZ[ζ3] with ζ3 = e2πi/3 is
a unique factorisation domain and has ‘few’ roots of unity.

Proposition 1.3. Let n ≥ 3 and leta, b, c ∈ C[X] be such thatan + bn = cn. Thena, b andc form
a trivial solution: they are scalar multiples of one polynomial (a(X) = αf(X), b(X) = βf(X),
c(X) = γf(X) for somef(X) ∈ C[X] andα, β, γ ∈ C).

Proof. We prove this by obtaining a contradiction. Let us, hence, assume that there area, b, c ∈ C[X]

satisfyingan + bn = cn such that

max{deg(a), deg(b), deg(c)} > 0 and is minimal among all solutions.

As C[X] is factorial (because it is Euclidean), we can always divide out common divisors. Thus, by
the minimality assumption the polynomialsa, b, c are pairwise coprime. Also note that at most one of
the polynomials can be constant, unless we have a trivial solution.

The principal point of this proof is that we can factor the Fermat equation into linear factors
becauseζ = e2πi/n is an element ofC (this, of course, fails overZ, whence in the attempt to use
this trick for the original Fermat equation one has to work withZ[ζ], which will not be factorial in
general). The factorisation is this one:

an = cn − bn =
n−1∏

j=0

(c − ζjb). (1.2)
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If you have never seen this factorisation, just considerc as a variable and observe thatζjb aren distinct
roots of the polynomialcn − bn and recall that a polynomial of degreen over an integral domain has
at mostn zeros.

Recall once more thatC[X] is a factorial ring. So it makes sense to ask whether the above
factorisation is into pairwise coprime factors. We claim that this is indeed the case. In order to
verify this, letj, k ∈ {0, . . . , n − 1} be distinct. We have:

b =
1

ζk − ζj

(
(c − ζjb) − (c − ζkb)

)
andc =

1

ζ−j − ζ−k

(
ζ−j(c − ζjb) − ζ−k(c − ζkb)

)
.

Thus, any common divisor of(c − ζjb) and(c − ζkb) necessarily divides bothb andc. As these are
coprime, the common divisor has to be a constant polynomial, which is the claim.

We now look again at Equation (1.2) and use the coprimeness of the factors. It follows that each
factorc − ζjb has to be ann-th power itself, i.e. there areyj ∈ C[X] such that

yn
j = c − ζjb

for all j ∈ {0, . . . , n− 1}. Of course, the coprimeness of thec− ζjb immediately implies thatyj and
yk for j 6= k have no common non-constant divisor. If the degrees ofc andb are different, then the
degree ofyj is equal to the maximum of the degrees ofc andb divided byn for all j. If the degrees
are equal, then at most one of theyj can have degree strictly smaller than the degree ofb divided byn

because this can only happen if the leading coefficient ofc equalsζj times the leading coefficient ofb.
As n ≥ 3, we can pick three distinctj, k, ℓ ∈ {0, . . . , n − 1}. We do it in such a way thatyj is

non-constant. Now consider the equation

αyn
j + βyn

k = α(c + ζjb) + β(c + ζkb) = c + ζℓb = yn
ℓ ,

which we want to solve for0 6= α, β ∈ C. Thus, we have to solve

α + β = 1 andαζj + βζk = ζℓ.

A solution obviously is

α =
ζℓ − ζk

ζj − ζk
andβ = 1 − α.

In C we can drawn-th roots:α = γn andβ = δn. Settingr = γyj , s = δyk andt = yℓ, we obtain

rn + sn = tn,

with polynomialsr, s, t ∈ C[X]. Let us first remark thatr is non-constant. The degrees ofr, s, t are
less than or equal to the maximum of the degrees ofb andc divided byn, hence, the degrees ofr, s, t

are strictly smaller than the degrees ofb andc. As the degree ofa has to be at most the maximum of
the degrees ofb andc, the degrees ofr, s, t are strictly smaller than the maximum of the degrees of
a, b, c. So, we found another solution with smaller maximum degree. This contradictionproves the
proposition.

n=3:We will prove a slightly more general statement. First a lemma.
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Lemma 1.4. Let ζ = e2πi/3 = −1
2 + i

√
3

2 ∈ C. ConsiderA := Z[ζ] = {a + ζb | a, b ∈ Z}.

(a) ζ is a root of the irreducible polynomialX2 + X + 1 ∈ Z[X].

(b) The field of fractions ofA is Q(
√
−3).

(c) ThenormmapN : Q(
√
−3) → Q, given bya+b

√
−3 7→ a2 +3b2 = (a+b

√
−3)(a−b

√
−3) =

(a + b
√
−3)(a + b

√
−3) is multiplicative and sends any element inA to an element inZ. In

particular, u ∈ A is a unit (i.e. inA×) if and only ifN(u) ∈ {1,−1}. Moreover, ifN(a) is ± a
prime number, thena is irreducible.

(d) The unit groupA× is equal to{±1,±ζ,±ζ2} and is cyclic of order6.

(e) The ringA is Euclidean with respect to the normN and is, hence, by a theorem from last term’s
lecture, a unique factorisation domain.

(f) The elementλ = 1 − ζ is a prime element inA and3 = −ζ2λ2.

(g) The quotientA/(λ) is isomorphic toF3.

(h) The image of the setA3 = {a3 | a ∈ A} under π : A → A/(λ4) = A/(9) is equal to
{0 + (λ4),±1 + (λ4),±λ3 + (λ4)}.

Proof. Exercise on Sheet 1.

Theorem 1.5. Leta, b, c ∈ A andu ∈ A× satisfy

a3 + b3 = uc3.

Thenabc = 0.

Proof. We essentially rely on the result of Lemma 1.4 thatA is a factorial ring. The proof is again
by obtaining a contradiction. Let us hence assume that we havea, b, c ∈ A andu ∈ A× satisfying
a3 + b3 = uc3 andabc 6= 0. By dividing out any common factors, we may and do assume thata, b, c

are pairwise coprime. Note that consequently at most one ofa, b, c can be divisible byλ. Of course,
we will use the factorisation

a3 + b3 = (a + b)(a + ζb)(a + ζ2b). (1.3)

We derive our contradiction in several steps and the factorisation is not used before (4).
(1) We showλ | abc.
Suppose this is not the case. Thena3, b3 andc3 are±1 in A/(λ4) by Lemma 1.4. Consider the

equationa3 + b3 = uc3 in A/(λ4). The left hand side is thus in{(λ4), 2+ (λ4),−2+ (λ4)}, the right
hand side is±u + (λ4). Thusu ≡ ±2 (mod (λ4)) (asu is a unit, the left hand side cannot be(λ4).
However, the triangle inequality for the absolute value ofC immediately shows that0 < |u ± 2| ≤ 3,
which is smaller than|λ4| = 9, excluding thatλ4 dividesu ± 2 (this conclusion uses, of course, that
the absolute value of any nonzeroa ∈ A is at least1; but, that is obvious.).

(2) We may (and do) assume without loss of generality thatλ | c.
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If λ does not dividec, then by (1) it has to dividea or b (note that it cannot divide both, as it would
then dividec as well). We argue similarly as in (1) and take our equation inA/(λ4). The right hand
side is again±u + (λ4). The left hand side is either±1 + (λ4) or ±1 + ±λ3 + (λ4). Hence, we
getλ4 dividesu + ±1 or u + ±1 + ±λ3. But, 0 < |u + ±1 + ±λ3| ≤ 2 +

√
27 < 8 < 9 = |λ4|,

so the first possibility is excluded. Because of|u + ±1| ≤ 2 < 9 = |λ4|, we necessarily have
u = ±1, which satisfiesu3 = u. So, we have instead consider the equationa3 + (uc)3 = (−b)3 or
b3 + (uc)3 = (−a)3.

(3) We showλ2 | c. Let r ≥ 2 be such thatλr | c andλr+1 ∤ c.
Supposeλ2 ∤ c. We do it again similarly and again reduce the equation moduloλ4. The right hand

side is±uλ3, but the left hand side is, as in (1), in{(λ4),±2 + (λ4)}. Hence, againλ4 has to divide
uλ3 or uλ3 ± 2, which are both impossible by the same considerations of absolute values as above.

(4) Replacingb by ζb or by ζ2b, we may (and do) assumeλ2 | (a + b).
The right hand side of Equation 1.3 is divisible byλ6 (because of (3)). Thus,λ2 divides one of

the three factors and making one of the mentioned substitutions we assume it is thefirst one.
(5) We showλ | a + ζb, λ | a + ζ2b, λ2 ∤ a + ζb andλ2 ∤ ζ2b.
We only treata + ζb, the other one works precisely in the same way. Note thatζ ≡ 1 (mod (λ)).

Thus,a + ζb ≡ a + b ≡ 0 (mod (λ)). If λ2 | (a + ζb), then because ofλ2 | (a + b), substracting the
two yieldsλ2 | b(ζ − 1) = −λb, whenceλ | b, which is excluded.

(6) We show that the only common prime divisor of any pair ofa + b, a + ζb, a + ζ2b is λ (up to
multiplying λ by units, of course, i.e. up to associates).

This argument is very standard and we only do it for one pair. Suppose that the prime elementµ
dividesa + b anda + ζb. Thenµ divides(a + b) − (a + ζb) = bλ, whenceµ dividesb. Moreover,µ
also dividesζ(a + b)− (a + ζb) = −aλ, whenceµ also dividesa. As a andb are coprime, we have a
contradiction.

(7) We show that there are coprime0 6= a1, b1, c1 ∈ A and there isu1 ∈ A× such thata3
1 + b3

1 =

u1c
3
1 andλr ∤ c1.
From (5) and (6) we can write using the factoriality ofA:

a + b = ǫ1λ
3r−2α3, a + ζb = ǫ2λβ3, a + ζ2b = ǫ3λγ3

with pairwise coprimeα, β, γ and unitsǫ1, ǫ2, ǫ3 ∈ A×. Now we compute

0 = (1 + ζ + ζ2)(a + b) = (a + b) + ζ(a + ζb) + ζ2(a + ζ2b) = λ
(
ǫ1λ

3r−3α3 + ǫ2ζβ3 + ǫ3ζ
2γ3
)
.

Dividing by λζ2ǫ3 we obtain
γ3 + ǫβ3 = u1α

3

with units ǫ andu1. The same calculations as in (2) yield (taking the equation modulo(λ4)) that
ǫ = ±1, whenceǫ3 = ǫ. Thus, lettinga1 := γ, b1 = ǫβ andc1 = α1, we obtain (7).

(8) End of proof.
Repeating steps (1) to (7) witha1, b1, c1 often enough we can achieve thatλ2 ∤ c1, which contra-

dicts (3).

The point is that we used everywhere that the rings in which we worked are factorial! This
property does not persist (see, e.g. Commutative Algebra, Sheet 5, Exercise 2) and, hence, we need to
find a substitute.
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2 Linear algebra in field extensions

Let L/K be a field extension, i.e.K is a subfield ofL. Recall that multiplication inL makesL into a
K-vector space. We speak of afinite field extensionif [L : K] := dimK(L) < ∞. Recall, moreover,
that an elementa ∈ L is calledalgebraic overK if there is a non-zero polynomialma ∈ K[X] such
thatf(a) = 0. If ma is monic (leading coefficient equal to1) and irreducible, thenma is called the
minimal polynomial ofa overK. It can be characterised as the unique monic generator of the kernel
of theevaluation map

K[X]
f(X) 7→f(a)−−−−−−−→ L,

which is trivially checked to be aK-algebra homomorphism (i.e. a homomorphism of rings and of
K-vector spaces).

We now assume thatL/K is a finite extension of degree[L : K] = n. Later we will ask it to be
separable, too (which is automatic if the characteristic ofK (and henceL) is 0). Let a ∈ L. Note that
multiplication bya:

Ta : L → L, x 7→ ax

is L-linear and, thus, in particular,K-linear. Once we choose aK-basis ofL, we can representTa by
ann × n-matrix with coefficients inK, also denotedTa.

Here is the most simple, non-trivial example. The complex numbersC have theR-basis{1, i} and
with respect to this basis, anyz ∈ C is represented as( x

y ) = x+ iy. Now, takea = ( b
c ) = b+ci ∈ C.

We obtain:Ta =
(

b −c
c b

)
, as we can easily check:

Ta(z) = az = (b + ci)(x + iy) = (bc − cy) + i(cx + by) andTa(z) =
(

b −c
c b

)
( x

y ) =
(

bx−cy
cx+by

)
.

As an aside: You may have seen this matrix before; namely, writingz = r(cos(ϕ)+ i sin(ϕ)), it looks

like r
(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
, i.e. it is a rotation matrix times a homothety (stretching) factor.

We can now do linear algebra with the matrixTa ∈ Matn(K).

Definition 2.1. Let L/K be a finite field extension. Leta ∈ L. Thetrace ofa in L/K is defined as
the trace of the matrixTa ∈ Matn(K) and thenorm ofa in L/K is defined as the determinant of the
matrixTa ∈ Matn(K):

TrL/K(a) := Tr(Ta) andNormL/K(a) := det(Ta).

Note that trace and norm do not depend on the choice of basis by a standard result from linear algebra.

Let L/K = C/R andz = x + iy ∈ C. ThenTrC/R(z) = 2x = 2ℜ(z) andNormC/R(z) =

x2 + y2 = |z|2.

Lemma 2.2. LetL/K be a finite field extension. Leta ∈ L.

(a) TrL/K defines a group homomorphism(L,+) → (K, +), i.e.

TrL/K(a + b) = TrL/K(a) + TrL/K(b).
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(b) NormL/K defines a group homomorphism(L×, ·) → (K×, ·), i.e.

NormL/K(a · b) = NormL/K(a) · NormL/K(b).

Proof. (a) The trace of a matrix is additive andTa+b = Ta + Tb becauseTa+b(x) = (a + b)x =

ax + bx = Ta(x) + Tb(x) for all x ∈ L.
(b) The determinant of a matrix is multiplicative andTa·b = Ta ◦ Tb becauseTa·b(x) = abx =

Ta

(
Tb(x)

)
for all x ∈ L.

Lemma 2.3. LetL/K be a finite field extension. Leta ∈ L.

(a) Letfa = Xn + bn−1X
n−1 + · · · + b1X + b0 ∈ K[X] be the characteristic polynomial ofTa ∈

Matn(K). ThenTrL/K(a) = −bn−1 andNormL/K(a) = (−1)nb0.

(b) Letma = Xd + cd−1X
d−1 + · · · + c1X + c0 ∈ K[X] be the minimal polynomial ofa overK.

Thend = [K(a) : K] and withe = [L : K(a)] one hasma(X)e = fa(X).

Proof. (a) is a general fact from linear algebra that can, for example, be checked on the Jordan normal
form of Ta over an algebraic closure ofK, using the fact that trace and determinant are conjugation
invariants, that is, do not depend on the choice of basis.

(b) It is obvious that the evaluation mapK[X]
f(X) 7→f(a)−−−−−−−→ L defines a field isomorphism

K[X]/(ma(X)) ∼= K(a),

whence the degree of[K(a) : K] equals the degree ofma(X) and, moreover,{1, a, a2, . . . , ad−1}
forms aK-basis ofK(a).

We now compute the matrixT ′
a for the mapK(a)

x 7→ax−−−→ K(a) with respect to the chosenK-
basis. Very simple checking shows that it is the following matrix:

T ′
a =




0 0 ··· 0 −c0
1 0 ··· 0 −c1
0 1 ··· 0 −c2
...

...
...

...
0 0 ··· 1 −cd−1


 .

Note that its characteristic polynomial is preciselyma(X).
Now let{s1, . . . , se} be aK(a)-basis ofL. Then aK-basis ofL is given by

{s1, s1a, s1a
2, . . . , s1a

d−1, s2, s2a, s2a
2, . . . , s2a

d−1, . . . se, sea, sea
2, . . . , sea

d−1}.

K-linear independence is immediately checked and the number of basis elements isOK; this is the
way one proves that the field degree is multiplicative in towers:[L : K] = [L : K(a)][K(a) : K].

With respect to this basis, the matrixTa is a block matrix consisting ofe blocks on the diagonal,
each of them equal toT ′

a. This proves (b).

We need to use some results from field theory. They are gathered in the appendix to this section.

Proposition 2.4. Let L/K be a finite separable field extension,K an algebraic closure ofK con-
taining L. Let, furthermore,a ∈ L andfa the characteristic polynomial ofTa. Then the following
statements hold:
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(a) fa(X) =
∏

σ∈HomK(L,K)(X − σ(a)),

(b) TrL/K(a) =
∑

σ∈HomK(L,K) σ(a), and

(c) NormL/K(a) =
∏

σ∈HomK(L,K) σ(a).

Proof. Let M = K(a). We use Equation (2.4) and its notation. By Proposition 2.11 in the appendix,
the minimal polynomial ofa overK is

ma(X) :=
∏

i∈I

(X − σi(a)).

Let e = #J . We obtain from Lemma 2.3:

fa(X) = ma(X)e =
∏

i∈I

(X − σi(a))e =
∏

i∈I

(X − σi(a))e

=
∏

i∈I

∏

j∈J

(X − σi ◦ τj(a)) =
∏

σ∈HomK(L,K)

(X − σ(a)).

This shows (a). Multiplying out, (b) and (c) are an immediate consequence of the preceding lemma.

Corollary 2.5. LetL/M/K be finite separable field extensions. Then

TrL/K = TrM/K ◦TrL/M andNormL/K = NormM/K ◦ NormL/M .

Proof. We use Equation (2.4) from the appendix and its notation. Then

TrL/K

(
TrM/L(a)

)
=
∑

i∈I

σi

(
TrM/L(a)

)
=
∑

i∈I

σi

(∑

j∈J

τj(a)
)

=
∑

i∈I

σi

(∑

j∈J

τj(a)
)

=
∑

i∈I

∑

j∈J

σi ◦ τj(a) = TrM/K(a).

In the same way, we have

NormL/K

(
NormM/L(a)

)
=
∏

i∈I

σi

(
NormM/L(a)

)
=
∏

i∈I

σi

(∏

j∈J

τj(a)
)

=
∏

i∈I

σi

(∏

j∈J

τj(a)
)

=
∏

i∈I

∏

j∈J

σi ◦ τj(a) = NormM/K(a),

showing the statement for the norm.

Definition 2.6. Let L/K be a finite separable field extension of degreen = [L : K]. Further,
let HomK(L,K) = {σ1, . . . , σn} and let α1, . . . , αn ∈ L be a K-basis ofL. Form the matrix
D(α1, . . . , αn) := (σi(αj))1≤i,j≤n.

Thediscriminant of(α1, . . . , αn) is defined as

disc(α1, . . . , αn) :=
(
det D(α1, . . . , αn)

)2
.

Thetrace pairing onL/K is the bilinear pairing

L × L → K, (x, y) 7→ TrL/K(xy).
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Example 2.7. (a) Let0, 1 6= d ∈ Z be a squarefree integer and considerK = Q(
√

d). Computations
(see Exercise on Sheet 3) show:

disc(1,
√

d) = 4d and disc(1,
1 +

√
d

2
) = d.

(b) Letf(X) = X3 + aX + b ∈ Z[X] be an irreducible polynomial and considerK = Q[X]/(f).
Letα ∈ C be any root off , so that we can identifyK = Q(α) and1, α, α2 is aQ-basis ofK.

Computations also showdisc(1, α, α2) = −4a3 − 27b2.

(One can make a brute force computation yielding this result. However, it is easier to identify this
discriminant with the discriminant of the polynomialf(X), which is defined by the resultant off

and its formal derivativef ′. This, however, was not treated in last term’s lecture and we do not
have time for it here either.)

Proposition 2.8. Let L/K be a finite separable field extension of degreen = [L : K]. Then the
following statements hold:

(a) LetD := D(α1, . . . , αn). ThenDtrD is the Gram matrix of the trace pairing with respect to any
K-basisα1, . . . , αn. That is,DtrD =

(
TrL/K(αiαj)

)
1≤i,j≤n

.

(b) Letα1, . . . , αn be aK-basis ofL. Then

disc(α1, . . . , αn) = det(D)2 = det(DtrD) = det
(
TrL/K(αiαj)

)
1≤i,j≤n

.

(c) Let α1, . . . , αn be aK-basis ofL and C = (ci,j)1≤i,j≤n be ann × n-matrix with coefficients
in K and putβi := Cαi for i = 1, . . . , n. Then

disc(β1, . . . , βn) = det(C)2 disc(α1, . . . , αn).

(d) If L = K(a), then

disc(1, a, . . . , an−1) =
∏

1≤i<j≤n

(
σj(a) − σi(a)

)2
,

whereσ1, . . . , σn are theK-homomorphismsL → K.

(e) The discriminantdisc(α1, . . . , αn) is non-zero and the trace pairing onL/K is non-degenerate.

Proof. (a) Letσ1, . . . , σn be theK-homomorphismsL → K. Then we have

DtrD =
( n∑

k=1

σk(αi)σk(αj)
)
1≤i,j≤n

=
( n∑

k=1

σk(αiαj)
)
1≤i,j≤n

=
(
TrL/K(αiαj)

)
1≤i,j≤n

.

So, the(i, j)-entry of the matrixDtrD equalsTr(αiαj). Hence,DtrD is the Gram matrix of the trace
pairing with respect to the chosenK-basis.

(b) is clear.
(c) Exercise on Sheet 3.
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(d) Exercise on Sheet 3.
(e) We may always choose somea ∈ L such thatL = K(a) (this is shown in any standard course

on Galois theory). From (c) it is obvious that the discriminantdisc(1, a, . . . , an−1) is non-zero and,
hence, the trace pairing onL/K is non-degenerate (because by a standard result from linear algebraa
bilinear pairing is non-degenerate if and only if its Gram matrix with respect to any basis is invertible).
Consequently,disc(α1, . . . , αn) 6= 0.

Appendix: Some Galois theory

Let L/K be an algebraic extension of fields (not necessarily finite for the next definition) andK

an algebraic closure ofK containingL. We pre-suppose here the existence of an algebraic closure,
which is not quite easy to prove. However, in the number field case we haveC, which we know to be
algebraically closed, and inC we can takeQ = {z ∈ C | z algebraic overQ}, which is an algebraic
closure ofQ and also of all number fields.

Let f ∈ K[X] be a polynomial of degreen. It is calledseparableif it hasn distinct roots inK. It
is very easy to see that

f is separable⇔ 1 = gcd(f ′, f),

wheref ′ is the formal derivative off . Otherwise, we say thatf is inseparable.
If char(K) = 0, then every irreducible polynomialf is separable becausegcd(f ′, f) = 1, as the

only monic divisor off of degree< n is 1 anddeg(f ′) = n − 1. Moreover, ifK is a finite field
of characteristicp, then every irreducible polynomialf ∈ K[X] is also separable. The reason is that
the finite fieldL := K[X]/(f(X)) is a splitting field of the polynomialXpn − X ∈ Fp[X], where
#L = pn. This implies thatf(X) dividesXpn − X. As the latter polynomial is separable (because
gcd((Xpn −X)′, Xpn −X) = gcd(−1, Xpn −X) = 1), alsof is separable. A field over which every
irreducible polynomial is separable is calledperfect. We have just seen that fields of characteristic0

and finite fields are perfect. However, not every field is perfect. ConsiderK = Fp(T ) = Frac(Fp[T ])

andf(X) = Xp − T ∈ K[X]. The Eisenstein criterion shows thatf is irreducible, but,gcd(f ′, f) =

gcd(pXp−1, Xp − T ) = gcd(0, Xp − T ) = Xp − T 6= 1, whencef is not separable. In this lecture,
we shall almost entirely be working with number fields, and hence in characteristic 0, so that the
phenomenon of inseparability will not occur.

Next we explain how irreducible separable polynomials are related to properties of field exten-
sions. We letHomK(L,K) be the set of field homomorphisms (automatically injective!)τ : L → K

such thatτ |K = idK , i.e. τ(x) = x for all x ∈ K. Such a homomorphism is referred to as aK-
homomorphism. We write[L : K]sep := #HomK(L,K) and call it theseparable degree ofL/K, for
reasons to become clear in a moment.

Let now f ∈ K[X] be an irreducible polynomial and supposeL = K[X]/(f). We have the
bijection

{α ∈ K | f(α) = 0} −→ HomK(L,K),

given by sendingα to theK-homomorphism

σα : K[X]/(f) → K, g(X) + (f) 7→ g(α).
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Note that it is well-defined becausef(α) = 0. The injectivity of the map is clear:α = σα(X+(f)) =

σβ(X + (f)) = β. For the surjectivity consider anyσ : K[X]/(f) → K and putγ = σ(X). As
σ(f) = 0, we havef(γ) = 0 and it follows thatσ = σγ because theXr + (f) form aK-generating
system ofK[X]/(f) on whichσ andσγ agree. We have shown forL = K[X]/(f):

[L : K]sep = #{α ∈ K | f(α) = 0} ≤ deg(f) = [L : K].

Now we consider a general algebraic field extensionL/K again. An elementa ∈ L is called
separable overK if its minimal polynomialfa ∈ K[X] is separable. The algebraic field extension
L/K is calledseparableif every elementa ∈ L is separable overK. As an immediate consequence
every subextension of a separable extension is separable.

The most important technical tool in Galois theory is the following proposition.

Proposition 2.9. LetL/K be an algebraic field extension andK an algebraic closure ofK contain-
ing L. Then anyK-homomorphismσ : L → K can be extended to aK-homomorphismσ : K → K.

In order to explain the idea behind this proposition, let us takeM = L(a) for somea ∈ K,
whenceM = L[X]/(f) with f the minimal polynomial ofa overL, and let us extendσ to M , call
it σM . The polynomialf factors into linear factors overK, whence we may choose someα ∈ K

such thatf(α) = 0. Any element ofM is of the form
∑d

i=0 aiX
i + (f) and we send it viaσM

to
∑d

i=0 σ(ai)α
i in K. Using a Zorn’s lemma argument, one obtains thatσ can indeed be extended

to K.
Let nowL/M/K be algebraic field extensions contained insideK and let

HomK(M, K) = {σi | i ∈ I} andHomM (L,K) = {τj | j ∈ J}.

By Proposition 2.9 we may chooseσi : K → K extendingσi for i ∈ I. We have

HomK(L,K) = {σi ◦ τj | i ∈ I, j ∈ J}. (2.4)

This is easy to see: ‘⊇’ is clear. ‘⊆’: Let τ ∈ HomK(L,K), thenτ |M ∈ HomK(M, K), whence
τ |M = σi for somei ∈ I. Now considerσ−1

i ◦ τ ∈ HomM (L,K), whence there isj ∈ J such that
τ = σi ◦ τj .

Moreover, the map
I × J → HomK(L,K), (i, j) 7→ σi ◦ τj

is a bijection. The surjectivity is precisely the inclusion ‘⊆’ shown above. For the injectivity suppose
σi ◦ τj = σk ◦ τℓ. Restrict this equality toM and getσi = σk, whencei = k. Having this, multiply
from the left byσ−1

i and obtainτj = τℓ, whencej = ℓ. As consequence we find the multiplicativity
of the separable degree in towers of algebraic field extensions:

[L : K]sep = [L : K]sep[M : K]sep.

This multiplicivity combined with our calculations forL = K[X]/(f) immediately give for a
finite extensionL/K:

L/K is separable⇔ [L : K] = [L : K]sep,
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and the inequality[L : K] ≥ [L : K]sep always holds.
One more definition: the setKsep := {x ∈ K | x is separable overK} is calledthe separable

closure ofK in K. It can be seen as the compositum of all finite separable subextensionsL/K inside
K, whence it clearly is a field.

Proposition 2.10. Leta ∈ Ksep such thatσ(a) = a for all σ ∈ HomK(K, K), thena ∈ K.

Proof. If a were not inK, then we letf ∈ K[X] be its minimal polynomial and we letα ∈ K be a
root of f . Then we haveσa : K(a) → K (defined as above) a non-trivialK-homomorphism, which
we may extend to a non-trivialσa : K → K, contradiction.

This allows us to write down the minimal polynomial of a separable elementx ∈ Ksep as follows.

Proposition 2.11. Leta ∈ Ksep and consider the set

{σ1, σ2, . . . , σn} = HomK(K(a), K)

with n = [K(a) : K] = [K(a) : K]sep. Then the minimal polynomial ofa overK is

fa(X) :=
n∏

i=1

(X − σi(a)).

Proof. We extendσi to σi : K → K and observeσ(fa) = fa (whereσ is applied to the coefficients
of fa) for all K-homomorphismsσ : K → K, whencefa ∈ K[X]. Here we have used that everyσ

restricted toK(a) is one of theσi, and, hence, application ofσ just permutes theσi in the product.
Proposition 2.10 now implies that the coefficients offa are indeed inK.

It remains to see that the polynomial is irreducible. But that is clear for degree reasons. Of course,
a is a zero offa (one of theσi is the identity ona), fa is monic and its degree is that of[K(a) : K].

3 Rings of integers

We recall central definitions and propositions from last term’s course oncommutative algebra.

Definition 3.1. LetR be a ring andS an extension ring ofR (i.e. a ring containingR as a subring).
An elementa ∈ S is called integral overR if there exists a monic polynomialf ∈ R[X] such that
f(a) = 0.

Note that integrality is also a relative notion; an element is integraloversome ring. Also note the
similarity with algebraic elements; we just added the requirement that the polynomial be monic.

Example 3.2. (a) The elements ofQ that are integral overZ are precisely the integers ofZ.

(b)
√

2 ∈ R is integral overZ becauseX2 − 2 annihilates it.

(c) 1+
√

5
2 ∈ R is integral overZ becauseX2 − X − 1 annihilates it.
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(d) a := 1+
√
−5

2 ∈ R is not integral overZ becausef = X2 − X + 3
2 annihilates it. If there were

a monic polynomialh ∈ Z[X] annihilating a, then we would haveh = fg with some monic
polynomialg ∈ Q[X]. But, now it would follow that bothf andg are inZ[X] (see Sheet 4 of last
term’s lecture on Commutative Algebra), which is a contradiction.

(e) LetK be a field andS a ring containingK (e.g.L = S a field) anda ∈ L. Thena is integral
overK if and only ifa is algebraic overK.

Indeed, asK is a field any polynomial with coefficients inK can be made monic by dividing by
the leading coefficient. So, if we work over a field, then the new notion of integrality is just the
notion of algebraicity from the previous section.

Definition 3.3. LetS be a ring andR ⊆ S a subring.

(a) The setRS = {a ∈ S | a is integral overR} is called theintegral closure ofR in S (compare
with the algebraic closure ofR in S – the two notions coincide ifR is a field).

An alternative name is:normalisation ofR in S.

(b) S is called anintegral ring extension ofR if RS = S, i.e. if every element ofS is integral overR
(compare with algebraic field extension – the two notions coincide ifR andS are fields).

(c) R is calledintegrally closed inS if RS = R.

(d) An integral domainR is called integrally closed(i.e. without mentioning the ring in which the
closure is taken) ifR is integrally closed in its fraction field.

(e) Letai ∈ S for i ∈ I (some indexing set). We letR[ai | i ∈ I] (note the square brackets!) be the
smallest subring ofS containingR and all theai, i ∈ I.

Note that we can seeR[a] insideS as the image of the ring homomorphism

Φa : R[X] → S,
d∑

i=0

ciX
i 7→

d∑

i=0

cia
i.

Proposition 3.4. LetR ⊆ S ⊆ T be rings.

(a) For a ∈ S, the following statements are equivalent:

(i) a is integral overR.

(ii) R[a] ⊆ S is a finitely generatedR-module.

(b) Let a1, . . . , an ∈ S be elements that are integral overR. ThenR[a1, . . . , an] ⊆ S is integral
overR and it is finitely generated as anR-module.

(c) LetR ⊆ S ⊆ T be rings. Then ‘transitivity of integrality’ holds:

T/R is integral ⇔ T/S is integral andS/R is integral.

(d) RS is a subring ofS.
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(e) Anyt ∈ S that is integral overRS lies in RS . In other words,RS is integrally closed inS
(justifying the name).

Definition 3.5. Recall that anumber fieldK is a finite field extension ofQ. Thering of integers ofK
is the integral closure ofZ in K, i.e.ZK . An alternative notation isOK .

Example 3.6. Letd 6= 0, 1 be a squarefree integer. The ring of integers ofQ(
√

d) is

(1) Z[
√

d], if d ≡ 2, 3 (mod 4),

(2) Z[1+
√

d
2 ], if d ≡ 1 (mod 4).

Proposition 3.7. Every factorial ring (unique factoriation domain) is integrally closed.

Proposition 3.8. Let R be an integral domain,K = Frac(R), L/K a finite field extension and
S := RL the integral closure ofR in L. Then the following statements hold:

(a) Everya ∈ L can be written asa = s
r with s ∈ S and0 6= r ∈ R.

(b) L = Frac(S) andS is integrally closed.

(c) If R is integrally closed, thenS ∩ K = R.

The following proposition was stated but not proved in last term’s lecture.

Proposition 3.9. LetR be an integral domain which is integrally closed (recall: that means integrally
closed inK = Frac(R)). LetK be an algebraic closure ofK and leta ∈ K be separable overK.
Then the following statements are equivalent:

(i) a is integral overR.

(ii) The minimal polynomialma ∈ K[X] of a overK has coefficients inR.

Proof. ‘(ii) ⇒ (i)’: Since by assumptionma ∈ R[X] is a monic polynomial annihilatinga, by defini-
tion a is integral overR.

‘(i) ⇒ (ii)’: From Proposition 2.11 we know that the minimal polynomial ofa overK is

ma(X) =
n∏

i=1

(X − σi(a)),

where{σ1 = id, σ2, . . . , σn} = HomK(K(a), K).
We assume thata is integral overR, so there is some monic polynomialga ∈ R[X] annihilatinga.

It follows thatma dividesga. Consequently,ga(σi(a)) = σi(ga(a)) = σi(0) = 0 for all i = 1, . . . , n,
proving that alsoσ2(a), σ3(a), . . . , σn(a) are integral overR. Hence,ma has integral coefficients
overR (they are products and sums of theσi(a)). As R is integrally closed inK, the coefficients lie
in R.

We now apply norm and trace to integral elements.
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Lemma 3.10.LetR be an integrally closed integral domain,K its field of fractions,L/K a separable
finite field extension andS the integral closure ofR in L. Let s ∈ S. Then the following statements
hold:

(a) TrL/K(s) ∈ R andNormL/K(s) ∈ R.

(b) s ∈ S× ⇔ NormL/K(s) ∈ R×.

Proof. (a) directly follows fromS ∩ K = R.
(b) ‘⇒’: Let s, t ∈ S× such thatts = 1. Then 1 = NormL/K(1) = NormL/K(st) =

NormL/K(s)NormL/K(t), exhibiting an inverse ofNormL/K(s) in R.
‘⇐’: AssumeNormL/K(s) ∈ R×. Then 1 = rNormL/K(s) = r

∏
σ∈HomK(L,K) σ(s) =(

r
∏

id 6=σ∈HomK(L,K) σ(s)
)
s = ts, exhibiting an inverse tos in S.

Next we use the discriminant to show the existence of an integral basis. Thediscriminant will also
be important in the proof of the Noetherian-ness of the ring of integers of anumber field.

Lemma 3.11.LetR be an integrally closed integral domain,K its field of fractions,L/K a separable
finite field extension andS the integral closure ofR in L.

(a) For anyK-basisα1, . . . , αn of L, there is an elementr ∈ R \ {0} such thatrαi ∈ S for all
i = 1, . . . , s.

(b) Letα1, . . . , αn ∈ S be aK-basis ofL and letd = disc(α1, . . . , αn) be the discriminant of this
basis. ThendS ⊆ Rα1 + · · · + Rαn.

Proof. (a) By Proposition 3.8 (a), we can writeαi = si
ri

with ri ∈ R andsi ∈ S for all i = 1, . . . , n.
Hence, we may taker = r1 · . . . · rn.

(b) Let s =
∑n

j=1 xjαj be an element ofS with xj ∈ K for j = 1, . . . , n. We showds ∈
Rα1 + · · · + Rαn. Note that the elementary properties of the norm yield

TrL/K(αis) =
n∑

j=1

Tr(αiαj)xj ∈ S ∩ K = R.

We can rewrite this in matrix form usingM = DtrD =




TrL/K(α1α1) ··· TrL/K(α1αn)

...
...

...
TrL/K(αnα1) ··· TrL/K(αnαn)


. Now:

M

( x1

...
xn

)
=




Pn
j=1

Tr(α1αj)xj

...
Pn

j=1
Tr(αnαj)xj


 ∈ Rn.

Multiplying through with the adjoint matrixM# yields

M#M

( x1

...
xn

)
= det(M)

( x1

...
xn

)
= d

( x1

...
xn

)
∈ Rn.

Thus,dxi ∈ R for all i = 1, . . . , n and, consequently,ds ∈ Rα1 + · · · + Rαn.
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We now need a statement that is very simple and could have been proved in last term’s course on
commutative algebra (but, it wasn’t). We give a quick proof.

Theorem 3.12. Let R be a principal ideal domain andM a finitely generatedR-module. Then the
following statements hold:

(a) Assume thatM is a freeR-module of rankm. Then any submoduleN of M is finitely generated
and free of rank≤ m.

(b) An elementm ∈ M is calledtorsion elementif there is0 6= r ∈ R such thatrm = 0. The set
Mtorsion = {m ∈ M | m is a torsion element} is anR-submodule ofM , the order of which is
finite.

(c) M is a freeR-module⇔ Mtorsion = {0}.

(d) There is an integerm such that

M ∼= Mtorsion ⊕ R ⊕ . . . ⊕ R︸ ︷︷ ︸
m times

.

The integerm is called theR-rankof M .

(e) Let0 → N → M → Q → 0 be a short exact sequence of finitely generatedR-modules. Then
rkR(M) = rkR(N) + rkR(Q).

Proof. (a) We give a proof by induction onm. The casem = 0 is clear (the only submodule of the
zero-module is the zero-module).

Now let m = 1. ThenM ∼= R and the submodules ofM are the ideals ofR under the isomor-
phism. AsR is a principal ideal domain, the rank of the submodules ofM is thus equal to1, unless it
is the zero-ideal.

Now, suppose we already know the statement for all ranks up tom−1 and we want to prove it for
M of rankm. After an isomorphism, we may supposeM = R ⊕ . . . ⊕ R︸ ︷︷ ︸

m times

. Let π : M = R⊕ . . .⊕R

be them-th projection. It sits in the (trivial) exact sequence

0 → R ⊕ . . . ⊕ R︸ ︷︷ ︸
m−1 times

→ M
π−→ R → 0.

Let nowN ≤ M be a submodule and set

N1 := N ∩ kerπ = N ∩ R ⊕ . . . ⊕ R︸ ︷︷ ︸
m−1 times

.

By induction assumption,N1 is a freeR-module of rank at mostn−1. Moreover,π(N) is a submod-
ule ofR, hence, by the casem = 1, it is free of rank0 or 1. We have the exact sequence:

0 → N1 → N
π−→ π(N) → 0.

As π(N) is free, it is projective and this sequence splits, yielding

N ∼= N1 ⊕ π(N),
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showing thatN is free of rank at most(m − 1) + 1 = m.
(b) is trivial.
(c) ‘⇒’: Let x1, . . . , xn be a free system of generators ofM . Let x =

∑n
i=1 rixi ∈ M . If rx = 0

with R ∋ r 6= 0, thenrri = 0 for all i, thusri = 0 for all i, whencex = 0.
‘⇐’: Let x1, . . . , xn be any system of generators ofM and letx1, . . . , xm with m ≤ n be a

maximal free subset (possibly after renumbering). Ifm = n, thenM is free, which we want to
show. Assume, hence, thatm < n. Then for allm + 1 ≤ i ≤ n, there is0 6= ri ∈ R such that
rixi =

∑m
j=1 ri,jxj . Settingr := ri+1 · . . . · rn, we obtain for alli = 1, . . . , n:

rxi ∈ Rx1 ⊕ Rx2 ⊕ . . . ⊕ Rxm

and, consequently, for allx ∈ M :

rx ∈ Rx1 ⊕ Rx2 ⊕ . . . ⊕ Rxm.

As Mtorsion = {0}, it follows that the map

M → Rx1 ⊕ Rx2 ⊕ . . . ⊕ Rxm, x 7→ rx,

gives an isomorphism betweenM and anR-submodule of the freeR-moduleRx1⊕Rx2⊕. . .⊕Rxm,
whence by (a)M is free.

(d) We consider the trivial exact sequence

0 → Mtorsion → M → M/Mtorsion → 0,

and claim thatM/Mtorsion is a freeR-module. By (c) it suffices to show that the only torsion element
in M/Mtorsion is 0, which works like this: Letx + Mtorsion ∈ M/Mtorsion and0 6= r ∈ R such that
r(x+Mtorsion) = rx+Mtorsion = 0+Mtorsion ∈ M/Mtorsion. Then, clearly,rx ∈ Mtorsion, whence
there is0 6= s ∈ R such thats(rx) = (sr)x = 0, yieldingx ∈ Mtorsion, as desired.

As M/Mtorsion is R-free, it is projective and, hence, the above exact sequence splits (see Com-
mutative Algebra), yielding the desired assertion.

(e) First assume thatQ is R-free of rankq. Then the exact sequence splits and one getsM ∼=
N ⊕ Q, making the assertion obvious. IfQ = Rq ⊕ Qtorsion, then consider the composite map
π : M ։ Rq ⊕ Qtorsion ։ Rq. We getrkR(M) = q + rkR(Ñ) with Ñ = ker(π). From the snake
lemma (see exercise) it is obvious thatÑ/N ∼= Qtorsion.

From this we want to conclude thatrk(N) = rk(Ñ), then we are done. We may assume that
Ñtorsion = 0 (since the torsion part plays no role for the rank), and, hence,Ntorsion = 0, so thatN and
Ñ are freeR-modules. Assume that the rank ofN is strictly smaller than the rank of̃N . We claim
that there is then somex ∈ Ñ which isR-linearly independent of the image ofN . For, if no suchx
existed, then there would be0 6= r ∈ R such thatrÑ ⊆ N , hence,rk(Ñ) = rk(rÑ) ≤ rk(N), which
is impossible. Now, by assumption there is0 6= r ∈ R such thatr(x + N) = 0 + N , i.e. rx ∈ N ,
contradicting the linear independence.

Definition 3.13. Let R ⊆ S be an integral ring extension. IfS is free as anR-module, then an
R-basis ofS (i.e. a free generating system) exists and is called anintegral basis ofS overR.
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We point out that, ifS is an integral domain (as it always will be in this lecture), then anR-basis
of S is also aK-basis ofL = Frac(S) with K = Frac(R).

Note that, in general, there is no reason why an integral ring extensionS should be free as an
R-module. This is, however, the case for the rings of integers, as the following proposition shows.

Proposition 3.14. LetR be a principal ideal domain,K its field of fractions,L/K a finite separable
field extension andS the integral closure ofR in L.

Then every finitely generatedS-submodule0 6= M of L is a freeR-module of rank[L : K]. In
particular, S possesses an integral basis overR.

Proof. As principal ideal domains are unique factorisation domains and, hence, integrally closed, we
may apply Lemma 3.11 to obtain aK-basisα1, . . . , αn ∈ S of L and we also havedS ⊆ Rα1 + · · ·+
Rαn =: N with d = disc(α1, . . . , αn). Note thatN is a freeR-module of rankn = [L : K].

Let m1, . . . , mk ∈ M be a generating system ofM ⊆ L asS-module. As themi are elements
of L, by Proposition 3.8 (a) there isr ∈ R such thatrmi ∈ S for all i = 1, . . . , k, whencerM ⊆ S.
Hence,rdM ⊆ dS ⊆ N . Consequently, Theorem 3.12 yields thatrdM is a freeR-module of rank
at mostn. Of course, theR-rank of rdM is equal to theR-rank of M . Let 0 6= m ∈ M . Then
Nm ≤ Sm ≤ M , showing thatn, theR-rank ofN (which is equal to theR-rank ofNm) is at most
theR-rank ofM , finishing the proof.

For the rest of this section we specialise to the case of number fields.

Definition 3.15. Let K be a number field. A subringO of ZK is called anorder ofK if O has an
integral basis of length[K : Q].

Corollary 3.16. Any order in a number fieldK is a Noetherian integral domain of Krull dimension1.

Proof. Being a subring of a field,O is an integral domain. As the ring extensionZ ⊆ O is integral
(being contained in the integral extensionZ ⊆ ZK), the Krull dimension ofO equals the Krull
dimension ofZ, which is1 (see Commutative Algebra). AsO has an integral basis, we haveO ∼=
Z ⊕ . . . ⊕ Z︸ ︷︷ ︸

[K:Q] times

. ThatO is Noetherian now follows becauseZ is Noetherian and finite direct sums of

Noetherian modules are Noetherian (see Commutative Algebra).

Corollary 3.17. Let K be a number field andZK the ring of integers ofK. Then the following
statements hold:

(a) ZK is an order ofK, also called themaximal order ofK.

(b) ZK is a Dedekind ring.

(c) Let0 ( I E ZK be an ideal. ThenI is a freeZ-module of rank[K : Q] and the quotientZK/I

is finite (i.e. has finitely many elements; equivalently, the index(ZK : I) is finite).

Proof. (a) It is a trivial consequence of Proposition 3.14 thatZK is a freeZ-module of rank[K : Q]

becauseZK is aZK-module generated by a single element, namely1. In particular,ZK has an integral
basis and, hence, is an order ofK.
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(b) From Corollary 3.16 we know thatZK is a Noetherian integral domain of Krull dimension1.
It is also integrally closed (being defined as the integral closure ofZ in K), hence, by definition, a
Dedekind ring.

(c) AsZK is Noetherian, the idealI is finitely generated. Hence, Proposition 3.14 again gives that
I is a freeZ-module of rank[K : Q]. The quotient of any two freeZ-modules of the same rank is
finite by Theorem 3.12, proving the final statement.

Definition 3.18. Let K be a number field with ring of integersZK and 0 6= a ⊂ K be a finitely
generatedZK-module. Thediscriminant ofa is defined asdisc(α1, . . . , αn) for any Z-basis of the
freeZ-modulea (see Proposition 3.14). (By Proposition 2.8 (c), this definition does not depend on the
choice ofZ-basis because the basis transformation matrix is invertible with integral entries and thus
has determinant±1.)

Thediscriminant ofK is defined asdisc(ZK).

Proposition 3.19. Let K be a number field andZK its ring of integers. Let0 6= a ⊆ b ⊂ K be two
ZK-modules. Hence, the index(b : a) is finite and satisfies

disc(a) = (b : a)2 disc(b).

Proof. Exercise on Sheet 4.

4 Ideal arithmetic

It is useful, in order to make the set of non-zero ideals of a Dedekind ringinto a group with respect to
multiplication of ideals, to introduce fractional ideals, which will be needed forthe inverses.

Definition 4.1. LetR be an integral domain andK = Frac(R).

• AnR-submoduleI ≤ K is called afractional ideal ofR (or: fractionalR-ideal) if

– I 6= (0) and

– there isx ∈ K× such thatxI ⊆ R.

Note thatx can always be chosen inR \ {0}. Note also thatxI is an ideal ofR (in the usual
sense).

• A fractionalR-ideal I is called anintegral idealif I ⊆ R.

Note that for a subset(0) 6= I ⊂ K, one trivially has:

I E R is an ideal ofR in the usual sense⇔ I is an integral fractionalR-ideal.

• A fractionalR-ideal I is calledprincipal if there isx ∈ K× such thatI = Rx.

• Let I, J be fractionalR-ideals. Theideal quotientof I byJ is defined as

I : J = (I : J) = {x ∈ K | xJ ⊆ I}.
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• Theinverse idealof the fractionalR-ideal I is defined as

I−1 := (R : I) = {x ∈ K | xI ⊆ R}.

• Themultiplier ringof the fractionalR-ideal I is defined as

r(I) := (I : I) = {x ∈ K | xI ⊆ I}.

Example 4.2. The fractional ideals ofZ are all of the formI = a
b Z with a, b ∈ Z \ {0}. Hence, all

fractionalZ-ideals are principal.
It is clear that a

b Z is a fractional ideal. Conversely, letI be a fractional ideal such thatbI is an
ideal ofZ, whencebI = (a) = aZ, so thatI = a

b Z.
Let I = a

b Z andJ = c
dZ, then

(I : J) = {x ∈ Q | x
c

d
Z ∈ a

b
Z} = {x ∈ Q | x ∈ ad

bc
Z} =

ad

bc
Z.

In particular, I−1 = b
aZ andII−1 = Z (because, clearly⊆ and1 ∈ II−1).

Lemma 4.3. Let R be an integral domain andK = Frac(R). Let I, J ⊂ K be fractionalR-ideals.
Then the following sets are fractionalR-ideals.

• I + J = {x + y | x ∈ I, y ∈ J},

• IJ = {∑n
i=1 xiyj | n ∈ N, x1, . . . , xn ∈ I, y1, . . . , yn ∈ J},

• In = I · I · . . . · I︸ ︷︷ ︸
n times

,

• I ∩ J ,

• (I : J).

Proof. Exercise.

Lemma 4.4. Let R be an integral domain andH, I, J ⊂ K fractional R-ideals. Then the following
properties hold:

(a) IJ ⊆ I ∩ J (assume here thatI andJ are integral ideals),

(b) H + (I + J) = (H + I) + J = H + I + J ,

(c) H(IJ) = (HI)J ,

(d) H(I + J) = HI + HJ .

Proof. Exercise.

Lemma 4.5. LetR be an integral domain andI, J E R be ideals (in the usual sense). IfI + J = R,
then we callI andJ coprime ideals.

Suppose now thatI andJ are coprime. Then the following statements hold:
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(a) In andJm are coprime for alln, m ∈ N.

(b) I ∩ J = IJ .

(c) R/(IJ) ∼= R/I × R/J (Chinese Remainder Theorem).

(d) If IJ = Hn for somen ∈ N, thenI = (I + H)n, J = (J + H)n and(I + H)(J + H) = H.

In words: If an ideal is ann-th power, then so is each of its coprime factors.

Proof. (a) By assumption1 = i+ j for somei ∈ I and somej ∈ J . Now1 = 1n+m = (i+ j)n+m ∈
In + Jm.

(b) The inclusion ‘⊇’ is clear. We now show ‘⊆’. Let x ∈ I ∩ J . Again by assumption1 = i + j

for somei ∈ I and somej ∈ J . Hence,x = x · 1 = xi + xj, whencex ∈ IJ becausexi ∈ IJ and
xj ∈ IJ .

(c) That’s just a reminder. It was proved in some of your Algebra lectures.
(d) We start with the following computation:

(I + H)n = In + In−1H + In−2H2 + · · · + IHn−1 + Hn

= I(In−1 + In−2H + · · · + Hn−1 + J)

= IR = I

becauseHn = IJ andJ andIn−1 are coprime by the Lemma. DefineA = I + H andB = J + H.
Then

AB = (I + H)(J + H) = IJ + IH + JH + H2 = Hn + IH + JH + H2

= H(Hn−1 + I + J + H) = HR = H,

as required.

Example 4.6. Let us consider the ringR = Z[
√
−19]. In this ring, we have the following factorisa-

tions:
182 + 19 = (18 +

√
−19)(18 −

√
−19) = 343 = 73.

Let us take the principal idealsI = (18 +
√
−19) andJ = (18 −

√
−19), then

IJ = (7)3.

The previous lemma now gives:

I = (I + (7))3 = (18 +
√
−19, 7)3 andJ = (J + (7))3 = (18 −

√
−19, 7)3.

But, one can check, by hand, that the elements18 +
√
−19 and18−

√
−19 are not third powers inR

(just take(a + b
√
−19)3 = 18 −

√
−19 and work out that no sucha, b ∈ Z exist).

In this example we see that ideals behave better than elements. We will extendthe phenomenon
that we just saw to the unique factorisation of any ideal in a Dedekind ring into aproduct of prime
ideals.
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Proposition 4.7. Let R be a Noetherian integral domain,K = Frac(R) and(0) 6= I ⊂ K a subset.
Then the following two statements are equivalent:

(i) I is a fractionalR-ideal.

(ii) I is a finitely generatedR-submodule ofK (this is the definition in Neukirch’s book).

Proof. ‘(i)⇒(ii)’: By definition, there isr ∈ R \ {0} such thatrI ⊆ R, hence,rI is an ideal ofR
in the usual sense. AsR is Noetherian,rI is finitely generated, say bya1, . . . , an. ThenI is finitely
generated asR-submodule ofK by a1

r , . . . , an
r .

‘(ii) ⇒(i)’: SupposeI is generated asR-submodule ofK by a1

r1
, . . . , an

rn
. Thenr = r1 · . . . · rn is

such thatrI ⊆ R.

This proposition also shows us how we must think about fractionalR-ideals, namely, just as
R-linear combinations of a given set of fractionsa1

rn
, . . . , an

rn
(where we may choose a common de-

nominator).

Definition 4.8. Let R be an integral domain andK = Frac(R). A fractionalR-ideal I is called an
invertibleR-ideal if there is a fractionalR-idealJ such thatIJ = R.

Note that the term ‘invertibleR-ideal’ applies only to fractionalR-ideals (which may, of course,
be integral).

Lemma 4.9. Let R be an integral domain,K = Frac(R) and I a fractional R-ideal. Then the
following statements hold:

(a) II−1 ⊆ R.

(b) I is invertible⇔ II−1 = R.

(c) LetJ be an invertibleR-ideal. Then(I : J) = IJ−1.

(d) If 0 6= i ∈ I such thati−1 ∈ I−1, thenI = (i).

Proof. (a) holds by definition.
(b) ‘⇒’: Let J be a fractionalR-ideal such thatIJ = R (exists by definition ofI being invertible).

Then, on the one hand, by the definition ofI−1 we haveJ ⊆ I−1. On the other hand,I−1 = I−1IJ ⊆
RJ = J , showingJ = I−1.

‘⇐’: is trivial.
(c) We show both inclusions of{x ∈ K | xJ ⊆ I} = IJ−1.
‘⊆’: Let x ∈ K such thatxJ ⊆ I. This impliesx ∈ xR = xJJ−1 ⊆ IJ−1.
‘⊇’: We have(IJ−1)J = I(JJ−1) = I ⊆ I, whenceIJ−1 ⊆ (I : J).
(d) We haveI = i(i−1I) ⊆ iI−1I ⊆ iR = (i) ⊆ I.

We include the next lemma to avoid writing down the Noetherian hypothesis in the next corollary
and the subsequent definition.

Lemma 4.10.LetR be an integral domain withK = Frac(R). Then any invertibleR-ideal is finitely
generated.



5 IDEALS IN DEDEKIND RINGS 26

Proof. Let IJ = R. In particular,1 is in IJ , whence there areik ∈ I andjk ∈ J for k = 1, . . . , n

(somen ∈ N) such that1 =
∑n

k=1 ikjk. Let x ∈ I. Then

x = x · 1 =
n∑

k=1

(xjk)ik ∈
n∑

k=1

Rik,

hence,I =
∑n

k=1 Rik.

Corollary 4.11. Let R be an integral domain. The setI(R) of invertible fractionalR-ideals forms
an abelian group with respect to multiplication of ideals, withR being the neutral element, and the
inverse ofI ∈ I(R) beingI−1.

The setP(R) := {xR | x ∈ K×} of principal fractionalR-ideals forms a subgroup ofI(R).

Proof. This just summarises what we have seen. ThatP(R) is a subgroup is clear.

Definition 4.12. Let R be an integral domain. One callsI(R) thegroup of invertibleR-idealsand
P(R) thesubgroup of principal invertibleR-ideals.

The quotient groupPic(R) := I(R)/P(R) is called thePicard group ofR.
If K is a number field andZK its ring of integers, one also writesCL(K) := Pic(ZK), and calls

it the ideal class group ofK.

Corollary 4.13. Let R be an integral domain andK = Frac(R). Then we have the exact sequence
of abelian groups

1 → R× → K× f−→ I(R)
proj−−→ Pic(R) → 1,

wheref(x) is the principal fractionalR-idealxR.

Proof. The exactness is trivially checked. Note, in particular, thatxR = R (the neutral element in the
group) if and only ifx ∈ R×.

Corollary 4.14. Let R be a principal ideal domain. ThenPic(R) = {R} (the group with one ele-
ment).

Proof. This is the case by definition: that every ideal is principal implies that every fractional ideal is
principal, i.e.I(R) = P(R), whence their quotient is the group with one element.

Example 4.15.The groupsCL(Q) = Pic(Z) andPic(K[X]) (for K a field) are trivial.

5 Ideals in Dedekind rings

We will now giving a ‘local characterisation’ of invertible ideals. Recall that, if R is a ring andp
is a prime ideal, we defined the localisation ofR at p asRp := S−1R, where the multiplicatively
closed subsetS ⊆ R is given asS = R \ p (the multiplicative closedness being precisely the property
of p being a prime ideal). For anyR-module, we defined its localisation atp as Mp = S−1M .
Consequently, ifI is a fractionalR-ideal, thenIp ⊆ K (note thatS−1K = K and thus the embedding
I →֒ K gives rise to an embeddingIp →֒ K). If I E R is an ideal in the usual sense, thenIp =

S−1I ⊆ S−1R = Rp ⊆ K. See the lecture on Commutative Algebra for more details on localisation.
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Very concretely, we haveRp = { r
s ∈ K | r ∈ R, s ∈ S} andIp = { i

s ∈ K | i ∈ I, s ∈ S}.
Moreover, we have(Ip)

−1 = (I−1)p.
We first prove that the invertibility of an ideal is a local property.

Theorem 5.1. LetR be an integral domain andI a fractionalR-ideal. Then the following statements
are equivalent:

(i) I is invertible.

(ii) • I is finitely generated asR-submodule ofK (this assumption is unnecessary ifR is Noethe-
rian by Proposition 4.7) and

• Im is a principal fractionalRm-ideal for all maximal idealsm � R.

Proof. ‘⇒’: Let I be invertible. Then Lemma 4.10 implies thatI is finitely generated. SinceII−1 =

R, there areik ∈ I andjk ∈ I−1 for k = 1, . . . , n and for somen ∈ N such that1 =
∑n

k=1 ikjk.
Let m be any maximal ideal. There is some indexk such thatikjk 6∈ m, as otherwise1 ∈ m. Hence,
ikjk =: s ∈ R \ m, so thati−1

k = jk
s ∈ I−1

m . Lemma 4.9 (d) impliesIm = iRm.
‘⇐’: Let us assume the contrary, i.e.II−1 ( R. Then there is a maximal idealm � R such that

II−1 ⊆ m. By assumption we haveIm = xRm with somex ∈ I (after clearing denominators). The
finite generation ofI impliesI = (i1, . . . , in) for somen ∈ N. For eachk = 1, . . . , n we findrk ∈ R

and we finds ∈ R \ m such that

ik = x
rk

s
(same denominator without loss of generality).

Hence, we haveR ∋ rk = sikx
−1 for all k = 1, . . . , n. Thus, we havesx−1I ⊆ R, whence

sx−1 ∈ I−1. We concludes ∈ xI−1 ⊆ II−1 ⊆ m, which is a contradiction becauses is not
in m.

The property (ii) is called: ‘I is locally free of rank1’. In Algebraic Geometry one usually takes
this property as the defining property of invertibility: one defines invertible sheaves as those sheaves
that are locally free of rank1.

Example 5.2. We continue Example 4.6. Hence,R = Z[
√
−19] and we consider the idealI :=

(18 +
√
−19, 7) = (7, 3 −

√
−19).

We first show thatI is maximal. That we do as follows. Consider the ring homomorphism

α : Z[X]
X 7→3−−−→ F7.

Its kernel clearly is(7, X − 3). Moreover, consider the natural projection

π : Z[X] ։ Z[X]/(X2 + 19)
∼ X 7→

√
−19−−−−−−−−→ Z[

√
−19].

Also consider the surjection

φ : Z[
√
−19] → F7, a + b

√
−19 7→ a + b3.
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We note thatα = φ ◦π, from which we conclude that the kernel of is the image underπ of (7, X − 3),
hence, is equal to(7,

√
−19−3) = I as claimed. Hence,I is maximal because the quotientR/I = F7

is a field.
Next, we compute the localisation ofI at a maximal idealm � Z[

√
−19].

First case:m 6= I. Then there isx ∈ I \ m, so thatIm = Rm becauseIm contains a unit ofRm.
Second case:m = I. Then we claim thatIm = 7Rm. For this, we have to show that3 −

√
−19 ∈

7Rm. We have:

7 =
3 +

√
−19

4
(3 −

√
−19).

Note that4 6∈ I and3 +
√
−19 6∈ I (to see the former, observe that in the contrary case2 · 4 − 7 =

1 ∈ I; to see the latter observe that in the contrary case7 − (3 +
√
−19) − (3 −

√
−19) = 1 ∈ I).

Hence,3+
√
−19

4 is a unit inRm, proving the claim.

Lemma 5.3. Let R be a Noetherian integral domain with field of fractionsK. For every ideal0 6=
I E R, there isn ∈ N and there are non-zero prime idealsp1, . . . , pn such that

p1 · p2 · . . . · pn ⊆ I.

Proof. Consider the set

M := {0 6= I E R | the assertion is wrong forI}.

We want to showM = ∅. So, let us assumeM 6= ∅. We want to apply Zorn’s lemma to obtain a
maximal elementJ in M, i.e. an elementJ ∈ M such that for all idealsJ ( I we haveI 6∈ M.

Note thatM has a partial ordering given by⊆. For Zorn’s Lemma we have to check that every
ascending chain

I1 ⊆ I2 ⊆ . . .

with Ii ∈ M for i = 1, 2, . . . has an upper bound, that is, an elementI ∈ M containing all theIi.
That is the case sinceR is Noetherian and, thus, the ideal chain becomes stationary. So, letJ ∈ M
be such a maximal element. We distinguish two cases.

First case:J is a prime ideal. ThenJ ⊆ J impliesJ 6∈ M, contradiction. Hence, we are in the
Second case:J is not a prime ideal. Consequently, there are two elementsx, y ∈ R such that

xy ∈ J butx, y 6∈ J . This allows us to consider the ideals

J1 := (J, x) ) J andJ2 := (J, y) ) J.

Due to the maximality ofJ ∈ M, we have thatJ1 andJ2 are not inM. Consequently, there are
p1, . . . , pn andq1, . . . , qm non-zero prime ideals ofR such that

p1 · . . . · pn ⊆ J1 andq1 · . . . · qm ⊆ J2.

This implies
p1 · . . . · pn · q1 · . . . · qm ⊆ J1J2 = (J, x)(J, y) ⊆ J,

which is also a contradiction. Hence,M = ∅.
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Corollary 5.4. Let R be a local Noetherian integral domain of Krull dimension1. Then every non-
zero idealI E R contains a power of the maximal idealp.

Proof. SinceR is a local Noetherian integral domain of Krull dimension1, its only non-zero prime
ideal isp. Hence, the assertion follows directly from Lemma 5.3.

Corollary 5.5. Let R be a Noetherian integral domain of Krull dimension1. Then every non-zero
ideal I � R with I 6= R is contained in only finitely many maximal ideals ofR. More precisely, if
p1 · . . . · pn ⊆ I, thenI is not contained in any maximal ideal different fromp1, . . . , pn.

Proof. By Lemma 5.3 there are non-zero prime idealsp1, . . . , pn such thatp1 · . . . · pn ⊆ I. Let now
m be a maximal ideal ofR containingI. We want to show thatm is equal to one of thepi, which
proves the assertions. Assume, hence, thatm is none of thepi. As the Krull dimension is1, none of
thepi can be contained inm. Consequently, for eachi = 1, . . . , n the idealpi is coprime tom. There
are thusxi ∈ pi andyi ∈ m such that1 = xi + yi. We conclude

m ⊇ p1 · . . . · pn ∋ x1 · . . . · xn = (1 − y1) · . . . · (1 − yn) ∈ 1 + m,

which is the desired contradiction.

Lemma 5.6. Let R be an integral domain andI a fractionalR-ideal. ThenI =
⋂

m�R maximalIm ⊂
K.

Proof. We show both inclusions.
‘⊆’: is trivial becauseI ⊆ Im for all prime ideals (and, hence, in particular, all maximal ideals)m,

asK is an integral domain.
‘⊇’: Let x ∈ ⋂

m�R maximalIm and consider the idealJ := {r ∈ R | rx ∈ I} E R. We want
to showJ = R because thenx ∈ I. If J 6= R, thenJ is contained in some maximal idealm � R.
Write x = a

s with a ∈ I ands ∈ R \ m. Becausesx = a ∈ I, it follows s ∈ J ⊆ m, which is a
contradiction.

Theorem 5.7. LetR be a Noetherian integral domain of Krull dimension1. Then the map

Φ : I(R) →
⊕

06=p�R prime ideal

P(Rp), I 7→ (. . . , Ip, . . .),

is an isomorphism of abelian groups.

The meaning of this theorem is that any non-zero invertible idealI �R is uniquely determined by
all its localisationsIp (at the non-zero prime ideals ofR).

Proof. There are four things to show.

• Φ is well-defined. First recall that Theorem 5.1 shows thatIp is a principal ideal. Second, recall
that an element of a direct sum only has finitely many components different from the identity;
the identity ofP(Rp) is (1) = Rp.

We first show that the statement is correct for an integral ideal0 6= I E R. Suppose thus that
Ip ( Rp. ThenI ⊆ p (all elements ofR \ p are units inRp). Corollary 5.5 implies that there
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are only finitely many suchp. Now let us suppose thatI is a fractionalR-ideal. Then there is
somer ∈ R \ {0} such that0 6= rI E R is an integral ideal. Thus, we may (and do) apply
the previous reasoning to the integral idealsrI and(r) = rR, and we obtain that for all prime
ideals but possibly finitely many(rI)p = Rp and(r)p = rRp = Rp. For any suchp we hence
haveRp = (rI)p = (rRp) · Ip = Rp · Ip = Ip, proving the assertion.

• Φ is a group homomorphism. This is a property of localisations (already used in the previous
item): LetS = R \ p. Then(S−1I1)(S

−1I2) = S−1(I1I2), i.e.Φ(I1I2) = Φ(I1)Φ(I2).

• Φ is injective. SupposeIp = Rp for all non-zero prime idealsp of R. Then we have

I =
⋂

06=p�R prime ideal

Ip =
⋂

06=p�R prime ideal

Rp = R

by Lemma 5.6.

• Φ is surjective. AsΦ is a group homomorphism, it suffices to construct an invertible ideal
J ∈ I(R) such that, for given maximal idealm � R and given principal ideala � Rm, we have
Jp = Rp for all nonzero prime idealsp 6= m andJm = a.

We setJ := R ∩ a. We first claimJm = a.

‘⊆’: Let r ∈ R ∩ a, that meansr1 ∈ a, whencer
s ∈ a for all s ∈ S = R \ m.

‘⊇’: Let a
s ∈ a with a ∈ R ands ∈ S = R \ m. Thensa

s = a
1 ∈ a ∩ R, whencea

s ∈ Jm,
proving the claim.

By Corollary 5.4, there isn ∈ N such that(mRm)n ⊆ Jm. Recall thatmRm is the maximal
ideal ofRm. It is clear that we havemn ⊆ (mRm)n ∩ R. Consequently,mn ⊆ R ∩ (mRm)n ⊆
Jm ∩ R = J . By Corollary 5.5 we have thatJ 6⊆ p for all maximal idealsp 6= m, whence
Jp = Rp.

This concludes the proof.

We are now going to apply the above to Dedekind rings. For this, we recall the following charac-
terisation from the lecture on Commutative Algebra.

Proposition 5.8. Let R be a Noetherian integral domain of Krull dimension1. Then the following
assertions are equivalent:

(i) R is a Dedekind ring.

(ii) R is integrally closed.

(iii) Rm is integrally closed for all maximal idealsm � R.

(iv) Rm is regular for all maximal idealsm � R.

(v) Rm is a principal ideal domain for all maximal idealsm � R.

We will mostly be interested in (iv). Hence, it is useful to quickly recall the definition of a regular
local ring and the main property of such rings in our case of Krull dimension1.
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Definition 5.9. A Noetherian local ring with maximal idealm is called regularif dimR/m(m/m2)

equals the Krull dimension ofR.

Proposition 5.10. LetR be a regular local ring of Krull dimension1. Then there isx ∈ R such that
all non-zero ideals are of the form(xn) for somen ∈ N.

Such a ring is called adiscrete valuation ring.

Corollary 5.11. Let R be a regular local ring of Krull dimension1 and letp be its maximal ideal.
Then there isx ∈ R such that all fractional ideals ofR are of the form(x)n = pn for somen ∈ Z.
Moreover, the map

Z → I(R), n 7→ pn

is an isomorphism of abelian groups.

Proof. By Proposition 5.10, the unique maximal idealp is equal to(x), and, hence, all integral ideals
of R are of the formpn for somen ∈ N. It is clear that(xn) = pn is invertible with inverse
(( 1

x)n) = (x)−n. The final statement is an immediate consequence.

Definition 5.12. LetR be a Dedekind ring andI be an invertibleR-ideal. For a maximal idealp�R,
by Proposition 5.10, there is a unique integern ≥ 0 such thatIp = (pRp)

n. We writeordp(I) := n.

Now we can prove unique ideal factorisation.

Theorem 5.13.LetR be a Dedekind ring. The map

Φ : I(R) →
⊕

06=p�R prime ideal

Z, I 7→ (. . . , ordp(I), . . .)

is an isomorphism of abelian groups. EveryI ∈ I(R) can be uniquely written as

I =
∏

06=p�R prime ideal

pordp(I)

(note that the product is finite).

Proof. The first statement follows from composing the isomorphism of Theorem 5.7 (which also
implies the finiteness of the product) with the isomorphismP(Rp) → Z, given byordp (the inverse
to the isomorphism from Corollary 5.11).

It suffices to show the final claim for invertible integral ideals because wecan write any fractional
R-ideal as a quotient of two integral ones:rI E R for somer ∈ R \ {0}, whenceI = (rI) · (r)−1.
To see the final claim, forI E R we compute

I =
⋂

06=p�R prime ideal

Ip =
⋂

06=p�R prime ideal

(Ip ∩ R) =
⋂

06=p�R prime ideal

((pRp)
ordp(I) ∩ R)

=
⋂

06=p�R prime ideal

pordp(I) =
∏

06=p�R prime ideal

pordp(I),

where we used Lemma 5.6 and the pairwise coprimeness of the maximal ideals, sothat the intersection
becomes a product. We also used(pRp)

n ∩ R = pn (see Remark 5.15).
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Remark 5.14. Theorem 5.13 is a generalisation of unique factorisation in a principal ideal domain.

Remark 5.15. Let I be an invertible integralR-ideal of a Noetherian integral domain of Krull di-
mension1. For a maximal idealp�R we definethep-primary component ofI asI(p) := Ip∩R. The
calculations made in the proof of Theorem 5.7 show that the localisation at a maximal idealm is the
following one:

(I(p))m =

{
Ip if p = m,

Rm if p 6= m.

Moreover, the primary components behave ‘multiplicatively’:

(IJ)(p) = I(p)J(p)

for any invertible integralR-idealsI and J . This is easy to see by working locally at all maximal
idealsp (which suffices by Theorem 5.7): the ideals on both sides have the same local components at
all maximal idealsm.

The multiplicativity implies, in particular, that

(pRp)
n ∩ R = pn

for an invertible maximal idealp, which we used in the proof of Theorem 5.13, becausepRp ∩ R = p

(this equality can either be checked locally or directly, like this: ifx
s = r

1 with x ∈ p, r ∈ R and
s ∈ R \ p, thenx = rs ∈ p, whencer ∈ p by the prime ideal property ofp).

We finish with one corollary that we should have stated immediately after Proposition 5.8.

Corollary 5.16. LetR be a Dedekind ring. Then any fractionalR-ideal is invertible.

Proof. By Proposition 5.8 we know thatRm is a principal ideal domain for all maximal idealsm�R.
Hence, given any fractionalR-idealI, we have thatIm is principal for allm, which by Theorem 5.7)
implies thatI is invertible.

6 Geometry of Numbers

6.1 Introduction

Up to this point, we have been studying Dedekind domains in quite some generality. In this last part
of the series of lectures, we will focus on the case of rings of integers ofnumber fields.

Recall (cf. Corollary 4.13) that, for any integral domainR, we have the following exact sequence

1 // R× // K× f
// I(R)

proj
// Pic(R) // 1

where:

• K is the field of fractions ofR.

• I(R) is the group of invertible ideals ofR.
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• Pic(R) is the Picard group ofR, that is to say, the quotient ofI(R) modulo the groupP(R) of
principal fractionals ideals ofR.

• f : K× → I(R) maps an elementx ∈ K to the principal fractional idealxR.

• proj : I(R) → I(R)/P(R) = Pic(R) is the projection.

We want to study this exact sequence in the particular case whereR = ZK is the ring of integers
of a number fieldK. SinceZK is a Dedekind domain, all nonzero fractional ideals are invertible (see
Corollary 5.16). HenceI(ZK) is the set of all nonzero fractional ideals. Recall also that we denote
Pic(ZK) = CL(K) and call it theclass groupof K. The exact sequence boils down to:

1 // Z×
K

// K× f
// I(ZK)

proj
// CL(K) // 1 (6.5)

The groupCL(K) measures the failure ofZK to be a principal ideal domain. More precisely,
if CL(K) has just one element, then the mapf : K× → I(R) is surjective, so that each nonzero
fractional ideal can be expressed asxR for somex ∈ K×. In other words, every fractional ideal is
principal. On the other hand, the greaterCL(K) is, the further isf from being surjective, meaning
there will be “many” fractional ideals which are not principal.

One of the fundamental results that we will prove is thatCL(K) is finite (hence, althoughZK is
not a principal ideal domain, it is also “not too far” from it). Another important result will be thatZ×

K

is finitely generated. As a motivation to studyZ×
K , consider the following example.

Example 6.1. Letd be a rational integer which is not a square. Consider the equationx2 = dy2 + 1.

Question: Find all the solutions(x, y) ∈ Z × Z of x2 = dy2 + 1.

This equation is calledPell’s equation, and was already considered by Archimedes (287? BC–
212?BC). Actually, Exercise Sheet 8 is devoted to the Problem of the Cattle of the Sun, that Archimedes
proposes in a letter to Eratóstenes of Cirene.

If d ≤ 0, then we can rewrite the equation asx2+(−d)y2 = 1, and it only has the trivial solutions
(±1, 0) for d 6= −1 and (±1, 0), (0,±1) for d = −1. But if d > 0, it is not obvious whether this
equation has a solution (different from(±1, 0)) or not, much less to find all solutions of the equation.

Actually, without making use of any machinery at all, we can prove that ford > 0 Pell’s equation
always admits a nontrivial solution. We need the following auxiliary lemma.

Lemma 6.2. Let d be a positive rational integer which is not a square. There exist infinitely many
pairs of integers(x, y) such that0 < |x2 − dy2| < 1 + 2

√
d.

Proof. First let us see that there exists a pair of positive integers(x, y) with 0 < |x2−dy2| < 1+2
√

d,
later we will see there are infinitely many. Letm > 1 be a positive integer. For eachi ∈ {1, . . . , m},
let xi ∈ Z be such that0 ≤ xi− i

√
d < 1 (that is to say, we approximate

√
d by a quotient of integers,

where the denominator isi). This can always be done: namely, consider the fractional part of
√

d,
that is to say,{

√
d} :=

√
d−⌊

√
d⌋. This lies in the interval[0, 1). If we cut out the interval ini equal

subintervals, namely

[0, 1) =

[
0,

1

i

)
∪
[
1

i
,
2

i

)
∪ · · · ∪

[
i − 1

i
, 1

)
,
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there is a uniquej ∈ {1, . . . , i} such that{
√

d} ∈ [ j−1
i , j

i ). Then0 ≤ j
i − {

√
d} < 1

i , and
therefore0 ≤ j − i{

√
d} < 1. To approximate

√
d we just sum and substracti⌊

√
d⌋, and we get

0 ≤ (i⌊
√

d⌋ + j) − i
√

d < 1. We can takexi = i⌊
√

d⌋ + j.
Now divide the interval

[0, 1) =

[
0,

1

m − 1

)
∪
[

1

m − 1
,

2

m − 1

)
∪ · · · ∪

[
m − 2

m − 1
, 1

)
.

There arem − 1 intervals, butm pairs(xi, i). Hence (byDirichlet’s Pidgeonhole Principle), there is
one interval which contains bothxi − i

√
d andxj − j

√
d with i 6= j. Assumexi − i

√
d ≥ xj − j

√
d

(otherwise swapi andj). Call x = xi − xj , y = i − j. Hence

x − y
√

d = (xi − xj) − (i − j)
√

d = (xi − i
√

d) − (xj − j
√

d) ≤ 1

m − 1
,

thus
0 ≤ x − y

√
d ≤ 1

m − 1
.

Since1 ≤ i, j ≤ m, we have0 < |y| < m, hencex − y
√

d ≤ 1
m−1 ≤ 1

|y| . Now we can bound

0 ≤ |x2 − dy2| = |(x + y
√

d)(x − y
√

d)| = |(x − y
√

d + 2y
√

d)|(x − y
√

d)

= (x − y
√

d)2 + 2|y|
√

d(x − y
√

d) ≤ 1 + 2
|y|

m − 1

√
d ≤ 1 + 2

|y|
|y|

√
d = 1 + 2

√
d.

Moreover we know that, sinced is not a square,x2 − dy2 6= 0, and|x2 − y2d| 6= 1 + 2
√

d.
Suppose now that the setA = {(x, y) ∈ Z × Z such that0 < |x2 − dy2| < 1 + 2

√
d} is

finite. Then choosing anm ∈ N such that 1
m−1 is smaller thanx − y

√
d for all (x, y) ∈ A, the

previous construction provides us with a pair(x′, y′) ∈ A satisfyingx′ − y′
√

d < 1
m−1 , which is a

contradiction.

Proposition 6.3. Let d be a positive rational integer which is not a square. There exists pair of
rational integers(x, y) with y 6= 0 such thatx2 − dy2 = 1.

Proof. Since the number of integers in(−1 − 2
√

d, 1 + 2
√

d) \ {0} is finite, by Lemma 6.2 there
exists onek in this set such that there are infinitely many pairs(x, y) with x2 − dy2 = k. By
definitionk 6= 0. Moreover, since there are only finitely many residue clases inZ/kZ, we can assume
that there areα, β ∈ Z/kZ such that there are infinitely many pairs(x, y) with x2 − dy2 = k and
x ≡ α (mod k), y ≡ β (mod k). Take two such pairs,(x1, y1) and(x2, y2). Consider the product

(x1 − y1

√
d)(x2 + y2

√
d) = (x1x2 − y1y2d) + (x1y2 − x2y1)

√
d.

Note thatk divides bothx1(x2−x1)+k+dy1(y1−y2) = x1(x2−x1)+(x2
1−dy2

1)+dy1(y1−y2) =

x1x2 − dy1y2 and(x1 − x2)y2 − (y1 − y2)x2 = x1y2 − x2y1. Hence we can write

(x1 − y1

√
d)(x2 + y2

√
d) = k(t + u

√
d)

for some integerst, u. Moreover note that

(x1 + y1

√
d)(x2 − y2

√
d) = k(t − u

√
d),
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thus
k2 = (x2

1 − y2
1d)(x2

2 − y2
2d) = k2(t2 − u2d),

so that dividing byk (which is nonzero), we gett2 − u2d = 1.
This reasoning is valid for all(x1, y1) and(x2, y2) satisfyingy2

i −dx2
i = k andxi ≡ α (mod k),

yi ≡ β (mod k) for i = 1, 2. It remains to see that we can choose(x1, y1) and(x2, y2) so that the
correspondingu is nonzero. Note that, ifu = 0, thent = ±1, so

(x1 − y1

√
d)(x2 + y2

√
d) = k(t + u

√
d) = ±k

On the other hand we have

(x1 − y1

√
d)(x1 + y1

√
d) = x2

1 − y2
1d = k.

Therefore we getx1 + y1

√
d = ±(x2 + y2

√
d)

Fix one pair(x1, y1). Since we can choose(x2, y2) from an infinity of pairs, we can assume,
without loss of generality, thatx2 + y2

√
d 6= ±(x1 + y1

√
d) (just takex2 6= ±x1, y2 6= ±y1), and

hence the solution(t, u) that we obtain satisfiesu 6= 0.

Remark 6.4. Letd be a positive rational integer which is not a square. Consider the ring of integers
ZK of K = Q(

√
d). Recall thatZK is Z[

√
d] if d ≡ 2, 3 (mod 4), Z[1+

√
d

2 ] if d ≡ 1 (mod 4) (see
Example 3.6).

In the first case, the elements of(ZK)× are precisely the set of elementsx +
√

dy such that
x2 − dy2 = ±1. In the second case the elements of(ZK)× are those elementsx + y 1+

√
d

2 such that

(
x +

y

2

)2
− d

(y

2

)2
= ±1,

that is to say,
(2x + y)2 − dy2 = ±4,

In both cases the knowledge of the group of unities of quadratic fields completely determines the
set of solutions of the Pell equation.

The tool that we will use to study the exact sequence (6.5) is called Geometryof Numbers. This
consists of viewing rings of integers as special subsets ofRn (namely lattices), and using some analytic
tools (computing volumes) to obtain results concerningZK .

6.2 Lattices

In this section we work with(Rn), endowed with the following structures:

• A R-vector space structure(Rn, +, ·), where+ and· are defined componentwise.

• A Z-module structure(Rn, +), obtained from the vector structure above by forgetting the scalar
multiplication.
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• A normed vector space structure(Rn, +, ·, ‖ · ‖2), where theR-vector space structure is the one
above and the norm is defined as

‖ · ‖2 : Rn → R

‖(a1, . . . , an)‖2 =
√
|a1|2 + · · · + |an|2.

We will denote by{e1, . . . , en} the canonical basis ofRn asR-vector space, so that
∑n

i+1 aiei =

(a1, . . . , an).
Given a vectorv ∈ Rn and a positive real numberr, we denote byB(v; r) := {w ∈ Rn :

‖w − v‖2 < r} the open ball of radiusr centered atv andB(v; r) := {w ∈ Rn : ‖w − v‖2 ≤ r}
the closed ball of radiusr centered atv. The set of all balls{B(v; r) : v ∈ Rn, r ≥ 0} is a basis for
the topology inRn. We say that a setA ⊂ Rn is bounded if it is contained in some ball centered at
0 ∈ Rn. Recall that a set is compact if and only if it is closed and bounded (Theorem of Heine-Borel).

We will usually work with subgroups of(R, +) which are not subvector spaces. For instance,
Zn is one such subgroup. Givenv1, . . . , vr ∈ Rn, we will denote by〈v1, . . . , vr〉Z the Z-module
generated byv1, . . . , vr insideRn. Note that〈v1, . . . , vr〉Z is a countable subset, while the vector
space generated byv1, . . . , vr has cardinality|R|. On the other hand, whenever we talk about linear
dependence of elements ofRn, we will always be consideringRn with the structure ofR-vector space.

Forx ∈ R, we denote by⌊x⌋ the integer part ofx, that is, the maximumm ∈ Z such thatm ≤ x.

Definition 6.5. A half-open parallelotope(resp.closed parallelotope) is a subset ofRn of the form

P := {v ∈ Rn : v =
m∑

i=1

aivi with 0 ≤ ai < 1 for all i},
(

resp.P := {v ∈ Rn : v =
m∑

i=1

aivi with 0 ≤ ai ≤ 1 for all i}
)

wherev1, . . . , vm ∈ Rn are linearly independent.

Remark 6.6. Note that closed parallelotopes are compact sets.

The point of this section is to compute volumes of parallelotopes inRn. We mean by this the
Lebesgue measureof the parallelotope.

We will denote byµ the Lebesgue measure onRn. We will not recall here its definition, but just
one very important property: it is invariant under translation; that is, forall measurable setsA and all
vectorsv ∈ Rn, the setA + v := {w + v : w ∈ A} is measurable and we have

µ(A) = µ(A + v).

Moreover the measure is normalized so that the measure of the standard cube{∑n
i=1 λiei : 0 ≤ λi ≤

1} is equal to1.
The following lemma can be proven in an elementary calculus course.

Lemma 6.7. Let P be the parallelotope defined byn linearly independent vectorsv1, . . . , vn ∈ Rn,
where eachvi =

∑n
j=1 aijej . Thenµ(P ) = |det((aij)1≤i,j≤n)|.
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Definition 6.8. A subgroupH ⊂ Rn is calleddiscreteif, for any compact subsetK ⊂ Rn, H ∩ K is
a finite set.

Remark 6.9. Since a subset ofRn is compact if and only if it is closed and bounded, then a subgroup
H ⊂ Rn is discrete if and only if for everyr > 0, H ∩ B(0; r) is finite.

Example 6.10. • Let v1, . . . , vm ∈ Rn bem linearly independent vectors. Then〈v1, . . . , vm〉Z
is a discrete subgroup. Indeed, given anyr > 0, we can show that〈v1, . . . , vm〉Z ∩ B(0; r) is
finite as follows:

First of all, completev1, . . . , vm to a basisv1, . . . , vn of Rn. It suffices to show that the inter-
section〈v1, . . . , vn〉Z ∩ B(0; r) is finite.

Consider the linear map
f : Rn → Rn

vi 7→ ei for all i = 1, . . . n.

Thusf(
∑n

i=1 λivi) =
∑n

i=1 λiei.

Linear maps between finite dimensional finite-dimensionalR-vector spaces are bounded oper-
ators; that is to say there exists a constantC such that, for allv ∈ Rn,

‖f(v)‖2 ≤ C · ‖v‖2

Indeed, we have that

‖f(
n∑

i=1

aiei)‖2 ≤
n∑

i=1

|ai| · ‖f(ei)‖2 ≤ max{|ai| : 1 ≤ i ≤ n} ·
n∑

i=1

‖f(ei)‖2

TakingC =
∑n

i=1 ‖f(ei)‖2, it suffices to observe that

max{|ai| : 1 ≤ i ≤ n} ≤

√√√√
n∑

i=1

|ai|2 = ‖
n∑

i=1

aiei‖2.

Therefore, we have that

‖
n∑

i=1

λiei‖2 ≤ C · ‖
n∑

i=1

λivi‖2. (6.6)

Assume now thatv =
∑n

i=1 λivi with someλi0 > r
C . Then Equation 6.6 implies that

‖v‖2 ≥ 1

C
‖

n∑

i=1

λiei‖2 ≥ 1

C
|λi0 | > r,

hencev 6∈ B(0; r). Thus

〈v1, . . . , vn〉Z ∩ B(0; r) ⊂
{

n∑

i=1

λivi : λi ≤
r

C
for all i

}
,

which is a finite set.
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• Letv ∈ Rn be a nonzero vector. Then〈v,
√

2v〉Z is not a discrete subgroup ofRn (see Sheet 9).

The first proposition is a characterisation of discrete subgroups ofRn.

Proposition 6.11. Let H be a discrete subgroup ofRn. ThenH is generated as aZ-module bym
linearly independent vectors for somem ≤ n.

Proof. We can assume without loss of generality thatH 6= {0}. Let

m := max{r : there existv1, . . . , vr ∈ H linearly independent inRn}. (6.7)

Since the numbersr appearing in (6.7) are bounded byn, we have thatm is a finite number between0
andn. SinceH 6= 0, we have thatm ≥ 1. Now letu1, . . . , um ∈ H bem vectors which are linearly
independent inRn. Fix anyv ∈ H nonzero. Then the set{u1, . . . , um, v} is linearly dependent by
the maximality ofm, so there existλ1, . . . , λm ∈ R such thatv =

∑m
i=1 λiui. For eachj ∈ N, we

consider

vj :=
m∑

i=1

(jλi − ⌊jλi⌋)ui = jv −
∑

⌊jλi⌋ui ∈ H.

On the other hand,vj ∈ {w ∈ Rn : w =
∑m

i=1 aiui with 0 ≤ ai ≤ 1} =: P , and the setP is compact
(see Remark 6.6) sovj belongs to the finite setH ∩ P . This implies already thatH is aZ-module of
finite type (more precisely, we have proven that everyv in H can be written asv1 +

∑m
i=1⌊λi⌋ui, so

H is generated as aZ-module by the finite setG = (H ∩ P ) ∪ {u1, . . . , um}).
Since the set{vj : j ∈ N} is finite, there must existj, k different natural numbers such that

vj = vk, that is
∑m

i=1(jλi−⌊jλi⌋)ui =
∑m

i=1(kλi−⌊kλi⌋)ui. Since theui’s are linearly independent,
we get that for alli, (j − k)λi = ⌊jλi⌋ − ⌊kλi⌋. In particular, for alli, λi ∈ Q. Since this is valid for
all v ∈ H, we get thatH is a finitely generatedZ-module contained in theQ-vector space generated
by u1, . . . , um. Pick a finite number of generators ofH asZ-module (for exampleG), write each of
them as

∑r
i=1 λiui for λi ∈ Q and pick a common denominatord for all the coefficientsλi’s of all the

generators. Then we havedH ⊂ 〈u1, . . . , um〉Z. We now apply Theorem 3.12 to conclude thatdH

is a freeZ-module of rank smaller than or equal tom. Since we know thatdH contains the freeZ-
module generated bydu1, . . . , dum, the rank must be preciselym. Letu′

1, . . . , u
′
m ∈ dH be such that

〈u′
1, . . . , u

′
m〉Z = dH. SincedH contains them linearly independent vectorsdu1, . . . , dum, it follows

that u′
1, . . . , u

′
m must span aR-space of dimensionm, hence they are linearly independent overR.

Finally, 1
du′

1, . . . ,
1
du′

m ∈ H are linearly independent vectors such that〈1
du′

1, . . . ,
1
du′

m〉Z = H.

From all the discrete subgroups, we will be interested in those that are generated byn linearly
independent vectors.

Definition 6.12. • A lattice in Rn is a discrete subgroupH ⊂ Rn of rank n as a Z-module.
Equivalently, a lattice inRn is aZ-module generated byn linearly independent vectors.

• A basisof a latticeH ⊂ Rn will be basis ofH as aZ-module.

Note that a basis of a latticeH consists ofn linearly independent vectors ofRn, so in particular
is a basis ofRn asR-vector space.
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Definition 6.13. Let H ⊂ Rn be a lattice, andU = {u1, . . . , un} a basis ofH. We will say that the
(half-open) parallelotopePU determined byU is a fundamental domain forH.

Remark 6.14. One lattice has different fundamental domains; in other words, fundamental domains
are not unique.

Lemma 6.15. LetH ⊂ Rn be a lattice,P , P ′ fundamental domains forH. Thenµ(P ) = µ(P ′).

Proof. Let B = {u1, . . . , un} (resp.B′ = {u′
1, . . . , u

′
n}) be a basis ofH definingP (resp.P ′) and

let {e1, . . . , en} the canonical basis ofRn. Write u′
i =

∑n
j=1 aijuj with aij ∈ Z, ui =

∑n
j=1 bijej ,

u′
i =

∑n
j=1 cijej with bij , cij ∈ R and setA = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n, C = (cij)1≤i,j≤n.

We haveC = AB. Since bothB andB′ areZ-bases ofH, we havedet((aij)1≤i,j≤n) = ±1. And by
Lemma 6.7

µ(P ) = |det(B)| = |det(B)| · |det(A)| = |det(C)| = µ(P ′).

Definition 6.16. LetH ⊂ Rn be a lattice. We define thevolumeof H as

v(H) := µ(P ),

for some fundamental domainP of H.

Lemma 6.17. LetH ⊂ Rn be a lattice andP be a fundamental domain.

• For eachv ∈ Rn there exists a uniqueu ∈ P such thatv − u ∈ H.

• Rn is the disjoint union of the family{P + u}u∈H .

Proof. See Sheet 9.

Now we will state the fundamental result of this section. The idea is the following: given a lattice
H, if a measurable setS ⊂ Rn is big enough (with respecto toµ), no matter what it looks like, it
must contain two elements which are “equivalent moduloH”, that is to say, two different elements
v1, v2 ∈ S with v1 − v2 ∈ H.

Theorem 6.18(Minkowsky). Let H ⊂ Rn be a lattice andS ⊂ Rn be a measurable subset ofRn

satisfyingµ(S) > v(H). Then there existv1, v2 ∈ S different elements withv1 − v2 ∈ H.

Proof. Sine P is a fundamental domain forH, Lemma 6.17 implies thatRn =
⊔

u∈H(P + u).
Intersecting both sides withS yields

S =
⊔

u∈H

(S ∩ (P + u)).

Recall thatH is countable. Therefore by the countable additivity ofµ, we get

µ(S) =
∑

u∈H

µ(S ∩ (P + u)).
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Sinceµ is invariant by translation, we get that, for allu ∈ H, µ(S ∩ (P + u)) = µ((S − u)∩P ).
Now if the family of sets{(S−u)∩P}u∈H were disjoint, we would get, using the countable additivity
of µ again, that

∑
u∈H µ((S − u) ∩ P ) = µ(

⊔
u∈H(S − u) ∩ P )) ≤ µ(P ). Hence

µ(S) =
∑

u∈H

µ(S ∩ (P + u)) =
∑

u∈H

µ((S − u) ∩ P ) = µ(
⊔

u∈H

((S − u) ∩ P ))) ≤ µ(P )

contradicting thatµ(S) > v(H). Thus the family{(S − u) ∩ P}u∈H is not disjoint, that is to
say, there existu1, u2 ∈ H, u1 6= u2, with ((S − u1) ∩ P ) ∩ ((S − u2) ∩ P ) 6= ∅. Let w ∈
(S − u1) ∩ P ) ∩ ((S − u2) ∩ P ). Thenw = v1 − u1 = v2 − u2 for somev1, v2 ∈ S. And
v1 − v2 = u1 − u2 ∈ H is nonzero.

We will use a particular case of this theorem, whenS has some special properties.

Definition 6.19. LetS ⊂ Rn.

• S is centrally symmetricif, for all v ∈ S, −v ∈ S.

• S is convexif, for all v1, v2 ∈ S, for all λ ∈ [0, 1], λv1 + (1 − λ)v2 ∈ S.

Corollary 6.20. LetH ⊂ Rn be a lattice andS ⊂ Rn be a centrally symmetric, convex, measurable
set such thatµ(S) > 2nv(H). ThenS ∩ (H \ {0}) 6= ∅.

Proof. Let S′ = 1
2S := {1

2v : v ∈ S}. Note thatµ(S′) = 1
2n µ(S) > v(H). Hence we can apply

Theorem 6.18 toS′ and conclude that there are elementsv1, v2 ∈ S′ with v1 − v2 ∈ H \ {0}. Note
furthermore thatv1, v2 ∈ S′ implies that2v1, 2v2 ∈ S, and sinceS is centrally symmetric, also
−2v2 ∈ S. The convexity ofS now implies thatv1 − v2 = 1

2(2v1) +
(
1 − 1

2

)
(−2v2) ∈ S. Hence

v1 − v2 ∈ S ∩ (H \ {0}).

6.3 Number rings as lattices

Let C be the field of complex numbers. InsideC we have the subfield of rational numbersQ, which
can be characterised as the smallest subfield ofC (or, in other words, theprime fieldof C, that is to
say, the intersection of all subfields ofC). We also have the subfield ofC defined asQ := {z ∈ C :

z is algebraic overQ}. Q is an algebraically closed field, and clearly it is the smallest subfield ofC

containingQ which is algebraically closed, hence an algebraic closure ofQ.
Let K/Q be a number field of degreen and letK be an algebraic closure. SinceK is algebraic

overQ, K is also an algebraic closure ofQ and hence isomorphic toQ. Fixing one such isomorphism,
we can identifyK with Q andK with a subfield ofQ ⊂ C.

Sincechar(K) = 0, K is separable, and therefore (see the Appendix to section 2) there existn

different ring homomorphism (necessarily injective) fromK to Q fixing Q. Since the image of any
ring homomorphismσ : K → C must be contained inQ, we have that there are exactlyn different
ring homomorphismsσ : K →֒ C fixing Q.

Let α : C → C be the complex conjugation. Then, for allσ ∈ HomQ(K, C), we have that
α ◦ σ ∈ HomQ(K, C), andα ◦ σ = σ if and only if σ(K) ⊂ R. Call r1 the number of ring
homomorphismsσ : K → C such thatα◦σ = σ. The remaining homomorphisms can be collected in
pairs{σ, α◦σ}, so there is an even number of them. Let us call2r2 this number, so thatn = r1 +2r2.

Let us enumerate then homomorphisms inHom(K, C) in the following way:
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• Let σ1, . . . , σr1
be ther1 homomorphisms with image contained inR.

• Let us enumerate ther2 pairs{σ, α ◦ σ} and, for each pair, choose one of the two homomor-
phisms. The chosen homomorphism of thei-th pair (1 ≤ i ≤ r2) will be σr1+i, the other one
will be σr1+r2+i.

Now we can define a ring homomorphism

Φ0 : K → Rr1 × Cr2

x 7→ (σ1(x), . . . , σr1
(x), σr1+1(x), . . . , σr1+r2

(x))

Definition 6.21. For z = x + iy ∈ C, denote byRez := x the real part ofz and Imz := y the
imaginary part ofz. The mapC → R×R defined asz 7→ (Rez, Imz) is an isomorphism ofR-vector
spaces. Define the map

Φ : K → Rr1 × R2r2

x 7→ (σ1(x), . . . , σr1
(x), Reσr1+1(x), Imσr1+1(x) . . . ,Reσr1+r2

(x), Imσr1+r2
(x)).

Remark 6.22. • The mapΦ above is injective (because eachσi is injective), and a group ho-
momorphism (of the additive groups(K, +) and (Rn, +)). Moreover, bothK andRn have a
Q-vector space structure, andΦ preserves it.

• Φ provides us with a way to see number fields insiden-dimensionalR-vector spaces. We are
interested in subgroups ofK that give rise to lattices inRn.

Proposition 6.23. LetM ⊂ K be a freeZ-module of rankn, say with basis{x1, . . . , xn}. Then

• Φ(M) is a lattice inRn.

• LetA = (σi(xj))1≤i,j≤n. Thenv(Φ(M)) = 2−r2 |detA|.

Remark 6.24. With the notations above, the discriminant of the tuple(x1, . . . , xn) ∈ Kn is defined as
the square ofdetA. Moreover (see Proposition 2.8-(e)) the discriminant of(x1, . . . , xn) is nonzero.

Proof. Φ : K → Rn is an injective morphism from(K, +) to (Rn, +), hence it carries freeZ-
modules into freeZ-modules, and transformsZ-bases intoZ-bases. ThereforeΦ(M) is aZ-module
of rankn in Rn with basisΦ(x1), . . . ,Φ(xn). To prove that it is a lattice, we need to see that then

vectorsΦ(x1), . . . ,Φ(xn) are linearly independent overR. The coordinates ofΦ(xi) are

(σ1(xi), . . . , σr1+1(xi), Reσr1+1(xi), Imσr1+1(xi) . . . ,Reσr1+r2
(xi), Imσr1+r2

(x))

Let B be the matrix withi-th row as above, for alli ∈ {1, . . . , n}. We will prove thatdetB 6= 0, thus
showing that the vectorsΦ(x1), . . . ,Φ(xn) are linearly independent overR.

For j = 1, . . . , r2, call zj the column vector with entries(σr1+j(xi))i=1,...,n, and denote the
column vector whose entries are the complex conjugates of the entries ofzj by zj . Then we have that

B =
(

... Rezj Imzj
...
)

=
(

... zj+zj

2
zj−zj

2i

...
)
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Hence

detB = det
(

... zj

2
zj

2i

...
)

+ det
(

... zj

2
−zj

2i

...
)

+ det
(

... zj

2
zj

2i

...
)

+ det
(

... zj

2
−zj

2i

...
)

=
−1

4i
det
(

... zj zj
...
)

+
1

4i
det
(

... zj zj
...
)

=
−1

2i
det
(

... zj zj
...
)

.

Repeating this process for alli = 1, . . . , r2, we get

det B =

(−1

2i

)r2

det A′,

whereA′ is the matrix withi-th row given by

(σ1(xi), . . . , σr1+1(xi), σr1+1(xi), α ◦ σr1+1(xi) . . . , σr1+r2
(xi), α ◦ σr1+r2

(xi)).

Since the columns ofA andA′ coincide up to a permutation, we have|detA′| = |detA| 6= 0.
This proves thatΦ(M) is a lattice. Moreoverv(Φ(M)) = |detB| = 2−r2 |detA|.

Definition 6.25. LetK be a number field.

Leta ⊂ ZK be a nonzero integral ideal. We define thenormof a asN(a) = [ZK : a].

Let I ⊂ K be a nonzero fractional ideal. We define thenorm of I as N(I) = N(xI)/NK/Q(x),
wherex ∈ ZK is some element different from zero such thatxI is an integral ideal.

Remark 6.26. Let K be a number field. ThenN : I(ZK) → Q
×

is a group homomorphism (See
Sheet 9).

Corollary 6.27. Let K/Q be a number field of degren = r1 + 2r2 anda an integral ideal ofZK .
Then we have thatΦ(ZK), Φ(a) are lattices ofRn and

v(Φ(ZK)) = 2−r2

√
|disc(ZK)|, v(Φ(a)) = 2−r2

√
|disc(ZK)|N(a).

Proof. SinceZK is an order ofK (see Corollary 3.17-(a)), it is a freeZ-modules of rankn. By
Corollary 3.17-(c),a is also a freeZ-module of rankn. The formula for the volume ofΦ(ZK) follows
directly from the definition ofdisc(ZK); the formula for the volume ofΦ(a) follows from Proposition
3.19.

6.4 Finiteness of the class number

Let K be a number field of degreen. As in the previous section, we denote byr1 the number of
embeddings ofK →֒ R andr2 = (n − r1)/2.

Proposition 6.28. Let a ⊂ ZK be a nonzero integral ideal. There existsa ∈ a different from zero
such that

|NK/Q(a)| ≤
(

2

π

)r2 √
|disc(ZK)|N(a).



6 GEOMETRY OF NUMBERS 43

Proof. We will apply Corollary 6.20 inRn. First we define the measurable setS as follows: Let
A1, . . . , Ar1

andB1, . . . , Br2
be some positive real numbers. Consider the setS ⊂ Rn defined by

S = {(x1, . . . , xr1
, y1, y

′
1, . . . , yr2

, y′r2
) :

|xi| ≤ Ai for all i = 1, . . . , r1,
√

y2
j + y′j

2 ≤ Bj for all j = 1, . . . , r2}. (6.8)

The setS is centrally symmetric (clear) and convex: if we have(x1, . . . , xr1
, y1, y

′
1, . . . , yr2

, y′r2
)

and(x̃1, . . . , x̃r1
, ỹ1, ỹ

′
1, . . . , ỹr2

, ỹ′r2
) in S, then for anyλ ∈ (0, 1),

|λxi + (1 − λ)x̃i| ≤ |λ| · |xi| + |1 − λ| · |x̃i| ≤ Ai,

and
√

(λyj + (1 − λ)ỹj)2 + (λy′j + (1 − λ)ỹ′j)
2 ≤

√
(λyj)2 + (λy′j)

2 +
√

((1 − λ)ỹj)2 + ((1 − λ)ỹ′j)
2 ≤

|λ| ·
√

y2
j + y′j

2 + |1 − λ| ·
√

ỹ2
j + (ỹ′j)

2 ≤ Bj .

Its Lebesgue measure can be computed as

µ(S) =

r1∏

i=1

(2Ai) ·
r2∏

j=1

(πB2
j ) = 2r1πr2

r1∏

i=1

Ai

r2∏

j=1

B2
j .

On the other hand, we can embedK →֒ Rn via the mapΦ from Definition 6.21.H = Φ(a) is a
lattice of volumev(H) = 2−r2

√
|disc(ZK)|N(a) (Corollary 6.27).

Let ε > 0. ChooseA1, . . . , Ar1
, B1, . . . , Br2

positive integers such that

r1∏

i=1

Ai

r2∏

j=1

B2
j =

(
2

π

)r2 √
|disc(ZK)|N(a) + ε,

and callSε the set defined by (6.8).
Then it holds thatv(H) > 2nµ(Sε), so we can apply Corollary 6.20 and conclude that there exists

some nonzerov ∈ Sε ∩ H. Let a ∈ a such thatΦ(a) = v. The fact thatΦ(a) ∈ Sε means that, for
all i = 1, . . . , r1, |σi(a)| ≤ Ai, and for allj = 1, . . . , r2,

√
(Reσr1+j(a))2 + (Imσr1+j(a))2 ≤ Bj .

Therefore

|NK/Q(a)| =

r1∏

i=1

|σi(a)| ·
r2∏

j=1

|σj(a)|2 ≤
r1∏

i=1

Ai

r2∏

j=1

B2
j =

(
2

π

)r2 √
|disc(ZK)|N(a) + ε

Now for all ε there exists ana ∈ a such that|NK/Q(a)| satisfies the inequality above. But
this norm is an integer, so takingε small enough, we will get ana ∈ a such that|NK/Q(a)| ≤(

2
π

)r2
√
|disc(ZK)|N(a).

Proposition 6.29. Let a ⊂ ZK a nonzero integral ideal. There existsa ∈ a different from zero such
that

|NK/Q(a)| ≤
(

4

π

)r2 n!

nn

√
|disc(ZK)|N(a).
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Proof. See Sheet 10.

Proposition 6.28 (or Proposition 6.29) will be a key ingredient in the proof of the following result.

Theorem 6.30(Dirichlet). Let K be a number field. The class groupCL(K) = I(ZK)/P(ZK) is
finite.

Before proceeding to the proof, let us establish a technical lemma.

Lemma 6.31. Let K be a number field, andC ∈ CL(K) be a class of ideals. Then there exists a
nonzero integral ideala of ZK which belongs toC and satisfies

N(a) ≤
(

2

π

)r2 √
|disc(ZK)|.

Proof. Let I be a nonzero fractional ideal inC. ThenI−1 = {a ∈ ZK : aI ⊂ ZK} is also a nonzero
fractional ideal. Therefore there existsx ∈ K such thatb = xI−1 is a nonzero integral ideal. We can
apply Proposition 6.28 to the idealb; there existsb ∈ b such that

|NK/Q(b)| ≤
(

2

π

)r2 √
|disc(ZK)|N(b) =

(
2

π

)r2 √
|disc(ZK)||NK/Q(x)|N(I)−1.

Therefore the ideala = b
xI belongs to the classC and furthermore

N(a) =
|NK/Q(b)|
|NK/Q(x)|N(I) ≤

(
2

π

)r2 √
|disc(ZK)|.

Proof of Theorem 6.30.Since every classC ∈ CL(K) contains a nonzero integral ideal of norm
smaller than

(
2
π

)r2
√

|disc(ZK)| (because of Lemma 6.31), it suffices to prove that, for anyM ∈ N,
there are only finitely many integral ideals of norm smaller thanM . First of all, note that it suffices
to see that there are only finitely many prime integral ideals of norm smaller thanM ; indeed if
a =

∏r
i=1 pei

i is a factorisation ofa into a product of prime ideals, thenN(a) =
∏r

i=1 N(pi)
ei ,

so if N(a) is smaller thanM , the only prime ideals that can occur in the factorisation ofa are those
with norm smaller thanM , and the exponentsei that can occur must also be smaller thanM .

Assume now thatp is a prime integral ideal of norm smaller thanM , saym. Then1 ∈ ZK/p

satisfies thatm · 1 = 0 ∈ ZK/p, thusm ∈ p. But we know that that there are only a finite number of
maximal ideals ofZK containing a given idealI (Corollary 5.5). In particular, forI = (m), we get
that there are only finitely many prime idealsp of ZK of normm.

Remark 6.32. • LetK be a number field. ThenCL(K) is generated by the classes of the prime
idealsp ∈ I(ZK) such thatN(p) ≤

(
2
π

)r2
√
|disc(ZK)|. This allows one to compute explicitly

the class group of a given number field, provided one knows how to compute the prime ideals
of given norm.

• The same proof, but using the better bound of Proposition 6.29, shows that CL(K) is generated
by the classes of the prime idealsp ∈ I(ZK) such thatN(p) ≤

(
4
π

)r2 n!
nn

√
|disc(ZK)|.
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Remark 6.33. • LetE/K be an extension of number fields, and letp ⊂ ZK be a nonzero prime
ideal. The idealpZE generated by the elements ofp insideZE need not be prime anymore, but,
sinceZE is a Dedekind domain, it will factor in a unique way as a product of primes

pZE =
r∏

i=1

Pei
i .

The idealsPi are the prime ideals ofZE containingpZK (Corollary 5.5). We will say that
P1, . . . ,Pr are the prime ideals ofZE lying abovep.

• More generally, ifA is a Dedekind ring,p a nonzero prime ideal ofA andB ⊃ A a Noetherian
integral domain of Krull dimension 1, we will say that the prime ideals ofB lying abovep are
the prime idealsP of B such thatpB ⊂ P. By Corollary 5.5 we know there are only finitely
many prime ideals ofB lying above a nonzero prime idealp of A.

Proposition 6.34. Let A be a Dedekind ring,K its fraction field,E/K a finite separable extension
of K andB ⊂ E the integral closure ofA in E. Assume there existsα ∈ B such thatB = A[α], and
call f(x) the minimal polynomial ofα overK.

Let p be a nonzero prime ideal ofA, let k = A/p be the residue field, letf(X) ∈ k[X] be the
reduction off(X) modp, and let

f(X) =
r∏

i=1

qi(X)

be a factorisation off(X) into monic irreducible polynomials ink[X]. For eachi = 1, . . . , r, choose
qi(X) ∈ A[X] reducing toqi(x) modp. Then the prime ideals inB abovep are given by

Pi := pB + qi(α)B, i = 1, . . . , r.

Proof. Let i ∈ {1, . . . , r}, and fix a rootβ ∈ k of qi(X). Consider the ring homomorphism

φ : B = A[α] → k[β]

α 7→ β

a ∈ A 7→ a ∈ k = (A/p).

Let P = ker φ. Sincep is a prime ideal ofA, k is a field andk[β] ⊂ k is an integral domain. Thus
B/P →֒ k is an integral domain, andP is a prime ideal. We will now show thatP = pB + qi(α)B.

⊇ Clearlyφ(a) = 0 for all a ∈ p andφ(qi(α)) = qi(β) = 0, hence we have the inclusion.

⊆ Let b ∈ P, sayb = g(α) for someg(X) ∈ A[X]. Then0 = φ(b) = φ(g(α)) = g(φ(α)) =

g(β), whereg(X) ∈ k[X] is the reduction ofg(X) modulop. Thusg(X) is divisible by the
minimal polynomial ofβ overk, that isqi(X), sayg(X) = qi(X)h(X). Takingh(X) ∈ A[X]

reducing toh(X), we have thatg(X)− qi(X)h(X) ∈ A[X] has coefficients inp, and therefore
g(α) ∈ qi(α)B + pB. This proves the other inclusion.
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This proves that ther primesPi are primes ofB abovep. Reciprocally, letP be a prime over
p, and consider the projectionφ : B → B/P. We know thatB/P is a field, and we have a natural
inclusionk = A/p → B/P. Sincef(α) = 0, thenf(α) = 0, thereforeα is a root of some of
theqi(X), the projectionφ is the composition of one of the projectionsφi considered above with an
isomorphismB/Pi ≃ B/P fixing k, sayτ ◦ φi, andP = ker(τ ◦ φi) = kerφi = Pi.

Remark 6.35. LetK be a number field,p ∈ Z a nonzero prime. Then the prime ideals ofZK above
(p) are those whose norm is a power ofp.

Corollary 6.36. LetK be a number field, and assume that there existsα ∈ ZK such thatZ[α] = ZK .
Call f(X) ∈ Z[X] be the minimal polynomial ofα overQ. Letp be a prime, letf(X) ∈ Fp[X] be
the reduction off(X) modp, and let

f(X) =
r∏

i=1

qi(X)

be a factorisation off(X) into monic irreducible polynomials inFp[X]. For eachi = 1, . . . , r,
chooseqi(X) ∈ Z[X] reducing toqi(x) modp. Then the prime ideals ofZK of norm equal to a
power ofp are given by

Pi := (p, qi(α))ZK
, i = 1, . . . , r.

Example 6.37. • Let K = Q(
√

7). ThenZK = Z[
√

7], anddisc(ZK) = 4 · 7. SinceK ⊂ R,
r2 = 0 and n = r1 = 2. The quantityC =

(
4
π

)r2 n!
nn

√
|disc(ZK)| satisfies2 < C < 3.

ThereforeCL(K) is generated by the classes of the nonzero prime ideals ofZK of norm less
than or equal to2.

– Prime ideals of norm a power of 2: We apply Corollary 6.36:α =
√

7 satisfiesZK =

Z[
√

7]. The minimal polynomial ofα overQ isf(x) = x2−7. Nowx2−7 ≡ x2+1 = (x+

1)2 (mod 2), hence the only prime ideal ofZK above(2) is p = (2, 1+
√

7) = (3+
√

7).

ThereforeCL(K) is generated by the classes of principal ideals. ThusCL(K) = {1}.

• Let K = Q(
√
−5). ThenZK = Z[

√
−5], anddisc(ZK) = −20. NowK 6⊆ R, and therefore

n = r2 = 2, r1 = 0. The quantityC =
(

4
π

)r2 n!
nn

√
|disc(ZK)| satisfies2 < C < 3. Therefore

CL(K) is generated by the classes of the prime ideals ofZK of norm equal to2.

We apply Corollary 6.36 toZK = Z[
√
−5] with α =

√
−5 andf(x) = x2 + 5. Thenf(x) ≡

x2 + 1 = (x + 1)2 (mod 2), therefore the unique ideal ofZK above2 is p = (2, 1 +
√
−5).

It is easy to check that this ideal is not principal (if it was generated by, say, a + b
√
−5, then

NK/Q(a + b
√
−5) would divideNK/Q(2) = 4, and one immediately sees thata = ±2, b = 0.

But1 +
√
−5 6∈ (2)).

On the other hand,p2 = (2, 1 +
√
−5) · (2, 1 +

√
−5) = (4, 2 + 2

√
−5,−4) = (2) (since

2 = 2 + 4
√
−5 − 4

√
−5 = (2 + 2

√
−5)(1 +

√
−5) − 4

√
−5 ∈ p2)

ThereforeCL(K) = 〈[p]〉 = {[1], [p]}.
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6.5 Dirichlet Unit Theorem

The aim of this section is to prove the following result:

Theorem 6.38(Dirichlet). Let K be a number field of degreen = r1 + 2r2. Then there is a group
isomorphism

Z×
K ≃ µK × Zr1+r2−1,

whereµK is the (finite) subgroup ofZ×
K consisting of roots of unity.

Remark 6.39. Note that, in bothZ×
K andµK the group structure is written multiplicatively, whereas

in Zr1+r2−1 the group structure is written additively.

The proof of this theorem will be given gradually through a series of steps (Lemmas 6.41 6.42,
6.45, 6.46, 6.47 and Corollaries 6.43, 6.44).

Consider the following map

K // Rr1 × Cr2 // Rr1+r2

a �

// Φ0(a) = (σ1(a), . . . , σr1+r2
(a)) �

// (|σ1(a)|, . . . , |σr1+r2
(a)|),

whereΦ0 is the map considered before Definition 6.21 and, in the second map,| · | : R → R is the
usual absolute value, and| · | : C → R is the norm given by|x + iy| =

√
x2 + y2 for all x, y ∈ R.

Definition 6.40. LetK be a number field of degreen = r1+2r2. We define thelogarithmic embedding
as the group morphism

Φlog : K× → Rr1+r2

a 7→ (log |σ1(a)|, . . . , log |σr1+r2
(a)|).

Recall that, ifK is a number field anda ∈ ZK , thena ∈ Z×
K if and only if NK/Q(a) = ±1 (cf.

Lemma 3.10).

Lemma 6.41. Let K be a number field of degreen = r1 + 2r2 and B ⊂ Rr1+r2 a compact set.
Consider the set

B′ := {a ∈ Z×
K : Φlog(a) ∈ B}.

Then there exists anM > 1 such that, for alla ∈ B′ and all i = 1, . . . , r1 + r2,

1

M
< |σi(a)| < M.

Proof. SinceB is bounded, there exists anN such that, for ally = (y1, . . . , yr1+r2
) ∈ B, |yi| < N

for all i = 1, . . . , r1 + r2. If a ∈ B′, thenΦlog(a) ∈ B, and therefore| log |σi(a)|| ≤ N for all
i = 1, . . . , r1 + r2. Hence

e−N < |σi(a)| < eN for all i = 1, . . . , r1 + r2.

TakeM = eN .
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Lemma 6.42. Let K be a number field of degreen = r1 + 2r2 andB, B′ as in Lemma 6.41. Then
B′ is finite.

Proof. By Lemma 6.41, there existsM > 1 such that, for alli = 1, . . . , r1 + r2, |σi(a)| < M for all
a ∈ B′. Sinceσi+r1+r2

(x) is the complex conjugate ofσi+r1
(x) for all i = 1, . . . , r2, the inequality

|σi(a)| < M actually holds for alli = 1, . . . , r1 + 2r2 = n.
For anyx ∈ K, the minimal polynomial ofx overQ is given by

f(X) =
n∏

i=1

(X − σi(x))

(cf. Proposition 2.4). Therefore the coefficients off(X) are given by theelementary symmetric
polynomialsSj(X1, . . . , Xn) ∈ Z[X1, . . . , Xn], j = 1, . . . , n, evaluated atσ1(x), . . . , σn(x). These
polynomials are homogeneous polynomials of degreej, and they do not depend onx ∈ K. Therefore,
for all a ∈ B′, we have that the coefficients of the minimal polynomial ofa overQ are of the form
Sj(σ1(a), . . . , σn(a)), and therefore can be bounded in terms ofn andM . But these coefficients must
belong toZ. Hence there are only a finite number of possible minimal polynomials overQ for the
elements ofB′, thusB′ is finite.

Corollary 6.43. Φlog(Z
×
K) is a discrete subgroup, hence a freeZ-module of rank less than or equal

to r1 + r2.

Proof. This follows from Proposition 6.11.

Corollary 6.44. The kernel ofΦlog|Z×

K
is a finite group, consisting of the roots of unity contained in

ZK .

Proof. Take any compactB of Rr1+r2 containing0. Thenker(Φlog|Z×

K
) ⊂ B′, hence it is finite. If

a ∈ Z×
K belongs to a finite subgroup, it must have finite order, so there existss ∈ N with as = 1. In

other words,a is a root of unity.
Reciprocally, ifa ∈ ZK is a root of unity, then it satisfies that, for somes ∈ N, as = 1. Therefore,

for all i = 1, . . . , r1 + r2, σi(a)s = 1, thuslog |σi(x)| = log 1 = 0, andΦlog(a) = 0.

Lemma 6.45. LetK be a number field. Then

Z×
K ≃ µK × Φlog(Z

×
K)

Proof. We have the exact sequence of groups

1 → ker(Φlog|Z×

K
) → Z×

K → Φlog(Z
×
K) → 0.

By Corollary 6.44 we know thatker(Φlog|Z×

K
) = µK , and by Corollary 6.43 we know thatΦlog(Z

×
K)

is a freeZ-module, hence the exact sequence splits.

Lemma 6.46. LetK be a number field of degreen = r1 + 2r2. The rank ofΦlog(Z
×
K) is less than or

equal tor1 + r2 − 1.
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Proof. Let a ∈ Z×
K . Then the norm ofa is ±1, thus

±1 = NK/Q(a) =

r1∏

i=1

σi(a) ·
r1+r2∏

i=r1+1

σi(a)(α ◦ σi)(a)

whereα : C → C denotes the complex conjugation. Applyinglog | · | to both sides, we get

0 =

r1∑

i=1

log |σi(a)| + 2

r1+r2∑

i=r1+1

log |σi(a)|.

ThereforeΦlog(a) belongs to the subspaceW := {(y1, . . . , yr1+r2
) ∈ Rr1+r2 :

∑r1

i=1 y +

2
∑r1+r2

i=r1+1 yi = 0}. ThereforeΦlog(a) must have rank smaller than or equal todimR W = r1 +

r2 − 1.

Up to this point, we have proven thatZ×
K is not very big, that is, it is finitely generated, and we

even have a bound for the number of generators of the free part. Thatwas the easy part. Note that, up
to now, we have not used Minkowsky’s Theorem 6.18 or its corollary. The hard part is to show that,
indeed, the torsion-free part of the groupZ×

K hasr1 + r2−1 free generators; and for this we will need
Corollary 6.20.

Lemma 6.47. Let K be a number field of degreen = r1 + 2r2. The rank ofΦlog(Z
×
K) is equal to

r1 + r2 − 1.

Proof. We already know one inequality by Lemma 6.46. To show the other inequality, wewill prove
that Φlog(Z

×
K) cannot be contained in any proper vector subspace ofW := {(y1, . . . , yr1+r2

) ∈
Rr1+r2 :

∑r1

i=1 y + 2
∑r1+r2

i=r1+1 yi = 0}.
Assume then that there existsW0 ⊂ Rr1+r2 a proper subvector space ofW containingΦlog(Z

×
K).

The projectionW → Rr1+r2−1 given by(y1, . . . , yr1+r2
) 7→ (y1, . . . , yr1+r2−1) is an isomorphism of

R-vector spaces. Via this projection,W0 corresponds to a subvector space ofRr1+r2−1. In particular,
there exists a vector(c1, . . . , cr1+r2−1) ∈ Rr1+r2−1 such that, for allw ∈ W0,

∑r1+r2−1
i=1 ciwi = 0.

We will find anu ∈ Z×
K such that

r1+r2−1∑

i=1

ci log |σi(u)| 6= 0.

Let us fix some constant

M >

(
2

π

)r2 √
|disc(ZK)|.

The main step in the proof of this lemma is to show that, for any tupleA = (A1, . . . , Ar1+r2−1) ∈
Rr1+r2−1

>0 of positive real numbers, there exists ana ∈ ZK such that|NK/Q(a)| ≤ M and
∣∣∣∣∣

r1+r2−1∑

i=1

ci log |σi(a)| −
r1+r2−1∑

i=1

ci log Ai

∣∣∣∣∣ ≤
r1+r2−1∑

i=1

|ci| log M. (6.9)

We proceed as follows: givenA = (A1, . . . , Ar1+r2−1), set

Ar1+r2
:=

√
M

∏r1

i=1 2Ai
∏r2−1

j=r1+1 A2
j

.
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Then, like in the proof of Proposition 6.28, we consider the setS ⊂ Rr1+2r2 defined by

S = {(x1, . . . , xr1
, y1, y

′
1, . . . , yr2

, y′r2
) :

|xi| ≤ Ai for all i = 1, . . . , r1,
√

y2
j + y′j

2 ≤ Aj for all j = r1 + 1, . . . , r1 + r2}.

We already saw in the proof of Proposition 6.28 thatS is a centrally symmetric and convex set of
Lebesgue measure

µ(S) =

r1∏

i=1

(2Ai) ·
r2∏

j=1

(πB2
j ) = 2r1πr2

r1∏

i=1

Ai

r1+r2∏

j=r1+1

A2
j = 2r1πr2M > 2r1+r2v(Φ(ZK)).

Therefore by Corollary 6.20 there existsaA ∈ ZK such thatΦ(aA) ∈ S. That means that

|σi(aA)| ≤ Ai for all i = 1, . . . , r1 + r2

Now we will play around with these inequalities. First note that

|NK/Q(aA)| =
n∏

i=1

|σi(aA)| =

r1∏

i=1

|σi(aA)|
r1+r2∏

i=r1+1

|σi(aA)|2 ≤
r1∏

i=1

Ai

r1+r2∏

i=r1+1

A2
i = M. (6.10)

To complete the main step, we need to check that Equation (6.9) holds fora = aA.
On the one hand, sinceaA ∈ ZK , its norm satisfies|NK/Q(aA)| ≥ 1, and on the other hand,

sinceaA ∈ S, we have that

|σi(aA)| = |NK/Q(aA)| ·



∏

j 6=i

|σj(aA)|




−1

≥ 1 ·



∏

j 6=i

|σj(aA)|




−1

≥ AiM
−1

Therefore we have, for alli = 1, . . . , n,

AiM
−1 ≤ |σi(aA)| ≤ Ai

We now take logarithms in this equation (recall that allAi are positive numbers)

log Ai − log M ≤ log |σi(aA)| ≤ log Ai

Multiplying by −1 and summinglog Ai we obtain that, for alli = 1, . . . , n,

0 ≤ log Ai − log |σi(a)| ≤ log M.

Now we can estimate the difference between
∑r1+r2−1

i=1 ci log |σi(aA)| and
∑r1+r2−1

i=1 ci log Ai as
follows:
∣∣∣∣∣

r1+r2−1∑

i=1

ci log |σi(aA)| −
r1+r2−1∑

i=1

ci log Ai

∣∣∣∣∣

=

∣∣∣∣∣

r1+r2−1∑

i=1

ci(log |σi(aA)| − log Ai)

∣∣∣∣∣ ≤
r1+r2−1∑

i=1

|ci| log M.
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This completes the main step.
Let M1 >

∑r1+r2−1
i=1 |ci| log M . Now we will apply the main step to the following tuplesA:

For eachm ∈ N, chooseA(m)
1 , . . . , A

(m)
r1+r2−1 > 0 such that

∑r1+r2−1
i=1 ci log A

(m)
i = 2mM1, and

setA(m) := (A
(m)
1 , . . . , A

(m)
r1+r2−1). Then (by the main step) there existsam ∈ ZK satisfying that

|NK/Q(am)| ≤ M and Equation (6.9), that is to say,

∣∣∣∣∣

r1+r2−1∑

i=1

ci log |σi(am)| − 2M1m

∣∣∣∣∣ ≤ M1.

Therefore we have that

r1+r2−1∑

i=1

ci log |σi(am)| ∈ ((2m − 1)M1, (2m + 1)M1).

This implies that the sequence of numbers{∑r1+r2−1
i=1 ci log |σi(am)|}m∈N is strictly increasing.

But, on the other hand, the principal idealsamZK have all norm bounded byM , and we know
that there are only a finite number of integral ideals with bounded norm (seethe proof of Theorem
6.30). Therefore there existm1 6= m2 such thatam1

ZK = am2
ZK . Hence there is a unitu ∈ Z×

K

such thatam1
= uam2

, and

r1+r2−1∑

i=1

ci log |σi(am1
)| =

r1+r2−1∑

i=1

ci log |σi(uam2
)| =

r1+r2−1∑

i=1

ci log |σi(u)| +
r1+r2−1∑

i=1

ci log |σi(am2
)|,

thus

r1+r2−1∑

i=1

ci log |σi(u)| =

r1+r2−1∑

i=1

ci log |σi(am1
)| −

r1+r2−1∑

i=1

ci log |σi(am2
)| 6= 0.

This shows thatu 6∈ W0, and concludes the proof of Theorem 6.38

Definition 6.48. LetK be a number field of degreen = r1 + 2r2.
We will say that a tuple(ξ1, . . . , ξr1+r2−1) ∈ (Z×

K)r1+r2−1 is a fundamental system of unitsif, for
all u ∈ Z×

K there exist a root of unityµ ∈ ZK andn1, . . . , nr1+r2−1 ∈ Z such that

u = µ · ξn1

1 · · · · · ξnr1+r2−1

r1+r2−1 .

To finish this section we will see how Dirichlet Unit Theorem applies to the caseof real quadratic
fields, allowing a complete description of the solutions of the Pell equation considered in Example
6.1.

Let d ∈ Z be a squarefree, positive number, and letK = Q(
√

d). For the rest of the section, fix
an embeddingK →֒ R. We have thatn := [K : Q] = 2, and, sinceK ⊂ R, r2 = 0 andr1 = 2.
Thereforer1 + r2 − 1 = 1, and from Dirichlet Unit Theorem we obtain:
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Corollary 6.49. LetK be a real quadratic field. ThenZ×
K ≃ µK × Z.

Note that the only roots of unity inR are±1 (since them-th roots of unity inC aree
2πir

m , r =

1, . . . , m, and of these only±1 are real). In particular, sinceK ⊂ R, the only roots of unity ofK are
±1. Hence

Z×
K ≃ {±1} × Z.

For eachz ∈ Z×
K , we have that−z, z−1,−z−1 also belong toZ×

K . Assume thatz > 0 (otherwise,
interchangez and−z). Thenz−1 > 0, −z,−z−1 < 0. Moreover, ifz 6= 1, one of the two numbers
z, z−1 must be greater than1, the other smaller than1. Interchangingz andz−1 if necessary, we can
assumez > 1. Then

z > 1 > z−1 > 0 > −z−1 > −1 > −z.

If we consider only the units which are≥ 0 , then these form a group isomorphic toZ, sayZ×
K,>0.

There are two elementsz, z−1 ∈ Z×
K,>0 that generate the group (those corresponding to±1 ∈ Z).

The neutral element inZ, which is0, corresponds to the neutral element ofZ×
K,>0, which is1, so

z 6= 1, and therefore one of the two numbersz, z−1 ∈ R is greater than1, and the other smaller than
1. Denote byZK,>1 the units that are> 1. We call thefundamental unit ofZK the generator ofZ×

K,>0

that belongs toZK,>1 (note that this terminology differs slightly from Definition 6.48, and note also
that it depends on our choice of embeddingK ⊂ R). Thus in order to find all units ofZK , it is enough
to find the fundamental unitz1 = a1 + b1

√
d ∈ Z×

K,>1; then

Z×
K = {±(a1 + b1

√
d)m : m ∈ Z}

Z×
K,>0 = {(a1 + b1

√
d)m : m ∈ Z}

Z×
K,>1 = {(a1 + b1

√
d)m : m ∈ N}

Note that, since
NK/Q(z1) = (a1 + b1

√
d)(a1 − b1

√
d) = ±1,

eitherz−1
1 = a1−b1

√
d (and−z−1

1 = −a1+b1

√
d), orz−1

1 = −a1+b1

√
d (and−z−1

1 = a1−b1

√
d).

We have

{z1, z
−1
1 ,−z1,−z−1

1 } = {a1 + b1

√
d, a1 − b1

√
d,−a1 + b1

√
d,−a1 − b1

√
d}.

Of these four numbers the biggest is|a1| + |b1|
√

d. Therefore we conclude thata1, b1 ≥ 0, and the
equation±1 = a2

1 − b2
1d, together with the fact thatz1 6= 0, implies thatb1 > 0.

Call zm = am + bm

√
d, then

{
am+1 := ama1 + dbmb1

bm+1 := amb1 + a1bm

Note that the sequence{bm}m∈N is increasing. Henceb1 := min{b ∈ N : ∃a ∈ N such thata2 −
db2 = ±1}. In this way one can explicitly find the fundamental unitz1.

We now distinguish two cases:

• d ≡ 2, 3 (mod 4). ThenZK = Z[
√

d].

There are two possibilities:
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– If NK/Q(z1) = 1, then the equationa2 − db2 = −1 does not have solutions inZ, and

a + b
√

d ∈ Z×
K ⇔ a2 − db2 = 1.

– If NK/Q(z1) = −1, then

a + b
√

d ∈ Z×
K ⇔ a2 − db2 = ±1.

and the subgroup〈−1, z2〉 ⊂ Z×
K corresponds to the solutions ofa2 − db2 = 1.

• d ≡ 1 (mod 4). ThenZK = Z[1+
√

d
2 ].

We can writeZK as
{

a + b
1 +

√
d

2
: a, b ∈ Z

}
=

{
1

2
x +

1

2
y
√

d : x, y ∈ Z andy − x ≡ 0 (mod 2)

}

If we have1
2(x + y

√
d) ∈ Z×

K , then it holds thatx2 − dy2 = ±4.

Let z1 = 1
2(x1 + y1

√
d) be the fundamental unit ofZK . ThenZ×

K,>1 = {zm
1 : m ∈ N}. Call

zm = 1
2(xm + ym

√
d) := zm

1 .

– If NK/Q(z1) = 4, then the equationx2 − dy2 = −4 does not have solutions inZ, and

1

2
(x + y

√
d) ∈ Z×

K ⇔ x2 − dy2 = 4.

– If NK/Q(z1) = −4, then

1

2
(x + y

√
d) ∈ Z×

K ⇔ x2 − dy2 = ±4.

and the subgroup〈−1, z2〉 ⊂ Z×
K corresponds to the solutions ofx2 − dy2 = 4.

But we are interested in the solutions ofx2 − dy2 = ±1. There are two possibilities:

– If x1 andy1 are both even, then callingx′
1 = 1

2x1 andy′1 = 1
2y1, we have that(x′

1)
2 −

d(y′1)
2 = ±1, and all solutions ofx2 − dy2 = ±1 are obtained as

{
x′

m := ±xm
2

y′m := ±ym

2

Taking the sign into account, we obtain:

∗ If NK/Q(z1) = 4, then

(x′)2 − d(y′)2 = 1 ⇔ x′ + y′
√

d ∈ 〈−1, z1〉 ⊂ Z×
K .

∗ If NK/Q(z1) = −4, then

(x′)2 − d(y′)2 = 1 ⇔ x′ + y′
√

d ∈ 〈−1, z2〉 ⊂ Z×
K .
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– If x1 andy1 are odd, then

z2 =
1

22
(x1 + y1

√
d)2 =

1

2
(
x2

1 + y2
1d

2
+

2x1y1

2

√
d) =

1

2
(
x2

1 + y2
1d

2
+ x1y1

√
d)

Note that, sinced ≡ 1 (mod 4), x2
1 + y2

1d is divisible once and only once by2, hence

x2 =
x2
1
+y2

1
d

2 andy2 = x1y1 are both odd.

z3 =
1

23
(x1 + y1

√
d)3 =

1

8
(x3

1 + 3x1y
2
1d + (3x2

1y1 + y3
1d)

√
d) =

1

8
(x1(x

2
1 + 3y2

1d) + y1(3x2
1 + y2

1d)
√

d)

Now bothx2
1 +3y2

1d = (±4+y2
1d)+3y2

1d = 4(±1+y1d) and3x2
1 +y2

1d = 3x2
1 +(±4+

x2
1) = 4(x2

1 ± 1) are divisible by8, hencex3, y3 are both even, andx′
3 = x3

2 andy′3 = y3

2

is a solution ofx2 − dy2 = ±1. In this case, the solutions ofx2 − dy2 = ±1 are given by

{
x′

m := ±x3m
2

y′m := ±y3m

2

Taking the sign into account, we obtain:

∗ If NK/Q(z1) = 4, then

(x′)2 − d(y′)2 = 1 ⇔ x′ + y′
√

d ∈ 〈−1, z3〉 ⊂ Z×
K .

∗ If NK/Q(z1) = −4, then

(x′)2 − d(y′)2 = 1 ⇔ x′ + y′
√

d ∈ 〈−1, z6〉 ⊂ Z×
K .

Remark 6.50. The smallest solution to the Problem of the Cattle of the Sun (see Example 6.1
and Sheet 8) has 206545 digits (in base ten).
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1. Let ζ = e2πi/3 = −1

2
+ i

√
3

2
∈ C. ConsiderA := Z[ζ] = {a + ζb | a, b ∈ Z}. Show the following

statements:

(a) ζ is a root of the irreducible polynomialX2 + X + 1 ∈ Z[X].

(b) The field of fractions ofA is Q(
√
−3) = {a + b

√
−3 | a, b ∈ Q} ⊂ C.

(c) Thenorm mapN : Q(
√
−3) → Q, given by

a + b
√
−3 7→ a2 + 3b2 = (a + b

√
−3)(a − b

√
−3) = (a + b

√
−3)(a + b

√
−3)

is multiplicative and sends any element inA to an element inZ. In particular,u ∈ A is a unit
(i.e. in A×) if and only if N(u) ∈ {1,−1}. Moreover, ifN(a) is ± a prime number, thena is
irreducible.

(d) The unit groupA× is equal to{±1,±ζ,±ζ2} and is cyclic of order6.

(e) The ringA is Euclidean with respect to the normN and is, hence, by a theorem from last term’s
lecture, a unique factorisation domain.

Hint: Consider the lattice inC spanned by1 andζ. Compute (or bound from above) the maximum
distance between any point inC and the closest lattice point. Use this to show that a division with
remainder exists.

(f) The elementλ = 1 − ζ is a prime element inA and3 = −ζ2λ2.

(g) The quotientA/(λ) is isomorphic toF3.

(h) The image of the setA3 = {a3 | a ∈ A} underπ : A → A/(λ4) = A/(9) is equal to
{0 + (λ4),±1 + (λ4),±λ3 + (λ4)}.

2. Show thatA (from the previous exercise) is the ring of integers ofQ(
√
−3).

We recommend reading Simon Singh’s novel (not a textbook!) on Fermat’s Last Theorem in order to
know how the story continues after the casesn = 2, 3, 4 treated in the lecture.
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1. (a) Show that there exist infinitely many prime numbersp ≡ −1 mod 3.

Hint: Imitate Euclid’s proof of the infinitude of the number of primes. (You don’t need any com-
mutative algebra here.)

(b) Let a, n ∈ N with n ≥ 2 such thatan − 1 is a prime number. Show thata = 2 andn is a prime
number. Such primes are calledMersenne primes.

2. (a) Let0, 1 6= d ∈ Z be a squarefree integer and letK = Q(
√

d). It is a quadratic field extension
of Q. For a general elementx = a + b

√
d with a, b ∈ Q computeTrK/Q(x) andNormK/Q(x).

(b) Let α = 3
√

2 and letK = Q(α). It is a cubic field extension ofQ. For a general element
x = a + bα + cα2 with a, b, c ∈ Q computeTrK/Q(x) andNormK/Q(x).
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1. (a) Let0, 1 6= d ∈ Z be a squarefree integer and considerK = Q(
√

d). Show:

disc(1,
√

d) = 4d and disc(1,
1 +

√
d

2
) = d.

(b) Letα = 3
√

2 and letK = Q(α). It is a cubic field extension ofQ with Q-basis1, α, α2.

Computedisc(1, α, α2).

2. (a) LetL/K a finite separable field extension,α1, . . . , αn a K-basis ofL andC = (ci,j)1≤i,j≤n an
n× n-matrix with coefficients inK. We viewC as aK-linear mapL → L via the fixed choice of
basis, and putβi := C(αi) for i = 1, . . . , n.

Thendisc(β1, . . . , βn) = det(C)2 disc(α1, . . . , αn).

(b) LetL/K be a finite separable field extension of degreen = [L : K] and denote byσ1, . . . , σn the
K-homomorphismsL → K. AssumeL = K(a) for somea ∈ L. Show:

disc(1, a, . . . , an−1) =
∏

1≤i<j≤n

(

σj(a) − σi(a)
)

2
.

Hint: One obtains a Vandermonde determinant.
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1. Find an integral ring extensionZ ⊆ S such thatS is not free asZ-module.

2. Snake lemma. Let R be a ring, letMi, Ni for i = 1, 2, 3 be R-modules, and letφi : Mi → Ni be
R-module homomorphisms such that the diagram

0 // M1
//

φ1

��

M2
//

φ2

��

M3
//

φ3

��

0

0 // N1
// N2

// N3
// 0

is commutative and has exact rows. Show that there is an exact sequence

0 → ker(φ1) → ker(φ2) → ker(φ3)
δ
−→ coker(φ1) → coker(φ2) → coker(φ3) → 0.

(The cokernel of a homomorphismα : M → N is defined asN/ im(α).)

3. LetK be a number field andZK its ring of integers. Let0 6= a ⊆ b ⊂ K be twoZK-modules.

Show that the index(b : a) is finite and satisfies

disc(a) = (b : a)2 disc(b).
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1. Let K be a number field and{0} 6= O ⊆ ZK be a subring. Show that the following statements are
equivalent:

(i) O is an order ofK.

(ii) Frac(O) = K.

2. LetR be an integral domain andK = Frac(R). Let I, J ⊂ K be fractionalR-ideals. Show that the
following sets are fractionalR-ideals ofR.

(a) I + J = {x + y | x ∈ I, y ∈ J},

(b) IJ = {
∑n

i=1
xiyj | n ∈ N, x1, . . . , xn ∈ I, y1, . . . , yn ∈ J},

(c) In = I · I · . . . · I
︸ ︷︷ ︸

n times

,

(d) I ∩ J ,

(e) (I : J).

3. LetR be an integral domain andH, I, J ⊂ K fractionalR-ideals. Show that the following properties
hold:

(a) IJ ⊆ I ∩ J (assume here thatI andJ are integral ideals),

(b) H + (I + J) = (H + I) + J = H + I + J ,

(c) H(IJ) = (HI)J ,

(d) H(I + J) = HI + HJ .
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1. Let R be a ring. Show thatR is a principal ideal domain if and only ifR is a Dedekind ring with
Pic(R) = 0.

Hint: It suffices to combine propositions and theorems from the lecture.

2. Consider the ringR = Z[
√

−61]. Show that(2, 3 +
√

−61) and(5, 3 +
√

−61) are invertible ideals
in R and determine their order inPic(R).

3. Consider the ringR = Z[
√

−19]. Use for this exercise thatPic(R) is a finite group of order3.
Determine all integral solutions of the equationx2 + 19 = y5.
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1. Let R be a Noetherian integral domain of Krull dimension1 and (0) 6= I � R be an ideal. For a
maximal idealm of R, let I(m) := Im ∩ R be them-primary part of I.

Show thatI has aprimary decomposition, i.e.I =
⋂

m⊇I
I(m).

2. LetK be a field. A subringR ⊆ K is called avaluation ring of K if for eachx ∈ K× we havex ∈ R

or x−1 ∈ R.

(a) Show that every valuation ring ofK is a local ring.

(b) Show that every valuation ring ofK is integrally closed.

3. (a) A local integral domainR is called adiscrete valuation ring if there isπ ∈ R such that all non-zero
ideals ofR are of the form(πn) for somen ∈ N. Let R be a discrete valuation ring andK its
field of fractions. Denote byord(r) for r ∈ R \ {0} the maximum integern such thatr ∈ (πn).
For x = r

s
∈ K× (with r ∈ R ands ∈ R \ {0}), let ord(x) := ord(r) − ord(s). Finally, let

ord(0) := ∞.

Show that the map
v : K → Z, x 7→ ord(x) (1)

satisfies
v(1) = 0

v(xy) = v(x) + v(y) for all x, y ∈ K.

v(x + y)) ≥ min(v(x), v(y)) for all x, y ∈ K.

(2)

The mapv is called adiscrete valuation.

(b) LetK be a field together with a discrete valuationv as in (1) satisfying the three statements in (2).
Show that

Rv := {x ∈ K | v(x) ≥ 0}

is a discrete valuation ring. What is its maximal ideal?

(c) Show that every discrete valuation ring is a valuation ring.
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1. First exercise.The problem of the cattle of the Sun

From Archimedes to Eratóstenes of Cirene:

“If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who once upon a
time grazed on the fields of the Thrinacian isle of Sicily, divided into four herds of different colours,
one milk white, another a glossy black, a third yellow and thelast dappled. In each herd were
bulls, mighty in number according to these proportions: Understand, stranger, that the white bulls
were equal to a half and a third of the black together with the whole of the yellow, while the black
were equal to the fourth part of the dappled and a fifth, together with, once more, the whole of the
yellow. Observe further that the remaining bulls, the dappled, were equal to a sixth part of the white
and a seventh, together with all of the yellow. These were theproportions of the cows: The white
cows were precisely equal to the third part and a fourth of thewhole herd of the black; while the
black cows were equal to the fourth part once more and with it afifth part of the dappled, when all,
including the bulls, went to pasture together. Now the dappled cows were equal in number to a fifth
part and a sixth of the yellow herd. Finally the yellow cows were in number equal to a sixth part
and a seventh of the white herd. If thou canst accurately tell, O stranger, the number of cattle of the
Sun, giving separately the number of well-fed bulls and again the number of females according to
each colour, thou wouldst not be called unskilled or ignorant of numbers, but not yet shalt thou be
numbered among the wise.

But come, understand also all these conditions regarding the cattle of the Sun. When the white bulls

mingled their number with the black, they stood firm, equal indepth and breadth, and the plains

of Thrinacia, stretching far in all ways, were filled with their multitude. Again, when the yellow

and the dappled bulls were gathered into one herd they stood in such a manner that their number,

beginning from one, grew slowly greater till it completed a triangular figure, there being no bulls of

other colours in their midst nor none of them lacking. If thouart able, O stranger, to find out all these

things and gather them together in your mind, giving all the relations, thou shalt depart crowned with

glory and knowing that thou hast been adjudged.”

(a) LetWb, Bb, Yb, Db (resp.Wc, Bc, Dc, Yc) the number of white, black, yellow and dappled bulls
(resp. cows). Write out the seven equations indicated in the first part ofthe problem that relate
these quantities.

(b) Check (using a computer!) that the solutions of the system of the previous paragraph in terms of
Yb is given by

Bb :=
178

99
Yb

Wb :=
742

297
Yb

Db :=
1580

891
Yb

Bc :=
543694

461043
Yb

Wc :=
2402120

1383129
Yb

Yc :=
604357

461043
Yb

Dc :=
106540

125739
Yb



(c) Observe that the system has more than one solution (one for each value ofYb). On the other hand,
not every solution of the system is a solution of the problem, since the number of bulls and the
number of cows must be integers! Write out an infinite family of integer solutionsof the problem,
depending on a parametert that takes values inZ.

If you have done the exercise so far, you are not unskilled or ignorant of numbers. But you have not
yet proved that you are wise!

(d) The two conditions in the second paragraph of the problem involve polynomial equations of
degree 2. Write out what these extra conditions look like for a generic member of your infinite
family. (Hint: Triangular numbers are those of the formx(x + 1)/2)

(e) Substituting one equation into the other one, merge your two equations into one equation of the
form Au2 = Bv(v + 1) for someA, B ∈ Z and some variablesu andv. Using the equality
v(v + 1) = (v + 1

2
)2 − 1

4
you can rewrite your equation asA(2u)2 = B((2v + 1)2 − 1).

(f) Making an adequate change of variables, rewrite your equation asx2 = dy2 + 1 for some integer
d, in such a way that integer solutions(x, y) ∈ Z allow you to find an integer number of bulls
satisfying the conditions.

We have not yet solved the problem! But we have transformed it into an equation whose integer
solutions will be studied in the rest of the semester. Hopefully at the end of it we will be counted
among the wise...

The main difficulty of the problem, as you have seen, is that we do not want any solution, but only
those that are natural numbers. This kind of question goes back to Diophantus of Alexandria, who wrote
a book calledArithmetica, which consists of a list of problems of the kind: find an integer solution to the
following (set of) algebraic equations. The solutions that he gives are highly subtle and clever. It is in
the margin of his copy of theArithmetica where Fermat wrote his famous Last Theorem (and many other
theorems).

If you cannot wait for the end of the semester to learn how to solve the problem of the cattle of the
sun, you can check the references

• Lenstra, Hendrik W., Jr. “Solving the Pell equation. Algorithmic number theory: lattices, number
fields, curves and cryptography”, 1–23,Math. Sci. Res. Inst. Publ., 44, Cambridge Univ. Press,
Cambridge, 2008.

• http://www.math.nyu.edu/ ˜ crorres/Archimedes/Cattle/Statement.html
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1. Letv ∈ Rn be a nonzero vector. Prove that〈v,
√

2v〉Z is not a discrete subgroup ofRn.

Hint:
√

2 can be approximated by rational numbers with as much precision as you like.

2. LetH ⊂ Rn be a lattice andP be a fundamental domain.

(a) Prove that for eachv ∈ Rn there exists a uniqueu ∈ P such thatv − u ∈ H.

(b) Prove thatRn is the disjoint union of the family{P + u}u∈H .

3. LetK be a number field,a ⊂ ZK a nonzero integral ideal. We define thenorm of a asN(a) = [ZK : a].

(a) Letx ∈ ZK different from0. Prove that the norm of the principal ideal(x) equalsNK/Q(x).

Hint: Consider aZ-basis ofZK , say{y1, . . . , yn}, such that there existλ1, . . . , λn ∈ Z with
{λ1y1, . . . , λnyn} a Z-basis of theZ-submodulexZK ⊂ ZK . Relate the mapTx : ZK → ZK

defined byTx(z) = xz with the mapf : ZK → ZK defined byyi 7→ λiyi for i = 1, . . . , n.

(b) Prove that ifm is a maximal ideal ofZK , thenN(a · m) = N(a) · N(m).

Hint: Call k = ZK/m; show thata/(a · m) is a k-vector space of dimension one, and hence
isomorphic toZK/m ask-vector spaces.

(c) Letb ⊂ ZK be another nonzero integral ideal. Prove thatN(a · b) = N(a) · N(b).

(d) Let I ⊂ K be a nonzer fractional ideal. We define thenorm of I asN(I) = N(xI)/|NK/Q(x)|,
wherex ∈ ZK is some element such thatxI is a nonzero integral ideal. Show that the norm of a
fractional ideal is well-defined.

(e) Show thatN : I(ZK) → Q× is a group homomorphism.



Exercises in Algebraic Number Theory
Summer Term 2012

Université du Luxembourg Sheet 10
Prof. Dr. Gabor Wiese
Dr. Sara Arias-de-Reyna 07/05/2012

1. Let K be a number field and leta ⊂ ZK be a nonzero integral ideal. Prove that there existsa ∈ a

different from zero such that

|NK/Q(a)| ≤

(

4

π

)r2 n!

nn

√

|disc(ZK)|N(a).

Hints: Use (without proving them) the following results:

• Let r1, r2 ∈ N, n = r1 + 2r2. For eacht ∈ R, define the set

St := {(x1, . . . , xr1
, y1, y

′

1, . . . , yr2
, y′r2

) ∈ Rn :

r1
∑

i=1

|xi| + 2

r2
∑

j=1

√

y2
j + y′2j ≤ t}.

Then
µ(St) = 2r1

(π

2

)r2 tn

n!

• (Arithmetic Mean-Geometric Mean inequality): For all(x1, . . . , xr1
, y1, y

′

1, . . . , yr2
, y′r2

) ∈ Rn,
it holds that





r1
∏

i=1

|xi| ·

r2
∏

j=1

(y2

j + y′
2

j )





1

n

≤
1

n





r1
∑

i=1

|xi| + 2

r2
∑

j=1

√

y2
j + y′2j





2. Let K be a number field different fromQ. Prove thatdisc(ZK) > 1. In particular, there exists a
rational primep such thatp|disc(ZK).

Hints:

• Use Exercise 1.

• Use thatπ < 4 andπ2 > 8.

• You may want to prove, as an auxiliary lemma, that the functionf : N → R defined by
f(n) :=

(

π
4

)n (

nn

n!

)

is strictly increasing.
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1. LetK = Q(
√
−5). Prove thatCL(K) has order2.

2. LetK = Q(
√
−19). Prove thatCL(K) = {1}.

3. LetK be a number field,α ∈ ZK andf(X) ∈ Z[X] the minimal polynomial ofα, and letA = Z[α].

Let p ∈ Z be a prime number, letf(X) ∈ Fp[X] be the reduction off(X) (mod p), and let

f(X) =
r

∏

i=1

qi(X)

be a factorisation off(X) into irreducible polynomials inFp[X] with leading coefficient1. For each
i = 1, . . . , r, chooseqi(X) ∈ Z[X] reducing toqi(x) (mod p). Then the prime ideals inA above(p)

are given by
pi := (p, qi(α))A, i = 1, . . . , r.

4. In this exercise we will complete the study of the integral solutions ofx2 + 19 = y5 that we started in
Exercise 3 of Sheet 6.

(a) Show that the mapΦ : Q(
√
−19) → R2 (Definition 7.1 of the Lecture notes) mapsZ[

√
−19]

into a latticeH = Φ(Z[
√
−19]) of volumev(H) =

√
19.

(b) Knowing thatPic(Z[
√
−19]) is generated by the classes of invertible prime integral ideals of

norm less than or equal to
(

2

π

)√
4 · 19 < 6

(which, if you like, you can check by following the proofs of Proposition 8.1 and Lemma 8.4 of
the Lecture notes, and adapt them to this case), and knowing that the ideal(2, 1 +

√
−19) is not

invertible, prove thatPic(Z[
√
−19]) is a group of order3.

Hints:

• Use Exercise 2 above.

• To prove that the class of a nonprincipal idealI has order3, it suffices to prove thatI3 is
principal (because thenI2 cannot be principal).


