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Preface

These are notes of a one-term course (12 lectures of 90 min each) taugtudents in the 6th term
of the Bachelor programme at the University of Luxembourg in Summer Téia.2Although the
students had some familiarity with concepts from Algebra from previous kEstatmost no prereq-
uisites were assumed.

The lecture starts with fundamentals of elementary number theory, that iBg’&E@dgorithm,
Gauly’ theorem on unique factorisation of integers, and the Chinese i@gndireorem, as well as
some basic group theory. These concepts are applied to the RSA algoriktich, is/treated in the
second section. Finite fields are dealt with in generality in the third sectioordoleging applied in the
Diffie-Hellman key exchange and the El Gamal encryption scheme in thecudast section. Section
5 contains a gentle introduction to plane curves, which is specialised to elliptiescand extended in
the subsequent section. The final section is concerned with elliptic cowveesinite fields and gives
a glimpse at their applications in cryptography.

In preparing these lectures we used several sources:
e Lecture notes by Gebhard Bockle and the second author from therSitétéduisburg-Essen.
e Silverman:The Arithmetic of Elliptic Curves

e WashingtonElliptic Curves, Number Theory and Cryptography

o Werner:Elliptische Kurven in der Kryptographie

Luxembourg, June 2012.
Sara Arias-de-Reyna, Gabor Wiese



1 SOME ASPECTS OF ELEMENTARY NUMBER THEORY 4

1 Some aspects of elementary number theory

The purpose of this first section is to survey the most basic conceptetesnentary number theory.
All students (should) have seen them before, but, it cannot hurt &tl them.

The way we present elementary number theory here is that its most fun@duearcept is that of
Euclid’s algorithm.

Theorem 1.1(Euclid, Bézout) Leta,b € Z not both zero. Thekuclid’s algorithmcomputes the
greatest common divisatof a, b, notationd = ged(a, b), that is:

e d>1,
e d|a,d]|b,
e foranye > 1 such that | a ande | b, one has: | d.

Moreover, theextended Euclid’s algorithmgivesr, s € Z such that
d = ar + bs.
The proof is completely algorithmic. The algorithm is practiced in an exercisheet 1.
Definition 1.2. An integerp > 2 is called aprime numbeif its only positive divisors aré andp.

Theorem 1.3(Gaul3; fundamental theorem of elementary number theémyn € N, n > 2, can be
written as a finite product of prime numbers: There is N and there are prime numbeys, . .., p,
such that

n=pi-p2-pr

Up to renumbering, the prime numbers occuring in the product are @nidpat is: ifn = q1-q2 - - - ¢
is another such product, then= s and there iss in the symmetric group on the lettefs, ..., r}
such thaty; = p,; foralli € {1,...,r}.

We are going to prove this theorem. The proof is not as trivial as one miggesg It essentially
uses the extended Euclid’s algorithm. The existence part, however, idateiystraight forward:

Proof of existence in Theorem 1.Betn > 2. By induction we prove the following statement:
There are finitely many prime numbers, . . ., p, such thaty = py - pa - - - py-.

Sincen = 2 is obviously a prime number, the statementor= 2 is true. Let us now suppose
we have proved the statement for all integers up te 1. We prove it forn. First casen is a prime
number. Then the statement is obviously true. Second easeub with 1 < a < n. We know that
we can writea andb both as finite products of prime numbers, hence, the statemenfdiows. [

Definition 1.4. Let R be a ring. ByR* we denote the set of units Bf i.e. the elements € R such
that there isy € Rwith 1 = zy.

An elemend # p € R\ R* is called aprime element oR? if, whenevep divides a productb
with a, b € R, thenp divides one of the factors, i.e.| a or p | b.
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Lemma 1.5. Let R be aring andp € R a prime element. Ip divides a productirsy - --rs with
r; € R, thenp divides one of the factors, i.e. thereiis {1, ..., s} such thap | r;.

Proof. Iterated application of the definition. Ol
The next lemma shows that prime numbers and prime elemefitsiia essentially the same.

Lemma 1.6. Letp > 2 be an integer. Then
p is a prime number= p is a prime element i&.

Proof. ‘=": Let a,b € Z and suppose | ab. If p | a, then we are done. So assumea. Since the
only positive divisors op arel andp andp does not divides, it follows that1l = ged(a, p). Hence,
there arer,y € 7Z such thatl = ax + py. Multiply this equation by and get:b = abx + py. Asp
dividesab by assumption and obviouspydividespy, it follows thatp dividesb, as was to be shown.
‘<. Supposep = ab with positive integers,, b. Then, agp is a prime element itZ, it follows
p | aorp | b Consequentlys > porb > p, thusa = p orb = p, showing that is a prime
number. O

Proof of uniqueness in Theorem 1X8/e again prove this by induction om. The casen = 2 is
obvious. Let us suppose that we have proved the statement for allposttgers up te — 1. Now
considem. We have, thus, prime numbers, . . ., p, andqg, .. ., gs such that

n=pL-p2-Pr=4qr-q2-""(qs-

By Lemmas 1.6 and 1.5 it follows that the prime numpeis a prime element which divides one of
theg; (fori € {1,...,s}), since it divides the produgt - g2 - - - ¢s. AS g; is a prime number, too, we
must haven; = ¢;. Dividing both sides by, we obtain

n/pL=p2-p3-Pr=q1 - q2 G- Qi+l s
As we already know the statement fofp;, we are done. O
Also the following famous theorem is based on the extended Euclid’s algorithm.

Theorem 1.7(Chinese Remainder Theoremetn, m € N such thatged(n, m) = 1. Then the map
®:Z/(nm) — Z/(n) x Z/(m), a+ (nm)— (a+ (n),a+ (m))
is an isomorphism of rings.

Proof. The homomorphism property is easily checked.

Injectivity: Suppose: € Zisin (n) and in(m). This means that | « andm | a. Asged(n,m) =
1, it follows nm | a, which means. € (nm), showing the injectivity.

Surjectivity: As ged(n,m) = 1, there arer,y € Z such thatl = nz + my. We just have to
interpret this equation in the right way. It means that= nx = 1 — my satisfies:

N =0 mod (n)andN =1 mod (m).
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In the same way we have th&f := my = 1 — nx satisfies:
M =0 mod (m)andM =1 mod (n).

Let b, c € Z and considefb + (n),c + (m)) € Z/(n) x Z/(m). Thena := bM + cN is an
element such that
a=b mod (n)anda =c¢ mod (m),

i.e.®(a+ (nm)) = (b+ (n),c+ (m)), showing the surjectivity. O

Definition 1.8. Letn > 1 be an integer. Let

p(n) = |(Z/(n)",

the order of the unit group of the ririg/(n ), that is, the number of units @f/(n). One callsp Euler's
totient function (or: Euler'sp-function)

Lemma 1.9. Letn = p{'-p5? - - - pt~ be the factorisation of into prime powers with pairwise distinct
prime number$, ..., p,.

Theny(n) = (p1 — D)p ™" - (p2 = Dps? - (pr — D"
Proof. By the Chinese Remainder Theorem 1.7 it suffices to pydyé) = (p—1)p~! for any prime
numberp.

In fact, it turns out to be easier to count non-unit&Zifp®) instead of counting units. The non-
units inZ/(p°) are precisely the classest (p°) such thap | a, thatis,0,p, 2p, ..., (p*~t —1)p. So,
there areo*~! non-units. Hencep(p®) = p¢ — p¢~! = p*~L(p — 1). O

Now we need to recall one elementary statement from group theory.

Theorem 1.10(Lagrange) Let G be a finite group and? < G a subgroup. Denote by : H) the
index ofH in G and by|G| (and |H ) the order ofG (and H). Then

Gl = |H| - (G : ),

Proof. Let us denote by the group operation. As abbreviation write= (G : H). Then by definition
there are- cosets, sayy; o H, g2 o H, . .., g.Ho such that

G=gioHlUgyoHU---Ug,.0oH,
where the symball means ‘disjoint union’. Now note that
H—goH, xw+—gjox
defines a bijection, so that the number of elementd @indg; o H are equal. Thus(| = r|H|. O

Corollary 1.11. Let G be a finite group andy € G an element. Therderord(g) is the smallest
positiven € Z such thate = ¢" (thatis,go g o --- o g), wheree is the neutral element i¥. Denote
—_—

n-times

by (g) the smallest subgroup 6f containingg.
Thenord(g) = |(g)| divides|G| andg!¢l = e.
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Proof. Let H = (g). We obviously haveH | = ord(g). Hence, Theorem 1.10 givesd(g) divides
|G|, say,|G| = ord(g) - m for somem > 1. Then

g|G\ — gord(g)-m — (gord(g))m — M — e,

finishing the proof. O

Corollary 1.12 (‘Little Fermat’). Let p be a prime number. We writ&, for the finite fieldZ/(p).
(Never use this piece of notationzifis not a prime!). Letn € Z be an integer such that = 1
mod (p — 1).

Then for anyr € F), one has:z™ = z (equality inIF,).

Elements inZ/(p) are residue classes, scc Z/(p) is of the forma + (p) for somea € Z. One,
thus, often formulates the corollary in terms of congruences: Fonani, the congruence

m —

a a mod (p)

holdsifm =1 mod (p —1).

Proof. The group of units oF,, has ordep—1 as the only non-unitis (the class 6f)Let0 # = € F,,.
By Corollary/1.112P~! = 1. We havem = 1 + (p — 1)r for somer € Z. Thus:

g = gt e-Dr — g o= — g (xpfl)r =z-1"=2z.
Forx = 0 we obviously also have™ = 0™ =0 = z. Ol

Corollary 1.13. Letpy, po, ..., p, be pairwise distinct prime numbers and put p; - ps - - - p,-. Let
m =1 mod (¢(n)).
Then for anyr € Z/(n) one has:x™ = z (equality inZ/(n)).

Proof. Exercise on Sheet 1. O

2 RSA

In this section, we introduce one of the main cryptographic algorithms thatuarently in use: the
RSA-algorithm, named after Ron Rivest, Adi Shamir and Leonard Adlemanh Bf you probably
uses this algorithm several times a day (maybe, without knowing it).

There are three people in the set-up:

e Alice: She wants to send a message to Bob.
e Bob: He wants to get a message from Alice.

e Eve: She wants to know what Alice writes to Bob, but, of course, Alice aslol\Bant to avoid
this.
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Bob’s preparation step

e Bob chooses two distinct (random) prime humbheendg.

Bob computes (multiplications):
n:=p-q ¢n)=p-1-(¢—1).

e Bob chooses a randoin< e < ¢(n) such thaged(e, p(n)) = 1.

Bob uses the extended Euclid’s algorithm in order to compusigch that
es=1 mod (¢(n)).

For that, Bob computes ¢ € Z such thatl = se + tp(n).

Bob publishes: ande (for example, on his webpage, in the phone book).

n is called themodulusande the public key

Bob keepss top secret

s is called thesecret key

Alice’s message encryption

We assume here that Alice’s message is an integsuch thatd < m < n — 1. In an exercise on
Sheet 2, you will show how to transform a text message into a sequersteloihumbers. In fact,
on Sheet 2, you show how to turn a sentence (or a text) into some positigerinte However, the
integerM might be bigger tham. In that case, what one does is to wrii€in its n-adic expansion,
i.e.
S
M:Zminiwithogmi <n-1.
i=0
Like this one breaks the messalje up into the piecesy, ..., m; and one encrypts (and decrypts)
each piece separately. But, as already said, for the sake of simplicitiy ekfusition, we suppose
that the message only consists of one single piesem < n — 1.

e Alice looks up Bob's(n, e) (e.g. in the phone book).

e Alice computesV := m® mod (n); we can také) < M < n — 1. The computation can be
done by fast exponentiation, see exercise on Sheet 2.

e Alice sends)M to Bob.
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Bob’s message decryption

Bob receives the messadé from Alice.

e Bob computesV := M* mod (n) with 0 < M < n —1. That computation can again be done
by fast exponentiation.

He findsN = m because:
M* = (m®)°=m*=m mod (n)

by Corollary 1.13.

Eve’s problem

Eve knows the following:
e Bob’s (n, e) (she can look them up in the phone book, too).

e The encrypted messagd (because she was eavesdropping — secretly listening; that's why
she’s called Eve).

If Eve can compute the prime factgrgandgq of n, then she can decrypt the message very easily:
e Like Bob, she computeg(n) = (p — 1)(g — 1).
e Like Bob, she uses the extended Euclid’s algorithm in order to comysiieh that
es=1 mod (p(n)).
Now she know the secret kaytoo!

e Like Bob, she decrypts the message by compuling= M* mod (n), which is, of coursem
again.

So, one has to prevent Eve from being able to faatofhis one does, in practice, by choosing
p andq very big, e.g. of size aroun2f*®, so thatp andq have each more than 600 decimal digits.
Then the currently best known algorithms for factoringvould be too slow to yield a result in less
than a couple of millions of years.

Of course, one does not know whether there is not a much faster atgofTthis insecurity, one
has to live with.

3 Finite fields

If p is a prime number, theR, := Z/(p) is a finite field withp elements. But, these are not the only
ones. In fact, in this part of the lecture we are going to establish that &br game powep™ there
is a finite field having™ elements, callef,,», and up to isomorphism these are the only finite fields.
It is very important to remember th&},. # Z/(p"), as soon as > 1 (for instance, ifZ/(p™) the
equality0 = pp™~! shows thab # p is a non-unit, but in fields all non-zero elements are units).
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First we treat the example of the finite field withelements in order to show that there are other
finite fields thanF, with p a prime. Considef(X) := X2 + X + 1 € Fo[X]. Itis an irreducible
polynomial. This one can check by testing that it does not have any zefs if(0) = 1 # 0 and
f(1) =1 # 0 (always remember that this way of testing irreducibility is only valid for polyndsnia
of degree® and3, since from degree¢ onwards, a polynomiaf could factor asf = gh with both
g andh having no zero). We recall the notatidyi(X)) for the principal ideal generated kf(X),
which consists of all multiples of (X).

We putK := Fo[X]/(X? + X + 1). We represent its elements as

6::O+(f),T::l—l-(f),Y::X—i-(f),l—i-X:zl—i—X—i—(f).

It is very simple to write down the addition and the multiplication table explicitly (we didithtke
lecture). It becomes obvious that every elemenkoflifferent from0 has a multiplicative inverse.
As we already know from the general theory of quotient rings #ids a ring, the existence of the
multiplicative inverses shows théf is a field. It has 4 elements and is denofgd

Definition 3.1. Let R be a commutative ring. If there is a positive integeisuch that

lp+1p+---+1r=0r

m times

in R (where for the sake of clarity we writ®; (resp.1g) for the neutral element of addition (resp.
multiplication) of R — we shall not do this at any other place), then tharacteristic of? is defined
to be the minimum sucf.

If no suchm exists, then we say th&t hascharacteristi®.

Example 3.2.Q has characteristi€® and for a prime numbep, the finite field,, has characteristi@.
The characteristic oF, is 2 (this is clear).

Proposition 3.3. Let R be an integral domain (e.g. a field). Then the characteristic is either a
prime number.

Proof. Suppose the characteristic Bfism > 0 andm = abwith 1 < a,b < m. Then

0=1+1+4-41=04+1++1)-1+1+---+1).

m times a times b times

As R is an integral domain, it follow$ +1+4---+1=00r1+4+1+---4 1 = 0 and both contra-
~—_———— ~—_——

a times b times

dicts the minimality ofm. O

We are now going to construct many more finite fields in a more conceptualQuayapproach is
a generalisation of our construction®f. The key is — again — the extended Euclid’s algorithm, now
applied in the polynomial ring.

Theorem 3.4(Euclid, Bézout) Let K be a field and letf(X), g(X) € K[X] not both zero. Then
Euclid’'s algorithmcomputes the greatest common diviggX ) of f(X), g(X), notationd(X) =

ged(f(X), g(X)), that is:
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e d(X) # 0is monic (i.e. highest coefficient equalitp

o d(X) | f(X),d(X) | g(X),
e foranye(X) # 0 suchthate(X) | f(X)ande(X) | g(X), one hag(X) | d(X).
Moreover, theextended Euclid’s algorithrgivesr(X), s(X) € K[X] such that
d(X) = f(X)r(X) + g(X)s(X).

The proof is again completely algorithmic.

We presented the theorem about Euclid’s algorithnZiand K [X] in a completely analogous
manner. In fact, most of the theory can be developed for all rings, inhndne has a Euclidean divi-
sion (i.e. a division with remainder). Such rings are calietlidean rings You may or may not have
seen them in your algebra classes. In this lecture we justAeesd the polynomial ring over a field,
so we will not go into Euclidean rings in general. On Exercise Sheet 3ywibprove an analogue
of Gaufy’ fundamental theorem of elementary number theorkTox| (the general statement, which
you may have seen, is: Every Euclidean ring is a unique factorisation dgmain

We start with a simple, but extremely useful consequence:

Lemma 3.5. Let K be a field andf(X) € K|[X]| be a non-zero polynomial. Then the following
statements hold:

(a) Suppose there is € K such thatf(«) = 0 (sucha is called azeroor arootof f). Then there is
a polynomialg(X) € K[X] such that

(b) f(X) has at mostleg(f) many zeros.

(c) Let f/(X) be the formal derivative of (X); that is, for f(X) = Y., a; X", we letf'(X) =
S i XTI f(X) = g(X)R(X)? with g(X), h(X) € K[X] non-zero polynomials, then
h(X) divides theged(f(X), f/(X)).

Proof. (a) We use Euclidean division:
f(X) =q(X) - (X — o) +r(X),
where the rest(X) has degree strictly smaller than the degree of the di\i&r- «), whence the
degree of(X) is 0. Thus,r(X) = cis a constant polynomial. Now, we plugdnfor X and obtain:
0=fla)=¢qla) - (a—a)+c=0+c=c,

showing that the rest(X) is zero, so thatX — «) dividesf.

(b) follows by induction from (a).

(c) It is easily checked that the Leibniz rule holds for the formal dekeaf{see Exercise on
Sheet 4):

F1(X) = g (XOh(X)? + 29(X)N (X)h(X) = h(X)(¢'(X)h(X) + 29(X)N' (X)),

showing that(X) dividesf’(X) and thus it divides the greatest common divisof @K' ) and f/(X).
O
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We now turn to the construction of finite fields. The fundamental result isat@afing, which
we first phrase in some generality and then specialise to finite fields in théacgro

Proposition 3.6. Let K be a field andf € K[X] an irreducible polynomial of degree > 0.
ThenK[X]/(f(X)) is afield. Its elements can be represented as

n—1 n—1
ZaiXi = (Z a; X" + (f(X)) with ag, ag, ..., an_1 € K.
i=0 i=0

Proof. We already know thak'[X]/(f(X)) is a ring. Now we show that every non-zero element has
a multiplicative inverse. Ley + (f(X)) € K[X]/(f(X)) be a non-zero element. Being non-zero
means thay(X) + (f(X)) # 0+ (f(X)), which is equivalent tg(X) ¢ (f(X)), which is the same
asg not being a multiple off, i.e. f(X) does not dividey(X).

It follows that the greatest common divisor $fX) andg(X) is equal tol, whence there are
r(X),s(X) € K[X] such that

1= f(X)r(X) + g(X)s(X).
Taking residue classes i§[X]/(f(X)) we obtain

T=1+(f(X)) = (9(X) + (f(X))) (s(X) + (f(X))) = 75,

exhibiting the desired inverse gf= g(X) + (f(X)).
The representatives listed in the assertion are just the remaindersiomivy f. O

Corollary 3.7. Letp be a prime number and € [F,[X] an irreducible polynomial of degree =

deg(f) > 0.
ThenF,[X]/(f(X)) is afinite field having™ elements, which can be represented as

n—1 n—1
ZaiXi = (Z aiXi) + (f(X))with0 < ag,ai,...,ap—1 <p—1.
1=0 1=0

Proof. In view of the previous proposition, this is clear. O

Now we have a big supply of finite fields — under the assumption that theraamrg irreducible
polynomials inF,[X]. It is possible to give a brute force proof that for everyc N, there is an
irreducible monic polynomiaf (X) € F,[X] of degreen. This can be done by counting the number
of reducible monic polynomials of degreeand observing that this number is smaller tip&r{which
is the total number of monic polynomials of degrée so that there must at least be one irreducible
monic polynomial. We will, however, go a slightly smarter way, which uses the mofi@a splitting
field of a polynomial.

The central role in the construction of the field wjth elements is played by the polynomial
XP' X ¢ F,[X]. Forn > 1itis notirreducible, so we cannot apply the previous corollary. Instead
we will take its splitting field. Although splitting fields may be known to you from arseun algebra,
we shall construct them here again (in a quick and concise way).
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Theorem 3.8. Let K be a field andf(X) € K[X] a monic polynomial of degree. Then there is a
field L satisfying the following properties:

(1) K C L.
(2) There areny,...,a, € L such that (inL[X]):

FX) =X —a1) ... (X —an).

(3) If K C Ly C L andL; satisfies (1) and (2), thebh = L, (i.e. L is the smallest field containiny,
over whichf(X) factors into a product of linear polynomials).

The fieldL is called thesplitting field (corps de décomposition, Zerfallungskorpery of
Proof. We show the following assertion by induction an

For every fieldK and every monic polynomigl(X) € K[X] of degree at most, there
is a field L such that

() K CL.
(1) There arexy, ..., «a, € L such that (inL[X]):

FX)=(X—a1) ... (X — an).

If n =1, thenf is already linear and = K trivially satisfies (I) and (Il).

Now assume that the assertion has been established for all polynomialgreésieip to: — 1.
We now want to establish it for the polynomifile K[X] of degreen. For this, we distinguish two
cases:

f is reducible:ln this case, we factof (X) = g(X)h(X) with g(X), h(X) € K[X] of degrees
strictly less tham. From the induction hypothesis applied fdrX') € K[X] we deduce the existence
of a field L, satisfying (1) and (I1). We apply the induction hypothesis again/fok') € L;[X] (we
can, of course, viewi(X) as a polynomial ofl; [ X] becauseX is a subfield ofL;) and obtain a
field L satisfying (I) and (l1) (for the polynomiak(X)). We haveL O L; 2 K, showing (l) for
f € K[X]. Moreover, it is clear thaf (X) factors into linear factors over[ X | because the roots of
g(X) liein L; C L and those ofi(X) lie in L.

f is irreducible:From Proposition 3/6 we know thdt; := K[X]/(f(X)) is a field. It contains
K (the classes of the constant polynomials) and the alasss X = X + (f(X)) is a zero of
f(X) € L1][X]. To see this, let us writ¢(X) = >, a; X*. Then:

FX) =X =3 a(X + (F(X)' = D a:X' + (F(X)) = fF(X) + (F(X))
=0 =0 1=0

— 0+ (f(X)) =0.

(Note the small ambiguity in the notation: = a + (f(z)) = a for a € K.) Hence, overl;[X]
we havef(X) = (X — a)g(X) with g(X) € L,[X] of degreen — 1. This allows us to apply the
induction hypothesis fog(X) € L,[X], yielding a fieldL O L, O K over whichg(X) factors as a



3 FINITE FIELDS 14

product of linear polynomials. Consequently, ovethe polynomialf(X') factors into a product of
linear polynomials, establishing the assertionsfor

We now prove the theorem. The above assertion gives us afigddtisfying (1) and (2). We now
want to show that there is a field for which (3) also holds. This is very easy. Namely, it suffices to
let . be the smallest subfield @ff which containsy, . . ., a,. O

We are now ready for the construction of a finite field withelements.

Proposition 3.9. Letp be a prime number and € N~ (. Considerf(X) = X?" — X € F,[X].
Then the splitting field. of f(X') over[, is a finite field withp™ elements.

Proof. As L is the splitting field, there are elements, . .., a,» € L such thatf(X) = f;(X —
«;). By Lemma 3.5 (c), they; are pairwise distinct because

ged(f(X), f'(X)) = ged(f(X),p"XP" 7! = 1) = ged(f(X), -1) = 1

(if a; = «; fori # j, then takeh(X) = (X — ;) andg(X) = f(X)/(h(X)?)). So, the set
M = {ai,...,apn } hasp™ elements and it consists precisely of the zerodjinf f(X).
We now show thaf// is a subfield ofL. Leta, 3 € M, hencen?” = o andgr" = 3.

e 0,1 € M because they clearly satisfy0) = 0 = f(1).

e Supposer # 0. Thena?” = o implies(1)?" = 1, showing that\/ contains the multiplicative
inverse of any non-zero elementid.

e Froma?" = a andp?” = 3, it follows (a3)?" = o3, showing that\/ contains the product of
any two elements of/.

e Froma?" = q, it follows (—a)?" = (—1)P"a = —a (note that forp = 2 this equation is also
true), showing thafl/ contains the negative of any of its elements.

e Fromo?" = aandp?” = 3, it follows (o + B)P" = o?" + BP" = a + 3 (see Exercise on
Sheet 4), showing that/ contains the sum of any two elementsidt

Due to (3) of the definition of a splitting field, one has= M and this finishes the proof. Ol

We have thus shown that there is a field withelements by constructing it as the splitting field
of the polynomialX?" — X € F,[X]. Next, we prove that all finite fields with" elements are of
this type. From that we shall deduce that any two finite fields with the same mwhékements are
isomorphic, so that we will obtain a complete classification of all finite fields.

Lemma 3.10. Let K be a finite field and lep be its characteristic. Thep is a prime number and
there isn € N such that the number of elementg/oiis p”.
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Proof. The characteristic ol cannot be) because in that cas€ would contain infinitely many
elements, namel)¥ and hencd). So, the characteristic df is p. That means that the kernel of the
ring homomorphism

1+14---+1 if z>0,

7 K RN z times
’ —1-1—---—1 ifz<0.

~—
|z| times

is the prime idealp), whence by the homomorphism theorem (ler théoréme d’'isomorphisme) we
obtain an injectiori¥, — K. So,F, is a subfield ofK and, thus K is anlF,-vector space of some
dimensiom. Hence K hasp™ elements. O

Proposition 3.11. Letp be a prime numbef, € N+, and K a finite field withp™ elements. The&
is a splitting field of the polynomiat?" — X overF,,.

Proof. This is actually very easy. We check conditions (1), (2) and (3) in thaitiefi of a splitting
field:

(1)F, C K; this is clear due to Lemma 3.10.

(2) Leta € K. If a = 0, then clearlya?" = a. If a # 0, thena®"~1 = 1 because the
multiplicative groupk > = K \ {0} has ordep™ — 1. Hence, we also find”" = a. Consequently,
all elements ofK are zeros off (X) = X?" — X € F,[X]. As we havedeg(f) zeros off in K,
f factors into linear factors ovex'.

(3) Of course, no proper subfield of a field wit elements can contain all the zerosfdfecause
their number ig". O

Lemma 3.12. Let A be a finite abelian group. Thexponenixp(A) of A is defined as the minimal
positive integee such that® = 1 for all elements: € A. Then the following statements hold:

(a) Leta,b e A. Suppose that = ged(ord(a), ord (b)), thenord(ab) = ord(a) ord(b).

(b) Leta,b € A. Then there aré, j € N such thatord(a’s’) = lem(ord(a), ord(b)) (Icm: lowest
common multipleppem: plus petit commun multiplégV: kleinstes gemeinsames Vielfaches).

(c) There isa € A such thabrd(a) = exp(A).
(d) Aiscyclice exp(A) = #A.

Proof. (a) Lete > 1 such thau®b® = 1. Sincel = ged(ord(a®), ord (b)), it follows from a® = b~¢
thata® = 1 = b°. Thus,ord(a) | e andord(b) | e, henceprd(a) ord(b) = lem(ord(a),ord(b)) | e.
Of course(ab)ord(@) ord(®) — 1,
(b) Let
ord(a) =pi"* -...-p,"* andord(b) = pi* - ... pi*
be the prime factorisations (i.e. the, . . . , pi are pairwise distinct prime numbers), where we sort the
primes in such away that; > nq,...,mgs > ng andmsy; < ng,...,mp < ng. Let

s

Mg mp, 7
a' :=aPs+1 Proandd = P o Ps
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It is clear that we have
ord(a’) = pj" ... pi* andord(¥) = it - P,

Hence, (a) implies that the order @f’ is

Pyt el pt - ppk = lem(ord(a), ord (D).
Of course,(ab)lem(erd(a).ord(®)) —

(c) Lete denote the lowest common multiple of the orders of all elements ithis an immediate
consequence of (b) that there is an elemeatA whose order is. So,e = ord(a) | exp(A). Clearly,
exp(A) is less than or equal @ showing the desired equality.

(d) is an immediate consequence of (c). Ol

Proposition 3.13. Let K be a finite field. Then the group of un&s* = K \ {0} (group with respect
to multiplication and neutral elemen) is a cyclic group of ordegt K — 1.

Proof. Let #K = p". Lete := exp(K ™). Due to Lemma 3.12 it suffices to show that p™ — 1.
Suppose: < p" — 1. Then every element € K satisfiesa®! = a, so that the" elements are all
zeros of the polynomiak**! — X, which has degree+ 1. This is, of course, impossible because a
polynomial of degree + 1 has at mose + 1 zeros (since the coefficients of the polynomial are in a
field). O

Definition 3.14. Let K be a field,L a field containingk’, anda € L. Consider the evaluation map
evy @ K[X] B inciCING 5

Let g(X) be the unique monic generator of the principal ideat(ev,) (recall: K[X] is a prin-
cipal ideal domain). In particular, any other polynomiA(X) € K[X] with f(«) = 0 is a multiple

of g(X).
One callsg(X) theminimal polynomial ofa over K.

Proposition 3.15. Let p be a prime number, € N+, and K and L finite fields withp™ elements.
ThenK and L are isomorphic, i.e. there is a field isomorphidm K — L.

Proof. By Proposition 3.13, the unit groul§ * is cyclic of orderp™ — 1. Leta € K* be a generator,
i.e. an element of* of orderp™ — 1. Let g(X) € F,[X] be the minimal polynomial of. It has
degreen, for, if it had a smaller degree, then the order oft would be a divisor op™ — 1, which is
impossible.

The evaluation mapv,, : F,[X] B ICING Yo defines an isomorphism (via the homomorphism
theorem)F,[X]/(g(X)) = K. We show that als&',[ X]/(g(X)) = L.

Note thatg(X) | X(X?" 1 —1) = XP" — X (in F,[X]) because is a zero of both polynomials,
so thatX?" — X is in the principal ideal generated gy X). We know by Proposition 3.11 thdtis

a splitting field of X?" — X overF,. Hence, alsg(X) splits in L into linear factors and, thus, there

is 8 € L such thay () = 0. This means that the evaluation map; : F,,[X] JEIB), 1 defines

the desired isomorphism (via the homomorphism theot&X]/(g(X)) = L. O

Now we can state and prove the complete classification result of finite fieldsisg@morphism.
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Theorem 3.16.(a) The number of elements of any finite fi&lds of the formp™, wherep is a prime
number and the characteristic &f, andn € N+q.

(b) For any primep and anyn € Ny, there is a finite field having™ elements. Any two such are
isomorphic. We use the notati@h: .

(c) LetK be a subfield oF,». Then# K = p° for some divisoe of n.
(d) For every divisor | n, there is a unique subfield C [F,» havingp® elements.

Proof. (a) and (b) have been proved above.

(c) The fieldF,~ is a field extension of’, henceF,. is a K-vector space of some dimensidn
Thus,p" = #F,n = (#K)? = p.

(d) Letn = ed. Then (geometric sum)

pn 1= (pe . 1) (pe(d—l) +pe(d—2) 4.+ 1)

=m

and (again geometric sum)
XP' L = (xP Tt —)(x T DmeY)  x (0 Dm=2) ),

showingf(X) := (X?° — X) | (X?" — X).

The zeros off (X) form a subfieldK of IF,,» with p°-elements: it is the splitting field of (X)
overF,. If L C T~ is a subfield withp® elements, then all its elements are zerog ©X), whence
L C K, hencelL = K. O

4 Diffie-Hellman and El Gamal for finite fields

Symmetric encryption

Alice and Bob want to communicate secretlynfessagés, as before, a positive integer< m < N
(for some fixed bigV). A keyis a positive integek < N.
A symmetric encryption functigffior the keyK) is a pair of maps:

fi:{1,2,...,N} xN—={1,2,... N}

fo:{1,2,....,. N} xN—={1,2,...,N}

such thatfs(f1(m, K), K) = m and bothf;(m, K) and f2(n, K) can be computed quickly for all
m,n € {1,2,...,N}. One also wants that cannot (easily) be computed frofa(m, K) if K is
unknown. One callg; (m, K) theencryptionof the message: for the keyK.

Just to give an idea of a symmetric encryption system (this one is not peSeppose the key is

d—1
K =Y a0 witha; € {0,1,...,9}
=0
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and the message is

e
m = Zmiloi with m; € {0,1,...,9},
i=0
where we imagine thatis much bigger thad. Then we could take:

e
fi(m, K) => " M0,
=0

where theM; are computed as follows:

My =mg+ a9 mod (10),..., Mg 1 =mg_1+ag1 mod (10)
Ms;=mg+ay mod (10), ceey Msg_1 = mog—1 + ag—1 mod (10)
Msq = mog + a9 mod (10),..., Msg1 =m3q_1+ag-1 mod (10),

and so on, until,. The functionf; is defined in the same way, replacimgoy —.

Assumption: Alice and Bob have a common secret: a big intel§ee N.

If Alice wants to send message to Bob, all she has to do is compulé¢ := f;(m, K) and
sendM to Bob. He can read the message by computing f>(M, K). Our assumptions imply that
Eve, who knows\/ (and alsof; andfs,), cannot deducer. But, this all relies on the above assumption
that Alice and Bob have this common secret K€y If they are far away (Bob is in New York and
Alice in Luxembourg, they can only speak on the phone, and Eve listensttealconversations), it
is not so clear how they can get a common secret. That it is possible wasisteated by Diffie and
Hellman.

Diffie-Hellman key exchange

The players are the same as for RSA: Alice, Bob and Eve.

Task:Alice and Bob want to agree on a secret key, which both of them knawyHiah is unknown
to Eve. They want to do this, even though Eve is listening to their conversation

A revolutionary method was found by Diffie and Hellman. In order to illustragenttethod, we
first present the idea in a simpler setting, where it turns out to fail, and tieseipt the right version.
First (wrong) attempt
(1) Alice and Bob agree on a big prime numipeand an integet < g < p. Eve may know andg.
(2) Alice chooses secretly € N, computesA := ag mod (p) and sends! to Bob.
(3) Bob chooses secrettyc N, computesB := bg mod (p) and sends3 to Alice.

(4) Alice receivesB from Bob and computeK ajice := aB = abg mod (p).

(5) Bob receivesA from Alice and compute&gop := bA = abg mod (p).
Note: Kaiice = KBob-
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Eve listened to their conversation. She knows: B, p andg. She now uses the Euclidean
algorithm to computé < h < p suchthayh =1 mod (p) (i.e. aninverse tg in 7). This allows
her to compute

Ah =agh=a mod (p)andK :=aB mod (p),

so thatK = Kpjice = Kpgob. Thus, Eve knows the common ‘secréf’
A slight maodification of the above turns out to prevent Eve from obtainingueet!

Correct realisation

The idea is to replace computations(ify,, +) by computations irﬂF‘;n, -) (where we may, but need
not, choose: = 1).

(1) Alice and Bob agree on a big finite field(e.g.[F,, or any[F,») and a generatay of the cyclic
groupF*. Eve may knowF andg.

(2) Alice chooses secretly € N, computesA := ¢g* € F* and sendsl to Bob.
(3) Bob chooses secretlye N, computess := g® € F* and sends3 to Alice.
(4) Alice receivesB from Bob and compute& ajice := B® = (¢%)* = g* € F*.
(5) Bob receivesi from Alice and compute&gop := A” = (¢°)* = g% € F*.

Note: Kajice = KBob.

Eve again listened to their conversation. She again knew®, p andg. But, in order to compute
a from A (andp andg) she would have to solve the discrete logarithm probiemme finite fieldF,
which is defined as follows:

Given a finite fieldF and a generatay of the cyclic grougF* (with respect to multipli-
cation).

For A € F*, finda such thay® = A € F*.

The solutiona is called a (discrete) logarithm of (for the basis/generat@) because
g® = A.

Up to this day, no efficient algorithm is known to compute a discrete logarithnig finite field.
Hence, Eve cannot computeand, thus, cannot obtain the common seégfce = Kpob, although
she has seen everything that Alice and Bob exchanged!

As a variant, one can replace the discrete logarithm problem in finite fieldsebgtiscrete log-
arithm problem in elliptic curves (later this term!), and obtain an elliptic curveBeRtfellman key
exchange. This is used, for instance, in the authentication procedutefoommunication between
the German passport and a reader.
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El Gamal encryption

A slight variation of the order of step in the Diffie-Hellman key exchangegiise to a public key
encryption system, which works similarly to RSA: Bob wants to receive messag particular, but,
not only from Alice), and for that purpose he produces a public kbjclvcan be looked up in a phone
book, and a secret key. People (like Alice) who have looked up the pkibjican send encrypted
messages to Bob which only he can decrypt using his secret key.

Bob’s preparation step

e Bob chooses a big finite fielél (e.g.FF,, or any[F,.) and a generatay of the cyclic groupF™.
Eve may knowF andg.

e Bob chooses secretlyc N and compute®? := ¢* € F*.

e Bob publishesB (andFF andg) in the phone book.

Alice’s message encryption

e Alice looks up Bob'sB (andFF andg) in the phone book.

e Alice chooses secretly € N and computes! := g* € F* (just like in the Diffie-Hellman key
exchange).

e Alice computesKajice := B® = (¢%)" = ¢® € F*.
e Alice encrypts the messadd := f1(m, Kajice)-

e Alice sendsM and A to Bob.

Bob’s message decryption
e Bob receives\/ and A from Alice.
e Bob computedion, = A® = (9%)° = g% € F*. Note that agairK ajice = Kpob.

e Bob decypts the message= f2(M, Kpob)-

And Eve?

Eve knowsA, B (andF andg) and M. As in the Diffie-Hellman key exchange she is faced with
computingb from B or a from A in order to get hold o ajice = Kob (Which we assume is necessary
for the message decryption). This is the same discrete logarithm problem finitadield F, and,
hence, currently undoabile if the field is big enough.
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5 Plane Curves

Let K be a field. Usually we will work withk' = Q, R, C or a finite field, but, unless we say it
explicitly, K denotes any (fixed) field. First we define the affine plane over the Keld his is the
place where our plane (affine) curves will live.

Definition 5.1. We define theffine plane ovek asA?(K) := K x K = {(a,b) : a,b € K}. The
elements of\?(K) will be calledaffine points

Definition 5.2. e Let f € K|[z,y] be a polynomial in two variables with coefficientsin We
define the following subset of the affine plane d¥er

Cy(K) = {(a,b) € A*(K) : f(a,b) = 0}.

e Consider the set of pair§(C, f) : C € A%(K), f € K[z,y] is nonzerd. We will identify two
pairs (Cl, fl) and (02, fg) if C1 = Cy andf1 = Afy for some\ € K*.

¢ Anaffine plane curve oveK is a (class of a) pai(Cy(K), f) for some nonzerg € K|z, y].
We will denote it by’ /K or C /K.

Remark 5.3. e Usually one identifies a plane curg;/K with the subset;(K) of A%(K)
that it defines. However, given a subgetc A%(K), there can be more than one polynomial
[ € Klz,y] such thatC = C¢(K), so we are loosing information if we forget about the
polynomialf. In Sheet 6 we will see some examples of this.

e According to Definition 5.2, for any scalare K*, we identify the curve§'s /K andC)s/K.
This stems from the fact thftand A f generate the same ideal ii[z, y|. In general, an affine
variety can be defined as a pai¥/, I), whereV is a subset of the affine space ahds an
ideal of a ring of polynomials with coefficients ii. But for our purposes we can work with
Definition 5.2.

Example 5.4. 1. Leta,b,c € K with eithera # 0 or b # 0. Then the affine curve defined by the
polynomialf(x,y) = ax+by+cis called anaffine line The seC's(K) corresponds bijectively
to the elements ak. Namely, ifb # 0, we haveC(K) = {(t, F:(at +¢)) : t € K};if b =0,
thena # 0 by hypothesis an@'(K) = {(-°,1) : t € K }.

2. LetK = Fy, and letf(z,y) = y*> + y + 2 + z. Let us compute the sét;(K). Recall
(beginning of Section 3) that we can wrifg = F»[X]/(X? + X + 1), and the elements df
are represented by, 1, X, X + 1. We can compute the following tables:

e [@+=2] [y [¥+y]
0 0 0 0
T o T 0
X X+1 X 1
X+1| X X+1]1

The points o2 (K ) are those where the valuesyf+ y andz> + z match, namely('s (K) =
{(0,0),(0,1), (1,0), (1, 1)}
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For many purposes it is convenient to complete the affine plane with some abinfmity. For
instance, one desirable property that the affine plane does not haw eatth pair of lines meet at
exactly one point (which would allow us to drop the distinction between pagaitthonparallel affine
lines). For this reason we introduce the projective plane.

Definition 5.5. e We define arelatior- on K x K x K\ {(0,0,0)} by (a1, b1,c1) ~ (a2, ba, c2)
((a1,b1,c1) is related to(ag, be, c2)) if there exists somé € K* such that(ai,b1,c1) =
(Aag, Aba, Ac2). This is an equivalence relation (i.e., reflexive, symmetric and transitive).

e Theprojective plane oveK is defined a®?(K) = ((K x K x K) \ {(0,0,0)})/ ~. The
elements oP?(K) are calledpointsof the projective plane.

e If (a,b,c) € K x K x K\ {(0,0,0)}, we denote its equivalence class[as b : ¢| € P?(K).

In which way is the projective plane an extension of the affine plane? Weeafie three different
(natural) embeddings @f?(K) into P?(K) adding al in different places:

i1: A(K) — P*(K); (a,b) — [1:a: b
i : A%(K) — P*(K); (a,b) — [a:1:b]
iz : A*(K) — P*(K); (a,b) — [a:b: 1]

These maps provide us with a coveringf3f K) by affine planes, as the following lemma shows:
Lemma 5.6. The maps, io, i3 are injective, and; (A%(K)) Uiz (A2(K)) Uiz(A%(K)) = P?(K).

Proof. e Let us see first that; is injective (foris andis one proceeds analogously). Assume
i1(a1,b1) = i1(az,b2). Thatis,[1 : a1 : b1] = [1 : ag : bs]. By Definition/5.5, this means there
exists a\ € K* such thatu; = \as, b1 = Aoy, 1 = X - 1. Thus) = 1 anda; = as, b1 = bo.

e Let P € P?2(K) be a point, say? = [a : b : | for some(a, b, c) € K x K x K\ {(0,0,0)}.
One (at least) of the three element$, ¢ is nonzero. Ifa is nonzero, thel® = [a : b: ¢] =
[1:b/a:c/a] =i1(b/a,c/a) € i1(A%(K)). If ais zero buth is nonzero, ther® = [0 : b :
c] =[0:1:¢/b] =is(0,c/b) € ix(A%(K)). Finally, if botha andb are zero, them must be
nonzero and® = [a,b,¢] = [0:0:¢] =[0:0: 1] = i3(0,0) € i3(A%(K)).

O

Remark 5.7. The subsets; (A%(K)), i2(A%(K)), i3(A%(K)) coverP?(K), but they are not disjoint.
For instance, the poinil : 1 : 1] lies in the three sets. But ldf = i1({(a,0) : a € K}) and
O =[0:1:0]. ThenP?(K) = i3(A%(K)) U H U {0}, and this union is disjoint. In the following
lectures, unless we say the contrary, we vigW/K ) insideP?(K) viai = i3.

Via the inclusioni : A?(K) — P?(K), we can view the affine curves inside the projective plane,
C¢(K) — i(Cf(K)) C P2(K). But, in the same way that we completed the affine plane adding a
line and a point at infinity, we want to complete the affine curves to projectivees. Since each
point of P! (K) is determined by a triple of elements, it seems natural to try to define the prejectiv
curves as the vanishing set of polynomialdihX, Y, Z].
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Example 5.8. Let K be a field with at least three elements and f¢X,Y, 7)) € K[X,Y, Z] be
defined asf(X,Y,Z) = X2 +Y + Z. Thenf(1,-2,1) = 0 but for A # 0,1, f(\, =2\, ) =
A2 —2X 4+ X = M\ — 1) # 0. Therefore the poinfl : —2 : 1] € P?(K) has a representative
(1,-2,1) € K x K x K\ {(0,0,0)} with f(1,—-2,1) = 0 and another one(1\, -2\ \) €
K x K x K\ {(0,0,0)} such thatf(\, —2X, \) # 0.

The previous example shows that not every polynomiakiX, Y, Z] is suitable for defining a
curve in the projective plane.

Definition 5.9. Letd > 1 be aninteger. A nonzero polynomjak K[X,Y, Z]is calledhomogeneous
of degreed if
f(X,Y,Z) = Z Aoy g s XY V2273,

v1,v2,v320
v)+vg+rg=d

Example 5.10. For example,X + Y, X + Y + Z, are homoegeneous polynomials of degtee
ZY? - X34 72X — Z3,Y? are homogeneous polynomials of degiee

Lemmab5.11.Let f € K[X,Y, Z] be ahomogeneous polynomial of degileéu, b, c) € K x K x K.
Then the following are equivalent:

() f(a,b,c)=0.
(i) Forall A € K*, f(Aa, Ab, Ac) = 0.

Proof. Itis clear that the second condition implies the first. Now, assumefilaab, c) = 0. Sincef
is homogeneous, we can write it as

f(X,Y,2) = Z aV17V27V3XV1YV2ZV3

vy,v9,v3>0
vy +vo+trz=d

for some coefficients,, ,, ., € K. Hence

FO@Ab ) = D (M) (M) (M) =

vy,vg,v320
v +vg+rvz=d

E Uy g NITV2H Vg1 p2 08 — \d E Uy 507107267 = N f(a,b,¢) =0

vy,vg,v3>0 vy,vg,v3>0
vy +votvz=d vy +votrg=d

The previous lemma allows us to formulate the following definition.

Definition 5.12. e Letd > 1 beaninteger,andleft € K[X,Y, Z] be ahomogeneous polynomial
of degreed. We define the following subset of the projective plane &er

Cy(K) :={[a:b:d € P*K): f(a,b,c) = 0}.

e Consider the set of pair§(C;(K), f) : f € K(X,Y, Z) homogeneoys We will identify two
pairs (Cy, (K), f1) and(Cy,(K), f2) if fi = Afo for somex € K*.
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e Aprojective plane curve ovek is a (class of a) paifCy(K), f) for some homogeneous poly-
nomial f € K[X,Y, Z]. We will denote it by’ /K or Cy /K.

The next question we want to answer is: given a plane affine allyyéd(, how does it extend to
a projective curve? In other words, which is the “right” homogeneougnomial g € K[X,Y, Z]
such that the plane projective cur¢€,(K), g) extends(C(K), f)? One of the things we want
is that, whenevefa,b) € Cy(K), then[a : b : 1] € Cy(K). This will in particular happen if
f(a,b) = g(a,b,1) for all a,b € K?. Assume thay is a homogeneous polynomial of degrée
satisfyingg(z,y,1) = f(z,y). If [a : B : 7] € Cy(K) satisfies thaty # 0, theng(«, 3,7) =
v9(2,2,1) = 47f(2,2). We can formally make the substitutionX, Y, 2) = Z?f(%,%). For
this expression to be a polynomial (i.e., without negative powers)ate need thatl be greater than
or equal to the degree ¢f(i.e., the maximumu such that there is a termy,,,, "' y*2 in f(x,y) with
ay,v, 7 0andv; +v = n). Since we do not want our projective curve to contain the wiblgvhich
is already a line), we do not want thdtis a common factor of all the terms ¢f In other words, if
f(@,y) = 32, 1, Q@ y™?, andn = max{v1 + 12 : ay,., # 0}, we want to have the equality
d = n. This discussion motivates the following definition.

Definition 5.13. 1. Letf € K[z, y| be a nonzero polynomial, sz, y) = >, ,, G, y"2.
e The integedeg(f) = max{v1 + 2 : ay,,, # 0} is called thetotal degreef f. We will
say thatf is nonconstanif deg(f) > 1.
e The homogenisatiorof a nonconstant polynomigl(z,y) € K|[xz,y] is the polynomial

f* e K[X,Y, Z] defined as

(XY, Z2) = Z aV1V2XV1YszdegT(f)—(y1+y2)

V1,02
2. The projective curvé€'s- /K will be called theprojectivisationof the affine curve’, /K.

Remark 5.14. The homogenisatiofi* of a polynomialf as above is clearly a homogeneous polyno-
mial of degreedeg,(f). The relationship betweed ;- (K) and C¢(K') will be made precise in the
following lemma.

Lemma 5.15. Let f € K[z, y] be a nonconstant polynomial. It holds that
i(Cy(K)) = Cp-(K) Ni(AX(K)).

Proof. & Let (a,b) € Cy(K). i(a,b) = [a : b : 1] € i(A%(K)). Moreoverf(a,b) = 0, hence
f*(a,b,1) =0, which impliesja : b : 1] € Cy«(K).

2 Let P € Cp+(K) Ni(A*(K)). SinceP € i(A%*(K)), it can be written aga : b : 1] € P(K).
SinceP € Cy«(K), we haved = f*(a,b, 1) = f(a,b). Hence(a,b) € Cf(K) andi(a,b) =[a : b :
1] = P. O

Example 5.16. e Let K be a field,f(z,y) = az + By + v € K|z, y] a polynomial such that
eithera = 0 or 5 = 0 andCy/ K the corresponding affine line. Then the homogenisation of
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fis f*(X,Y,Z) = aX + BY + ~vZ, and the projectivisation of’; /K is theprojective line
Cy+ /K. Note that

Cp(K)={[a:b:d € PXK): f*(a,b,c) =0} =
{la:b:1] € PX(K): f*(a,b,1) =0} U{[a:b:0] € P2(K): f*(a,b,0) =0} =
i(CHEK))U{la:b:0] € P2(K): aa+ Bb=0}

By hypothesis either or 3 are nonzero. Ifx # 0, then{[a : b : 0] € P*(K) : aa + 3b =
0} = {[-bB/a:b:0 € P2(K):bec K*} = {[-3/a:1:0]}. Ifa =0, then3 # 0 and
{la:b:0]€P*(K):80=0} ={[a:0:0]:a€ K*} ={[1:0:0]}. Inboth cases, the
projectivisation ofC's / K contains one more point thati; /K.

e Recall that in Example 5.4-(2) we considered the cutygF, defined byf(z,y) = y* +y +
23 + . We now compute its projectivisation. Firgt,(X,Y, Z) = ZY? + Z?Y + X3 + Z2X.
Next, the se€’;-(IF4) is defined as

{la:b:c € P2(Fy): f*(a,b,c) =1} =
{[a:b:1) € PX(Fy) : f*(a,b,1) =0} U{[a:b:0] € P2(Fy): f*(a,b,0) =0} =
i(Cy(Fa))U{fa:b:0] € P2(Fy) : f*(a,b,0) =0}
The setC(F,4) was already computed in Example 5.4-(2). On the other haqd b, 0) = a3

is zero if and only itz = 0. So the only point of’s- (IF4) which is not in the affine part of the
curveisO =[0:1:0].

Definition 5.17. A projective lineis a projective curve’s /K such thatf € K[X,Y, Z] is a homo-
geneous polynomial of degréelf f(X,Y, Z) = aX + BY + ~+Z for o, 3,y € K not all vanishing.
We denote it by.(a, 3,7)/K.

Lemmab5.18. (a) Let P, P, € P?(K) be two different points. There exists one and only one
projective lineL /K passing throughP; and P, (that is to say,P;, P» € L(K)).

(b) Let L1 /K, Ly/K be two different projective lines iB?(K). Then they meet at exactly one
point (that is to sayL; (K) N Ly(K) = { P} for some pointP € P?(K)).

Proof. (a) LetP, = [a1 : b1 : c1] and Py = [ag : be : co] be two different points. IL/K =
L(«a, 8,v)/K is aline such thaP;, P, € L(K), then it holds that

a1+ b16+c1y=0
aza + baff + coy = 0.

In other words{«, 3, v) must be a solution of

x
al b1 C1 0
= . 51
<a2 by 02> Z <0> 1)
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The condition that?; and P, are different means precisely that the two raws, b1, ¢;) and
. . b .
(a2, bo, c2) are linearly independent. In other words, the rank of the mdtrix - * '] is
ag 2 C2

, , , , | b
two. Therefore there is &4 x 2 minor with nonzero determinant. Assume |t<sa1 b1> (all
a2 2

a1 b ry [~
(o) €)-2) .

has a unique solutiofr, 3). Hence the projective liné(«, 5,1)/K passes through? and
P,. Now assume there was another libgY/, 5',~')/ K passing througt, and P, that is to
say, satisfying Equation (5.1). The unigueness of the solution of thensy5t@) implies that,
if this L(¢/, 3,+')/ K is different fromL(«a, 8,1)/ K, theny’ = 0. But then(¢/, ') would be
the unique solution of the system

900

hence(c/, 3',7") = (0,0, 0), and this does not define a projective line.

other cases are analogous).

Then the system of equations

(b) See Sheet 7.
O

Up to this point, we always fixed our field and work with curves and polynomials over it. But
assume we have an extension of fielt)&/. Every polynomialf € K|z, y| is naturally a polynomial
in E[z,y] via the inclusion’ C E. We can then consider the curveg/K andC//E. Obviously
C¢(K) C Cy(F) viathe inclusiomA?(K) C A%(E) induced byK C E. Actually it holds that

Cr(K) = C4(B) N A*(K).

It can of course happen that;(E) is strictly bigger tharC;(K), so that the two curve&C(K), f)

and (C¢(E), f) are not the same object. It is important to have in mind over which field we are
working (which is the reason why the curves are denotedpyK). A useful particular case of this

is to consider an algebraic closukeof K, and consider the cun@; /K given by (C;(K), f).

Example 5.19.Let K = Ty, E = Fy.

e Recall that in Example 5.4-(2) we considered the cutygF, defined byf(z,y) = y* + y +
23 + z. We had computed the €% (F,), namelyC(F4) = {(0,0), (0,1), (1,0), (1,1)}.

Sincef(z,y) € Falz,y] C F4[z,y], we can also consider the curg /F,. The setCy(F»)
consists of the points @f;(F,) that are contained im\?(F2) = F» x Fs. In this case all the
points ofC'(F,) belong toA?(Fs), henceC(F2) = Cy(Fy).
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2 [d+e] [y [y |
0 0 0 0
1 0 1 1
X X +1 X X +1
X+1|X X+1|X

e Consider now the curv€ /F, (resp. Cy/F4) defined byf (z,y) = y* + 23 4+ z. We want to
computeC(F2) andC¢(F4). As in Example 5:4-(2), let us make some tables (see below).

The points ofC(F4) are those where the values f andz® + = match, namely’s(F4) =
{(0,0),(1,0), (X, X)(X +1,X + 1)}. On the other hand, the subset @f(F4) of points
belonging toA?(F,) is justCs(F2) = {(0,0), (1,0)}, so in this cas&’s(IF3) # C(Fy).

Assume again that we have a field extensisnC FE. Any homogeneous polynomigl €
K[X,Y,Z] belongs also t&[X, Y, Z], hence we can consider the curees/ K andCy/E. Due to
the equivalence relationship involved in the definition of the projective pliegnclusionP?(K) C
P2(E) is not as straightforward as in the affine setting. In any case one hassueclusion, and the
relationship

C;(K) =P*(K) N Cy(E).

The details will be discussed in Sheet 7.

Now we want to define the tangent lidg/ K to a curveCy/K at a pointP € Cy(K). For
simplicity, we first consider the poir? = (0, 0) and an affine curve that passes throdgHet us say
Cr/K with f(0,0) = 0. We want to define the tangent line as “the line which is closest” to the curve
in a small neighbourhood a?. Assume thaff (z,y) = >_,, ,, @,z y"*. We can rewritef as

n
T, y) = Z Z vy @Y

=1 v1+ro=1

for n = degr(f), so that, for each, >, ., _; av,, 2"y is either a homogeneous polynomial of
degree or zero. Writef; = Zu1+1/2:z‘ a0 y"2. As we look at the curve in a smaller and smaller
neighbourhood 0f0,0), if ¢ > j and f;, f; are nonzerof;(x,y) shrinks quicker thary;(z,y).
Hence, for our purposes it suffices to look at fhevith smallesti. Sincef vanishes a0, 0), it has
no constant term, so the smallest possible valuei®f = 1. If both ap ; anda, ¢ are zero, we have
that f; is zero, and hence the smallest homogengpuscurs fori > 2.

But assume this is not the case, that is to say,dhatinda; o do not both vanish. The affine lines
through the point0, 0) are defined by a polynomial of the shape + 5y for somea, 3 € K with
«, 6 € K not both zero. Consider the difference

fl,y) — (az + By) = Z D ey — (ax+ fy) =

=1 vi+vo=1

(ao,1 — By + (a1 — $+Z Z A, Y2

1=2 V1+ro=1i
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According to our discussion above, the line which makes this sum smalleseiglziourhood of
(0,0), that is to say, the line that is “closest” to the cutvg/ K at (0, 0), is the line such that the sum
of the terms of degree 1 in the expression above is zero (so that the sihallezjeneous polynomial
is of degreei > 2). There is only one line doing this, namely, the one defined by the polynomial
ao,1y + a1 0. This will be the tangent line t¢'; /K at (0, 0).

Definition 5.20. e Let A be aring, andf(X) = > ;a;X* € A[X]. Theformal derivativeof
f is defined agf’(X) = 31", ai X' € A[X]. We also defing(™ (X) € A[X] (then-th
formal derivativg recursively as

{f(”(X) = f/(X),
fOX) = (£ DY (X).

e LetK beafieldn e Nandf € K[X;...X,]. Fixi € {1,...,n}, letl = {1,...,n}\ {i},
and letA = K[{X; : j € I}], so thatK[X},...,X,] = A[X;]. Thepartial derivative off
with respect taX;, is the formal derivative of in A[X;]. We denote it by{- (X1, ..., X,).

Remark 5.21. Let f(z,y) = >_,, ,, 2"y € Klz,y] as in the discussion before Definition
5.20. Note that the values); anda, o that occur in the definition of the tangent line @& /K at
the point(0, 0) satisfy thatg—m((), 0) = a1 and 2—5(0,0) = ap,1. Observe that in the discussion we
assumed that either ; or a; o is nonzero. This motivates the following definition.

Definition 5.22. Let f € K|x,y| be a nonzero polynomial,'s /K be the affine curve defined by it,

and(a,b) € A?(K) such thatf(a,b) = 0.
o We will say that the pointa, b) of the curveC' /K is singularif 3 (a,b) = §L(a,b) = 0.

e We will say that the curvé's /K is nonsingularor smoothif, for some algebraic closur&” of
K, for every poinf(a,b) € C¢(K), (a,b) is not a singular point of the curv€ /K.

Example 5.23. e Consider the curvée’s/C defined by the polynomigl(z, y) = y*>—a*—222 1.
Since%(x,y) = —42° — 42 and g—i(:ﬁ, y) = 2y, the singular points of this curve are those
satisfying the system of equations:

0= o> —at—222-1
0= —423 -4z
0= 2y

From the second equation we get= 0 or z = ++/—1 and from the last equation we see that
y = 0. But also the first equation must be satisfiedse 0, y = 0 is not a solution of the
system. We get thus two solutions, namely the poifts1,0) and (—/—1,0). Those two
points ofC';(C) are singular; hence the curv@, /C is not smooth.

e Since the polynomiaf (z,y) = y? — x* — 222 — 1 from the previous example lies &{z, y],
we may also consider the affine cur@g/R. Note that the two singular points we computed
above do not belong th?(R), soCs/R does not have singular points. Nevertheless, it is not a
smooth curve, since in Definition 5.22 we require that the curve has nalaingpint when we
consider it over the algebraic closure &f that is, overC.
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Now we translate Definition 5.22 to the projective setting.

Definition 5.24. Let f € K[X,Y, Z] be a homogeneous polynomial of degiefor some positive
integerd, Cy/ K be the projective curve defined fiyand[a : b : ¢] € P?(K) such thatf(a, b, c) = 0.

o We will say that the poirft : b : ¢] of the curveC'; / K is singularif 22 (a,b,c) = 2 (a,b,c) =
%(a, b,c) = 0.

e We will say that the curv€'s/K is nonsingulaor smoothif, for some algebraic closuré’ of
K, for every pointP € C¢(K), P is not a singular point of the curv€s /K.

Remark 5.25. e The notion of singularity of a poin® = [a : b : ] is well defined, in the sense
that it does not depend on the representativg, c) of the equivalence clasB € P?(K).

e The notion of singularity of a point in an affine curve extends the notioingtikarity of a
point in a projective curve, in the sense that a pdiatb) belonging to an affine curv€’s (K)
is singular if and only if the point(a,b) € P?(K) is a singular point of the projectivisation
Cy+ /K of Cy/K. This will be discussed in Sheet 9.

e The projectivisation of a smooth affine curve need not be smooth agextive curve. See
Sheet 8 for an example of this.

Definition 5.26. LetC;/ K be a projective curve ané® = [a : b : ¢] a nonsingular point ot /K.
Thetangent lineo C;/ K at P is the projective line

of of of
L <a)((a7 b7 C)7 aiy(ch b, 0)7 a7((1, b, C)) /K.
Remark 5.27. e The tangent line to a projective curve is well defined:

— SinceP is a nonsingular point o’/ K, at least one of the three numbegé(a, b, c),
g—{i(a, b, c), g—é(a, b, c) is nonzero. Hence the tangent line is indeed a projective line.

— The definition does not depend on the choice of representativec) € (K x K x K) \
{(0,0,0)}. Indeed, ifd is the degree of, then 2L, 5L, 2/ are homogeneous polynomi-
als of degreel — 1 if d > 1 or constants ifd = 1. In the first caseg—)f;()\a, Ab, \c) =

X108 (a,b,¢), and L (%(a,b, c), 9L (a,b, ), o (a,b, c)> /K is the same curve as
L (g—};()\a, Ab, Ac), S (Na, Ab, Ac), 9 (Aa, Ab, )\c)) /K. In the second case, the num-
bers 2 (a,b,¢), 9L (a,b,c), L (a,b,c) are elements of¢, and in particular equal to
OL (Aa, Ab, Ae), 9 (Aa, Ab, Ae), 8L (Aa, Ab, Ac).

¢ Note that this definition generalises the notion of tangent line to an affineeatrthe point
(0,0) that we discussed before Definition 5.20.

We conclude this section with the definition of multiplicity of intersection betweerogegtive
line and a projective curve at a given point.

Definition 5.28. Let K be afield andf(¢) € K[t] nonzero, say (t) = > 1 a;t’ for a certainn € N.
Theorder of f(¢) att = 0 is defined asrd;—o f(t) := min{a; : a; # 0}.
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Remark 5.29. Note that the order at = 0 of a polynomialf(¢) € K|[t] is the least integern such
that (") (0) # 0.

Definition 5.30. Let L/ K be a projective line(’; /K be a projective curve an® = [a : b : ¢] €
L(K). Themultiplicity of intersectionbetweenl./K andC/K at P, m(Cy, L, P), is defined as the
order att = 0 of the polynomial)(t) = f(a + ta’, b+ tV',c + t’), whereP’ = [d’ : V' : (] is any
pointin L(K) different frompP.

If P € L(K), we definen(Cy, L, P) = 0.

Remark 5.31. The multiplicity of intersection between a projective line and a projective curee a
point of the line is well defined. Namely, we need to see that it does nendien the representative
(a,b,c) € (K x K x K) \ {(0,0,0)} of P, the choice ofP’ € L(K), and the representative
(d,V,d) e (K x K x K)\{(0,0,0)} of P’. We will see this in several steps (see Lemma|5.32,
Lemma 5.35 and Lemma 5!36).

Lemma 5.32. Given a projective lind./ K, a projective curve’'; /K and two pointsP, P’ € L(K),
the order att = 0 of the polynomiak)(t) = f(a + ta’,b + tV/,c + tc’) does not depend on the
representativesa, b, ¢) and (a’, ', ¢’) € (K x K x K)\ {(0,0,0)} of Pand P'.

Proof. Let d be the degree of, andm = ord;—q ¥(t); we can writey(t) = upt™ + Uy 1t™ Tt +
-+ + ust® for somes > m. Let us choose some representative®a&nd P’, sayP = [Aa : Ab : A
andP’ = [ud’ : pb' : pd] for X, u € K*. If we construct the polynomiak(t) = f(Aa+t(ua’), \b+
t(ud'), Ae + t(uc)), we have

D(t) = Fha+ t(ua'), b + (b)), Ae + t(uc')) = M f(a + tga', b+ t%b’, ct tgc')
oty =, (MY PN P g
*w(At)*“m(Q t +“m+1<A) et +“5(A> &
and it is clear that the order ¢f(t) att = 0 is alsorm. O

It remains to see that the definition is independent of the choice of a poi#t P in L(K). For
this we will use the notion of formal derivative (see Definition 5.20). We witeed this definition
from elements o[ X] to elements of< (X ), whereK is a field.

Definition 5.33. Let K be afield andf (X ), g(X) € K[X] polynomials withy(X) # 0. Seth(X) :=
f(X)/g(X) € K(X). We define théormal derivativeof h(X) as

F'(X)g(X) = F(X)g'(X)

9*(X) ’
wheref’(X), ¢'(X) denote the formal derivative ¢f{ X) andg(X) in K[X]. We define therder of
hatX = 0to beordx—o(h(X)) := ordx—o(f(X)) — ordx—o(g(X)).

W(X) =

Remark 5.34. e The definition of the formal derivative of an eleméfnX) € K (X) does not
depend on the representation/ofX) = f(X)/g(X) as a quotient of elements &f[ X] (See
Sheet 8).
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e The definition of the order ak = 0 of an element(X) € K(X) does not depend on the
representatiorh(X) = f(X)/g(X) as quotient of elements &f[ X] (See Sheet 8).

o Leth(X) € K(X). If h(X) € K[X], then the definition of order df(X) at X = 0 from
Definition 5.20 and Definition 5.33 coincide; just writi€X ) = h(X)/1 and apply the remark
above.

The next lemma collects some facts about formal derivatives.
Lemma5.35. 1. Lety(X),y(X) € K(X). Then(¢ o o) (X) = ¢ (¢(X))¢' (X).
2. Letp(X),¥(X) € K(X). Thenordx—o(¢(X)1(X)) = ordx—o ¢(X) + ordx—g ¥(X).

3. Lety(X),(X) € K[X] such thabrdx_o((X)) = 1. Then

ordx—o ¢(X) = ordx—o ¢ o Y(X).
Proof. See Sheets 8, 9. O

Lemma 5.36. Given a projective lineL /K, a projective curveCy/K, pointsP, P’ € L(K) and
representativesa, b, c), (a’,b',c) € (K x K x K) \ {(0,0,0)} of P and P, for any pointP” =
[a” : b" : ¢"])in L(K) different fromP, we have that the orders @f(t) = f(a +ta”, b+ tb", c + tc)
andy(t) = f(a+ta',b+tV,c+td) att = 0 coincide.

Proof. Letd be the degree of, andm = ord;—q(1(t)); m is the least integer such that™ (0) # 0.
Let L = L(«, 3,7). The following system of equations

a b c T 0
a v yl=10
G” b/l C// 2 0
« 0 a b ¢
has two different solutions, namely3 | and | 0 |. Thereforedet | «’ & ¢ | = 0. In other
,7 0 a// bl/ C/l

words, the rowga, b, ¢), (a’, ', ") and (a”,b”, ") are not linearly independent. Hence there exist
A, i € K such that\(a, b, c) + pu(a’, b, ) = (a”, V", ”). Note that, sincé®” # P, we haveu # 0.
We can now write

P(t) = fla+tad b+t c+td") = fla+t(ha+ pa'),b+t(Ab+ ub'), c+ t(Ae + uc'))
= (1 +tN)a+ t(ua), (1 +tX\)b+ t(ub), (1 + tA\)e + t(ud))

pt pt pt o, d pt
= (1 +t\)¢ b b =(1+t
(Lt flat an bt pbhet 7)) = 0N

Since(1 + tA\)?% has order zero at = 0, it follows from Lemma 5.35-(2) thaird;—o(¢(t)) =
ordtzo(w(p’%)). Now from Lemma 5.35-(3) one gets thatt) and(t) have the same order at
t=0. O
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Example 5.37.Let us consider the projective curég; /R, where f(X,Y, Z) = Y?Z? — X* —
2X27?% — Z* and the pointP? = [0 : 1 : 1]

e First we consider the lind/R = L(2,1,—1)/R. Note thatP € L(R). Let us compute the
multiplicity of intersection o€y and L at P.

First, let us fix a pointP’ € L(K) different fromP, sayP”’ = [1 : —1 : 1]. Consider the
polynomial

Y(t) = fO+t,1—t, 14+t) = (1—t)2(14t)2 =t =202 (14+1)2 = (1+1)* = —3t* —8t3—10t2—4¢.
We have that the order af(t) att = 0 is 1, hencem(Cy, L, P) = 1.
o Note thatP € Ct(R). Let us compute the tangent linedg /R at P. First we compute

9 — 4X3 —47°X

ax =
A —ovz?
9 —9Y?Z —4X%Z — 423

From these expressions we get thHt(0,1,1) = 0, 2(0,1,1) = 2, 2(0,1,1) = —2.

Therefore the tangent line 10y /R at P is L(0,2, —2)/K, that is to sayL(0,1, —1)/R.

Let us compute the multiplicity of intersection betwégnand L (0,1, —1) at P. First, fix a
point P € L(0,1,—1)(K), sayP’ = [1: 1: 1]. Consider the polynomial

V() = FO+t, 148, 14+1) = (1+8)*(1+1)2 =t =22 (1+1)* — (1 4+-t)* = —2t* — 413 - 3t1.

We see that the order @f(¢) att = 0 is 2. This coincides with the naive notion that the tangent
line cuts a curve with multiplicity greater than

Lemma 5.38. Let C; /K be a projective curvel./ K a projective line and? € L(K) a projective
point.

(1) m(Cy, L, P) = 0if and only if P does not lie inC'y.
(2) Assume thaP € C'y(K) andL/K is the tangent line t¢’y at P. Thenm(Cy, L, P) > 2.

Proof. (1) LetP =[a:b:candP = [d :V : ] € L(K) a point different fromP. Set
P(t) = fla+td,b+tb,c+td). Theny(0) = f(a,b,c). Thereforey(0) = 0 if and only if
f(a,b,c) =0, thatis to say, if and only i € C¢(K).

(2) FixapointP’ = [’ : b : ] € L(K) different from P and consider the polynomial (t) =
f(a+a't,b+b't,c+c't). We have to prove that the minimad with 1/(™) (0) # 0 is greater than
or equal ta2. Equivalently, we need to prove thaf0) = 0 and«’(0) = 0. The first equation
follows from (1). For the second equation, we compute, using the chizirfsele Exercise 2 of
Sheet 8), that

()= (fla+adt,b+ bt c+t))

= aa}f((a_‘_a/t,b“rb/t, C+C/t)a/+g§( +a/t,b+b/t,c+clt)b/+2£( +a/t,b+b/t,c+c/t)c/



5 PLANE CURVES 33

Hencey'(0) = g—g;( b,c)a’ + %(a, b, c)t + g—é(a b, c)d = 0 because the poirft’ = [d/
b : /] belongs toL(K) = L(3 (a,b,¢), % (a,b,¢), %(a b, ¢))(K).
O

In these lectures we will not discuss the notion of morphism between twesuiNevertheless,
sometimes it will be useful to make linear changes of variables to a curvey Mahe properties of
a projective plane curve are preserved under linear changesiaif s

Lemma 5.39. Let K be a field. For each matrix

ailr a2 ai3

A= a1 a2 a3 | € GL3(K),

asz1r a32 a33

the map
pa:PK) — P*(K)
[a:b:c]— [a11a+ ai2b+ ai3c : agra + azeb + assc : agra + aseb + assc]
is well defined and bijective.
Letf(X,Y, Z) € K[X,Y, Z] be a homogeneous polynomial and set
fAX,Y, Z) = flann X + a12Y + a1372,a21 X + aY + asZ,a31 X + asY + azs”Z)
Then
Ct(K) = pa(Cr,(K)).

Proof. See Sheet 10. O

Example 5.40.Let(a,b) € A%2(K), (a,b) # (0,0). Consider the matrix

1 0 a
A=1[0 1 b| € GL3(K).
0 0 1

Then the mag 4 : P?(K) — P2?(K) fixes the points dP?(K) \ A%(K) and translates the points
(s,t) € A’2(K) to (s + a,t +b) € A%2(K). We will say thatp 4 is a translation by the poinfa, b).

Lemma 5.41. Let K be a field, and letd € GL3(K). Let f(X,Y,Z) € K[X,Y, Z] be a homo-
geneous polynomial anfly € K[X,Y, Z] as in Lemma 5.39. Then, for ea¢he C;,(K), Pis a
singular point ofC;, /K if and only ifp 4 (P) is a singular point o'/ K.

Proof. It suffices to prove that, ilp4(P) € Cy(K) is singular, thenP € C;(K) is singular (the
other implication is obtained applying the same reasoning to the linear changeialesy 4 1).
Fori =1,2,3,lety;(X,Y,Z) := a1 X + a;2Y + a;3Z. Then, using the chain rule, we obtain

0 0 0
U .0 = O tgrtrs.1).oalr5.0), st 0) 22 (s, 001
gé((pl(nsat)?@Q(r’S’t>7903(r737t)>gX (T § t)+
8;(@1(71 S t) (pg(T,S,t),gOg(T,S,t))aa; (T S t)
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dfa of

ay 0= 5%

5y (7“ s, )+

(901(7"7 S5, t)? @2(T7 S, t): (,03(7“, S, t))

gz;((pl(r s, 1), gog(r,s,t),cpg(r,s,t))aay (r,s,t)+

0 0
82“01(7& S t) 902(T737t)7903(r737t)) 8?3 ('f’ S t)

0 0 0
A (r,5,1) = 22 1(r,5,0), 0,5, 1), 23(r, 5, 0) 2L (1,5,

Opa
oL or(r, 5,11, 0201 5,), sl 5, 0) T2 (1,5, 1)+

of O3
67(@1(7",8,75),(,02(T,3,t),§03(7”,$,t)) o7 (T s t)
LetP =[a:b: ¢ € Cf,(K), calla = pi(a,b,c), V' = pa(a,b,c), d = ¢3z(a,b,c). Then
pa(P)=1[d :b :].
Assumep 4 (P) is a singular point o’ (K). Then

Tavy=0 L y.dy=o

of
0xX

Thereforef4(a, b, c) = 0, and

of

/ —

f(a/7 b/7 C/> = 07

014 0 pooy— O . 221

0 0
a—X(a,b,c)—aX ox (@ bc)+—f(a',b' " m(abc)

oy X
of ;. O3
0z Y gy (@b =0

Analogously, it holds tha$d4 (a, b, ¢) = 0 and %4 (a, b, c) = 0; thusla : b : ¢ is a singular point
of CfA (K) O]
6 Elliptic Curves

Definition 6.1. Let K be a field. AWeierstrass equatios an equation of the fornf(X,Y, Z) = 0,
wheref(X,Y, Z) € K[X,Y, Z] is a homogeneous polynomial of degseef the form

XY, 2)=Y?*Z+a1XYZ +a3YZ* — X3 — ay X’ Z — ay X Z* — ag 2> (6.3)
for someay, as, as, a4, a6 € K.

Remark 6.2. e A Weierstrass equation is uniquely given by a polynomial as in the right hand
side of (6.3), so we will identify Weierstrass equations with the polynomials that define them.
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e Not every homogeneous polynomial of degiedefines a Weierstrass equation. Namely, a
homogeneous polynomial of degehas the shape

9X Y, Z) = D XY,

vy,v9,v320
v +vg+rvz=3

hence it can have up to 10 different terms, while the polynofnial(6.3) only has7; the terms
in X2Y, XY? andY cannot occur.

The numbering of the coefficients; (missing) in the Weierstrass equation has historical reasons and
is nowadays a standard convention.

Lemma 6.3. Let f(X,Y, Z) = 0 be a Weierstrass equation and létc GL3(K) be given by

w 0 r
A= |u?s u? t
0 0 1

for u,r, s,t € K. Then the polynomigf, obtained fromf by the linear change of variables given by
A (as in Lemma 5.39) also satisfies thiat( X, Y, Z) = 0 is a Weierstrass equation.

Proof. See Sheet 10. O
Definition 6.4. Let K be afield. Arelliptic curve overk is a projective plane curv€'; /K such that:
e f(X,Y,Z) = 0is aWeierstrass equation.
e (/K is smooth.
We will usually denote elliptic curves ly/ K when the polynomiaf is clear from the context.

Example 6.5. The curveC; /F, defined byf(X,Y,Z) = Y?Z + Y Z% + X3 + X Z? whose affine
part was considered in Example 5.19 is an elliptic curve. The catvy&, defined byf(X,Y, Z) =
Y?2Z + X3 + X Z? whose affine part was considered in Example 5.19 is not an elliptic cavause
the point[1 : 0: 1] € E(F,) is a singular point.

Lemma 6.6. Let f(X,Y,Z) = Y2Z + a1 XY Z + a3Y Z% — X3 — as X?Z — a4 X 7? — as 23 €
K[X,Y,Z]. Then
Cp(K) = (Cp(K) N A*(K)) U{O}.

Proof.
Cr(K) = (Cp(K)NA*(K))U{la:b:0] € P*(K) : f(a,b,0) =0} =

(CHE)NA*(K))U{[a:b:0] e PXK):a® =0} =
(CH(K)NA*(K))u{[0:1:0]}.

O]

Lemma 6.7. Let f(X,Y,Z) = Y2Z + a1 XY Z + a3Y Z% — X3 — ao X?Z — ay X 7? — as 23 €
K[X,Y,Z]. ThenO = [0 : 1 : 0] is never a singular point of'; / K.
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Proof. If O € Cf(K) is a singular point o€/ K, it must hold that

f(0,1,0) =0
0
90(0,1,0) =0
91(0,1,0) =0
0

But92(X,Y,2) = Y2 + a1 XY + 243V Z — s X? — 042X Z — as32%,509(0,1,0) = 1 £0. O

As a consequence, if we want to check if a projective c@yg¢K’, with f satisfying[(6.3) is an
elliptic curve, it suffices to check for singular points in the affine part efdtrve.

Definition 6.8. Letaq, as, as, a4, ag € K be given. We define the following quantities:
by = a% + 4ay
by := 2a4 + araq
b6 = a% + 4a6

2 2 2
bg := ajag + 4agsas — ajaszaqs + aga3 — ay

cq = b3 — 24by
ce = bl + 36baby — 216bg
A := —b3bg — 8b3 — 27b2 + 9bobybg

3

L4
We call A the discriminantand j the j-invariantof the Weierstrass equatiof( X, Y, Z) = 0 with
(XY, 2)=Y2Z 4+ a1 XYZ +a3YZ? - X3 —as X?Z — ays X Z% — ag 2.

if A £ 0.

With the help of the quantities defined above, we can sometimes make lineaesladvgriables
that simplify the Weierstrass equation.

Lemma 6.9. Let K be a field of characteristi® or p for a primep # 2. Let f(X,Y,Z) be as in
Equation(6.3), and consider

1 1 1
9(X,Y,2) :=Y?*Z - X3 — ingQZ — 5b4XZ2 — 15623 c K[X,Y, 7).
Then the linear change of variables: P*(K) — P?(K) givenbyla : b: ¢ — [a: b+ %a+ %c: (]

satisfies that
Cy(K) = p(Cy(K)).

1
Proof. Apply Lemmd5.39 td = | 4
0
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Lemma 6.10. Let K be a field of characteristio or p for a primep # 2,3. Then Letf(X,Y, Z) as
in Equation(6.3), and consider

9(X,Y,Z):=Y?Z — X3 + 214 X Z? + b4ce Z° € K[X,Y, Z).

Then the linear change of variables: P?(K) — P?(K) givenby{a : b : ¢] — [36a+3bac : 2160 : ]
satisfies that
Cr(K) = ¢(Cy(K)).

36 0 3bs
Proof. Apply Lemma5.39tcd=| 0 216 0 |. O
0 0 1

Lemma 6.11. Let f(X,Y, Z) = 0 be a Weierstrass equation, arfd the polynomial obtained from
f by the linear change of variables given by a matrix

u? 0 7
A= |u?s u® t| eGLs(K).
0 0 1

ThenA; = u!?Ay, and, ifAy # 0, thenjy = jy,.

Proof. One simply has to compute the expressionsfgr A¢,, j; andjs, using 6.8 and check that
the mentioned equalities hold. O

Proposition 6.12. Let f(X,Y, Z) = Y2Z + a1 XY Z +a3Y Z? — X3 — ay X?Z —ay X 7% — agZ° €
K[X,Y, Z]. Then the curv&’; /K is smooth if and only if the discriminadt ; of the corresponding
Weierstrass equation is honzero.

Proof. Let K be an algebraic closure &f, and consideCf/F. We have to show thah is nonzero
if and only if for all pointsP € C¢(K), P is not a singular point. By Lemma 6.2, is never singular.
So it suffices to show thak is nonzero if and only if for all point$® € C;(K) N A%(K), P is not a
singular point.

For simplicity, we will make the proof in the case that the characteristi& @ different from2
(for a complete proof, look at Proposition 2.3.3 of the bédliptische Kurven in der Kryptographie
by A. Werner). Making a change of variables like in Lemmal 6.9, we tramsfpfX,Y, Z) into
fa(X,Y,2) =Y?*Z — X3 — abX?Z — ay, X Z* — ayZ3, and Lemma 6.11 shows that; = Ay, .
Moreover by Lemma 5.41 the curg;/K is smooth if and only ifC, /K is smooth. So we can
assume without loss of generality thitX, Y, Z) = Y227 — X3 — as X2 7 — a4 X Z?% — ag Z°.

Now a pointP is a singular point of’; /K if and only if it is an affine point, say’ = [a : b : 1],
and satisfies the equations

fla;b) =0
9% (a,b) = 0
5(a,b) = 0.

whereg(z,y) = f(x,y,1). The system of equations above boils down to
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b2 = a3 + aga® + asa + ag
26 =0
3a® + 2a2a + ag = 0 = 0.

That s to sayb = 0 anda must be a double root of the polynomiglr) = 23 + ax2? + asx + ae.
SoC/K is smooth if and only if the polynomidl(x) does not have double roots. But this condition
is equivalent to the fact that the discriminantdf:) (that is, the resultant betweérz) andh/(z)) is
nonzero. Now a computation shows that the discriminant edéals, henceC;/ K is smooth if and
only if Ay # 0. 0

Remark 6.13. e Letf(X,Y,Z) asin Equation(6.3). The curve'; /K is an elliptic curve if and
only if Ay #£ 0.

e For all elliptic curvesE/ K, the j-invariant is defined.

e Thej-invariant is preserved under linear changes of variables as in Lef@®®aThat is why
we call it j-invariant It characterises the isomorphism class (o¥€y of elliptic curvesE/ K.

Proposition 6.14. Let L/ K be a projective line and’/ K an elliptic curve. Then

> m(E,LP)

PeP?(K)
equalso, 1 or 3.

Proof. Let L = L(a, 3,) for somea, 3,y € K,and letf(X,Y, Z) = Y?Z + a1 XY Z +a3Y Z* —
X3 — a9y X?7Z — ay X 7% — agZ?> for someay, as, az, a4, as € K be the polynomial defininds/ K.
We will do the proof in the special case whgn# 0. For the cas@ = 0, see Sheet 11.

We may assume, without loss of generality, that L(«, 1,+) for somea,~y € K. Moreover,
the only pointP = [a : b : ¢] of E(K) withc=0isO = [0: 1: 0] (see Lemma 6/6) which does not
belong toL(K). So we only need to compute(E, L, P) for points of the formP = [a : b : 1].

ApointP =[a:b:1]liesin L(K) N E(K) if and only if

aa+b+~v=0
fla,b,1) =0

AssumeP satisfies these equations. Substituting —aa — ~ in the second equation gives that
fla,—aa —~,1) =0.

Consider the polynomigj(z) = f(z,—azx — v,1). g(x) is a polynomial of degre8 in K|x]
with leading coefficient-1, such that a poinf € P?(K) belongs toE(K) N L(K) if and only if
P =la:—aa—~: 1] with g(a) = 0.

Now we computen(FE, L, P) for P = [a : —aa — 7 : 1]. Note that the poinf’ = [1 : —« : 0]
lies in L(K) but not in E(K), so it is different fromP and we can use it as auxiliary point. Let
Y(t) = fla+t, (—aa—v)—at,1). Note that)y(t) = g(a+t). Thereforeord,— 1 (t) = ordy—, g(x).
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Note that the polynomiaj(z) does not depend on the choice of the pdimt [a : —aa — 7y : 1], SO
the formula
m(FE, L, [a: —aa —v:1]) = ordy—, g(x)
isvalid forall P € E(K) N L(K).
If L(K) N E(K) = 0, then}_ pepz ) m(E, L, P) = 0, and we are done. So we may assume
that L(K) N E(K) has at least one point. Fix one such padiht [ag : by : 1] € L(K) N E(K). We
distinguish several cases:

e ord,—q,g(x) = 3. In this casey(z) = —(z — ag)® has a unique zero = ao of multiplicity
three, and
Z m(E,L,P) =m(E,L,[ag : —aag — 7y :1]) = 3.
PeP?(K)
e ord;—,,g(7) = 2. In this casegy(x) = (z — ao)?g(x), andg(x) has degred, hence one root
ap € K of multiplicity one. Therefore

Z m(E,L,P) =m(E, L,[ag : —aag — 7y : 1])+
PeP2(K)
m(E, L, [ap: —aag—y:1])=2+1=3.
e ord,—q,9(x) = 1. Inthis casg(z) = (z — ag)*j(x), andg(x) has degree, hence it has either

two rootsaq, as € K of multiplicity one, one rootiy € K of multiplicity two, or no roots in
K. In the first case

Z m(E,L,P) =m(E, L,[ag : —aag — 7y : 1])+
PEP2(K)
m(E,L,[a: —aa; —y: 1)) +m(E,L,[ag: —aa2 —y:1])=1+1+1=3,

in the second case

Z m(E,L,P) =m(E, L,[ay: —aag — 7 : 1])+
PeP?(K)

and in the third case

Z m(E,L,P) =m(E,L,[ag : —aap — 7y :1]) = 1.
PeP?(K)

In all cases our claim holds. O

Remark 6.15. Let £/ K be an elliptic curve and./ K a projective line.

e If there are two different point&, P, € E(K)NL(K), then either there exists a (unique) point
P; € E(K)N L(K) different fromP; and P, and the multiplicity of intersection df and L at
Py, P, and Ps is 1, or there is no other point if(K) N L(K) and one of the point®; or P,
has multiplicity2 and the other has multiplicity.
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o If there is a pointP? € E(K) N L(K) withm(E, C, P) > 2, then either there exists a (unique)
point@ € E(K)N L(K)andm(E,L,P) =2, m(E,L,Q) = 1,or E(K) N L(K) = {P}
andm(E, L, P) = 3.

We can sumarize all these cases by saying thataifid £ intersect at two points d#?(K) (counting
multiplicities), then they intersect at another point (counting multiplicities).

In other words, giver®#/ K, L/ K and two points (counting multiplicities) if'(K') N L(K), they

determine a third point (counting multiplicities) (K ) N L(K).

Now we have all the tools we need to define a group lawFoR’).
Definition 6.16. Let £/ K be an elliptic curve. We define a map
®: FE(K)x E(K)— E(K)
(PQ)—Paq@
with the following two steps recipe:

e Step 1: If P # @, consider the unique projective link, /K passing throughP and Q. If
P = Q, setL; /K to be the tangent line t& at P. L, /K has a third point of intersection with

E (counting multiplicities); call itP * Q.

e Step 2: If P+ Q # O, consider the unique projective lidg,/ K passing throughP « Q and O.
If Px@Q = O, setLy/K to be the tangentline t& at 0. L,/ K has a third point of intersection
with £ (counting multiplicites). We define & () to be this point.

Example 6.17. Let E/K be the elliptic curve defined by the polynomflX,Y, Z) = Y?Z +
a XYZ + a3YZ2 — X3 — a,ngZ — a4XZ2 — CLGZB.

Recall that
A =aYZ ~3X2 — 209X 7 — as 2
W =YZ+aXZ+azZ?

O — Y2 4 )XY + 2037 — aa X2 — 204X Z — 3a67?
e LetP # O. WhatisP ¢ O?

— Step 1: Since the poinP lies in the affine part off/ K, we can write itasP = [a : b : 1].
The lineL; passing through? and O is L(1,0, —a). One can easily check that the line
L, intersects the affine part of (K) into two points (counting multiplicities); in other
words, if we callP « O the third point of intersection af; and F, thenP « O # O.

— Step 2: The lineLs is the unique projective line passing through © andO. ButL; / K
is a projective line passing through these two points: hehge= L,. The third point of
intersection ofL, and E is thusP. ThereforeP & O = P.

e WhatisO ¢ O?

— Step 1: TakeP = @ = O. ThelineL; /K is the tangent line td&Z/ K at O, that is to say,
L(0,0,1). NowE(K) N L(K) = {O},s0P xQ = O.
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— Step 2: The lineLy/ K is again the tangent line t&// K at O, that is, (0,0, 1), so that
again the third point of intersection 8. ThereforeO ® O = O.

Proposition 6.18. The setE(K) is a commutative group with the operatianand neutral element
0.

Proof. Observe first that the operatian is commutative, since the linB; does not depend on the
order in which we give the point® and @ defining it. Example 6.17 shows that there is a neutral
element for(E(K), &), namelyO € E(K). We need to show the existence of inverse elements and
the associativity of the operation.

¢ Inverse element: We need to show that, fodak E(K), there exists a uniqu@ € E(K) with
PoQ = O. Let us see first the existence (the uniqueness follows then in a stamalaesd soon
as we prove associativity). P = O, then in Example 6.17 we saw th@t= O satisfies our
condition. So we may assume that# O. Consider the unique projective lifg/ K passing
through P and O, and let@ be the third point of intersection df(K') with L(K). Now we
computeP @ Q. First, the lineL; coincides withL, so P x Q = O. Therefore the lind.,/ K
is the tangent line td throughQ, that is to sayL (0,0, 1). But thenLy(K) N E(K) = {O},
henceP & Q = O.

e Associativity: We need to show that, for @y, P, P; € E(K), (PL® P,) ® Py = P &
(P, @ P3). One can give a geometric (although very long and tedious) proof of tbiskg
computing both sides of the equation for arbitréty P», Ps € E(K). At all steps of the proof,
when constructing the lines; andL,, one must distinguish whether the two points determining
it are equal or different, yielding a long list of cases. We will not do thisshéevertheless,
we want to point out that there is a less tedious but more conceptual @irtlat fact, if one
relates® to the group structure of the Picard groupiof This proof goes beyond the scope of
these notes, but the interested reader can look it up in Chapter Il obthielthe arithmetic of
elliptic curvesby J. H. Silverman. Yet another proof can be done using explicit fornfatabe
addition of points: see Proposition 6.20.

O]

Remark 6.19. Given an elliptic curvell/ K and pointsP, P, P, € E(K), we will denoteP; @ P»
by P, + P, the inverse o by — P, and the sunP @ - - - @ P of P with itselfk times by{k| P.

Assume we hav@®, = [x1 : y; : 1] andPe = [z2 : ya2 : 1] € E(K). If P3 = [x3 : y3 : 1] satisfies
that P, + P, = P53, can we expresss andys in terms ofzy, zo, y1, y2?

Proposition 6.20.Let £/ K be an elliptic curve defined by X,Y, Z) = Y2Z+a1 XY Z +a3Y Z? —
X3 — a9 X?Z — ay X Z? — agZ3. Then the following hold:

o LetP =z :y;:1] € E(K). Then—P = [z1,—y; — a1x1 — a3 : 1].
o LetP, =[xy :y; :1]and Py = [z2 : y2 : 1]. Then

—Ifz1 = 29 andy1 = —Yg9 — a1r2 — as, thenP, + P, = O.
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— Otherwise, letP; = P; + P», sayP; = [z3 : y3 : 1]. Then

xgz)\2+a1)\—a2—x1—x2
y3 = —(A1 +a1)x3 —v — a3,

where), v € K are defined as follows:

x If 21 # 9,
_ wp-y
To—T1
y — Yz2—ya21

T2—T1

* |f Tl = X9,

2y1+aiwi+as
—z3+asz1+2a6—asyr

{)\ _ 3af+2az21+as—aiy
2y1+a1z1tas

UV =

Proof. The reader can find a proof of this proposition in Chapter 2, section 3dbk Blliptische
Kurven in der Kryptographidy Annette Werner, or in Chapter Il of the bodkithmetic of Elliptic
Curvesby J. H. Silverman. O

Remark 6.21. In particular, the previous proposition proves thaj and y; can be obtained as a
quotient of two polynomials i&[z1, x2, y1, y2, a1, az, as, a4, ag).

7 Elliptic Curves over finite fields

Let p be a prime numbey a power ofp andF, the finite field withg elements. In this section we
will consider elliptic curvest defined oveif,. We are interested in the grof'(F,), +). One first
remark is that, sinc&(F,) c P?(F,) and this set is finite, the groui®(F,), +) is a finite group.
One interesting question is to determine its order. The inclugi@if,) c P?(F,) already gives us
that| E(F,)| < |P*(F,)| = (¢* — 1)/(¢ — 1) = ¢* + ¢ + 1. But one can do better than this.

Proposition 7.1. Let E/F, be an elliptic curve. ThefE(F,)| < 2¢ + 1.

Proof. Let f(X,Y,Z) = Y2Z 4+ a1 XY Z + a3YZ? — X3 — ayX?Z — ay X Z* — aZ> be the
polynomial definingEl. We know that

E(K) = (E(K) N A*(K)) u{0},

that is to say, the only point at infinity i©® € E(F,). Therefore it suffices to see that the set of
solutions(z,y) € A?(F,) of the equationy? + ajzy + asy — 23 — asx? — asxr — ag = 0 has
cardinality smaller than or equal &. Now for eachry € F,, there exist at most two roots of the
polynomialy? + (a1zo + a3)y — x3 — asax? — asxo — ag in F,. Therefore the number of solutions of
the equation above is smaller than or equal¢o Ol

Let E/F, be an elliptic curve, and fixq, € F,. Then we have three possibilities: either the
polynomialg(y) = y? + (a1z0 + a3)y — v — asx? — asz0 — ag € Fy[y] has two roots irF,, or it has
one root, or it has none, depending on whether the discriminay{tofis a square, is zero, or is not a
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square. If we choose an element randoml¥inthen we will get a square with the same probability
as a nonsquare. This argument suggests that, more or less, one halivafues ofzy will give two
solutions ofg(y) = 0 and half of the values af, will give none. Therefore the number of points of
E(F,) N A%(K) should be close tg. Actually one can prove the following.

Proposition 7.2(Hasse) Let E/F, be an elliptic curve. Then

IE(Fg)| — (¢ +1)| <2v/q.

Proof. The proof of this fact goes beyond the scope of these notes. Therread consult it in
Chapter V of the booK he arithmetic of elliptic curvely J. H. Silverman. O

Let E/IF, be an elliptic curve, and consider the finite commutative graif¥,), +). Let P €
E(F,) be a point. Le{P) C E(IF,) be the subgroup generated Bythat is to say,

(PY = {[K]P: k € Z).

Note that(P) is a cyclic group of order equal to the order®in E(F,), thatis,min{k € N : [k]P =
O}.

We can apply the cryptographic algorithms from Section 4 (that is to sayebifiman key
exchange and EI Gamal encryption) replacing the multiplicative group oiite field by the group
(P). But not all elliptic curvesZ /F, and not all points” € E(F,) will give us secure algorithms. For
this method to work in practice, we need that the correspordisggete logarithm problens hard to
solve:

Discrete logarithm problem for elliptic curves: Given E/F, an elliptic curve,P €
E(F,) andQ € (P), computek € Z so thatlk|P = Q.

Remark 7.3. e Of course, one first requirement is that= (P) is big, so that in practice we
cannot just compute alk]P for k € {0,...,n}. Butthis is not the only aspect one has to be
careful about. There are families of elliptic curves (for exampigersingular elliptic curves
which are those that satisfyr(F,)| = ¢ + 1), for which the discrete logarithm problem can be
solved in a reasonable amount of time. The interested reader canlc@mspter 4 of the book
Elliptische Kurven in der Kryptographiey Annette Werner, or Chapter 5 @lliptic curves,
number theory and cryptograpby L. Washington.

e The main advantage of replacing the multiplicative group of a finite fi&ld)* by a cyclic
subgroup(P) C E(F,) is that one can obtain the “same level of security” using keys that are
much smaller. In this way the data to be transmitted or stored will have sméker s
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One of you will present one of the two exercises in the lecture on 28/02/201

1. (a) Computel := ged (282, 228) using Euclid’s algorithm. From the computation, fiach € Z such
thatd = 282 - a + 228 - b.

(b) Letn = 282 and lete = 91. Finds € N such thatl < s <282andes =1 mod (n).

2. Letpy,pa,...,p, be distinct prime numbers and put= p; - p2 - - - p,. Letm = 1 mod(¢(n)), where
©(n) is Euler’s totient function, that is, the number of units of the riydn).

Prove that for any € Z/(n) one hasz™ = z (equality inZ/(n)).

If you want to read more on elementary number theory, the RSA algorithnotiied topics, and want to
play with them on a computer, we recommend:

William Stein: Elementary Number Theory: Primes, Congruences, andtSe&minger-
Verlag.

Free online versionht t p: / / nodul ar . mat h. washi ngt on. edu/ ent/ ent . pdf
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1. Finish Sheet 1.

2. In this exercise you see how to transform a sentence (for simplicitycquestisting of capital letters
and some punctuation marks) into an integer. For this we use the following table:
|Letter [[O]2|...]9|A|B|...[Z] .|, ]:];:]!]|?]Space
| Integer [ 0 1] ... |9]10|11|...|[35]36|37|38|39]40]41| 42 |

The sentence ‘YOU ARE. is turned into a number as follows:
Y=34, 0O=24, U=30, Space=42, A=10, R=27, E=14, .=36

34492443 +30-432 +42-43% 4+ 10-43* +27-43° + 14 - 435 1 36 - 437 = 9877975894339.

(a) Describe a procedure how to turn a positive integer back into a senten
Hint: Use division with remainder.

(b) Which sentence is represented by the number 17694687
Hint: This can be done on a pocket calculator. Of course, it is easiecomputer.

3. In this exercise you see how ‘fast exponentiation’ works.

Let the natural numbet be given in binary notation = (a,, a,—1, . .., a1, ag)2 with digitsa; € {0, 1}
fori =0,...,r. That means:
,
n = Z ai2i.
=0

Examples3 = (1,1); =1-2 +1-2°,10=(1,0,1,0)2 =1-23+0-22 +1-21 4+ 0. 2°.

Letz € Z (or in any other ring). We want to compui¢ by performing as few multiplications as
possible. Note:

o = p(Zino i) = (p(2)0 L (g (@))ar . (@yer . L (p(2))ar

Let us compute:'?: In the standard wayt - 2 -z -z -2 -z - - x - = - © one makes 9 multiplications.
We can do with fewer, namel.

61::$'ZC:J}2, 62:261'6121'4, 63:262'62:2?8, 61'63:$10

(@) Imitate the computation af'” in order to compute:?°. How many multiplications do you need?

(b) Letn = (ar,a,—1,...,a1,ap)2. Show that one never needs more tBamultiplications.
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1. In this exercise, you construct explicitly a field with 9 elements.

(@) Finda,b € F3 such thatX? + aX + b is an irreducible polynomial if's[ X].
(b) With the values ofi, b from (a), letK := F3[X]/(X? + aX + b). List the elements oK.

(c) Compute an inverse for each nonzero elemerdt of
(This shows thaK is a field, since we know that is a ring.)

2. Let K be a field. In this exercise, you prove an analogue of Gaul3’ fundahteataem of elemen-
tary number theory fof{[X]. You should deduce it from the extended Euclid’s algorithm (Bézout's
theorem) and you can follow the proof of Gaul3’ theorem presented inchade

(@) Let f € K[X] be a polynomial of degree := deg(f) > 0. Show that there are finitely many
irreducible polynomial®; (X), ..., p.(X) € K[X] such that

f(X) =p1(X) -pa(X) - ... - pr(X).

(b) Letp(X) € K[X] be apolynomial of degree:= deg(f) > 0. Show that the following statements
are equivalent:

(i) p(X) is anirreducible polynomial.
(i) p(X) is a prime element in the rinf [ X].
(Recall that, by definitionp(X) is a prime element id([ X ] if and only if, whenevep(X)
divides a producy (X )h(X) with g(X), h(X) € K[X], thenp(X) dividesg(X) or p(X)
dividesh(X).)
(c) Let f(X) € K[X] be a monic polynomial of degree := deg(f) > 0. Show thatf(X) can
be written as a finite product of monic irreducible polynomials: There is N and there are
irreducible monic polynomialg; (X), ..., p.(X) such that

f(X) =p1(X) - p2(X) - ... - pr(X).

Up to renumbering, the irreducible monic polynomials occuring in the prodeai@ique, that is:
if /(X)=q(X): q(X)-... qs(X)is another such product, then= s and there isr in the
symmetric group on the lettefd, . .., 7} such thaty; (X ) = p,(;)(X) foralli € {1,...,r}.
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1. This exercise checks the Leibniz rule for the formal derivative aflgrmial. LetK be a field. The
formal derivative off (X) = Y"1 ja; X' € K[X] is defined ag”’(X) = Y1, aii X1

Let now f(X), g(X) € K[X] and seto(X) = f(X)g(X). Show:
W(X) = f(X)g(X) + f(X)g'(X).
2. LetK be afinite field withp™ elements.

(@) Prove(a+ )P =af + pPforalla, g € K.
(b) Conclude from (a){« + ﬁ)pd = o + " foralld € N.
(c) Prove that the map
F:K—-K, z—2°
defines a field isomorphism, the so-calla@benius isomor phism.
(d) Compute the order df'.
() Letl <d <nandletFd = FoFo---oF. Show that the sek (F") := {z € K | Fi(z) = z}

d times
is a subfield ofi’ and compute the number of elementgof*).
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1. (a) Show that the polynomigl(X) = X%+ X3 + X2 + X + 1 € Fy[X] isirreducible.

(b) ConsiderK = F3[X]/(f(X)). We know that this is a field witi6 elements, henceg* is a
cyclic group of orden 5.

Find a generator oK *.

2. Shamir’s no key protocol. Shamir found a clever method how Alice can send a message to Bob, which
cannot be read by anyone but Bob. The method has the special fézdtirglice and Bob do not
need any common key (neither known beforehand nor agreed via the-B#flman key exchange or
anything similar).

In terms of everyday things, the method works like this. Alice puts her messega box and locks
the box with a lock of hers (only she has the key and she does not gikeyh® anyone else). No
one but Alice can open the box. She sends the locked box to Bob. Babtlekox once more with a
lock of his own (only he has the key and he does not give the key to arglen). He sends the doubly
locked box back to Alice. She removes her lock and sends the box, wmowisnly locked by Bob,
back to Bob, who opens it with his own key and gets the message.

Let p be a big prime number and let the messagé ke < p — 1 (one should also assume € F;
has ordep — 1 for security reasons, but, for this exercise this can be neglected). Wdinés to send
m to Bob.

(@) Describe a version of Shamir's no key protocoFif.

(b) Assume Eve can solve discrete logarithm problenis,iffor any basis) and that Eve knows all the
conversation between Alice and Bob. Show that Eve can then compute
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1. First exercise. In this exercise you will see that different polynontiatshave the same set of zeroes
in A%2(K).
(@) LetK = R, and consider the polynomiafsg € K|z, ] defined asf (x,y) = 22 + 4,
g(z,y) = (z +y)* + 1. Show thaiC(K) = C,(K).
(b) LetK be afield, andf, g € K|x,y] nonzero polynomials. Show th@l;:,(K) = Cyy(K).
(c) Letp be a prime numbet, = p’ and considek = [F,. Show that the polynomialg g € K|z, y]
defined asf (z,y) = = — y, g(x,y) = 29 — y satisfyCy(K) = Cy(K).
(d) LetK = F4. Find polynomialsf, g € K|z, y], of degree less than 4, such tiiat(K') = Cy(K).
If K is algebraically closed anfl € K|[x,y] is a nonzero irreducible polynomial, thghis uniquely
determined (up to a scalar) lay;(K). You can check that these conditions were not satisfied in the

previous examples. In our lecture we will be concerned with elliptic curves finite fields, so we
have to be careful!

2. Second exercise. Lé&f be a field. Recall that we have writt@d (/) as a disjoint union
P?(K) = i(A*(K))U H U {O}.

Prove that for allP € H U {O} (i.e., the “extra” points that we added at infinity) there exist two
affine lines whose projectivisations meet/m This shows that there is no proper subspac®’gf)
containingA?(K) where all affine lines have a point of intersection.
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1. First exercise. Lel,/K, Ls/K be two different projective lines i*?(K). Prove that they meet at
exactly one point (that is to sal, (K) N La(K) = {P} for some pointP € P?(K)).

2. Second exercise. L& C F be an extension of fields.
(a) Prove that the map
j:PYK) — P*(E)
[a:b:c]—la:b: (|
is well-defined and injective.

(b) Let f € K[X,Y,Z] be a homogeneous polynomial of degiééor some positive integed.
Consider the curve§'y /K andC/E. Prove that

Cr(K) =P*(K)NC(E).
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1. Letf(z,y) = 23 +y2? —y,and letf*(X,Y, Z) = X3 + Y X2 — Y Z? be its homogenisation. Show
that the affine curve’; /C is smooth while the projective cureg;- /C is not smooth.

2. LetK be afield. In this exercise we prove the chain rule for formal derivafiveés (X ).

(a) Show that the definition of the formal derivative of an elemgiX') € K (X) does not depend
on the representation ¢f( X) = f(X)/g(X) as a quotient of elements &f[ X].

(b) Letg(X) € K[X]. Prove tha{g")'(X) = ng" }(X)g'(X) for all n > 1. (Hint: Use induction
and the Leibnitz rule from Sheet 4).

(©) Letf(X),g(X) € K[X]. Show that(f o g)"(X) = f'(9(X))g'(X).

(d) Letp(X),9(X) € K(X). Show that(o(X) - (X)) = ¢'(X)(X) + ¢(X)¢'(X) (Hint:
Apply the Leibnitz rule inK'[X]).

(e) Letp(X) = (f(X)/g(X))". Show thaty'(X) = n(f(X)/g(X))""" - (f(X)/g(X))" (Hint:
Analogous to/(2b)).

() Let f(X) € K[X], p(X) € K(X). Showthai fop) (X) = f'(p(X))¢'(X) (Hint: Analogous
to (2c)).

(9) Lety(X),v(X) € K(X). Show that(t) o ) (X) = ¢'(¢(X))¢'(X).
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1. Let K be a field. In this exercise we collect some facts we used in the Lecturé¢ thisoorder of an
element of (X)) at X = 0.

(a) Letf(X),g(X) S K[X] Show thabrdxzo(f(X)g(X)) = ordx—g f(X) + ord x—o g(X)

(b) The definition of the order aX = 0 of an elementp(X) € K(X) (Definition 5.33) does not
depend on the representatip0X ) = f(X)/g(X) as quotient of elements @€ [ X].

(c) Lety(X),y(X) € K[X] such thabrdx—o(¢(X)) = 1. Show that
ordx—o ¢(X) = ordx—o ¢ o (X).
(Hint: First show by induction omn that for allm > 0 we have the equalityy o )™ (X)
= oM (y(X)) - (¢'(X))™. Conclude tha(™ (0) = 0 if and only if (¢ o 1)™) (0) = 0).
2. Let K be afield. In this exercise we prove the chain rule for formal derivaiivéhree variables.

(@) Letvy,vo,v3 > lintegersgi(T'), g2(T),93(T) € K(T) andh(T) = g1(T)" g2(T)"2g3(T)">.
Prove that

W(T) = v1g1(T)" " g1 (T)ga(T)" g3(T)"
+ v2g1(T)" g2(T)"* g5 (T) g3(T)™ + v391(T)" g2(T) "2 g3(T) ">~ g5(T)

(b) Letf € K[X,Y, Z] andg:1(T), g2(T), g3(T) € K(T), h(T) = f(91(T), 92(T), g3(T)). Then

of

WD) = 5%

(91(T), 92(T), 93(T)) g4 (T)

0 0
+ 2L (01(T), (1), 45(T)gh(T) + 92 (01(T), 4o(T). g5(T))4(T).
3. LetK be afield,f € KJz,y] a nonzero polynomialf*(X,Y, Z) € K[X,Y, Z] its homogenisation.
Let (a,b) € A%(K). Prove that(a, b) is a singular point of the affine cun@; /K if and only if the
pointi(a,b) = [a: b: 1] € P*(K) is a singular point of the projective curé /K.
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1. Let K be afield. For each matrix

ail aiz2 ai13
A= as1 @22 93 EGL3(K),

asy azz2 as3
prove that the map

oA PHK) — P*(K)

[a:b:c]— [a11a + a12b + a13c : agra + ageb + azsc : azja + aszab + assc]

is well defined and bijective.

Let f(X,Y,Z) € K[X,Y, Z] be a homogeneous polynomial and set
fa(X,Y,Z) := fan1 X + a12Y + a13Z,a21 X + aY + a3 Z,a31X + azY + azz”)

Prove that
Cr(K) = pa(Cp,(K)).

2. LetK be afield,f(X,Y, Z) € K[X,Y, Z] ahomogeneous polynomial of degieef the form
(XY, 2)=Y?Z+ a1 XYZ +a3YZ? — X — s X?Z — ay X Z? — ag Z*

for someaq, as, az, aq, a6 € K.

Let A € GL3(K) be of the following shape

w2 0 r
A= |u?s 3 t
0 0 1

Prove that the polynomigl, obtained fromf by the linear change of variables given Hy(as above)
has the shape

fa(X,Y,Z2) =ub(Y?Z + i XY Z + ahY 7% — X3 — ayX?Z — d\ X Z* — agZ?)

for somea}, ab, aj, ), af € K.
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1. LetL/K = L(«,0,v)/K be a projective line and/ K an elliptic curve. Then

> m(E,L,P)

PeP?2(K)
equals), 1 or 3.
Hints:

e Consider first the case = 0, that is to say, the lin& (0,0, 1), computeL (K) N E(K) and, for
eachP € L(K) N E(K), computen(E, L, P).

e Next consider the case # 0. You can writeL/K asL(1,0,v)/K for somey € K. Note
thatO = [0 : 1 : 0] € L(K) N E(K), and computen(E, L, Q) directly. Any other point
P € L(K) N E(K) can be written a$® = [—v : b : 1] for someb € K, and you can use the
pointO as auxiliary point to express(FE, L, P) as the order at = 0 of a polynomiak)(t). Now
considerg(y) = f(—v,y,1) € K[y] and relatey(b + t) to ¢ ().

2. Let E/F, be the elliptic curve defined by the polynomilX,Y, Z) = Y2Z + Y Z? 4+ X3 + X 72,
In Example 5.19 we computed that

e Write all the points ofF(FF3). Hint: Use Lemma 6.5.
e Compute the summation table GE(F3),+). (That is to say, for all’,Q € E(F2), compute
P + Q. Recall that since the sum is commutative, it suffices to compute 15 sums).
Hint: A group with5 elements is always a cyclic group, and each element which is not the neutral

element is a generator. Pick one gener&@nd compute® + P, P+ P+ P, P+ P+ P+ P.
All other sums can be easily written down (without any need of further coatipns).



