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Preface

These are notes of a one-term course (12 lectures of 90 min each) taught for students in the 6th term
of the Bachelor programme at the University of Luxembourg in Summer Term 2012. Although the
students had some familiarity with concepts from Algebra from previous lectures, almost no prereq-
uisites were assumed.

The lecture starts with fundamentals of elementary number theory, that is, Euclid’s algorithm,
Gauß’ theorem on unique factorisation of integers, and the Chinese remainder theorem, as well as
some basic group theory. These concepts are applied to the RSA algorithm, which is treated in the
second section. Finite fields are dealt with in generality in the third section, before being applied in the
Diffie-Hellman key exchange and the El Gamal encryption scheme in the subsequent section. Section
5 contains a gentle introduction to plane curves, which is specialised to elliptic curves and extended in
the subsequent section. The final section is concerned with elliptic curvesover finite fields and gives
a glimpse at their applications in cryptography.

In preparing these lectures we used several sources:

• Lecture notes by Gebhard Böckle and the second author from the Universität Duisburg-Essen.

• Silverman:The Arithmetic of Elliptic Curves.

• Washington:Elliptic Curves, Number Theory and Cryptography.

• Werner:Elliptische Kurven in der Kryptographie.

Luxembourg, June 2012.
Sara Arias-de-Reyna, Gabor Wiese



1 SOME ASPECTS OF ELEMENTARY NUMBER THEORY 4

1 Some aspects of elementary number theory

The purpose of this first section is to survey the most basic concepts fromelementary number theory.
All students (should) have seen them before, but, it cannot hurt to recall them.

The way we present elementary number theory here is that its most fundamental concept is that of
Euclid’s algorithm.

Theorem 1.1(Euclid, Bézout). Let a, b ∈ Z not both zero. ThenEuclid’s algorithmcomputes the
greatest common divisord of a, b, notationd = gcd(a, b), that is:

• d ≥ 1,

• d | a, d | b,

• for anye ≥ 1 such thate | a ande | b, one hase | d.

Moreover, theextended Euclid’s algorithmgivesr, s ∈ Z such that

d = ar + bs.

The proof is completely algorithmic. The algorithm is practiced in an exercise onSheet 1.

Definition 1.2. An integerp ≥ 2 is called aprime numberif its only positive divisors are1 andp.

Theorem 1.3(Gauß; fundamental theorem of elementary number theory). Anyn ∈ N, n ≥ 2, can be
written as a finite product of prime numbers: There isr ∈ N and there are prime numbersp1, . . . , pr

such that
n = p1 · p2 · · · pr.

Up to renumbering, the prime numbers occuring in the product are unique, that is: ifn = q1 · q2 · · · qs
is another such product, thenr = s and there isσ in the symmetric group on the letters{1, . . . , r}
such thatqi = pσ(i) for all i ∈ {1, . . . , r}.

We are going to prove this theorem. The proof is not as trivial as one might guess. It essentially
uses the extended Euclid’s algorithm. The existence part, however, is completely straight forward:

Proof of existence in Theorem 1.3.Let n ≥ 2. By induction we prove the following statement:

There are finitely many prime numbersp1, . . . , pr such thatn = p1 · p2 · · · pr.

Sincen = 2 is obviously a prime number, the statement forn = 2 is true. Let us now suppose
we have proved the statement for all integers up ton − 1. We prove it forn. First case:n is a prime
number. Then the statement is obviously true. Second case:n = ab with 1 < a < n. We know that
we can writea andb both as finite products of prime numbers, hence, the statement forn follows.

Definition 1.4. LetR be a ring. ByR× we denote the set of units ofR, i.e. the elementsx ∈ R such
that there isy ∈ R with 1 = xy.

An element0 6= p ∈ R \ R× is called aprime element ofR if, wheneverp divides a productab
with a, b ∈ R, thenp divides one of the factors, i.e.p | a or p | b.
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Lemma 1.5. Let R be a ring andp ∈ R a prime element. Ifp divides a productr1r2 · · · rs with
ri ∈ R, thenp divides one of the factors, i.e. there isi ∈ {1, . . . , s} such thatp | ri.

Proof. Iterated application of the definition.

The next lemma shows that prime numbers and prime elements inZ are essentially the same.

Lemma 1.6. Letp ≥ 2 be an integer. Then

p is a prime number⇔ p is a prime element inZ.

Proof. ‘⇒’: Let a, b ∈ Z and supposep | ab. If p | a, then we are done. So assumep ∤ a. Since the
only positive divisors ofp are1 andp andp does not dividea, it follows that1 = gcd(a, p). Hence,
there arex, y ∈ Z such that1 = ax + py. Multiply this equation byb and get:b = abx + py. As p
dividesab by assumption and obviouslyp dividespy, it follows thatp dividesb, as was to be shown.

‘⇐’: Supposep = ab with positive integersa, b. Then, asp is a prime element inZ, it follows
p | a or p | b. Consequently,a ≥ p or b ≥ p, thusa = p or b = p, showing thatp is a prime
number.

Proof of uniqueness in Theorem 1.3.We again prove this by induction onn. The casen = 2 is
obvious. Let us suppose that we have proved the statement for all positive integers up ton− 1. Now
considern. We have, thus, prime numbersp1, . . . , pr andq1, . . . , qs such that

n = p1 · p2 · · · pr = q1 · q2 · · · qs.

By Lemmas 1.6 and 1.5 it follows that the prime numberp1 is a prime element which divides one of
theqi (for i ∈ {1, . . . , s}), since it divides the productq1 · q2 · · · qs. As qi is a prime number, too, we
must havep1 = qi. Dividing both sides byp1, we obtain

n/p1 = p2 · p3 · · · pr = q1 · q2 · · · qi · qi+1 · · · qs.

As we already know the statement forn/p1, we are done.

Also the following famous theorem is based on the extended Euclid’s algorithm.

Theorem 1.7(Chinese Remainder Theorem). Letn,m ∈ N such thatgcd(n,m) = 1. Then the map

Φ : Z/(nm) → Z/(n) × Z/(m), a+ (nm) 7→
(
a+ (n), a+ (m)

)

is an isomorphism of rings.

Proof. The homomorphism property is easily checked.
Injectivity: Supposea ∈ Z is in (n) and in(m). This means thatn | a andm | a. Asgcd(n,m) =

1, it follows nm | a, which meansa ∈ (nm), showing the injectivity.
Surjectivity: As gcd(n,m) = 1, there arex, y ∈ Z such that1 = nx + my. We just have to

interpret this equation in the right way. It means thatN := nx = 1 −my satisfies:

N ≡ 0 mod (n) andN ≡ 1 mod (m).
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In the same way we have thatM := my = 1 − nx satisfies:

M ≡ 0 mod (m) andM ≡ 1 mod (n).

Let b, c ∈ Z and consider
(
b + (n), c + (m)

)
∈ Z/(n) × Z/(m). Thena := bM + cN is an

element such that
a ≡ b mod (n) anda ≡ c mod (m),

i.e.Φ(a+ (nm)) =
(
b+ (n), c+ (m)

)
, showing the surjectivity.

Definition 1.8. Letn ≥ 1 be an integer. Let

ϕ(n) = |
(
Z/(n)

)×|,

the order of the unit group of the ringZ/(n), that is, the number of units ofZ/(n). One callsϕ Euler’s
totient function (or: Euler’sϕ-function).

Lemma 1.9. Letn = pe1

1 ·pe2

2 · · · per
r be the factorisation ofn into prime powers with pairwise distinct

prime numbersp1, . . . , pr.
Thenϕ(n) = (p1 − 1)pe1−1

1 · (p2 − 1)pe2−1
2 · (pr − 1)per−1

r .

Proof. By the Chinese Remainder Theorem 1.7 it suffices to proveϕ(pe) = (p−1)pe−1 for any prime
numberp.

In fact, it turns out to be easier to count non-units inZ/(pe) instead of counting units. The non-
units inZ/(pe) are precisely the classesa+(pe) such thatp | a, that is,0, p, 2p, . . . , (pe−1 − 1)p. So,
there arepe−1 non-units. Hence,ϕ(pe) = pe − pe−1 = pe−1(p− 1).

Now we need to recall one elementary statement from group theory.

Theorem 1.10(Lagrange). LetG be a finite group andH ≤ G a subgroup. Denote by(G : H) the
index ofH in G and by|G| (and|H|) the order ofG (andH). Then

|G| = |H| · (G : H).

Proof. Let us denote by◦ the group operation. As abbreviation writer = (G : H). Then by definition
there arer cosets, say,g1 ◦H, g2 ◦H, . . . , grH◦ such that

G = g1 ◦H ⊔ g2 ◦H ⊔ · · · ⊔ gr ◦H,

where the symbol⊔ means ‘disjoint union’. Now note that

H → gi ◦H, x 7→ gi ◦ x

defines a bijection, so that the number of elements ofH andgi ◦H are equal. Thus,|G| = r|H|.

Corollary 1.11. LetG be a finite group andg ∈ G an element. Theorderord(g) is the smallest
positiven ∈ Z such thate = gn (that is,g ◦ g ◦ · · · ◦ g

︸ ︷︷ ︸

n-times

), wheree is the neutral element inG. Denote

by 〈g〉 the smallest subgroup ofG containingg.
Thenord(g) = |〈g〉| divides|G| andg|G| = e.
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Proof. LetH = 〈g〉. We obviously have|H| = ord(g). Hence, Theorem 1.10 givesord(g) divides
|G|, say,|G| = ord(g) ·m for somem ≥ 1. Then

g|G| = gord(g)·m =
(
gord(g)

)m
= em = e,

finishing the proof.

Corollary 1.12 (‘Little Fermat’). Let p be a prime number. We writeFp for the finite fieldZ/(p).
(Never use this piece of notation ifp is not a prime!). Letm ∈ Z be an integer such thatm ≡ 1

mod (p− 1).
Then for anyx ∈ Fp one has:xm = x (equality inFp).

Elements inZ/(p) are residue classes, sox ∈ Z/(p) is of the forma+ (p) for somea ∈ Z. One,
thus, often formulates the corollary in terms of congruences: For anya ∈ Z, the congruence

am ≡ a mod (p)

holds ifm ≡ 1 mod (p− 1).

Proof. The group of units ofFp has orderp−1 as the only non-unit is (the class of)0. Let0 6= x ∈ Fp.
By Corollary 1.11,xp−1 = 1. We havem = 1 + (p− 1)r for somer ∈ Z. Thus:

xm = x1+(p−1)r = x · x(p−1)r = x ·
(
xp−1

)r
= x · 1r = x.

Forx = 0 we obviously also havexm = 0m = 0 = x.

Corollary 1.13. Letp1, p2, . . . , pr be pairwise distinct prime numbers and putn = p1 · p2 · · · pr. Let
m ≡ 1 mod (ϕ(n)).

Then for anyx ∈ Z/(n) one has:xm = x (equality inZ/(n)).

Proof. Exercise on Sheet 1.

2 RSA

In this section, we introduce one of the main cryptographic algorithms that arecurrently in use: the
RSA-algorithm, named after Ron Rivest, Adi Shamir and Leonard Adleman. Each of you probably
uses this algorithm several times a day (maybe, without knowing it).

There are three people in the set-up:

• Alice: She wants to send a message to Bob.

• Bob: He wants to get a message from Alice.

• Eve: She wants to know what Alice writes to Bob, but, of course, Alice and Bob want to avoid
this.
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Bob’s preparation step

• Bob chooses two distinct (random) prime numbersp andq.

• Bob computes (multiplications):

n := p · q, ϕ(n) = (p− 1) · (q − 1).

• Bob chooses a random1 < e < ϕ(n) such thatgcd(e, ϕ(n)) = 1.

• Bob uses the extended Euclid’s algorithm in order to computes such that

es ≡ 1 mod (ϕ(n)).

For that, Bob computess, t ∈ Z such that1 = se+ tϕ(n).

• Bob publishesn ande (for example, on his webpage, in the phone book).

n is called themodulusande thepublic key.

• Bob keepss top secret.

s is called thesecret key.

Alice’s message encryption

We assume here that Alice’s message is an integerm such that0 ≤ m ≤ n − 1. In an exercise on
Sheet 2, you will show how to transform a text message into a sequence ofsuch numbers. In fact,
on Sheet 2, you show how to turn a sentence (or a text) into some positive integerM . However, the
integerM might be bigger thann. In that case, what one does is to writeM in its n-adic expansion,
i.e.

M =
s∑

i=0

min
i with 0 ≤ mi ≤ n− 1.

Like this one breaks the messageM up into the piecesm0, . . . ,ms and one encrypts (and decrypts)
each piece separately. But, as already said, for the sake of simplicitiy of theexposition, we suppose
that the message only consists of one single piece0 ≤ m ≤ n− 1.

• Alice looks up Bob’s(n, e) (e.g. in the phone book).

• Alice computesM := me mod (n); we can take0 ≤ M ≤ n − 1. The computation can be
done by fast exponentiation, see exercise on Sheet 2.

• Alice sendsM to Bob.
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Bob’s message decryption

Bob receives the messageM from Alice.

• Bob computesN := M s mod (n) with 0 ≤M ≤ n− 1. That computation can again be done
by fast exponentiation.

He findsN = m because:

M s =
(
me
)s

= mes ≡ m mod (n)

by Corollary 1.13.

Eve’s problem

Eve knows the following:

• Bob’s (n, e) (she can look them up in the phone book, too).

• The encrypted messageM (because she was eavesdropping – secretly listening; that’s why
she’s called Eve).

If Eve can compute the prime factorsp andq of n, then she can decrypt the message very easily:

• Like Bob, she computesϕ(n) = (p− 1)(q − 1).

• Like Bob, she uses the extended Euclid’s algorithm in order to computes such that

es ≡ 1 mod (ϕ(n)).

Now she know the secret keys, too!

• Like Bob, she decrypts the message by computingN := M s mod (n), which is, of course,m
again.

So, one has to prevent Eve from being able to factorn. This one does, in practice, by choosing
p andq very big, e.g. of size around22048, so thatp andq have each more than 600 decimal digits.
Then the currently best known algorithms for factoringn would be too slow to yield a result in less
than a couple of millions of years.

Of course, one does not know whether there is not a much faster algorithm. This insecurity, one
has to live with.

3 Finite fields

If p is a prime number, thenFp := Z/(p) is a finite field withp elements. But, these are not the only
ones. In fact, in this part of the lecture we are going to establish that for each prime powerpn there
is a finite field havingpn elements, calledFpn , and up to isomorphism these are the only finite fields.
It is very important to remember thatFpn 6= Z/(pn), as soon asn > 1 (for instance, inZ/(pn) the
equality0 = ppn−1 shows that0 6= p is a non-unit, but in fields all non-zero elements are units).
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First we treat the example of the finite field with4 elements in order to show that there are other
finite fields thanFp with p a prime. Considerf(X) := X2 + X + 1 ∈ F2[X]. It is an irreducible
polynomial. This one can check by testing that it does not have any zeros inF2: f(0) = 1 6= 0 and
f(1) = 1 6= 0 (always remember that this way of testing irreducibility is only valid for polynomials
of degrees2 and3, since from degree4 onwards, a polynomialf could factor asf = gh with both
g andh having no zero). We recall the notation(f(X)) for the principal ideal generated byf(X),
which consists of all multiples off(X).

We putK := F2[X]/(X2 +X + 1). We represent its elements as

0 := 0 + (f), 1 := 1 + (f), X := X + (f), 1 +X := 1 +X + (f).

It is very simple to write down the addition and the multiplication table explicitly (we did thisin the
lecture). It becomes obvious that every element ofK different from0 has a multiplicative inverse.
As we already know from the general theory of quotient rings thatK is a ring, the existence of the
multiplicative inverses shows thatK is a field. It has 4 elements and is denotedF4.

Definition 3.1. LetR be a commutative ring. If there is a positive integerm such that

1R + 1R + · · · + 1R
︸ ︷︷ ︸

m times

= 0R

in R (where for the sake of clarity we write0R (resp.1R) for the neutral element of addition (resp.
multiplication) ofR – we shall not do this at any other place), then thecharacteristic ofR is defined
to be the minimum suchm.

If no suchm exists, then we say thatR hascharacteristic0.

Example 3.2.Q has characteristic0 and for a prime numberp, the finite fieldFp has characteristicp.
The characteristic ofF4 is 2 (this is clear).

Proposition 3.3. LetR be an integral domain (e.g. a field). Then the characteristic is either0 or a
prime number.

Proof. Suppose the characteristic ofR ism > 0 andm = ab with 1 < a, b < m. Then

0 = 1 + 1 + · · · + 1
︸ ︷︷ ︸

m times

= (1 + 1 + · · · + 1
︸ ︷︷ ︸

a times

) · (1 + 1 + · · · + 1
︸ ︷︷ ︸

b times

).

AsR is an integral domain, it follows1 + 1 + · · · + 1
︸ ︷︷ ︸

a times

= 0 or 1 + 1 + · · · + 1
︸ ︷︷ ︸

b times

= 0 and both contra-

dicts the minimality ofm.

We are now going to construct many more finite fields in a more conceptual way. Our approach is
a generalisation of our construction ofF4. The key is – again – the extended Euclid’s algorithm, now
applied in the polynomial ring.

Theorem 3.4(Euclid, Bézout). LetK be a field and letf(X), g(X) ∈ K[X] not both zero. Then
Euclid’s algorithmcomputes the greatest common divisord(X) of f(X), g(X), notationd(X) =

gcd(f(X), g(X)), that is:
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• d(X) 6= 0 is monic (i.e. highest coefficient equal to1),

• d(X) | f(X), d(X) | g(X),

• for anye(X) 6= 0 such thate(X) | f(X) ande(X) | g(X), one hase(X) | d(X).

Moreover, theextended Euclid’s algorithmgivesr(X), s(X) ∈ K[X] such that

d(X) = f(X)r(X) + g(X)s(X).

The proof is again completely algorithmic.
We presented the theorem about Euclid’s algorithm inZ andK[X] in a completely analogous

manner. In fact, most of the theory can be developed for all rings, in which one has a Euclidean divi-
sion (i.e. a division with remainder). Such rings are calledEuclidean rings. You may or may not have
seen them in your algebra classes. In this lecture we just needZ and the polynomial ring over a field,
so we will not go into Euclidean rings in general. On Exercise Sheet 3, youwill prove an analogue
of Gauß’ fundamental theorem of elementary number theory forK[X] (the general statement, which
you may have seen, is: Every Euclidean ring is a unique factorisation domain.).

We start with a simple, but extremely useful consequence:

Lemma 3.5. Let K be a field andf(X) ∈ K[X] be a non-zero polynomial. Then the following
statements hold:

(a) Suppose there isα ∈ K such thatf(α) = 0 (suchα is called azeroor a rootof f ). Then there is
a polynomialg(X) ∈ K[X] such that

f(X) = (X − α)g(X).

(b) f(X) has at mostdeg(f) many zeros.

(c) Let f ′(X) be the formal derivative off(X); that is, for f(X) =
∑n

i=0 aiX
i, we letf ′(X) =

∑n
i=1 aiiX

i−1. If f(X) = g(X)h(X)2 with g(X), h(X) ∈ K[X] non-zero polynomials, then
h(X) divides thegcd(f(X), f ′(X)).

Proof. (a) We use Euclidean division:

f(X) = q(X) · (X − α) + r(X),

where the restr(X) has degree strictly smaller than the degree of the divisor(X − α), whence the
degree ofr(X) is 0. Thus,r(X) = c is a constant polynomial. Now, we plug inα for X and obtain:

0 = f(α) = q(α) · (α− α) + c = 0 + c = c,

showing that the restr(X) is zero, so that(X − α) dividesf .
(b) follows by induction from (a).
(c) It is easily checked that the Leibniz rule holds for the formal derivative (see Exercise on

Sheet 4):

f ′(X) = g′(X)h(X)2 + 2g(X)h′(X)h(X) = h(X)
(
g′(X)h(X) + 2g(X)h′(X)

)
,

showing thath(X) dividesf ′(X) and thus it divides the greatest common divisor off(X) andf ′(X).
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We now turn to the construction of finite fields. The fundamental result is the following, which
we first phrase in some generality and then specialise to finite fields in the corollary.

Proposition 3.6. LetK be a field andf ∈ K[X] an irreducible polynomial of degreen > 0.
ThenK[X]/(f(X)) is a field. Its elements can be represented as

n−1∑

i=0

aiXi := (

n−1∑

i=0

aiX
i) + (f(X)) with a0, a1, . . . , an−1 ∈ K.

Proof. We already know thatK[X]/(f(X)) is a ring. Now we show that every non-zero element has
a multiplicative inverse. Letg + (f(X)) ∈ K[X]/(f(X)) be a non-zero element. Being non-zero
means thatg(X) + (f(X)) 6= 0 + (f(X)), which is equivalent tog(X) 6∈ (f(X)), which is the same
asg not being a multiple off , i.e.f(X) does not divideg(X).

It follows that the greatest common divisor off(X) andg(X) is equal to1, whence there are
r(X), s(X) ∈ K[X] such that

1 = f(X)r(X) + g(X)s(X).

Taking residue classes inK[X]/(f(X)) we obtain

1 = 1 + (f(X)) =
(
g(X) + (f(X))

)(
s(X) + (f(X))

)
= gs,

exhibiting the desired inverse ofg = g(X) + (f(X)).
The representatives listed in the assertion are just the remainders for division byf .

Corollary 3.7. Let p be a prime number andf ∈ Fp[X] an irreducible polynomial of degreen =

deg(f) > 0.
ThenFp[X]/(f(X)) is a finite field havingpn elements, which can be represented as

n−1∑

i=0

aiXi := (
n−1∑

i=0

aiX
i) + (f(X)) with 0 ≤ a0, a1, . . . , an−1 ≤ p− 1.

Proof. In view of the previous proposition, this is clear.

Now we have a big supply of finite fields – under the assumption that there aremany irreducible
polynomials inFp[X]. It is possible to give a brute force proof that for everyn ∈ N, there is an
irreducible monic polynomialf(X) ∈ Fp[X] of degreen. This can be done by counting the number
of reducible monic polynomials of degreen and observing that this number is smaller thanpn (which
is the total number of monic polynomials of degreen), so that there must at least be one irreducible
monic polynomial. We will, however, go a slightly smarter way, which uses the notion of a splitting
field of a polynomial.

The central role in the construction of the field withpn elements is played by the polynomial
Xpn −X ∈ Fp[X]. Forn > 1 it is not irreducible, so we cannot apply the previous corollary. Instead,
we will take its splitting field. Although splitting fields may be known to you from a course in algebra,
we shall construct them here again (in a quick and concise way).
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Theorem 3.8. LetK be a field andf(X) ∈ K[X] a monic polynomial of degreen. Then there is a
fieldL satisfying the following properties:

(1) K ⊆ L.

(2) There areα1, . . . , αn ∈ L such that (inL[X]):

f(X) = (X − α1) · . . . · (X − αn).

(3) IfK ⊆ L1 ⊆ L andL1 satisfies (1) and (2), thenL = L1 (i.e.L is the smallest field containingK,
over whichf(X) factors into a product of linear polynomials).

The fieldL is called thesplitting field (corps de décomposition, Zerfällungskörper) off .

Proof. We show the following assertion by induction onn.

For every fieldK and every monic polynomialf(X) ∈ K[X] of degree at mostn, there
is a fieldL such that

(I) K ⊆ L.

(II) There areα1, . . . , αn ∈ L such that (inL[X]):

f(X) = (X − α1) · . . . · (X − αn).

If n = 1, thenf is already linear andL = K trivially satisfies (I) and (II).
Now assume that the assertion has been established for all polynomials of degrees up ton − 1.

We now want to establish it for the polynomialf ∈ K[X] of degreen. For this, we distinguish two
cases:

f is reducible:In this case, we factorf(X) = g(X)h(X) with g(X), h(X) ∈ K[X] of degrees
strictly less thann. From the induction hypothesis applied forg(X) ∈ K[X] we deduce the existence
of a fieldL1 satisfying (I) and (II). We apply the induction hypothesis again forh(X) ∈ L1[X] (we
can, of course, viewh(X) as a polynomial ofL1[X] becauseK is a subfield ofL1) and obtain a
field L satisfying (I) and (II) (for the polynomialh(X)). We haveL ⊇ L1 ⊇ K, showing (I) for
f ∈ K[X]. Moreover, it is clear thatf(X) factors into linear factors overL[X] because the roots of
g(X) lie in L1 ⊆ L and those ofh(X) lie in L.

f is irreducible:From Proposition 3.6 we know thatL1 := K[X]/(f(X)) is a field. It contains
K (the classes of the constant polynomials) and the classα := X = X + (f(X)) is a zero of
f(X) ∈ L1[X]. To see this, let us writef(X) =

∑n
i=0 aiX

i. Then:

f(X) =
n∑

i=0

aiX
i
=

n∑

i=0

ai

(
X + (f(X))

)i
=

n∑

i=0

aiX
i + (f(X)) = f(X) + (f(X))

= 0 + (f(X)) = 0.

(Note the small ambiguity in the notation:a = a + (f(x)) = a for a ∈ K.) Hence, overL1[X]

we havef(X) = (X − α)g(X) with g(X) ∈ L1[X] of degreen − 1. This allows us to apply the
induction hypothesis forg(X) ∈ L1[X], yielding a fieldL ⊇ L1 ⊇ K over whichg(X) factors as a
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product of linear polynomials. Consequently, overL the polynomialf(X) factors into a product of
linear polynomials, establishing the assertion forn.

We now prove the theorem. The above assertion gives us a fieldM satisfying (1) and (2). We now
want to show that there is a fieldL for which (3) also holds. This is very easy. Namely, it suffices to
letL be the smallest subfield ofM which containsα1, . . . , αn.

We are now ready for the construction of a finite field withpn elements.

Proposition 3.9. Letp be a prime number andn ∈ N>0. Considerf(X) = Xpn −X ∈ Fp[X].
Then the splitting fieldL of f(X) overFp is a finite field withpn elements.

Proof. As L is the splitting field, there are elementsα1, . . . , αpn ∈ L such thatf(X) =
∏pn

i=1(X −
αi). By Lemma 3.5 (c), theαi are pairwise distinct because

gcd(f(X), f ′(X)) = gcd(f(X), pnXpn−1 − 1) = gcd(f(X),−1) = 1

(if αi = αj for i 6= j, then takeh(X) = (X − αi) andg(X) = f(X)/(h(X)2)). So, the set
M = {α1, . . . , αpn} haspn elements and it consists precisely of the zeros (inL) of f(X).

We now show thatM is a subfield ofL. Letα, β ∈M , henceαpn
= α andβpn

= β.

• 0, 1 ∈M because they clearly satisfyf(0) = 0 = f(1).

• Supposeα 6= 0. Thenαpn
= α implies( 1

α
)pn

= 1
α

, showing thatM contains the multiplicative
inverse of any non-zero element inM .

• Fromαpn
= α andβpn

= β, it follows (αβ)pn
= αβ, showing thatM contains the product of

any two elements ofM .

• Fromαpn
= α, it follows (−α)pn

= (−1)pn
α = −α (note that forp = 2 this equation is also

true), showing thatM contains the negative of any of its elements.

• Fromαpn
= α andβpn

= β, it follows (α + β)pn
= αpn

+ βpn
= α + β (see Exercise on

Sheet 4), showing thatM contains the sum of any two elements ofM .

Due to (3) of the definition of a splitting field, one hasL = M and this finishes the proof.

We have thus shown that there is a field withpn elements by constructing it as the splitting field
of the polynomialXpn − X ∈ Fp[X]. Next, we prove that all finite fields withpn elements are of
this type. From that we shall deduce that any two finite fields with the same number of elements are
isomorphic, so that we will obtain a complete classification of all finite fields.

Lemma 3.10. LetK be a finite field and letp be its characteristic. Thenp is a prime number and
there isn ∈ N such that the number of elements ofK is pn.
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Proof. The characteristic ofK cannot be0 because in that caseK would contain infinitely many
elements, namelyN and henceQ. So, the characteristic ofK is p. That means that the kernel of the
ring homomorphism

Z → K, z 7→







1 + 1 + · · · + 1
︸ ︷︷ ︸

z times

if z ≥ 0,

−1 − 1 − · · · − 1
︸ ︷︷ ︸

|z| times

if z ≤ 0.

is the prime ideal(p), whence by the homomorphism theorem (1er théorème d’isomorphisme) we
obtain an injectionFp →֒ K. So,Fp is a subfield ofK and, thus,K is anFp-vector space of some
dimensionn. Hence,K haspn elements.

Proposition 3.11. Letp be a prime number,n ∈ N>0, andK a finite field withpn elements. ThenK
is a splitting field of the polynomialXpn −X overFp.

Proof. This is actually very easy. We check conditions (1), (2) and (3) in the definition of a splitting
field:

(1) Fp ⊆ K; this is clear due to Lemma 3.10.
(2) Let a ∈ K. If a = 0, then clearlyapn

= a. If a 6= 0, thena(pn−1) = 1 because the
multiplicative groupK× = K \ {0} has orderpn − 1. Hence, we also findapn

= a. Consequently,
all elements ofK are zeros off(X) = Xpn − X ∈ Fp[X]. As we havedeg(f) zeros off in K,
f factors into linear factors overK.

(3) Of course, no proper subfield of a field withpn elements can contain all the zeros off because
their number ispn.

Lemma 3.12. LetA be a finite abelian group. Theexponentexp(A) of A is defined as the minimal
positive integere such thatae = 1 for all elementsa ∈ A. Then the following statements hold:

(a) Leta, b ∈ A. Suppose that1 = gcd(ord(a), ord(b)), thenord(ab) = ord(a) ord(b).

(b) Leta, b ∈ A. Then there arei, j ∈ N such thatord(aibj) = lcm(ord(a), ord(b)) (lcm: lowest
common multiple;ppcm: plus petit commun multiple,kgV: kleinstes gemeinsames Vielfaches).

(c) There isa ∈ A such thatord(a) = exp(A).

(d) A is cyclic⇔ exp(A) = #A.

Proof. (a) Lete ≥ 1 such thataebe = 1. Since1 = gcd(ord(ae), ord(be)), it follows from ae = b−e

thatae = 1 = be. Thus,ord(a) | e andord(b) | e, hence,ord(a) ord(b) = lcm(ord(a), ord(b)) | e.
Of course,(ab)ord(a) ord(b) = 1.

(b) Let
ord(a) = pm1

1 · . . . · pmk

k and ord(b) = pn1

1 · . . . · pnk

k

be the prime factorisations (i.e. thep1, . . . , pk are pairwise distinct prime numbers), where we sort the
primes in such a way thatm1 ≥ n1, . . . ,ms ≥ ns andms+1 < ns, . . . ,mk < nk. Let

a′ := ap
ms+1

s+1
·...·p

mk
k andb′ := bp

n1
1

·...·pns
s .
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It is clear that we have

ord(a′) = pm1

1 · . . . · pms
s and ord(b′) = p

ns+1

s+1 · . . . · pnk

k .

Hence, (a) implies that the order ofa′b′ is

pm1

1 · . . . · pms
s · pns+1

s+1 · . . . · pnk

k = lcm(ord(a), ord(b)).

Of course,(ab)lcm(ord(a),ord(b)) = 1.
(c) Lete denote the lowest common multiple of the orders of all elements inA. It is an immediate

consequence of (b) that there is an elementa ∈ Awhose order ise. So,e = ord(a) | exp(A). Clearly,
exp(A) is less than or equal toe, showing the desired equality.

(d) is an immediate consequence of (c).

Proposition 3.13. LetK be a finite field. Then the group of unitsK× = K \ {0} (group with respect
to multiplication and neutral element1) is a cyclic group of order#K − 1.

Proof. Let #K = pn. Let e := exp(K×). Due to Lemma 3.12 it suffices to show thate = pn − 1.
Supposee < pn − 1. Then every elementa ∈ K satisfiesae+1 = a, so that thepn elements are all
zeros of the polynomialXe+1 −X, which has degreee+ 1. This is, of course, impossible because a
polynomial of degreee + 1 has at moste + 1 zeros (since the coefficients of the polynomial are in a
field).

Definition 3.14. LetK be a field,L a field containingK, andα ∈ L. Consider the evaluation map

eva : K[X]
f(X) 7→f(α)−−−−−−−→ L.

Let g(X) be the unique monic generator of the principal idealker(eva) (recall: K[X] is a prin-
cipal ideal domain). In particular, any other polynomialf(X) ∈ K[X] with f(α) = 0 is a multiple
of g(X).

One callsg(X) theminimal polynomial ofa overK.

Proposition 3.15. Let p be a prime number,n ∈ N>0, andK andL finite fields withpn elements.
ThenK andL are isomorphic, i.e. there is a field isomorphismΦ : K → L.

Proof. By Proposition 3.13, the unit groupK× is cyclic of orderpn − 1. Letα ∈ K× be a generator,
i.e. an element ofK× of orderpn − 1. Let g(X) ∈ Fp[X] be the minimal polynomial ofα. It has
degreen, for, if it had a smaller degreem, then the order ofα would be a divisor ofpm − 1, which is
impossible.

The evaluation mapeva : Fp[X]
f(X) 7→f(α)−−−−−−−→ K defines an isomorphism (via the homomorphism

theorem)Fp[X]/(g(X)) ∼= K. We show that alsoFp[X]/(g(X)) ∼= L.
Note thatg(X) | X(Xpn−1 − 1) = Xpn −X (in Fp[X]) becauseα is a zero of both polynomials,

so thatXpn −X is in the principal ideal generated byg(X). We know by Proposition 3.11 thatL is
a splitting field ofXpn −X overFp. Hence, alsog(X) splits inL into linear factors and, thus, there

is β ∈ L such thatg(β) = 0. This means that the evaluation mapevβ : Fp[X]
f(X) 7→f(β)−−−−−−−→ L defines

the desired isomorphism (via the homomorphism theorem)Fp[X]/(g(X)) ∼= L.

Now we can state and prove the complete classification result of finite fields upto isomorphism.
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Theorem 3.16. (a) The number of elements of any finite fieldK is of the formpn, wherep is a prime
number and the characteristic ofK, andn ∈ N>0.

(b) For any primep and anyn ∈ N>0, there is a finite field havingpn elements. Any two such are
isomorphic. We use the notationFpn .

(c) LetK be a subfield ofFpn . Then#K = pe for some divisore of n.

(d) For every divisore | n, there is a unique subfieldK ⊆ Fpn havingpe elements.

Proof. (a) and (b) have been proved above.
(c) The fieldFpn is a field extension ofK, hence,Fpn is aK-vector space of some dimensiond.

Thus,pn = #Fpn = (#K)d = ped.
(d) Letn = ed. Then (geometric sum)

pn − 1 = (pe − 1) (pe(d−1) + pe(d−2) + . . .+ 1)
︸ ︷︷ ︸

=:m

and (again geometric sum)

Xpn−1 − 1 = (Xpe−1 − 1)(X(pe−1)(m−1) +X(pe−1)(m−2) + . . .+ 1),

showingf(X) := (Xpe −X) | (Xpn −X).
The zeros off(X) form a subfieldK of Fpn with pe-elements: it is the splitting field off(X)

overFp. If L ⊆ Fpn is a subfield withpe elements, then all its elements are zeros off(X), whence
L ⊆ K, henceL = K.

4 Diffie-Hellman and El Gamal for finite fields

Symmetric encryption

Alice and Bob want to communicate secretly. Amessageis, as before, a positive integer1 ≤ m ≤ N

(for some fixed bigN ). A keyis a positive integerK ∈ N.
A symmetric encryption function(for the keyK) is a pair of maps:

f1 : {1, 2, . . . , N} × N → {1, 2, . . . , N}

f2 : {1, 2, . . . , N} × N → {1, 2, . . . , N}

such thatf2(f1(m,K),K) = m and bothf1(m,K) andf2(n,K) can be computed quickly for all
m,n ∈ {1, 2, . . . , N}. One also wants thatm cannot (easily) be computed fromf1(m,K) if K is
unknown. One callsf1(m,K) theencryptionof the messagem for the keyK.

Just to give an idea of a symmetric encryption system (this one is not perfect). Suppose the key is

K =

d−1∑

i=0

ai10i with ai ∈ {0, 1, . . . , 9}
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and the message is

m =
e∑

i=0

mi10i with mi ∈ {0, 1, . . . , 9},

where we imagine thate is much bigger thand. Then we could take:

f1(m,K) =
e∑

i=0

Mi10i,

where theMi are computed as follows:

M0 ≡ m0 + a0 mod (10), . . . , Md−1 ≡ md−1 + ad−1 mod (10)

Md ≡ md + a0 mod (10), . . . , M2d−1 ≡ m2d−1 + ad−1 mod (10)

M2d ≡ m2d + a0 mod (10), . . . , M3d−1 ≡ m3d−1 + ad−1 mod (10),

and so on, untilMe. The functionf2 is defined in the same way, replacing+ by−.
Assumption: Alice and Bob have a common secret: a big integerK ∈ N.
If Alice wants to send messagem to Bob, all she has to do is computeM := f1(m,K) and

sendM to Bob. He can read the message by computingm = f2(M,K). Our assumptions imply that
Eve, who knowsM (and alsof1 andf2), cannot deducem. But, this all relies on the above assumption
that Alice and Bob have this common secret keyK. If they are far away (Bob is in New York and
Alice in Luxembourg, they can only speak on the phone, and Eve listens to alltheir conversations), it
is not so clear how they can get a common secret. That it is possible was demonstrated by Diffie and
Hellman.

Diffie-Hellman key exchange

The players are the same as for RSA: Alice, Bob and Eve.
Task:Alice and Bob want to agree on a secret key, which both of them know, but which is unknown

to Eve. They want to do this, even though Eve is listening to their conversation.
A revolutionary method was found by Diffie and Hellman. In order to illustrate the method, we

first present the idea in a simpler setting, where it turns out to fail, and then present the right version.

First (wrong) attempt

(1) Alice and Bob agree on a big prime numberp and an integer1 < g < p. Eve may knowp andg.

(2) Alice chooses secretlya ∈ N, computesA := ag mod (p) and sendsA to Bob.

(3) Bob chooses secretlyb ∈ N, computesB := bg mod (p) and sendsB to Alice.

(4) Alice receivesB from Bob and computesKAlice := aB ≡ abg mod (p).

(5) Bob receivesA from Alice and computesKBob := bA ≡ abg mod (p).

Note:KAlice = KBob.
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Eve listened to their conversation. She knows:A, B, p and g. She now uses the Euclidean
algorithm to compute1 < h < p such thatgh ≡ 1 mod (p) (i.e. an inverse tog in F×

p ). This allows
her to compute

Ah ≡ agh ≡ a mod (p) andK := aB mod (p),

so thatK = KAlice = KBob. Thus, Eve knows the common ‘secret’K.
A slight modification of the above turns out to prevent Eve from obtaining thesecret!

Correct realisation

The idea is to replace computations in(Fp,+) by computations in(F×
pn , ·) (where we may, but need

not, choosen = 1).

(1) Alice and Bob agree on a big finite fieldF (e.g.Fp or anyFpn) and a generatorg of the cyclic
groupF×. Eve may knowF andg.

(2) Alice chooses secretlya ∈ N, computesA := ga ∈ F× and sendsA to Bob.

(3) Bob chooses secretlyb ∈ N, computesB := gb ∈ F× and sendsB to Alice.

(4) Alice receivesB from Bob and computesKAlice := Ba = (ga)b = gab ∈ F×.

(5) Bob receivesA from Alice and computesKBob := Ab = (gb)a = gab ∈ F×.

Note:KAlice = KBob.

Eve again listened to their conversation. She again knows:A,B, p andg. But, in order to compute
a from A (andp andg) she would have to solve the discrete logarithm problemin the finite fieldF,
which is defined as follows:

Given a finite fieldF and a generatorg of the cyclic groupF× (with respect to multipli-
cation).

ForA ∈ F×, find a such thatga = A ∈ F×.

The solutiona is called a (discrete) logarithm ofA (for the basis/generatorg) because
ga = A.

Up to this day, no efficient algorithm is known to compute a discrete logarithm in abig finite field.
Hence, Eve cannot computea and, thus, cannot obtain the common secretKAlice = KBob, although
she has seen everything that Alice and Bob exchanged!

As a variant, one can replace the discrete logarithm problem in finite fields bythe discrete log-
arithm problem in elliptic curves (later this term!), and obtain an elliptic curves Diffie-Hellman key
exchange. This is used, for instance, in the authentication procedure for the communication between
the German passport and a reader.
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El Gamal encryption

A slight variation of the order of step in the Diffie-Hellman key exchange gives rise to a public key
encryption system, which works similarly to RSA: Bob wants to receive messages (in particular, but,
not only from Alice), and for that purpose he produces a public key, which can be looked up in a phone
book, and a secret key. People (like Alice) who have looked up the publickey can send encrypted
messages to Bob which only he can decrypt using his secret key.

Bob’s preparation step

• Bob chooses a big finite fieldF (e.g.Fp or anyFpn) and a generatorg of the cyclic groupF×.
Eve may knowF andg.

• Bob chooses secretlyb ∈ N and computesB := gb ∈ F×.

• Bob publishesB (andF andg) in the phone book.

Alice’s message encryption

• Alice looks up Bob’sB (andF andg) in the phone book.

• Alice chooses secretlya ∈ N and computesA := ga ∈ F× (just like in the Diffie-Hellman key
exchange).

• Alice computesKAlice := Ba = (ga)b = gab ∈ F×.

• Alice encrypts the messageM := f1(m,KAlice).

• Alice sendsM andA to Bob.

Bob’s message decryption

• Bob receivesM andA from Alice.

• Bob computesKBob = Ab = (ga)b = gab ∈ F×. Note that againKAlice = KBob.

• Bob decypts the messagem = f2(M,KBob).

And Eve?

Eve knowsA, B (andF andg) andM . As in the Diffie-Hellman key exchange she is faced with
computingb fromB ora fromA in order to get hold ofKAlice = KBob (which we assume is necessary
for the message decryption). This is the same discrete logarithm problem in thefinite field F, and,
hence, currently undoable if the field is big enough.
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5 Plane Curves

Let K be a field. Usually we will work withK = Q,R,C or a finite field, but, unless we say it
explicitly, K denotes any (fixed) field. First we define the affine plane over the fieldK. This is the
place where our plane (affine) curves will live.

Definition 5.1. We define theaffine plane overK asA2(K) := K ×K = {(a, b) : a, b ∈ K}. The
elements ofA2(K) will be calledaffine points.

Definition 5.2. • Let f ∈ K[x, y] be a polynomial in two variables with coefficients inK. We
define the following subset of the affine plane overK:

Cf (K) := {(a, b) ∈ A2(K) : f(a, b) = 0}.

• Consider the set of pairs{(C, f) : C ⊂ A2(K), f ∈ K[x, y] is nonzero}. We will identify two
pairs (C1, f1) and(C2, f2) if C1 = C2 andf1 = λf2 for someλ ∈ K×.

• An affine plane curve overK is a (class of a) pair(Cf (K), f) for some nonzerof ∈ K[x, y].
We will denote it byC/K or Cf/K.

Remark 5.3. • Usually one identifies a plane curveCf/K with the subsetCf (K) of A2(K)

that it defines. However, given a subsetC ⊂ A2(K), there can be more than one polynomial
f ∈ K[x, y] such thatC = Cf (K), so we are loosing information if we forget about the
polynomialf . In Sheet 6 we will see some examples of this.

• According to Definition 5.2, for any scalarλ ∈ K×, we identify the curvesCf/K andCλf/K.
This stems from the fact thatf andλf generate the same ideal inK[x, y]. In general, an affine
variety can be defined as a pair(V, I), whereV is a subset of the affine space andI is an
ideal of a ring of polynomials with coefficients inK. But for our purposes we can work with
Definition 5.2.

Example 5.4. 1. Leta, b, c ∈ K with eithera 6= 0 or b 6= 0. Then the affine curve defined by the
polynomialf(x, y) = ax+by+c is called anaffine line. The setCf (K) corresponds bijectively
to the elements ofK. Namely, ifb 6= 0, we haveCf (K) = {(t, −1

b
(at+ c)) : t ∈ K}; if b = 0,

thena 6= 0 by hypothesis andCf (K) = {(−c
a
, t) : t ∈ K}.

2. LetK = F4, and letf(x, y) = y2 + y + x3 + x. Let us compute the setCf (K). Recall
(beginning of Section 3) that we can writeF4 = F2[X]/(X2 +X + 1), and the elements ofK
are represented by0, 1, X,X + 1. We can compute the following tables:

x x3 + x

0 0

1 0

X X + 1

X + 1 X

y y2 + y

0 0

1 0

X 1

X + 1 1

The points ofCf (K) are those where the values ofy2 + y andx3 +xmatch, namely,Cf (K) =

{(0, 0), (0, 1), (1, 0), (1, 1)}.
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For many purposes it is convenient to complete the affine plane with some pointsat infinity. For
instance, one desirable property that the affine plane does not have is that each pair of lines meet at
exactly one point (which would allow us to drop the distinction between paralleland nonparallel affine
lines). For this reason we introduce the projective plane.

Definition 5.5. • We define a relation∼ onK×K×K \{(0, 0, 0)} by(a1, b1, c1) ∼ (a2, b2, c2)

((a1, b1, c1) is related to(a2, b2, c2)) if there exists someλ ∈ K× such that(a1, b1, c1) =

(λa2, λb2, λc2). This is an equivalence relation (i.e., reflexive, symmetric and transitive).

• Theprojective plane overK is defined asP2(K) = ((K × K × K) \ {(0, 0, 0)})/ ∼. The
elements ofP2(K) are calledpointsof the projective plane.

• If (a, b, c) ∈ K ×K ×K \ {(0, 0, 0)}, we denote its equivalence class as[a : b : c] ∈ P2(K).

In which way is the projective plane an extension of the affine plane? We can define three different
(natural) embeddings ofA2(K) into P2(K) adding a1 in different places:

i1 : A2(K) → P2(K); (a, b) 7→ [1 : a : b]

i2 : A2(K) → P2(K); (a, b) 7→ [a : 1 : b]

i3 : A2(K) → P2(K); (a, b) 7→ [a : b : 1]

These maps provide us with a covering ofP2(K) by affine planes, as the following lemma shows:

Lemma 5.6. The mapsi1, i2, i3 are injective, andi1(A2(K)) ∪ i2(A2(K)) ∪ i3(A2(K)) = P2(K).

Proof. • Let us see first thati1 is injective (for i2 and i3 one proceeds analogously). Assume
i1(a1, b1) = i1(a2, b2). That is,[1 : a1 : b1] = [1 : a2 : b2]. By Definition 5.5, this means there
exists aλ ∈ K× such thata1 = λa2, b1 = λb2, 1 = λ · 1. Thusλ = 1 anda1 = a2, b1 = b2.

• Let P ∈ P2(K) be a point, sayP = [a : b : c] for some(a, b, c) ∈ K ×K ×K \ {(0, 0, 0)}.
One (at least) of the three elementsa, b, c is nonzero. Ifa is nonzero, thenP = [a : b : c] =

[1 : b/a : c/a] = i1(b/a, c/a) ∈ i1(A
2(K)). If a is zero butb is nonzero, thenP = [0 : b :

c] = [0 : 1 : c/b] = i2(0, c/b) ∈ i2(A
2(K)). Finally, if botha andb are zero, thenc must be

nonzero andP = [a, b, c] = [0 : 0 : c] = [0 : 0 : 1] = i3(0, 0) ∈ i3(A
2(K)).

Remark 5.7. The subsetsi1(A2(K)), i2(A2(K)), i3(A2(K)) coverP2(K), but they are not disjoint.
For instance, the point[1 : 1 : 1] lies in the three sets. But letH = i1({(a, 0) : a ∈ K}) and
O = [0 : 1 : 0]. ThenP2(K) = i3(A

2(K)) ∪H ∪ {O}, and this union is disjoint. In the following
lectures, unless we say the contrary, we viewA2(K) insideP2(K) via i = i3.

Via the inclusioni : A2(K) →֒ P2(K), we can view the affine curves inside the projective plane,
Cf (K) 7→ i(Cf (K)) ⊂ P2(K). But, in the same way that we completed the affine plane adding a
line and a point at infinity, we want to complete the affine curves to projectivecurves. Since each
point of P1(K) is determined by a triple of elements, it seems natural to try to define the projective
curves as the vanishing set of polynomials inK[X,Y, Z].
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Example 5.8. Let K be a field with at least three elements and letf(X,Y, Z) ∈ K[X,Y, Z] be
defined asf(X,Y, Z) = X2 + Y + Z. Thenf(1,−2, 1) = 0 but for λ 6= 0, 1, f(λ,−2λ, λ) =

λ2 − 2λ + λ = λ(λ − 1) 6= 0. Therefore the point[1 : −2 : 1] ∈ P2(K) has a representative
(1,−2, 1) ∈ K × K × K \ {(0, 0, 0)} with f(1,−2, 1) = 0 and another one,(1λ,−2λ, λ) ∈
K ×K ×K \ {(0, 0, 0)} such thatf(λ,−2λ, λ) 6= 0.

The previous example shows that not every polynomial inK[X,Y, Z] is suitable for defining a
curve in the projective plane.

Definition 5.9. Letd ≥ 1 be an integer. A nonzero polynomialf ∈ K[X,Y, Z] is calledhomogeneous
of degreed if

f(X,Y, Z) =
∑

ν1,ν2,ν3≥0

ν1+ν2+ν3=d

aν1,ν2,ν3
Xν1Y ν2Zν3 .

Example 5.10. For example,X + Y , X + Y + Z, are homoegeneous polynomials of degree1,
ZY 2 −X3 + Z2X − Z3, Y 3 are homogeneous polynomials of degree3.

Lemma 5.11.Letf ∈ K[X,Y, Z] be a homogeneous polynomial of degreed, (a, b, c) ∈ K×K×K.
Then the following are equivalent:

(i) f(a, b, c) = 0.

(ii) For all λ ∈ K×, f(λa, λb, λc) = 0.

Proof. It is clear that the second condition implies the first. Now, assume thatf(a, b, c) = 0. Sincef
is homogeneous, we can write it as

f(X,Y, Z) =
∑

ν1,ν2,ν3≥0

ν1+ν2+ν3=d

aν1,ν2,ν3
Xν1Y ν2Zν3

for some coefficientsaν1,ν2,ν3
∈ K. Hence

f(λa, λb, λc) =
∑

ν1,ν2,ν3≥0

ν1+ν2+ν3=d

aν1,ν2,ν3
(λa)ν1(λb)ν2(λc)ν3 =

∑

ν1,ν2,ν3≥0

ν1+ν2+ν3=d

aν1,ν2,ν3
λν1+ν2+ν3aν1bν2cν3 = λd

∑

ν1,ν2,ν3≥0

ν1+ν2+ν3=d

aν1,ν2,ν3
aν1bν2cν3 = λdf(a, b, c) = 0

The previous lemma allows us to formulate the following definition.

Definition 5.12. • Letd ≥ 1 be an integer, and letf ∈ K[X,Y, Z] be a homogeneous polynomial
of degreed. We define the following subset of the projective plane overK:

Cf (K) := {[a : b : c] ∈ P2(K) : f(a, b, c) = 0}.

• Consider the set of pairs{(Cf (K), f) : f ∈ K(X,Y, Z) homogeneous}. We will identify two
pairs (Cf1

(K), f1) and(Cf2
(K), f2) if f1 = λf2 for someλ ∈ K×.
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• A projective plane curve overK is a (class of a) pair(Cf (K), f) for some homogeneous poly-
nomialf ∈ K[X,Y, Z]. We will denote it byC/K or Cf/K.

The next question we want to answer is: given a plane affine curveCf/K, how does it extend to
a projective curve? In other words, which is the “right” homogeneous polynomial g ∈ K[X,Y, Z]

such that the plane projective curve(Cg(K), g) extends(Cf (K), f)? One of the things we want
is that, whenever(a, b) ∈ Cf (K), then [a : b : 1] ∈ Cg(K). This will in particular happen if
f(a, b) = g(a, b, 1) for all a, b ∈ K2. Assume thatg is a homogeneous polynomial of degreed
satisfyingg(x, y, 1) = f(x, y). If [α : β : γ] ∈ Cg(K) satisfies thatγ 6= 0, theng(α, β, γ) =

γdg(α
γ
, β

γ
, 1) = γdf(α

γ
, β

γ
). We can formally make the substitutiong(X,Y, Z) = Zdf(X

Z
, Y

Z
). For

this expression to be a polynomial (i.e., without negative powers ofZ) we need thatd be greater than
or equal to the degree off (i.e., the maximumn such that there is a termaν1ν2

xν1yν2 in f(x, y) with
aν1ν2

6= 0 andν1+ν2 = n). Since we do not want our projective curve to contain the wholeH (which
is already a line), we do not want thatZ is a common factor of all the terms ofg. In other words, if
f(x, y) =

∑

ν1,ν2
aν1ν2

xν1yν2 , andn = max{ν1 + ν2 : aν1ν2
6= 0}, we want to have the equality

d = n. This discussion motivates the following definition.

Definition 5.13. 1. Letf ∈ K[x, y] be a nonzero polynomial, sayf(x, y) =
∑

ν1,ν2
aν1ν2

xν1yν2 .

• The integerdegT(f) = max{ν1 + ν2 : aν1ν2
6= 0} is called thetotal degreeof f . We will

say thatf is nonconstantif degT(f) ≥ 1.

• Thehomogenisationof a nonconstant polynomialf(x, y) ∈ K[x, y] is the polynomial
f∗ ∈ K[X,Y, Z] defined as

f∗(X,Y, Z) =
∑

ν1,ν2

aν1ν2
Xν1Y ν2ZdegT(f)−(ν1+ν2)

2. The projective curveCf∗/K will be called theprojectivisationof the affine curveCf/K.

Remark 5.14. The homogenisationf∗ of a polynomialf as above is clearly a homogeneous polyno-
mial of degreedegT (f). The relationship betweenCf∗(K) andCf (K) will be made precise in the
following lemma.

Lemma 5.15. Letf ∈ K[x, y] be a nonconstant polynomial. It holds that

i(Cf (K)) = Cf∗(K) ∩ i(A2(K)).

Proof. ⊆ Let (a, b) ∈ Cf (K). i(a, b) = [a : b : 1] ∈ i(A2(K)). Moreoverf(a, b) = 0, hence
f∗(a, b, 1) = 0, which implies[a : b : 1] ∈ Cf∗(K).

⊇ Let P ∈ Cf∗(K) ∩ i(A2(K)). SinceP ∈ i(A2(K)), it can be written as[a : b : 1] ∈ P2(K).
SinceP ∈ Cf∗(K), we have0 = f∗(a, b, 1) = f(a, b). Hence(a, b) ∈ Cf (K) andi(a, b) = [a : b :

1] = P .

Example 5.16. • LetK be a field,f(x, y) = αx + βy + γ ∈ K[x, y] a polynomial such that
eitherα = 0 or β = 0 andCf/K the corresponding affine line. Then the homogenisation of
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f is f∗(X,Y, Z) = αX + βY + γZ, and the projectivisation ofCf/K is theprojective line
Cf∗/K. Note that

Cf∗(K) = {[a : b : c] ∈ P2(K) : f∗(a, b, c) = 0} =

{[a : b : 1] ∈ P2(K) : f∗(a, b, 1) = 0} ∪ {[a : b : 0] ∈ P2(K) : f∗(a, b, 0) = 0} =

i(Cf (K)) ∪ {[a : b : 0] ∈ P2(K) : αa+ βb = 0}

By hypothesis eitherα or β are nonzero. Ifα 6= 0, then{[a : b : 0] ∈ P2(K) : αa + βb =

0} = {[−bβ/α : b : 0] ∈ P2(K) : b ∈ K×} = {[−β/α : 1 : 0]}. If α = 0, thenβ 6= 0 and
{[a : b : 0] ∈ P2(K) : βb = 0} = {[a : 0 : 0] : a ∈ K×} = {[1 : 0 : 0]}. In both cases, the
projectivisation ofCf/K contains one more point thanCf/K.

• Recall that in Example 5.4-(2) we considered the curveCf/F4 defined byf(x, y) = y2 + y +

x3 + x. We now compute its projectivisation. First,f∗(X,Y, Z) = ZY 2 +Z2Y +X3 +Z2X.
Next, the setCf∗(F4) is defined as

{[a : b : c] ∈ P2(F4) : f∗(a, b, c) = 1} =

{[a : b : 1] ∈ P2(F4) : f∗(a, b, 1) = 0} ∪ {[a : b : 0] ∈ P2(F4) : f∗(a, b, 0) = 0} =

i(Cf (F4)) ∪ {[a : b : 0] ∈ P2(F4) : f∗(a, b, 0) = 0}

The setCf (F4) was already computed in Example 5.4-(2). On the other hand,g(a, b, 0) = a3

is zero if and only ifa = 0. So the only point ofCf∗(F4) which is not in the affine part of the
curve isO = [0 : 1 : 0].

Definition 5.17. A projective lineis a projective curveCf/K such thatf ∈ K[X,Y, Z] is a homo-
geneous polynomial of degree1. If f(X,Y, Z) = αX + βY + γZ for α, β, γ ∈ K not all vanishing.
We denote it byL(α, β, γ)/K.

Lemma 5.18. (a) Let P1, P2 ∈ P2(K) be two different points. There exists one and only one
projective lineL/K passing throughP1 andP2 (that is to say,P1, P2 ∈ L(K)).

(b) LetL1/K, L2/K be two different projective lines inP2(K). Then they meet at exactly one
point (that is to say,L1(K) ∩ L2(K) = {P} for some pointP ∈ P2(K)).

Proof. (a) LetP1 = [a1 : b1 : c1] andP2 = [a2 : b2 : c2] be two different points. IfL/K =

L(α, β, γ)/K is a line such thatP1, P2 ∈ L(K), then it holds that

{

a1α+ b1β + c1γ = 0

a2α+ b2β + c2γ = 0.

In other words,(α, β, γ) must be a solution of

(

a1 b1 c1
a2 b2 c2

)





x

y

z




 =

(

0

0

)

. (5.1)
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The condition thatP1 andP2 are different means precisely that the two rows(a1, b1, c1) and

(a2, b2, c2) are linearly independent. In other words, the rank of the matrix

(

a1 b1 c1
a2 b2 c2

)

is

two. Therefore there is a2 × 2 minor with nonzero determinant. Assume it is

(

a1 b1
a2 b2

)

(all

other cases are analogous).

Then the system of equations
(

a1 b1
a2 b2

)(

x

y

)

=

(

−c1
−c2

)

(5.2)

has a unique solution(α, β). Hence the projective lineL(α, β, 1)/K passes throughP1 and
P2. Now assume there was another lineL(α′, β′, γ′)/K passing throughP1 andP2, that is to
say, satisfying Equation (5.1). The uniqueness of the solution of the system (5.2) implies that,
if this L(α′, β′, γ′)/K is different fromL(α, β, 1)/K, thenγ′ = 0. But then(α′, β′) would be
the unique solution of the system

(

a1 b1
a2 b2

)(

x

y

)

=

(

0

0

)

hence(α′, β′, γ′) = (0, 0, 0), and this does not define a projective line.

(b) See Sheet 7.

Up to this point, we always fixed our fieldK and work with curves and polynomials over it. But
assume we have an extension of fieldsE/K. Every polynomialf ∈ K[x, y] is naturally a polynomial
in E[x, y] via the inclusionK ⊆ E. We can then consider the curvesCf/K andCf/E. Obviously
Cf (K) ⊆ Cf (E) via the inclusionA2(K) ⊆ A2(E) induced byK ⊆ E. Actually it holds that

Cf (K) = Cf (E) ∩ A2(K).

It can of course happen thatCf (E) is strictly bigger thanCf (K), so that the two curves(Cf (K), f)

and (Cf (E), f) are not the same object. It is important to have in mind over which field we are
working (which is the reason why the curves are denoted byCf/K). A useful particular case of this
is to consider an algebraic closureK of K, and consider the curveCf/K given by(Cf (K), f).

Example 5.19.LetK = F2, E = F4.

• Recall that in Example 5.4-(2) we considered the curveCf/F4 defined byf(x, y) = y2 + y +

x3 + x. We had computed the setCf (F4), namelyCf (F4) = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Sincef(x, y) ∈ F2[x, y] ⊂ F4[x, y], we can also consider the curveCf/F2. The setCf (F2)

consists of the points ofCf (F4) that are contained inA2(F2) = F2 × F2. In this case all the
points ofCf (F4) belong toA2(F2), henceCf (F2) = Cf (F4).
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x x3 + x

0 0

1 0

X X + 1

X + 1 X

y y2

0 0

1 1

X X + 1

X + 1 X

• Consider now the curveCf/F2 (resp.Cf/F4) defined byf(x, y) = y2 + x3 + x. We want to
computeCf (F2) andCf (F4). As in Example 5.4-(2), let us make some tables (see below).

The points ofCf (F4) are those where the values ofy2 andx3 + x match, namelyCf (F4) =

{(0, 0), (1, 0), (X,X)(X + 1, X + 1)}. On the other hand, the subset ofCf (F4) of points
belonging toA2(F2) is justCf (F2) = {(0, 0), (1, 0)}, so in this caseCf (F2) 6= Cf (F4).

Assume again that we have a field extensionK ⊂ E. Any homogeneous polynomialf ∈
K[X,Y, Z] belongs also toE[X,Y, Z], hence we can consider the curvesCf/K andCf/E. Due to
the equivalence relationship involved in the definition of the projective plane, the inclusionP2(K) ⊂
P2(E) is not as straightforward as in the affine setting. In any case one has such an inclusion, and the
relationship

Cf (K) = P2(K) ∩ Cf (E).

The details will be discussed in Sheet 7.
Now we want to define the tangent lineL/K to a curveCf/K at a pointP ∈ Cf (K). For

simplicity, we first consider the pointP = (0, 0) and an affine curve that passes throughP , let us say
Cf/K with f(0, 0) = 0. We want to define the tangent line as “the line which is closest” to the curve
in a small neighbourhood ofP . Assume thatf(x, y) =

∑

ν1,ν2
aν1ν2

xν1yν2 . We can rewritef as

f(x, y) =
n∑

i=1

∑

ν1+ν2=i

aν1ν2
xν1yν2

for n = degT(f), so that, for eachi,
∑

ν1+ν2=i aν1ν2
xν1yν2 is either a homogeneous polynomial of

degreei or zero. Writefi =
∑

ν1+ν2=i aν1ν2
xν1yν2 . As we look at the curve in a smaller and smaller

neighbourhood of(0, 0), if i > j and fi, fj are nonzero,fi(x, y) shrinks quicker thanfj(x, y).
Hence, for our purposes it suffices to look at thefi with smallesti. Sincef vanishes at(0, 0), it has
no constant term, so the smallest possible value ofi is i = 1. If both a0,1 anda1,0 are zero, we have
thatf1 is zero, and hence the smallest homogeneousfi occurs fori ≥ 2.

But assume this is not the case, that is to say, thata0,1 anda1,0 do not both vanish. The affine lines
through the point(0, 0) are defined by a polynomial of the shapeαx + βy for someα, β ∈ K with
α, β ∈ K not both zero. Consider the difference

f(x, y) − (αx+ βy) =
n∑

i=1

∑

ν1+ν2=i

aν1ν2
xν1yν2 − (αx+ βy) =

(a0,1 − β)y + (a1,0 − α)x+
n∑

i=2

∑

ν1+ν2=i

aν1ν2
xν1yν2 .
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According to our discussion above, the line which makes this sum smallest in a neighbourhood of
(0, 0) , that is to say, the line that is “closest” to the curveCf/K at (0, 0), is the line such that the sum
of the terms of degree 1 in the expression above is zero (so that the smallesthomogeneous polynomial
is of degreei ≥ 2). There is only one line doing this, namely, the one defined by the polynomial
a0,1y + a1,0x. This will be the tangent line toCf/K at (0, 0).

Definition 5.20. • LetA be a ring, andf(X) =
∑n

i=0 aiX
i ∈ A[X]. Theformal derivativeof

f is defined asf ′(X) =
∑n

i=1 aiiX
i−1 ∈ A[X]. We also definef (n)(X) ∈ A[X] (then-th

formal derivative) recursively as
{

f (1)(X) := f ′(X),

f (n)(X) := (f (n−1))′(X).

• LetK be a field,n ∈ N andf ∈ K[X1 . . . Xn]. Fix i ∈ {1, . . . , n}, let I = {1, . . . , n} \ {i},
and letA = K[{Xj : j ∈ I}], so thatK[X1, . . . , Xn] = A[Xi]. Thepartial derivative off
with respect toXi, is the formal derivative off in A[Xi]. We denote it by∂f

∂Xi
(X1, . . . , Xn).

Remark 5.21. Let f(x, y) =
∑

ν1,ν2
aν1ν2

xν1yν2 ∈ K[x, y] as in the discussion before Definition
5.20. Note that the valuesa0,1 anda1,0 that occur in the definition of the tangent line toCf/K at
the point(0, 0) satisfy that∂f

∂x
(0, 0) = a1,0 and ∂f

∂y
(0, 0) = a0,1. Observe that in the discussion we

assumed that eithera0,1 or a1,0 is nonzero. This motivates the following definition.

Definition 5.22. Let f ∈ K[x, y] be a nonzero polynomial,Cf/K be the affine curve defined by it,
and(a, b) ∈ A2(K) such thatf(a, b) = 0.

• We will say that the point(a, b) of the curveCf/K is singularif ∂f
∂x

(a, b) = ∂f
∂y

(a, b) = 0.

• We will say that the curveCf/K is nonsingularor smoothif, for some algebraic closureK of
K, for every point(a, b) ∈ Cf (K), (a, b) is not a singular point of the curveCf/K.

Example 5.23. • Consider the curveCf/C defined by the polynomialf(x, y) = y2−x4−2x2−1.
Since∂f

∂x
(x, y) = −4x3 − 4x and ∂f

∂y
(x, y) = 2y, the singular points of this curve are those

satisfying the system of equations:






0 = y2 − x4 − 2x2 − 1

0 = −4x3 − 4x

0 = 2y

From the second equation we getx = 0 or x = ±
√
−1 and from the last equation we see that

y = 0. But also the first equation must be satisfied, sox = 0, y = 0 is not a solution of the
system. We get thus two solutions, namely the points(

√
−1, 0) and (−

√
−1, 0). Those two

points ofCf (C) are singular; hence the curveCf/C is not smooth.

• Since the polynomialf(x, y) = y2 − x4 − 2x2 − 1 from the previous example lies inR[x, y],
we may also consider the affine curveCf/R. Note that the two singular points we computed
above do not belong toA2(R), soCf/R does not have singular points. Nevertheless, it is not a
smooth curve, since in Definition 5.22 we require that the curve has no singular point when we
consider it over the algebraic closure ofR, that is, overC.
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Now we translate Definition 5.22 to the projective setting.

Definition 5.24. Let f ∈ K[X,Y, Z] be a homogeneous polynomial of degreed for some positive
integerd,Cf/K be the projective curve defined byf , and[a : b : c] ∈ P2(K) such thatf(a, b, c) = 0.

• We will say that the point[a : b : c] of the curveCf/K is singularif ∂f
∂X

(a, b, c) = ∂f
∂Y

(a, b, c) =
∂f
∂Z

(a, b, c) = 0.

• We will say that the curveCf/K is nonsingularor smoothif, for some algebraic closureK of
K, for every pointP ∈ Cf (K), P is not a singular point of the curveCf/K.

Remark 5.25. • The notion of singularity of a pointP = [a : b : c] is well defined, in the sense
that it does not depend on the representative(a, b, c) of the equivalence classP ∈ P2(K).

• The notion of singularity of a point in an affine curve extends the notion of singularity of a
point in a projective curve, in the sense that a point(a, b) belonging to an affine curveCf (K)

is singular if and only if the pointi(a, b) ∈ P2(K) is a singular point of the projectivisation
Cf∗/K ofCf/K. This will be discussed in Sheet 9.

• The projectivisation of a smooth affine curve need not be smooth as a projective curve. See
Sheet 8 for an example of this.

Definition 5.26. LetCf/K be a projective curve andP = [a : b : c] a nonsingular point ofCf/K.
Thetangent linetoCf/K at P is the projective line

L

(
∂f

∂X
(a, b, c),

∂f

∂Y
(a, b, c),

∂f

∂Z
(a, b, c)

)

/K.

Remark 5.27. • The tangent line to a projective curve is well defined:

– SinceP is a nonsingular point ofCf/K, at least one of the three numbers∂f
∂X

(a, b, c),
∂f
∂Y

(a, b, c), ∂f
∂Z

(a, b, c) is nonzero. Hence the tangent line is indeed a projective line.

– The definition does not depend on the choice of representative(a, b, c) ∈ (K ×K ×K) \
{(0, 0, 0)}. Indeed, ifd is the degree off , then ∂f

∂X
, ∂f

∂Y
, ∂f

∂Z
are homogeneous polynomi-

als of degreed − 1 if d > 1 or constants ifd = 1. In the first case,∂f
∂X

(λa, λb, λc) =

λd−1 ∂f
∂X

(a, b, c), and L
(

∂f
∂X

(a, b, c), ∂f
∂Y

(a, b, c), ∂f
∂Z

(a, b, c)
)

/K is the same curve as

L
(

∂f
∂X

(λa, λb, λc), ∂f
∂Y

(λa, λb, λc), ∂f
∂Z

(λa, λb, λc)
)

/K. In the second case, the num-

bers ∂f
∂X

(a, b, c), ∂f
∂Y

(a, b, c), ∂f
∂Z

(a, b, c) are elements ofK, and in particular equal to
∂f
∂X

(λa, λb, λc), ∂f
∂Y

(λa, λb, λc), ∂f
∂Z

(λa, λb, λc).

• Note that this definition generalises the notion of tangent line to an affine curve at the point
(0, 0) that we discussed before Definition 5.20.

We conclude this section with the definition of multiplicity of intersection between a projective
line and a projective curve at a given point.

Definition 5.28. LetK be a field andf(t) ∈ K[t] nonzero, sayf(t) =
∑n

i=0 ait
i for a certainn ∈ N.

Theorder off(t) at t = 0 is defined asordt=0f(t) := min{ai : ai 6= 0}.
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Remark 5.29. Note that the order att = 0 of a polynomialf(t) ∈ K[t] is the least integerm such
thatf (m)(0) 6= 0.

Definition 5.30. LetL/K be a projective line,Cf/K be a projective curve andP = [a : b : c] ∈
L(K). Themultiplicity of intersectionbetweenL/K andCf/K atP , m(Cf , L, P ), is defined as the
order at t = 0 of the polynomialψ(t) = f(a + ta′, b + tb′, c + tc′), whereP ′ = [a′ : b′ : c′] is any
point inL(K) different fromP .

If P ∈ L(K), we definem(Cf , L, P ) = 0.

Remark 5.31. The multiplicity of intersection between a projective line and a projective curve at a
point of the line is well defined. Namely, we need to see that it does not depend on the representative
(a, b, c) ∈ (K × K × K) \ {(0, 0, 0)} of P , the choice ofP ′ ∈ L(K), and the representative
(a′, b′, c′) ∈ (K × K × K) \ {(0, 0, 0)} of P ′. We will see this in several steps (see Lemma 5.32,
Lemma 5.35 and Lemma 5.36).

Lemma 5.32. Given a projective lineL/K, a projective curveCf/K and two pointsP, P ′ ∈ L(K),
the order att = 0 of the polynomialψ(t) = f(a + ta′, b + tb′, c + tc′) does not depend on the
representatives(a, b, c) and(a′, b′, c′) ∈ (K ×K ×K) \ {(0, 0, 0)} of P andP ′.

Proof. Let d be the degree off , andm = ordt=0 ψ(t); we can writeψ(t) = umt
m + um+1t

m+1 +

· · · + ust
s for somes ≥ m. Let us choose some representatives ofP andP ′, sayP = [λa : λb : λc]

andP ′ = [µa′ : µb′ : µc′] for λ, µ ∈ K×. If we construct the polynomial̃ψ(t) = f(λa+ t(µa′), λb+

t(µb′), λc+ t(µc′)), we have

ψ̃(t) = f(λa+ t(µa′), λb+ t(µb′), λc+ t(µc′)) = λdf(a+ t
µ

λ
a′, b+ t

µ

λ
b′, c+ t

µ

λ
c′)

= ψ(
µ

λ
t) = um

(µ

λ

)m

tm + um+1

(µ

λ

)m+1
tm+1 + · · · + us

(µ

λ

)s

ts,

and it is clear that the order of̃ψ(t) at t = 0 is alsom.

It remains to see that the definition is independent of the choice of a pointP ′ 6= P in L(K). For
this we will use the notion of formal derivative (see Definition 5.20). We will extend this definition
from elements ofK[X] to elements ofK(X), whereK is a field.

Definition 5.33. LetK be a field andf(X), g(X) ∈ K[X] polynomials withg(X) 6= 0. Seth(X) :=

f(X)/g(X) ∈ K(X). We define theformal derivativeof h(X) as

h′(X) =
f ′(X)g(X) − f(X)g′(X)

g2(X)
,

wheref ′(X), g′(X) denote the formal derivative off(X) andg(X) in K[X]. We define theorder of
h atX = 0 to beordX=0(h(X)) := ordX=0(f(X)) − ordX=0(g(X)).

Remark 5.34. • The definition of the formal derivative of an elementh(X) ∈ K(X) does not
depend on the representation ofh(X) = f(X)/g(X) as a quotient of elements ofK[X] (See
Sheet 8).
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• The definition of the order atX = 0 of an elementh(X) ∈ K(X) does not depend on the
representationh(X) = f(X)/g(X) as quotient of elements ofK[X] (See Sheet 8).

• Let h(X) ∈ K(X). If h(X) ∈ K[X], then the definition of order ofh(X) at X = 0 from
Definition 5.20 and Definition 5.33 coincide; just writeh(X) = h(X)/1 and apply the remark
above.

The next lemma collects some facts about formal derivatives.

Lemma 5.35. 1. Letϕ(X), ψ(X) ∈ K(X). Then(ψ ◦ ϕ)′(X) = ψ′(ϕ(X))ϕ′(X).

2. Letϕ(X), ψ(X) ∈ K(X). ThenordX=0(ϕ(X)ψ(X)) = ordX=0 ϕ(X) + ordX=0 ψ(X).

3. Letϕ(X), ψ(X) ∈ K[X] such thatordX=0(ϕ(X)) = 1. Then

ordX=0 ϕ(X) = ordX=0 ϕ ◦ ψ(X).

Proof. See Sheets 8, 9.

Lemma 5.36. Given a projective lineL/K, a projective curveCf/K, pointsP, P ′ ∈ L(K) and
representatives(a, b, c), (a′, b′, c′) ∈ (K × K × K) \ {(0, 0, 0)} of P andP ′, for any pointP ′′ =

[a′′ : b′′ : c′′] in L(K) different fromP , we have that the orders of̃ψ(t) = f(a+ ta′′, b+ tb′′, c+ tc′′)

andψ(t) = f(a+ ta′, b+ tb′, c+ tc′) at t = 0 coincide.

Proof. Let d be the degree off , andm = ordt=0(ψ(t)); m is the least integer such thatψ(m)(0) 6= 0.
LetL = L(α, β, γ). The following system of equations






a b c

a′ b′ c′

a′′ b′′ c′′











x

y

z




 =






0

0

0






has two different solutions, namely






α

β

γ




 and






0

0

0




. Thereforedet






a b c

a′ b′ c′

a′′ b′′ c′′




 = 0. In other

words, the rows(a, b, c), (a′, b′, c′) and(a′′, b′′, c′′) are not linearly independent. Hence there exist
λ, µ ∈ K such thatλ(a, b, c) + µ(a′, b′, c′) = (a′′, b′′, c′′). Note that, sinceP ′′ 6= P , we haveµ 6= 0.
We can now write

ψ̃(t) = f(a+ ta′′, b+ tb′′, c+ tc′′) = f(a+ t(λa+ µa′), b+ t(λb+ µb′), c+ t(λc+ µc′))

= f((1 + tλ)a+ t(µa′), (1 + tλ)b+ t(µb′), (1 + tλ)c+ t(µc′))

= (1 + tλ)df(a+
µt

1 + tλ
a′, b+

µt

1 + tλ
b′, c+

µt

1 + tλ
c′) = (1 + tλ)dψ(

µt

1 + tλ
)

Since(1 + tλ)d has order zero att = 0, it follows from Lemma 5.35-(2) thatordt=0(ψ̃(t)) =

ordt=0(ψ( µt
1+tλ

)). Now from Lemma 5.35-(3) one gets thatψ(t) and ψ̃(t) have the same order at
t = 0.
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Example 5.37. Let us consider the projective curveCf/R, wheref(X,Y, Z) = Y 2Z2 − X4 −
2X2Z2 − Z4 and the pointP = [0 : 1 : 1]

• First we consider the lineL/R = L(2, 1,−1)/R. Note thatP ∈ L(R). Let us compute the
multiplicity of intersection ofCf andL at P .

First, let us fix a pointP ′ ∈ L(K) different fromP , sayP ′ = [1 : −1 : 1]. Consider the
polynomial

ψ(t) = f(0+t, 1−t, 1+t) = (1−t)2(1+t)2−t4−2t2(1+t)2−(1+t)4 = −3t4−8t3−10t2−4t.

We have that the order ofψ(t) at t = 0 is 1, hencem(Cf , L, P ) = 1.

• Note thatP ∈ Cf (R). Let us compute the tangent line toCf/R at P . First we compute






∂f
∂X

= −4X3 − 4Z2X
∂f
∂Y

= 2Y Z2

∂f
∂Z

= 2Y 2Z − 4X2Z − 4Z3

From these expressions we get that∂f
∂X

(0, 1, 1) = 0, ∂f
∂Y

(0, 1, 1) = 2, ∂f
∂Z

(0, 1, 1) = −2.
Therefore the tangent line toCf/R at P isL(0, 2,−2)/K, that is to say,L(0, 1,−1)/R.

Let us compute the multiplicity of intersection betweenCf andL(0, 1,−1) at P . First, fix a
pointP ′ ∈ L(0, 1,−1)(K), sayP ′ = [1 : 1 : 1]. Consider the polynomial

ψ(t) = f(0+t, 1+t, 1+t) = (1+t)2(1+t)2−t4−2t2(1+t)2−(1+t)4 = −2t2−4t3−3t4.

We see that the order ofψ(t) at t = 0 is 2. This coincides with the naive notion that the tangent
line cuts a curve with multiplicity greater than1.

Lemma 5.38. LetCf/K be a projective curve,L/K a projective line andP ∈ L(K) a projective
point.

(1) m(Cf , L, P ) = 0 if and only ifP does not lie inCf .

(2) Assume thatP ∈ Cf (K) andL/K is the tangent line toCf at P . Thenm(Cf , L, P ) ≥ 2.

Proof. (1) Let P = [a : b : c] andP ′ = [a′ : b′ : c′] ∈ L(K) a point different fromP . Set
ψ(t) = f(a+ ta′, b+ tb′, c+ tc′). Thenψ(0) = f(a, b, c). Thereforeψ(0) = 0 if and only if
f(a, b, c) = 0, that is to say, if and only ifP ∈ Cf (K).

(2) Fix a pointP ′ = [a′ : b′ : c′] ∈ L(K) different fromP and consider the polynomialψ′(t) =

f(a+a′t, b+b′t, c+c′t). We have to prove that the minimalmwith ψ(m)(0) 6= 0 is greater than
or equal to2. Equivalently, we need to prove thatψ(0) = 0 andψ′(0) = 0. The first equation
follows from (1). For the second equation, we compute, using the chain rule (see Exercise 2 of
Sheet 8), that

ψ′(t) = (f(a+ a′t, b+ b′t, c+ c′t))′

=
∂f

∂X
(a+a′t, b+b′t, c+c′t)a′+

∂f

∂Y
(a+a′t, b+b′t, c+c′t)b′+

∂f

∂Z
(a+a′t, b+b′t, c+c′t)c′
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Henceψ′(0) = ∂f
∂X

(a, b, c)a′ + ∂f
∂Y

(a, b, c)b′ + ∂f
∂Z

(a, b, c)c′ = 0 because the pointP ′ = [a′ :

b′ : c′] belongs toL(K) = L( ∂f
∂X

(a, b, c), ∂f
∂Y

(a, b, c), ∂f
∂Z

(a, b, c))(K).

In these lectures we will not discuss the notion of morphism between two curves. Nevertheless,
sometimes it will be useful to make linear changes of variables to a curve. Many of the properties of
a projective plane curve are preserved under linear changes of variables.

Lemma 5.39. LetK be a field. For each matrix

A =






a11 a12 a13

a21 a22 a23

a31 a32 a33




 ∈ GL3(K),

the map

ϕA : P2(K) → P2(K)

[a : b : c] 7→ [a11a+ a12b+ a13c : a21a+ a22b+ a23c : a31a+ a32b+ a33c]

is well defined and bijective.
Letf(X,Y, Z) ∈ K[X,Y, Z] be a homogeneous polynomial and set

fA(X,Y, Z) := f(a11X + a12Y + a13Z, a21X + a22Y + a23Z, a31X + a32Y + a33Z)

Then
Cf (K) = ϕA(CfA

(K)).

Proof. See Sheet 10.

Example 5.40.Let (a, b) ∈ A2(K), (a, b) 6= (0, 0). Consider the matrix

A =






1 0 a

0 1 b

0 0 1




 ∈ GL3(K).

Then the mapϕA : P2(K) → P2(K) fixes the points ofP2(K) \ A2(K) and translates the points
(s, t) ∈ A2(K) to (s+ a, t+ b) ∈ A2(K). We will say thatϕA is a translation by the point(a, b).

Lemma 5.41. LetK be a field, and letA ∈ GL3(K). Let f(X,Y, Z) ∈ K[X,Y, Z] be a homo-
geneous polynomial andfA ∈ K[X,Y, Z] as in Lemma 5.39. Then, for eachP ∈ CfA

(K), P is a
singular point ofCfA

/K if and only ifϕA(P ) is a singular point ofCf/K.

Proof. It suffices to prove that, ifϕA(P ) ∈ Cf (K) is singular, thenP ∈ Cf (K) is singular (the
other implication is obtained applying the same reasoning to the linear change of variablesϕA−1).
For i = 1, 2, 3, letϕi(X,Y, Z) := ai1X + ai2Y + ai3Z. Then, using the chain rule, we obtain

∂fA

∂X
(r, s, t) =

∂f

∂X
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ1

∂X
(r, s, t)+

∂f

∂Y
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ2

∂X
(r, s, t)+

∂f

∂Z
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ3

∂X
(r, s, t)
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∂fA

∂Y
(r, s, t) =

∂f

∂X
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ1

∂Y
(r, s, t)+

∂f

∂Y
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ2

∂Y
(r, s, t)+

∂f

∂Z
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ3

∂Y
(r, s, t)

∂fA

∂Z
(r, s, t) =

∂f

∂X
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ1

∂Z
(r, s, t)+

∂f

∂Y
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ2

∂Z
(r, s, t)+

∂f

∂Z
(ϕ1(r, s, t), ϕ2(r, s, t), ϕ3(r, s, t))

∂ϕ3

∂Z
(r, s, t)

Let P = [a : b : c] ∈ CfA
(K), call a′ = ϕ1(a, b, c), b′ = ϕ2(a, b, c), c′ = ϕ3(a, b, c). Then

ϕA(P ) = [a′ : b′ : c′].
AssumeϕA(P ) is a singular point ofCf (K). Then

f(a′, b′, c′) = 0,
∂f

∂X
(a′, b′, c′) = 0,

∂f

∂Y
(a′, b′, c′) = 0,

∂f

∂Z
(a′, b′, c′) = 0,

ThereforefA(a, b, c) = 0, and

∂fA

∂X
(a, b, c) =

∂f

∂X
(a′, b′, c′)

∂ϕ1

∂X
(a, b, c) +

∂f

∂Y
(a′, b′, c′)

∂ϕ2

∂X
(a, b, c)+

∂f

∂Z
(a′, b′, c′)

∂ϕ3

∂X
(a, b, c) = 0

Analogously, it holds that∂fA

∂Y
(a, b, c) = 0 and ∂fA

∂Z
(a, b, c) = 0; thus[a : b : c] is a singular point

of CfA
(K).

6 Elliptic Curves

Definition 6.1. LetK be a field. AWeierstrass equationis an equation of the formf(X,Y, Z) = 0,
wheref(X,Y, Z) ∈ K[X,Y, Z] is a homogeneous polynomial of degree3 of the form

f(X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 (6.3)

for somea1, a2, a3, a4, a6 ∈ K.

Remark 6.2. • A Weierstrass equation is uniquely given by a polynomial as in the right hand
side of (6.3), so we will identify Weierstrass equations with the polynomials that define them.
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• Not every homogeneous polynomial of degree3 defines a Weierstrass equation. Namely, a
homogeneous polynomial of degree3 has the shape

g(X,Y, Z) =
∑

ν1,ν2,ν3≥0

ν1+ν2+ν3=3

aν1,ν2,ν3
Xν1Y ν2Zν3 ,

hence it can have up to 10 different terms, while the polynomialf in (6.3)only has7; the terms
in X2Y ,XY 2 andY 3 cannot occur.

The numbering of the coefficients (a5 missing) in the Weierstrass equation has historical reasons and
is nowadays a standard convention.

Lemma 6.3. Letf(X,Y, Z) = 0 be a Weierstrass equation and letA ∈ GL3(K) be given by

A =






u2 0 r

u2s u3 t

0 0 1






for u, r, s, t ∈ K. Then the polynomialfA obtained fromf by the linear change of variables given by
A (as in Lemma 5.39) also satisfies thatfA(X,Y, Z) = 0 is a Weierstrass equation.

Proof. See Sheet 10.

Definition 6.4. LetK be a field. Anelliptic curve overK is a projective plane curveCf/K such that:

• f(X,Y, Z) = 0 is a Weierstrass equation.

• Cf/K is smooth.

We will usually denote elliptic curves byE/K when the polynomialf is clear from the context.

Example 6.5. The curveCf/F4 defined byf(X,Y, Z) = Y 2Z + Y Z2 + X3 + XZ2 whose affine
part was considered in Example 5.19 is an elliptic curve. The curveCf/F4 defined byf(X,Y, Z) =

Y 2Z +X3 +XZ2 whose affine part was considered in Example 5.19 is not an elliptic curve because
the point[1 : 0 : 1] ∈ E(F4) is a singular point.

Lemma 6.6. Let f(X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 − X3 − a2X

2Z − a4XZ
2 − a6Z

3 ∈
K[X,Y, Z]. Then

Cf (K) = (Cf (K) ∩ A2(K)) ∪ {O}.

Proof.

Cf (K) = (Cf (K) ∩ A2(K)) ∪ {[a : b : 0] ∈ P2(K) : f(a, b, 0) = 0} =

(Cf (K) ∩ A2(K)) ∪ {[a : b : 0] ∈ P2(K) : a3 = 0} =

(Cf (K) ∩ A2(K)) ∪ {[0 : 1 : 0]}.

Lemma 6.7. Let f(X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 − X3 − a2X

2Z − a4XZ
2 − a6Z

3 ∈
K[X,Y, Z]. ThenO = [0 : 1 : 0] is never a singular point ofCf/K.
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Proof. If O ∈ Cf (K) is a singular point ofCf/K, it must hold that






f(0, 1, 0) = 0
∂f
∂X

(0, 1, 0) = 0
∂f
∂Y

(0, 1, 0) = 0
∂f
∂Z

(0, 1, 0) = 0

But ∂f
∂Z

(X,Y, Z) = Y 2 + a1XY +2a3Y Z − a2X
2 − a42XZ − a63Z

2, so ∂f
∂Z

(0, 1, 0) = 1 6= 0.

As a consequence, if we want to check if a projective curveCf/K, with f satisfying (6.3) is an
elliptic curve, it suffices to check for singular points in the affine part of the curve.

Definition 6.8. Leta1, a2, a3, a4, a6 ∈ K be given. We define the following quantities:

b2 := a2
1 + 4a2

b4 := 2a4 + a1a4

b6 := a2
3 + 4a6

b8 := a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 := b22 − 24b4

c6 := b32 + 36b2b4 − 216b6

∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6

j : =
c34
∆

if ∆ 6= 0.

We call∆ the discriminantand j the j-invariantof the Weierstrass equationf(X,Y, Z) = 0 with
f(X,Y, Z) = Y 2Z + a1XY Z + a3Y Z

2 −X3 − a2X
2Z − a4XZ

2 − a6Z
3.

With the help of the quantities defined above, we can sometimes make linear changes of variables
that simplify the Weierstrass equation.

Lemma 6.9. LetK be a field of characteristic0 or p for a primep 6= 2. Let f(X,Y, Z) be as in
Equation(6.3), and consider

g(X,Y, Z) := Y 2Z −X3 − 1

4
b2X

2Z − 1

2
b4XZ

2 − 1

4
b6Z

3 ∈ K[X,Y, Z].

Then the linear change of variablesϕ : P2(K) → P2(K) given by[a : b : c] 7→ [a : b+ a1

2 a+ a3

2 c : c]

satisfies that
Cf (K) = ϕ(Cg(K)).

Proof. Apply Lemma 5.39 toA =






1 0 0
a1

2 1 a3

2

0 0 1




.
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Lemma 6.10. LetK be a field of characteristic0 or p for a primep 6= 2, 3. Then Letf(X,Y, Z) as
in Equation(6.3), and consider

g(X,Y, Z) := Y 2Z −X3 + 27c4XZ
2 + 54c6Z

3 ∈ K[X,Y, Z].

Then the linear change of variablesϕ : P2(K) → P2(K) given by[a : b : c] 7→ [36a+3b2c : 216b : c]

satisfies that
Cf (K) = ϕ(Cg(K)).

Proof. Apply Lemma 5.39 toA =






36 0 3b2
0 216 0

0 0 1




.

Lemma 6.11. Let f(X,Y, Z) = 0 be a Weierstrass equation, andfA the polynomial obtained from
f by the linear change of variables given by a matrix

A =






u2 0 r

u2s u3 t

0 0 1




 ∈ GL3(K).

Then∆f = u12∆fA
and, if∆f 6= 0, thenjf = jfA

.

Proof. One simply has to compute the expressions for∆f , ∆fA
, jf andjfA

using 6.8 and check that
the mentioned equalities hold.

Proposition 6.12. Letf(X,Y, Z) = Y 2Z+a1XY Z+a3Y Z
2 −X3 −a2X

2Z−a4XZ
2 −a6Z

3 ∈
K[X,Y, Z]. Then the curveCf/K is smooth if and only if the discriminant∆f of the corresponding
Weierstrass equation is nonzero.

Proof. LetK be an algebraic closure ofK, and considerCf/K. We have to show that∆ is nonzero
if and only if for all pointsP ∈ Cf (K), P is not a singular point. By Lemma 6.7,O is never singular.
So it suffices to show that∆ is nonzero if and only if for all pointsP ∈ Cf (K) ∩ A2(K), P is not a
singular point.

For simplicity, we will make the proof in the case that the characteristic ofK is different from2

(for a complete proof, look at Proposition 2.3.3 of the bookElliptische Kurven in der Kryptographie
by A. Werner). Making a change of variables like in Lemma 6.9, we transform f(X,Y, Z) into
fA(X,Y, Z) = Y 2Z − X3 − a′2X

2Z − a′4XZ
2 − a′6Z

3, and Lemma 6.11 shows that∆f = ∆fA
.

Moreover by Lemma 5.41 the curveCf/K is smooth if and only ifCfA
/K is smooth. So we can

assume without loss of generality thatf(X,Y, Z) = Y 2Z −X3 − a2X
2Z − a4XZ

2 − a6Z
3.

Now a pointP is a singular point ofCf/K if and only if it is an affine point, sayP = [a : b : 1],
and satisfies the equations







f(a, b) = 0
∂g
∂x

(a, b) = 0
∂g
∂y

(a, b) = 0.

whereg(x, y) = f(x, y, 1). The system of equations above boils down to
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





b2 = a3 + a2a
2 + a4a+ a6

2b = 0

3a3 + 2a2a+ a4 = 0 = 0.

That is to say,b = 0 andamust be a double root of the polynomialh(x) = x3 +a2x
2 +a4x+a6.

SoCf/K is smooth if and only if the polynomialh(x) does not have double roots. But this condition
is equivalent to the fact that the discriminant ofh(x) (that is, the resultant betweenh(x) andh′(x)) is
nonzero. Now a computation shows that the discriminant equals16∆f , henceCf/K is smooth if and
only if ∆f 6= 0.

Remark 6.13. • Letf(X,Y, Z) as in Equation(6.3). The curveCf/K is an elliptic curve if and
only if ∆f 6= 0.

• For all elliptic curvesE/K, thej-invariant is defined.

• Thej-invariant is preserved under linear changes of variables as in Lemma6.3. That is why
we call it j-invariant. It characterises the isomorphism class (overK) of elliptic curvesE/K.

Proposition 6.14. LetL/K be a projective line andE/K an elliptic curve. Then

∑

P∈P2(K)

m(E,L, P )

equals0, 1 or 3.

Proof. LetL = L(α, β, γ) for someα, β, γ ∈ K, and letf(X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −

X3 − a2X
2Z − a4XZ

2 − a6Z
3 for somea1, a3, a2, a4, a6 ∈ K be the polynomial definingE/K.

We will do the proof in the special case whenβ 6= 0. For the caseβ = 0, see Sheet 11.
We may assume, without loss of generality, thatL = L(α, 1, γ) for someα, γ ∈ K. Moreover,

the only pointP = [a : b : c] of E(K) with c = 0 is O = [0 : 1 : 0] (see Lemma 6.6) which does not
belong toL(K). So we only need to computem(E,L, P ) for points of the formP = [a : b : 1].

A pointP = [a : b : 1] lies inL(K) ∩ E(K) if and only if

{

αa+ b+ γ = 0

f(a, b, 1) = 0

AssumeP satisfies these equations. Substitutingb = −αa − γ in the second equation gives that
f(a,−αa− γ, 1) = 0.

Consider the polynomialg(x) = f(x,−αx − γ, 1). g(x) is a polynomial of degree3 in K[x]

with leading coefficient−1, such that a pointP ∈ P2(K) belongs toE(K) ∩ L(K) if and only if
P = [a : −αa− γ : 1] with g(a) = 0.

Now we computem(E,L, P ) for P = [a : −αa − γ : 1]. Note that the pointP ′ = [1 : −α : 0]

lies in L(K) but not inE(K), so it is different fromP and we can use it as auxiliary point. Let
ψ(t) = f(a+t, (−αa−γ)−αt, 1). Note thatψ(t) = g(a+t). Thereforeordt=0 ψ(t) = ordx=a g(x).
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Note that the polynomialg(x) does not depend on the choice of the pointP = [a : −αa− γ : 1], so
the formula

m(E,L, [a : −αa− γ : 1]) = ordx=a g(x)

is valid for allP ∈ E(K) ∩ L(K).
If L(K) ∩ E(K) = ∅, then

∑

P∈P2(K)m(E,L, P ) = 0, and we are done. So we may assume
thatL(K) ∩ E(K) has at least one point. Fix one such pointP = [a0 : b0 : 1] ∈ L(K) ∩ E(K). We
distinguish several cases:

• ordx=a0
g(x) = 3. In this caseg(x) = −(x − a0)

3 has a unique zerox = a0 of multiplicity
three, and

∑

P∈P2(K)

m(E,L, P ) = m(E,L, [a0 : −αa0 − γ : 1]) = 3.

• ordx=a0
g(x) = 2. In this caseg(x) = (x − a0)

2g̃(x), andg̃(x) has degree1, hence one root
ã0 ∈ K of multiplicity one. Therefore

∑

P∈P2(K)

m(E,L, P ) = m(E,L, [a0 : −αa0 − γ : 1])+

m(E,L, [ã0 : −αã0 − γ : 1]) = 2 + 1 = 3.

• ordx=a0
g(x) = 1. In this caseg(x) = (x−a0)

2g̃(x), andg̃(x) has degree2, hence it has either
two rootsã1, ã2 ∈ K of multiplicity one, one root̃a0 ∈ K of multiplicity two, or no roots in
K. In the first case

∑

P∈P2(K)

m(E,L, P ) = m(E,L, [a0 : −αa0 − γ : 1])+

m(E,L, [ã1 : −αã1 − γ : 1]) + m(E,L, [ã2 : −αã2 − γ : 1]) = 1 + 1 + 1 = 3,

in the second case

∑

P∈P2(K)

m(E,L, P ) = m(E,L, [a0 : −αa0 − γ : 1])+

m(E,L, [ã0 : −αã0 − γ : 1]) = 1 + 2 = 3,

and in the third case
∑

P∈P2(K)

m(E,L, P ) = m(E,L, [a0 : −αa0 − γ : 1]) = 1.

In all cases our claim holds.

Remark 6.15. LetE/K be an elliptic curve andL/K a projective line.

• If there are two different pointsP1, P2 ∈ E(K)∩L(K), then either there exists a (unique) point
P3 ∈ E(K)∩L(K) different fromP1 andP2 and the multiplicity of intersection ofE andL at
P1, P2 andP3 is 1, or there is no other point inE(K) ∩ L(K) and one of the pointsP1 or P2

has multiplicity2 and the other has multiplicity1.
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• If there is a pointP ∈ E(K) ∩ L(K) with m(E,C, P ) ≥ 2, then either there exists a (unique)
pointQ ∈ E(K) ∩ L(K) andm(E,L, P ) = 2, m(E,L,Q) = 1, or E(K) ∩ L(K) = {P}
andm(E,L, P ) = 3.

We can sumarize all these cases by saying that, ifL andE intersect at two points ofP2(K) (counting
multiplicities), then they intersect at another point (counting multiplicities).

In other words, givenE/K, L/K and two points (counting multiplicities) inE(K)∩L(K), they
determine a third point (counting multiplicities) inE(K) ∩ L(K).

Now we have all the tools we need to define a group law onE(K).

Definition 6.16. LetE/K be an elliptic curve. We define a map

⊕ : E(K) × E(K) → E(K)

(P,Q) 7→ P ⊕Q

with the following two steps recipe:

• Step 1: If P 6= Q, consider the unique projective lineL1/K passing throughP andQ. If
P = Q, setL1/K to be the tangent line toE atP . L1/K has a third point of intersection with
E (counting multiplicities); call itP ∗Q.

• Step 2: If P ∗Q 6= O, consider the unique projective lineL2/K passing throughP ∗Q andO.
If P ∗Q = O, setL2/K to be the tangent line toE atO. L2/K has a third point of intersection
withE (counting multiplicites). We defineP ⊕Q to be this point.

Example 6.17. Let E/K be the elliptic curve defined by the polynomialf(X,Y, Z) = Y 2Z +

a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3.
Recall that







∂f
∂X

= a1Y Z − 3X2 − 2a2XZ − a4Z
2

∂f
∂Y

= 2Y Z + a1XZ + a3Z
2

∂f
∂Z

= Y 2 + a1XY + 2a3Z − a2X
2 − 2a4XZ − 3a6Z

2

• LetP 6= O. What isP ⊕O?

– Step 1: Since the pointP lies in the affine part ofE/K, we can write it asP = [a : b : 1].
The lineL1 passing throughP andO is L(1, 0,−a). One can easily check that the line
L1 intersects the affine part ofE(K) into two points (counting multiplicities); in other
words, if we callP ∗ O the third point of intersection ofL1 andE, thenP ∗ O 6= O.

– Step 2: The lineL2 is the unique projective line passing throughP ∗O andO. ButL1/K

is a projective line passing through these two points: henceL2 = L1. The third point of
intersection ofL2 andE is thusP . ThereforeP ⊕O = P .

• What isO ⊕O?

– Step 1: TakeP = Q = O. The lineL1/K is the tangent line toE/K at O, that is to say,
L(0, 0, 1). NowE(K) ∩ L(K) = {O}, soP ∗Q = O.
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– Step 2: The lineL2/K is again the tangent line toE/K at O, that is,L(0, 0, 1), so that
again the third point of intersection isO. ThereforeO ⊕O = O.

Proposition 6.18. The setE(K) is a commutative group with the operation⊕ and neutral element
O.

Proof. Observe first that the operation⊕ is commutative, since the lineL1 does not depend on the
order in which we give the pointsP andQ defining it. Example 6.17 shows that there is a neutral
element for(E(K),⊕), namelyO ∈ E(K). We need to show the existence of inverse elements and
the associativity of the operation.

• Inverse element: We need to show that, for allP ∈ E(K), there exists a uniqueQ ∈ E(K) with
P⊕Q = O. Let us see first the existence (the uniqueness follows then in a standardway as soon
as we prove associativity). IfP = O, then in Example 6.17 we saw thatQ = O satisfies our
condition. So we may assume thatP 6= O. Consider the unique projective lineL/K passing
throughP andO, and letQ be the third point of intersection ofE(K) with L(K). Now we
computeP ⊕Q. First, the lineL1 coincides withL, soP ∗Q = O. Therefore the lineL2/K

is the tangent line toE throughO, that is to say,L(0, 0, 1). But thenL2(K) ∩ E(K) = {O},
henceP ⊕Q = O.

• Associativity: We need to show that, for allP1, P2, P3 ∈ E(K), (P1 ⊕ P2) ⊕ P3 = P1 ⊕
(P2 ⊕ P3). One can give a geometric (although very long and tedious) proof of this fact, by
computing both sides of the equation for arbitraryP1, P2, P3 ∈ E(K). At all steps of the proof,
when constructing the linesL1 andL2, one must distinguish whether the two points determining
it are equal or different, yielding a long list of cases. We will not do this here. Nevertheless,
we want to point out that there is a less tedious but more conceptual proofof this fact, if one
relates⊕ to the group structure of the Picard group ofE. This proof goes beyond the scope of
these notes, but the interested reader can look it up in Chapter III of the book The arithmetic of
elliptic curvesby J. H. Silverman. Yet another proof can be done using explicit formulasfor the
addition of points: see Proposition 6.20.

Remark 6.19. Given an elliptic curveE/K and pointsP, P1, P2 ∈ E(K), we will denoteP1 ⊕ P2

byP1 + P2, the inverse ofP by−P , and the sumP ⊕ · · · ⊕ P of P with itselfk times by[k]P .

Assume we haveP1 = [x1 : y1 : 1] andP2 = [x2 : y2 : 1] ∈ E(K). If P3 = [x3 : y3 : 1] satisfies
thatP1 + P2 = P3, can we expressx3 andy3 in terms ofx1, x2, y1, y2?

Proposition 6.20.LetE/K be an elliptic curve defined byf(X,Y, Z) = Y 2Z+a1XY Z+a3Y Z
2−

X3 − a2X
2Z − a4XZ

2 − a6Z
3. Then the following hold:

• LetP = [x1 : y1 : 1] ∈ E(K). Then−P = [x1,−y1 − a1x1 − a3 : 1].

• LetP1 = [x1 : y1 : 1] andP2 = [x2 : y2 : 1]. Then

– If x1 = x2 andy1 = −y2 − a1x2 − a3, thenP1 + P2 = O.
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– Otherwise, letP3 = P1 + P2, sayP3 = [x3 : y3 : 1]. Then

{

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ1 + a1)x3 − ν − a3,

whereλ, ν ∈ K are defined as follows:

∗ If x1 6= x2,
{

λ = y2−y1

x2−x1

ν = y1x2−y2x1

x2−x1

∗ If x1 = x2,
{

λ =
3x2

1
+2a2x1+a4−a1y1

2y1+a1x1+a3

ν =
−x3

1
+a4x1+2a6−a3y1

2y1+a1x1+a3

Proof. The reader can find a proof of this proposition in Chapter 2, section 3 the book Elliptische
Kurven in der Kryptographieby Annette Werner, or in Chapter III of the bookArithmetic of Elliptic
Curvesby J. H. Silverman.

Remark 6.21. In particular, the previous proposition proves thatx3 and y3 can be obtained as a
quotient of two polynomials inK[x1, x2, y1, y2, a1, a2, a3, a4, a6].

7 Elliptic Curves over finite fields

Let p be a prime number,q a power ofp andFq the finite field withq elements. In this section we
will consider elliptic curvesE defined overFq. We are interested in the group(E(Fq),+). One first
remark is that, sinceE(Fq) ⊂ P2(Fq) and this set is finite, the group(E(Fq),+) is a finite group.
One interesting question is to determine its order. The inclusionE(Fq) ⊂ P2(Fq) already gives us
that|E(Fq)| ≤ |P2(Fq)| = (q3 − 1)/(q − 1) = q2 + q + 1. But one can do better than this.

Proposition 7.1. LetE/Fq be an elliptic curve. Then|E(Fq)| ≤ 2q + 1.

Proof. Let f(X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 − X3 − a2X

2Z − a4XZ
2 − a6Z

3 be the
polynomial definingE. We know that

E(K) = (E(K) ∩ A2(K)) ∪ {O},

that is to say, the only point at infinity isO ∈ E(Fq). Therefore it suffices to see that the set of
solutions(x, y) ∈ A2(Fq) of the equationy2 + a1xy + a3y − x3 − a2x

2 − a4x − a6 = 0 has
cardinality smaller than or equal to2q. Now for eachx0 ∈ Fq, there exist at most two roots of the
polynomialy2 + (a1x0 + a3)y− x3

0 − a2x
2
0 − a4x0 − a6 in Fq. Therefore the number of solutions of

the equation above is smaller than or equal to2q.

Let E/Fq be an elliptic curve, and fixx0 ∈ Fq. Then we have three possibilities: either the
polynomialg(y) = y2 +(a1x0 + a3)y−x3

0 − a2x
2
0 − a4x0 − a6 ∈ Fq[y] has two roots inFq, or it has

one root, or it has none, depending on whether the discriminant ofg(y) is a square, is zero, or is not a
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square. If we choose an element randomly inFq, then we will get a square with the same probability
as a nonsquare. This argument suggests that, more or less, one half of the values ofx0 will give two
solutions ofg(y) = 0 and half of the values ofx0 will give none. Therefore the number of points of
E(Fq) ∩ A2(K) should be close toq. Actually one can prove the following.

Proposition 7.2(Hasse). LetE/Fq be an elliptic curve. Then

||E(Fq)| − (q + 1)| ≤ 2
√
q.

Proof. The proof of this fact goes beyond the scope of these notes. The reader can consult it in
Chapter V of the bookThe arithmetic of elliptic curvesby J. H. Silverman.

Let E/Fq be an elliptic curve, and consider the finite commutative group(E(Fq),+). Let P ∈
E(Fq) be a point. Let〈P 〉 ⊂ E(Fq) be the subgroup generated byP , that is to say,

〈P 〉 = {[k]P : k ∈ Z}.

Note that〈P 〉 is a cyclic group of order equal to the order ofP in E(Fq), that is,min{k ∈ N : [k]P =

O}.
We can apply the cryptographic algorithms from Section 4 (that is to say, Diffie-Helman key

exchange and El Gamal encryption) replacing the multiplicative group of a finite field by the group
〈P 〉. But not all elliptic curvesE/Fq and not all pointsP ∈ E(Fq) will give us secure algorithms. For
this method to work in practice, we need that the correspondingdiscrete logarithm problemis hard to
solve:

Discrete logarithm problem for elliptic curves: GivenE/Fq an elliptic curve,P ∈
E(Fq) andQ ∈ 〈P 〉, computek ∈ Z so that[k]P = Q.

Remark 7.3. • Of course, one first requirement is thatn = 〈P 〉 is big, so that in practice we
cannot just compute all[k]P for k ∈ {0, . . . , n}. But this is not the only aspect one has to be
careful about. There are families of elliptic curves (for example,supersingular elliptic curves,
which are those that satisfy|E(Fq)| = q + 1), for which the discrete logarithm problem can be
solved in a reasonable amount of time. The interested reader can consult Chapter 4 of the book
Elliptische Kurven in der Kryptographieby Annette Werner, or Chapter 5 ofElliptic curves,
number theory and cryptographyby L. Washington.

• The main advantage of replacing the multiplicative group of a finite field(Fℓs)× by a cyclic
subgroup〈P 〉 ⊂ E(Fq) is that one can obtain the “same level of security” using keys that are
much smaller. In this way the data to be transmitted or stored will have smaller size.
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One of you will present one of the two exercises in the lecture on 28/02/2012.

1. (a) Computed := gcd(282, 228) using Euclid’s algorithm. From the computation, finda, b ∈ Z such
thatd = 282 · a + 228 · b.

(b) Letn = 282 and lete = 91. Finds ∈ N such that1 ≤ s ≤ 282 andes ≡ 1 mod (n).

2. Letp1, p2, . . . , pr be distinct prime numbers and putn = p1 · p2 · · · pr. Let m ≡ 1 mod(ϕ(n)), where
ϕ(n) is Euler’s totient function, that is, the number of units of the ringZ/(n).

Prove that for anyx ∈ Z/(n) one has:xm = x (equality inZ/(n)).

If you want to read more on elementary number theory, the RSA algorithm andother topics, and want to
play with them on a computer, we recommend:

William Stein: Elementary Number Theory: Primes, Congruences, and Secrets, Springer-
Verlag.

Free online version:http://modular.math.washington.edu/ent/ent.pdf
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1. Finish Sheet 1.

2. In this exercise you see how to transform a sentence (for simplicity, justconsisting of capital letters
and some punctuation marks) into an integer. For this we use the following table:

Letter 0 1 . . . 9 A B . . . Z . , : ; ! ? Space

Integer 0 1 . . . 9 10 11 . . . 35 36 37 38 39 40 41 42

The sentence ‘YOU ARE.’ is turned into a number as follows:
Y=34, O=24, U=30, Space=42, A=10, R=27, E=14, .=36

34 + 24 · 43 + 30 · 432 + 42 · 433 + 10 · 434 + 27 · 435 + 14 · 436 + 36 · 437 = 9877975894339.

(a) Describe a procedure how to turn a positive integer back into a sentence.

Hint: Use division with remainder.

(b) Which sentence is represented by the number 1769468?

Hint: This can be done on a pocket calculator. Of course, it is easier on acomputer.

3. In this exercise you see how ‘fast exponentiation’ works.

Let the natural numbern be given in binary notationn = (ar, ar−1, . . . , a1, a0)2 with digitsai ∈ {0, 1}

for i = 0, . . . , r. That means:

n =
r∑

i=0

ai2
i.

Examples:3 = (1, 1)2 = 1 · 21 + 1 · 20, 10 = (1, 0, 1, 0)2 = 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20.

Let x ∈ Z (or in any other ring). We want to computexn by performing as few multiplications as
possible. Note:

xn = x(
P

r

i=0
ai2

i) = (x(20))a0 · (x(21))a1 · (x(22))a2 · . . . · (x(2r))ar .

Let us computex10: In the standard way:x · x · x · x · x · x · x · x · x · x one makes 9 multiplications.
We can do with fewer, namely4:

e1 := x · x = x2, e2 := e1 · e1 = x4, e3 := e2 · e2 = x8, e1 · e3 = x10

(a) Imitate the computation ofx10 in order to computex20. How many multiplications do you need?

(b) Letn = (ar, ar−1, . . . , a1, a0)2. Show that one never needs more than2r multiplications.
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1. In this exercise, you construct explicitly a field with 9 elements.

(a) Finda, b ∈ F3 such thatX2 + aX + b is an irreducible polynomial inF3[X].

(b) With the values ofa, b from (a), letK := F3[X]/(X2 + aX + b). List the elements ofK.

(c) Compute an inverse for each nonzero element ofK.

(This shows thatK is a field, since we know thatK is a ring.)

2. Let K be a field. In this exercise, you prove an analogue of Gauß’ fundamental theorem of elemen-
tary number theory forK[X]. You should deduce it from the extended Euclid’s algorithm (Bézout’s
theorem) and you can follow the proof of Gauß’ theorem presented in the lecture.

(a) Letf ∈ K[X] be a polynomial of degreen := deg(f) > 0. Show that there are finitely many
irreducible polynomialsp1(X), . . . , pr(X) ∈ K[X] such that

f(X) = p1(X) · p2(X) · . . . · pr(X).

(b) Letp(X) ∈ K[X] be a polynomial of degreen := deg(f) > 0. Show that the following statements
are equivalent:

(i) p(X) is an irreducible polynomial.

(ii) p(X) is a prime element in the ringK[X].
(Recall that, by definition,p(X) is a prime element inK[X] if and only if, wheneverp(X)

divides a productg(X)h(X) with g(X), h(X) ∈ K[X], thenp(X) dividesg(X) or p(X)

dividesh(X).)

(c) Let f(X) ∈ K[X] be a monic polynomial of degreen := deg(f) > 0. Show thatf(X) can
be written as a finite product of monic irreducible polynomials: There isr ∈ N and there are
irreducible monic polynomialsp1(X), . . . , pr(X) such that

f(X) = p1(X) · p2(X) · . . . · pr(X).

Up to renumbering, the irreducible monic polynomials occuring in the product are unique, that is:
if f(X) = q1(X) · q2(X) · . . . · qs(X) is another such product, thenr = s and there isσ in the
symmetric group on the letters{1, . . . , r} such thatqi(X) = pσ(i)(X) for all i ∈ {1, . . . , r}.
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1. This exercise checks the Leibniz rule for the formal derivative of a polynomial. LetK be a field. The
formal derivative off(X) =

∑n
i=0

aiX
i ∈ K[X] is defined asf ′(X) =

∑n
i=1

aiiX
i−1.

Let nowf(X), g(X) ∈ K[X] and seth(X) = f(X)g(X). Show:

h′(X) = f ′(X)g(X) + f(X)g′(X).

2. LetK be a finite field withpn elements.

(a) Prove(α + β)p = αp + βp for all α, β ∈ K.

(b) Conclude from (a):(α + β)pd

= αpd

+ βpd

for all d ∈ N.

(c) Prove that the map
F : K → K, x 7→ xp

defines a field isomorphism, the so-calledFrobenius isomorphism.

(d) Compute the order ofF .

(e) Let1 ≤ d ≤ n and letF d = F ◦ F ◦ · · · ◦ F
︸ ︷︷ ︸

d times

. Show that the setK〈F d〉 := {x ∈ K | F d(x) = x}

is a subfield ofK and compute the number of elements ofK〈F d〉.
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1. (a) Show that the polynomialf(X) = X4 + X3 + X2 + X + 1 ∈ F2[X] is irreducible.

(b) ConsiderK = F2[X]/(f(X)). We know that this is a field with16 elements, hence,K× is a
cyclic group of order15.

Find a generator ofK×.

2. Shamir’s no key protocol. Shamir found a clever method how Alice can send a message to Bob, which
cannot be read by anyone but Bob. The method has the special featurethat Alice and Bob do not
need any common key (neither known beforehand nor agreed via the Diffie-Hellman key exchange or
anything similar).

In terms of everyday things, the method works like this. Alice puts her messageinto a box and locks
the box with a lock of hers (only she has the key and she does not give thekey to anyone else). No
one but Alice can open the box. She sends the locked box to Bob. Bob locks the box once more with a
lock of his own (only he has the key and he does not give the key to anyone else). He sends the doubly
locked box back to Alice. She removes her lock and sends the box, which isnow only locked by Bob,
back to Bob, who opens it with his own key and gets the message.

Let p be a big prime number and let the message be1 ≤ m ≤ p − 1 (one should also assumem ∈ F
×

p

has orderp − 1 for security reasons, but, for this exercise this can be neglected). Alicewants to send
m to Bob.

(a) Describe a version of Shamir’s no key protocol inF
×

p
.

(b) Assume Eve can solve discrete logarithm problems inFp (for any basis) and that Eve knows all the
conversation between Alice and Bob. Show that Eve can then computem.
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1. First exercise. In this exercise you will see that different polynomialscan have the same set of zeroes
in A

2(K).

(a) LetK = R, and consider the polynomialsf, g ∈ K[x, y] defined asf(x, y) = x2 + 4,
g(x, y) = (x + y)2 + 1. Show thatCf (K) = Cg(K).

(b) LetK be a field, andf, g ∈ K[x, y] nonzero polynomials. Show thatCf2g(K) = Cfg(K).

(c) Letp be a prime number,q = pf and considerK = Fq. Show that the polynomialsf, g ∈ K[x, y]

defined asf(x, y) = x − y, g(x, y) = xq − y satisfyCf (K) = Cg(K).

(d) LetK = F4. Find polynomialsf, g ∈ K[x, y], of degree less than 4, such thatCf (K) = Cg(K).

If K is algebraically closed andf ∈ K[x, y] is a nonzero irreducible polynomial, thenf is uniquely
determined (up to a scalar) byCf (K). You can check that these conditions were not satisfied in the
previous examples. In our lecture we will be concerned with elliptic curves over finite fields, so we
have to be careful!

2. Second exercise. LetK be a field. Recall that we have writtenP
2(K) as a disjoint union

P
2(K) = i(A2(K)) ∪ H ∪ {O}.

Prove that for allP ∈ H ∪ {O} (i.e., the “extra” points that we added at infinity) there exist two
affine lines whose projectivisations meet inP . This shows that there is no proper subspace ofP

2(K)

containingA
2(K) where all affine lines have a point of intersection.
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1. First exercise. LetL1/K, L2/K be two different projective lines inP2(K). Prove that they meet at
exactly one point (that is to say,L1(K) ∩ L2(K) = {P} for some pointP ∈ P

2(K)).

2. Second exercise. LetK ⊂ E be an extension of fields.

(a) Prove that the map
j : P

2(K) → P
2(E)

[a : b : c] 7→ [a : b : c]

is well-defined and injective.

(b) Let f ∈ K[X, Y, Z] be a homogeneous polynomial of degreed for some positive integerd.
Consider the curvesCf/K andCf/E. Prove that

Cf (K) = P
2(K) ∩ Cf (E).
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1. Letf(x, y) = x3 + yx2 − y, and letf∗(X,Y, Z) = X3 + Y X2 − Y Z2 be its homogenisation. Show
that the affine curveCf/C is smooth while the projective curveCf∗/C is not smooth.

2. LetK be a field. In this exercise we prove the chain rule for formal derivatives inK(X).

(a) Show that the definition of the formal derivative of an elementϕ(X) ∈ K(X) does not depend
on the representation ofϕ(X) = f(X)/g(X) as a quotient of elements ofK[X].

(b) Let g(X) ∈ K[X]. Prove that(gn)′(X) = ngn−1(X)g′(X) for all n ≥ 1. (Hint: Use induction
and the Leibnitz rule from Sheet 4).

(c) Letf(X), g(X) ∈ K[X]. Show that(f ◦ g)′(X) = f ′(g(X))g′(X).

(d) Let ϕ(X), ψ(X) ∈ K(X). Show that(ϕ(X) · ψ(X))′ = ϕ′(X)ψ(X) + ϕ(X)ψ′(X) (Hint:
Apply the Leibnitz rule inK[X]).

(e) Letϕ(X) = (f(X)/g(X))n. Show thatϕ′(X) = n(f(X)/g(X))n−1 · (f(X)/g(X))′ (Hint:
Analogous to (2b)).

(f) Let f(X) ∈ K[X], ϕ(X) ∈ K(X). Show that(f ◦ϕ)′(X) = f ′(ϕ(X))ϕ′(X) (Hint: Analogous
to (2c)).

(g) Letϕ(X), ψ(X) ∈ K(X). Show that(ψ ◦ ϕ)′(X) = ψ′(ϕ(X))ϕ′(X).
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1. LetK be a field. In this exercise we collect some facts we used in the Lecture about the order of an
element ofK(X) atX = 0.

(a) Letf(X), g(X) ∈ K[X]. Show thatordX=0(f(X)g(X)) = ordX=0 f(X) + ordX=0 g(X).

(b) The definition of the order atX = 0 of an elementϕ(X) ∈ K(X) (Definition 5.33) does not
depend on the representationϕ(X) = f(X)/g(X) as quotient of elements ofK[X].

(c) Letϕ(X), ψ(X) ∈ K[X] such thatordX=0(ψ(X)) = 1. Show that

ordX=0 ϕ(X) = ordX=0 ϕ ◦ ψ(X).

(Hint: First show by induction onm that for allm ≥ 0 we have the equality(ϕ ◦ ψ)(m)(X)

= ϕ(m)(ψ(X)) · (ψ′(X))m. Conclude thatϕ(m)(0) = 0 if and only if (ϕ ◦ ψ)(m)(0) = 0).

2. LetK be a field. In this exercise we prove the chain rule for formal derivatives in three variables.

(a) Letν1, ν2, ν3 ≥ 1 integers,g1(T ), g2(T ), g3(T ) ∈ K(T ) andh(T ) = g1(T )ν1g2(T )ν2g3(T )ν3 .
Prove that

h′(T ) = ν1g1(T )ν1−1g′1(T )g2(T )ν2g3(T )ν3

+ ν2g1(T )ν1g2(T )ν2−1g′2(T )g3(T )ν3 + ν3g1(T )ν1g2(T )ν2g3(T )ν3−1g′3(T )

(b) Letf ∈ K[X,Y, Z] andg1(T ), g2(T ), g3(T ) ∈ K(T ), h(T ) = f(g1(T ), g2(T ), g3(T )). Then

h′(T ) =
∂f

∂X
(g1(T ), g2(T ), g3(T ))g′1(T )

+
∂f

∂Y
(g1(T ), g2(T ), g3(T ))g′2(T ) +

∂f

∂Z
(g1(T ), g2(T ), g3(T ))g′3(T ).

3. LetK be a field,f ∈ K[x, y] a nonzero polynomial,f∗(X,Y, Z) ∈ K[X,Y, Z] its homogenisation.
Let (a, b) ∈ A

2(K). Prove that(a, b) is a singular point of the affine curveCf/K if and only if the
point i(a, b) = [a : b : 1] ∈ P

2(K) is a singular point of the projective curveCf∗/K.
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1. LetK be a field. For each matrix

A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






∈ GL3(K),

prove that the map

ϕA : P
2(K) → P

2(K)

[a : b : c] 7→ [a11a + a12b + a13c : a21a + a22b + a23c : a31a + a32b + a33c]

is well defined and bijective.

Let f(X, Y, Z) ∈ K[X, Y, Z] be a homogeneous polynomial and set

fA(X, Y, Z) := f(a11X + a12Y + a13Z, a21X + a22Y + a23Z, a31X + a32Y + a33Z)

Prove that
Cf (K) = ϕA(CfA

(K)).

2. LetK be a field,f(X, Y, Z) ∈ K[X, Y, Z] a homogeneous polynomial of degree3 of the form

f(X, Y, Z) = Y 2Z + a1XY Z + a3Y Z2
− X3

− a2X
2Z − a4XZ2

− a6Z
3

for somea1, a2, a3, a4, a6 ∈ K.

Let A ∈ GL3(K) be of the following shape

A =







u2 0 r

u2s u3 t

0 0 1






.

Prove that the polynomialfA obtained fromf by the linear change of variables given byA (as above)
has the shape

fA(X, Y, Z) = u6(Y 2Z + a′1XY Z + a′3Y Z2
− X3

− a′2X
2Z − a′4XZ2

− a′6Z
3)

for somea′
1
, a′

2
, a′

3
, a′

4
, a′

6
∈ K.
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1. LetL/K = L(α, 0, γ)/K be a projective line andE/K an elliptic curve. Then

∑

P∈P2(K)

m(E,L, P )

equals0, 1 or 3.

Hints:

• Consider first the caseα = 0, that is to say, the lineL(0, 0, 1), computeL(K) ∩ E(K) and, for
eachP ∈ L(K) ∩ E(K), computem(E,L, P ).

• Next consider the caseα 6= 0. You can writeL/K asL(1, 0, γ)/K for someγ ∈ K. Note
that O = [0 : 1 : 0] ∈ L(K) ∩ E(K), and computem(E,L,O) directly. Any other point
P ∈ L(K) ∩ E(K) can be written asP = [−γ : b : 1] for someb ∈ K, and you can use the
pointO as auxiliary point to expressm(E,L, P ) as the order att = 0 of a polynomialψ(t). Now
considerg(y) = f(−γ, y, 1) ∈ K[y] and relateg(b+ t) toψ(t).

2. LetE/F2 be the elliptic curve defined by the polynomialf(X,Y, Z) = Y 2Z + Y Z2 + X3 + XZ2.
In Example 5.19 we computed that

E(F2) ∩ A
2(F2) = {(0, 0), (0, 1), (1, 0), (1, 1)}.

• Write all the points ofE(F2). Hint: Use Lemma 6.5.

• Compute the summation table of(E(F2),+). (That is to say, for allP,Q ∈ E(F2), compute
P +Q. Recall that since the sum is commutative, it suffices to compute 15 sums).

Hint: A group with5 elements is always a cyclic group, and each element which is not the neutral
element is a generator. Pick one generatorP and computeP +P , P +P + P , P +P + P +P .
All other sums can be easily written down (without any need of further computations).


