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Preface

In number theory one is naturally led to study more general numbers thathéuskassical integers
and, thus, to introduce the concept of integral elements in number fields.ridds of integers in
number fields have certain very beautiful properties (such as the ufsigieeisation of ideals) which
characterise them as Dedekind rings. Parallely, in geometry one stufiies\airieties through their
coordinate rings. It turns out that the coordinate ring of a curve is &Ked ring if and only if the
curve is non-singular (e.g. has no self intersection).

With this in mind, we shall work towards the concept and the characterisatibedekind rings.
Along the way, we shall introduce and demonstrate through examples lmagiepts of algebraic
geometry and algebraic number theory. Moreover, we shall be naturdllp lgeat many concepts
from commutative algebra.

The lecture covers the following topics:

e General concepts in the theory of commutative rings

Rings, ideals and modules
Noetherian rings

Tensor products
Localisation

— Krull Dimension

e Number rings

— Integral extensions
— Noether’s normalisation theorem
— Dedekind rings

e Plane Curves

— Affine space

— Coordinate rings and Zariski topology
— Hilbert’s Nullstellensatz

— Singular points

Good books are the following. But, there are many more!

e E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry.

e Dino Lorenzini. An Invitation to Arithmetic Geometry, Graduate Studies in Mathesatal-
ume 9, American Mathematical Society.

e M. F. Atiyah, I. G. Macdonald. Introduction to Commutative Algebra, Addidesley Pub-
lishing Company.

These notes are a reworked version of my lecture notes of Winter TetiyZil2, Winter Term
2012/2013 and Winter Term 2013/2014. In preparing them, | usedaes@urces. The most im-
portant one is the lectumlgebra 2 which | taught at the Universitat Duisburg-Essen in the summer
term 2009, which, in turn, heavily relies on a lecture for second yeaestady B. H. Matzat at the
Universitat Heidelberg from summer term 1998.
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Chapter |

Basic ring theory

In this lecture all rings are assumed to be commutative (unless othrwise stated). That's why
the course is calledCommutative Algebra.

We see the lecture Commutative Algebra as a preparation for deeper $tédiyebraic Number
Theory andAlgebraic Geometry. Both subjects relate number theoretic or respectively geometric
properties with properties of rings. These properties are then analigséite methods provided by
commutative algebra.

Motivated and inspired by this, we shall let us be guided by examples fuoniar theory and geom-
etry. Accordingly, we will devote some time to introduce the ring of integers immaber field and the
coordinate ring of a curve.

Before doing so, we start the lecture by some general ring theory asdrbgnarising properties of
especially ‘nice’ rings: Euclidean rings, principal ideal domains (PiUD)gue factorisation domains
(UFD). They are all generalisations of the integer riigand share many properties of it, like the
unique factorisation into prime elements. Unfortunately, many of the rings recwuaters naturally
(like the rings of integers of number fields, or coordinate rings of affiaegcurves) are not that
‘nice’. We shall in later sections be concerned with finding substitutes #frtice’ properties of
factorial rings and prinicipal ideal domains.

We assume familiarity with ring and field theory to the extent to which it is for exatapight in the
first three terms of the Bachelor Programme at the University of Luxergb&ar the convenience of
the audience a summary is provided in two appendices.

1 Rings

We do not recall the definition of rings, homomorphisms and ideals herg.areesummarised in the
appendix to this section.

Prime ideals and maximal ideals

Since prime and maximal ideals will play an important role for the lecture, we wat tleem in full
detail.
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Definition 1.1. Let R be aring andl <1 R, I # R an ideal.
The ideall is calledmaximalif there is no ideal/ < R such that/ C J C R.
The ideall is calledprimeif, wheneveub € I,thena € T orb € I.

Proposition 1.2. (a) The prime ideals dZ are precisely0) and the principal ideal$p) for p a prime
number; The only prime ideal that is not also a maximal idea{@3.

(b) LetK be a field. The prime ideals of the polynomial riAgX| are (0) and the principal ideals
(f(X)), where f(X) is a monic (highest coefficient equal 1p and irreducible polynomial in
K[X].

The proof will be given below.

Proposition 1.3. Let R be aring and/ < R an ideal.

(a) Thenl is a prime ideal if and only i?/I is an integral domain.
(b) ThenI is a maximal ideal if and only iR/ is a field.

Proof. (a) Let! be a prime ideal and let+ I,b+ I € R/I suchthata + I)(b+ ) = ab+ I =
0+ 1 =0,i.e.ab € I. By the property ofl being a prime idealy € I orb € I, which immediately
translatesta + I =0orb+ I = 0.

Conversely, assume th&/I is an integral domain and let b € R such thatab € I. This means
(a+I)(b+1)=0,whencea+I=00rb+ 11 =0sothata € I orb € I, proving that! is a prime
ideal.

(b) Suppose that is a maximal ideal and let + I # 0 be an element itR/I. We must show it is
invertible. The condition: + I # 0 meanse ¢ I, whence the ideal = (I, x) is an ideal strictly
bigger than/, whenceJ = R by the maximality of/. Consequently, there afec [ andr € R such
thatl = ¢ + xr. This means that + I is the inverse of: + I.

Now let us assume thdt/! is a field and let/ 2 I be an ideal ofR strictly bigger than/. Letx be
an arbitrary element i but notin/. As R/I is a field, the element + I is invertible, whence there
isy € Rsuchthalz + I)(y+1)=2y+1=1+1C J. So,1 € J, whenceR C J, showing that
J = R, whencel is maximal. O

Here are two important consequences.

Corollary 1.4. (a) If p is a prime number (irZ), thenZ/(p) =: F), is a field, thefinite field with p
elements

(b) LetK be a field andf € K[X] a non-constant irreducible polynomial. Théfi) is a maximal
ideal of the principal ideal domaiik[X ] (see below) and the quotiehf[ X]/(f) is a field. (In
French this field has the nanoerps de rupture d¢.)

Proof. This is just the combination of Propositions 1.2 and 1.3. O

For prime number one can use the ‘school definition’: A natural numbe primeif its only positive divisors ard
andp. In the language of ring theory (see the appendix to this section) thelsig#fodtion means: irreducible and positive.
As Z is a UFD, the statement is also correct with ‘prime element’ instead of ‘pniuneber’, see Proposition 1.25.
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Corollary 1.5. Every maximal ideal is a prime ideal.

Proof. Every field is an integral domain. O
Example 1.6. Aring R is an integral domain if and only {f0) is a prime ideal ofR.

We later need the existence of maximal ideals.

Proposition 1.7. Let R be a ring different from the zero-ring. Thétihas a maximal ideal.

The proof, which uses Zorn’s lemma, can be found in the appendix to tttisise

Corollary 1.8. (a) Everyideak C R is contained in some maximal idealof R.

(b) Every non-unit: € R\ R* is contained in a maximal ideat of R.

Proof. (a) Consider the natural projectian: R — R/a. Letm be a maximal ideal oR2/a, which
exists by Proposition 1.7. Then := 7! (m) (preimage) is a maximal ideal @t, becauser /m =
(R/a)/mis afield.

(b) If z is a non-unit, therix) is a proper ideal ok, so we can apply (a). O

Euclidean rings

We now start our treatment of ‘nice’ rings, which are all ‘inspired’ by ithtegersZ.

Definition 1.9. An integral domainR is called aEuclidean ringf there isamap : R\ {0} — Ny
such thatR has a division with remainder w.rd, i.e. if for all a,b € R, b # 0, there areq,r € R
satisfying

a=gb+rand(r=0o0rd(r) <ob)).

Example 1.10.(a) Z w.r.t.§ = | - | (absolute value).

(b) The Gaussian integei®[i] := {a +bi € C | a,b € Z} with + and- coming fromC, w.r.t.
§(a +ib) = a® + V2.

(c) K[X]with K afield (but notZ[ X]) w.r.t. § = deg.

Principal ideal domains

Definition 1.11. An integral domainR is called aprincipal ideal domain (pidi every ideal ofR is
principal.

Proposition 1.12. Every Euclidean ring is a principal ideal domain.
For the proof see the appendix to this section.
Example 1.13.(a) Z, Z]i]

(b) K[X] with K afield, but noZ[X].
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(c) There are principal ideal domains which are not Euclidean. Exenfp[-4~], the proof that
the ring is not Euclidean is quite hard.

Proposition 1.14. Let R be a principal ideal domain and let € R\ (R* U{0}). Then the following
are equivalent:

(i) zisirreducible.

(i) (x)is a maximal ideal.
(iii) (x)is aprime ideal.
(iv) z is a prime element.

In particular, the non-zero prime ideals are the maximal ideals.

Proof. ‘(i) =(ii):" If («) were nota maximal ideal, thén) C (y) € Rforsomey € R\ (R*U{0}),
whencey | x, so thatr would not be irreducible.

‘(i) =(iii):" Proved in general in Corollary 1.5.

‘(iii) =(iv):" and ‘(iv) =-(i):" are proved in the context of integral domains in Proposition 1.25.]

Proof of Proposition 1.2.This is now an immediate consequence of Proposition 1.14. O

Here is one important property of principal ideal domains (that also impli¢sitag are Noetherian
rings, but, this piece of terminology will only be introduced later and is onlyhmse so that you
recognise it when re-reading this section later).
Definition 1.15. Let R be a ring. We say that ik any chain of strict divisors has finite lengftthe
following property holds:

For all elements{a, } ,en € R such thata,, | a,—1 for all n € N, there isN € N such

that for allm > N one haga,,) = (an).
An equivalent formulation of the property is:

Any ascending chain

ap CaxCazC...

of principal ideals becomes stationary, i.e. theré\isc N such that for allm > N one

hasay = a,,.
(If one removes the word ‘principal’, then this is precisely the definitiohedhg Noetherianwhich
will be introduced later in this lecture.)
Proposition 1.16. Let R be a principal ideal domain. Then iR any chain of strict divisors has finite
lenght. (In later terminology, this proposition states that any principal ickahain is aNoetherian
ring.)
Proof. Leta,, = (ay). These ideals form an ascending ideal chain:

apCaxCazCag C...

Form the ideah = | J,, . a,. Itis a principal ideal, i.ea = (a) for somea € R. Of courseq € (a),
i.e.a € U,cn an, Whence there iV € N such thatu € (ax). This meanga) C (an) C (a) for all
m > N, whence(a) = (any) = (an,) forallm > n. O
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Factorial rings

It was apparently Gaul3 who was the first to notice that ‘obvious’ statertikatthe one that every
positive integer can be uniquely (up to ordering) written as a produaimipelements needed proof.
Here we give this proof in the generality of factorial rings, of whi€is an example.

Definition 1.17. An integral domainR is called afactorial ring (or a UFD — unique factorisation
domair) if

e every irreducible elemente R\ (R* U {0}) is a prime element and
e in R any chain of strict divisors has finite length.
Proposition 1.18. Every principal ideal domain is a factorial ring.
Proof. We have seen both properties. O

Hence we have the implications:

Euclidean=- PID = UFD.

We shall see later that being factorial is a property that is too strong in nasgsc They will be
replaced by Dedeking rings (which daeally PIDs — definitions come later; examples are the rings
of integers in number fields).

Proposition 1.19. Let R be an integral domain. The following are equivalent:
(i) Ris afactorial ring.
(i) Everyr € R\ (R* U{0}) can be written as a finite product of prime elements.

(i) Every r € R\ (R* U {0}) can be written uniquelyup to permutation and up to associate

elements) as a product of irreducible elements, iea4fx; - 2o --- - Tp =Y1 Yo Ym With
irreducible elements;, y; € R\ (R* U {0}), thenn = m and there is a permutation in the
symmetric group oR1, . ..,n} such thatr; is associate withy, ;) foralli = 1,...,n.

For the proof see the appendix to this section. We now want to see thatengtrang is factorial.

Example 1.20.The ringR := {a + by/—5 | a,b € Z} is a subring ofC. We have
6=2-3=(1++v=5) (1 —-+v-5).

Since all four element®, 3,1 + v/—5,1 — v/—5 are irreducible elements ok, we conclude thaR
is not a factorial ring (but, it is an integral domain in which all chains of stritivisors have finite
length).

For details see an exercise.

We finish this section with the remark that it makes sense to define greatest codivismrs and
lowest common multiples in all rings. But, they need not exist, in general. borfatrings they
always do!
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Appendix: Background on Rings

The definition of a ring

Definition 1.21. A setR, containing two elements and 1 (not necessarily distinct), together with
maps
+:RxR— R, (z,y)—zxz+yand-: RxR— R, (z,y) — x -y

is called aunitary ringif the following properties are satisfied:

(@) (R,+,0) is an abelian group with respect to and neutral elemert,

(b) (R\{0},-,1) is a semi-group with respect tand neutral element and
© a-(b+c)=a-b+a-cforall a,b,c e R (distributivity).

The attributeunitaryrefers to the existence of the eleméi the ring. We only consider such rings,
and will thus usually not mention the word unitary.

If (R\ {0}, ) is an abeliansemi-group, thetR is called acommutative ringMost (but not all) of the
lecture will only treat commutative rings; hence, the naGwnmutative AlgebraBy a ring | shall
usually mean a commutative ring (should be clear from the context — if d}, as

If Ris acommutative ring and if in additiof \ {0}, -, 1) is an abelian group (not only a semi-group)
and1 # 0, thenR is called afield.

A subsetS C R is called a(commutative) subring 0,1 € S and+ and- restrict to.S making it into
aring.

[We recall the definition of a semi-group and a group: A Setontaining an element denotédtogether with
amap-: S xS — S5, (s,t)— s-tis called asemi-grougf the following hold:

@) s-(t-u)=(s-t)-uforall s, t,u € S (associativity,
(b) 1-s=s=s-1forall s € S (neutral element
If in addition, it holds that

(c) forall s € Sthere aret,u € S suchthats-t = 1 = u - s (notations—! for both) xistence of inversgs

thensS is called a group. I -t = ¢- sforall s,¢t € S, then the (semi-)group is callebelianor commutative]
Example 1.22.(a) Z, Q.

(b) Mn(Q) (N x N-matrices).

(©) Z[X], Q[X].

(d) {0} is called thezero-ring(with 1 = 0 and the only possible definitions ef and -, nhamely
0+0=0and0-0=0).

(e) Fp, IF,r for a prime numbep andr € N.
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Integral domains

Definition 1.23. Let R be aring. An element € R is called azero-divisorif there iss € R, s # 0
s.t.rs = 0.
Aring is called anintegral domair{or domain, for short) if is its only zero divisor.

Definition 1.24. Let R be an integral domain.

(&) An element € R is called aunit if there iss € R such thatrs = 1. The set of units forms a
group w.r.t.-, denoted af*.

(b) An element € R\ (R* U {0}) is calledirreducibleif, whenever = st with s,t € R, then
se R*orte R*.

(c) Anelement € R dividesan element € R (in symbols:r | s) if there ist € R such thats = rt.

(d) Two elements, s € R are associatef there is a unitt € R* such thatr = ¢s (nhote that being
associate is an equivalence relation).

(e) Anelement € R\ (R* U {0}) is called aprime elemenif, whenever | st with s,¢ € R, then
r|sorr|t.

Proposition 1.25. Let R be an integral domain.

(a) Letr € R. Then
re R < (r)=R.

(b) Letr,s € R. Then
r|s<e (r)2(s).

(c) Letr,s € R. Thenr ands are associate if and only {fr) = (s).
(d) Letr € R\ (R* U{0}). Thenr is a prime element if and only () is a prime ideal ofR.
(e) Letr € R be a prime element. Theris irreducible.

Proof. (a), (b), (c) and (d) are an exercise.

(e) Letr € R be a prime element. In order to check thad irreducible, let- = st with s, ¢ € R. This
means in particular that| st. By the primality ofr, it follows r | s orr | t. Without loss of generality
assumer | s, i.e.s = ru for someu € R. Then we have = st = rut, whencer(1 — ut) = 0, which
implies1 — ut = 0 by the property thaR is an integral domain and+# 0. Thust € R*, as was to
be shown. O

Ring homomorphisms

Definition 1.26. Let R, S berings. Amap : R — S is called aring homomorphisnif the following
properties are satisfied:

@) »(1) =1,
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(b) o(r+s) =p(r)+¢(s) forall r,s € R,
©) p(r-s)=w(r) (s forall r,s € R.
Example 1.27.(a) Z — Fp,a — a.

(b) LetR be aring andS a subring ofR. The inclusion : S — R defines a ring homomorphism.

Algebras

Definition 1.28. Let R and S be (not necessarily commutative) rings. We say thit an R-algebra
if there is a ring homomorphism : R — S such thatp(R) C Z(S), whereZ(S) = {s € S| ts =
st ¥t € S} is thecentreof S (note that the conditiop(R) C Z(S) is empty ifS is commutative).
Many people use the terminologgsociativeR-algebrafor R-algebra; but, we will stick to the shorter
one since we are not going to encounter any non-associative algdikasige algebras).

Example 1.29.Let K be a field. Then the polynomial ring|[X] is a K-algebra.
ConsiderEndg (V') for a K-vector spacd/. ThenEndg (V) is a K-algebra (X embeds into the
scalar matrices, which are equal to the centréofd 5 (1)).

Ideals

Definition 1.30. A subsetl C R is called anidealif I is a subgroup of? for the addition+ and for
allre Randalli € I one hasi € 1.

Notation! < R (or I < R).

Example 1.31.(a) {0}, R are both trivially ideals.

(b) {nm|m e Z} < Z.

(c) Lety : R — S be aring homomorphism. Théwar(y) is an ideal ofR.

Definition 1.32. Let R be aring and let:; € R for s € S (some ‘indexing’ set). Denote oy;|s € .S)
the smallest ideal oR containing alla, for s € S; it is called the ideal generated by thg, s € S.
An ideal I is calledfinitely generatedf there arer € N and elements,...,a, € I such that

(at,...,a,) = 1.

An ideal of the forn{a) < R witha € R is called aprincipal ideal
Example 1.33.(a) (0) = {0}, (1) = R.

(b) (n) ={nm|m € Z} < Z.

() (n,m) = (g) with g the greatest common divisor of m € Z.
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Quotient rings

Proposition 1.34. Let R be aring and/ < R be an ideal. The relation ~ y :< = — y € I defines
an equivalence relation oR. The equivalence classgs= « + I form the ring denotedr/I with

e +:R/IXxR/I - R/I, (x+I,y+I)—ax+y+I,

e 0

0 =0+ I = I as neutral element w.r.t. addition,
e :R/IXR/I—R/I, (r+I,s+1)—rs+1,

e 1 =1=1+ T as neutral element w.r.t. multiplication

TheringR/I is called thequotient ring orR by I (also calledfactor ring.

Proof. Exercise. O
Example 1.35.(a) Q(i) = Q[X]/(X?2 + 1).

(b) F, = Z/(p) for p a prime.

(c) Fy = Fo[X]/(X? + X + 1). This is a field witht elements and will be studied explicitly in an
exercise.

Homomorphism theorem

The homomorphism theorem is also called isomorphism theorem. There arengefor groups,
vector spaces, modules, etc. Here is the one for rings:

Proposition 1.36. Let R, S be rings andp : R — S be a ring homomorphism. Then the map

R/ ker(p) — im(p), 7+ ker(p) — o(r)
is well-defined and an isomorphism of rings.

Proof. Exercise. O

On maximal ideals

Proof of Proposition 1.7.This proof uses Zorn’s Lemma (which one also needs for the existence of
bases in general (i.e. not finite dimensional) vector spaces).

Let M := {a C R ideal} be the set of all proper ideals &. Of course(0) € M (here we use that

R is not the zero ring), sa1 # (.

InclusionC gives a partial ordering oM : by definition this means:

e aCaforallae M,

o If a C bandb C q,thena = b.
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But, for generah, b € M, we do not necessarily haweC b orb C a. A subset(a;);c; C M (where
I'is any set) is called totally ordered if for anyj € I one hasy; C a; ora; C a;.

Claim: Any totally ordered subséty;);c; € M has an upper bound, namely.= [ J,.; a;, meaning
aC Mandg; Caforallie .

The claim is very easy to see. The last statemaent a for ¢ € [ is trivial. In order to see that is

an ideal, letr,y € a. Then there are, j € I such thatr € a; andy € a;. Because ofi; C a; or

a; C a;, we have thak +y € aj orz + y € a;, so thatr + y € a in both cases. Given € R and

x € a, thereisi € I such thatr € a;, whencerx € a;, thusrz € a, showing thati is an ideal ofR.

If a were equal to the whole ring, then there would bée< I such thatl € a;. This, however, would
contradicta; # R. Consequentlyy € M, as claimed.

Zorn's Lemma is the statement that a partially ordered set has a maximal elemegatyiftotally
ordered set of subsets has an upper bound.

S0, M has a maximal element, i.e. ane M such that ifm C a for anya € M, thenm = a. This

is precisely the definition of a maximal ideal. Ol

On Euclidean rings

Proof of Proposition 1.121 et R be a Euclidean ring w.r.t and let/ < R be an ideal. We want to
show that it is principal. Iff = {0}, then it is already principal, so that we may suppdsg (0).
Considerthe set! := {§(i) € N | i € I\ {0}}. As anon-empty subset dfit has a smallest element
(induction principal, well-ordering principle, ...). Letbe this smallest element. It is of the form
n = d(x) with 0 # = € I. Note(z) C I.

Let nowi € I be any element. By the Euclidean property theregare= R such that = gz + r with
r=0o0rd(r) < d(n). Since: € I andz € I, it follows thatr = i — gz € I. Due to the minimality
of n = é(x), we must have = 0. Thusi = gz € (x). We have shown! C (z) C I, hence[ = (z)

is a principal ideal. O

On unique factorisation domains

Lemma 1.37. Let R be an integral domain in which any chain of strict divisors has finite length.
Letr € R\ (R* U{0}). Then there are irreducible;y,...,z, € R\ (R* U {0}) such that
/," P :'Ul . x2 o e e e . xn_

Proof. We first show that every € R\ (R* U {0}) has an irreducible divisor. Suppose this is not
the case and pick any non-unit divisor | r s.t. (r) € (r1). If no suchr; existed, then- would

be irreducible itself. Of course; is not irreducible. So we can pick a non-unit diviser| r; s.t.
(r1) € (r2). Like this we can continue and obtain an infinite chain of strict divisorstraonto our
hypothesis.

Now, we have an irreducible non-unit divisor | r s.t.(r) C (z1). If r/x;1 is a unit, then we are
done. Otherwise/x; has an irreducible non-unit divises | /z;. If r/(x122) is a unit, then we are
done. Otherwise/(x1x2) has an irreducible non-unit divisor.

Like this we continue. This process must stop as otherwise we would hawéirate chain of strict

divisors: - - | .- | 2=~ | .- | r, contrary to our hypothesis. O

12223 12




14 CHAPTER I. BASIC RING THEORY

Proof of Proposition 1.19(i) = (ii): Since irreducible elements are prime, Lemma 1.37 takes care of
this implication.

(ii) = (ii)): Recall that the prime elements are precisely the irreducible ones. Salyeazly have the
existence. We now show the uniqueness. Let

It follows thatzx,, dividesy; -y2-- - - ym. By the primality ofz; it must divide one of the’s, say after
renumberinge,, | y.,. But, sincey,, is irreducible, we must have,, ~ y,, (associate!). Dividing by
x, on both sides, we obtain a shorter relation:

x1.$2 ..... xnilzeyl-y2.....ymil7

wheree € R* is a unit. Now it follows that,,_; divides the right hand side, and, after renumbering,
we have again,, 1 ~ y»_1. Dividing by x,,_1 (and possibly replacing the urity a different one)
we obtain an even shorter relation:

xl.xZ ..... xn72:€y1y2ym72

Like this we continue, and conclude = m and that, after the above renumbering, ~ y; are
associate foral =1,...,n.

(iii) = (i): We need to show that every irreducible element is prime. So; letR \ (R* U {0})

be irreducible and suppose that st with s,t € R, i.e.ru = st for someu € R. We may write
s, t andwu uniquely (up to ordering and associateskas s; -89-Sy, t =11 - to -+ -ty and
w=wui-uy-----u Withirreducible elements;, t;, up, (i = 1,...,n;j =1,....m;k=1,...,0).

The uniqueness of irreducible elements occurring in the equation

implies that- must be equal to one of thés or one of the’s. This means that dividess or it divides
t, as was to be shown. O

2 Modules

We now introduce modules over rings. They are natural generalisatimestor spaces. We give the
general definition of module for not necessarily commutative rings.

Definition 2.1. Let R be a (not necessaritly commutative) ring. An abelian grolfy +, 0) together
with a map
RXM— M, (r,x)— rzx

is called a(left) R-moduleif the following properties are satisfied:
(@) L.z =xforall x € M.

(b) r(z+y)=ra+ryforalr e Randallz,y € M.
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© (r+s)z=rx+sazforallr,s e Randallz € M.
d) (r-s)x=r(sz)foralr,sec Randallx € M.

In a similar way one defines right modules and two-sided modules (alleal té-modules.
A subsetV < M is called anR-submoduleof M if 0 € M and+ and. restrict to /N making it into
an R-module.

Example 2.2. (a) LetK be a field and/ a K-vector space. TheW is a K-module.

(b) Let R be a ring. ThenR is an R-module (natural+ and. = ). The (left/right/two-sided)
submodules ok as R-modules are precisely the (left/right/two-sided) idealof

(c) LetRbearing. Then := R x R x --- x Ris an R-module (naturak- and diagonal).
From now on our rings are again commutative. We can then re-expredsfthiion as follows.

Lemma 2.3. Let R be aring and letM be an abelian groug/ (with group operation+ and neutral
elemen?). Denote byEnd(M ) the endomorphism ring df/ as an abelian group. Suppose there is
amap

i RxM— M, (r,m)—rm.

ThenM is a left R-module if and only if the map
R — End(M), r+— (z+— r.x)
is a ring homomorphism.
Proof. Exercise. O

Definition 2.4. Let R be aring andM, N be R-modules. Amap : M — N is called anR-module
homomorphisn{or short: R-homomorphismor: R-linear (map) if

e p(m1+m2) = p(mi) + p(me) for all mi, my € M and
e o(r.m) =r.p(m)forallm € M and allr € R.

Lemma 2.5. Thekernelker(y) := {m € M | p(m) = 0} is an R-submodule of\/.
Theimageim(p) := {p(m) | m € M} is an R-submodule ofV.
By the way, the quotient (see belaiW) im(¢p) is called thecokernel ofi.

Proof. This works precisely as for vector spaces. O

Definition 2.6. Let R be aring andN, M be R-modules. Lep : M — N be anR-homomorphism.
We say thatp is a monomorphisnif ¢ is injective. It is called arepimorphismif ¢ is surjective.
Finally, it is called anisomorphisnmif it is bijective.

If N = M, then anR-homomorphisny : M — M is also called anR-endomorphism

We letHompg(M, N) (or Hom(M, N) if R is understood) be the set of @-homomorphismg :
M — N.If M = N, then one let&nd (M) := Homp(M, M).
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Lemma 2.7. Let R be a ring andN, M be R-modules. Thetlomp(M, N) is itself an R-module
with respect to pointwise defingdand., i.e.(f+g)(m) := f(m)+g(m)and(r.f)(m) := r.(f(m))
forall f,g € Homg(M,N),allm € M and allr € R.

Proof. Exercise. O

Note that the intersection of submodules of a given module is again a submloowkever, the similar
statement with the union is false).

Definition 2.8. Let M a an R-module and letn; € M for i € I (some ‘indexing’ set). Denote
by (m;|i € I) the intersection of all submodules df containing allm; for i € I; it is called the
submodule generated by the, i € I, and it can be seen as the smallest submoduld a@fontaining
all them,; for i ¢ 1.

An R-moduleM is calledfinitely generatedf there arer € N and elementsny, ..., m, € M such
that (mq,...,m,) = M.

LetM; fori € I be submodules. We wri}, . ; M; for the submodule o/ generated by the elements
in all the M, for 7 € 1. Itis called thesum of the submodule¥l;, i € I. If the setl is finite, one also
writes+, for exampleMy + My + - - - + M,.

Explicitly, the elements ofm;|i € I) are of the form)_,_; r;m; with r; € R for i € I under the
condition thatr; # 0 only for finitely many: € I (this is obviously only a relevant condition if the set
1 is infinite; it expresses the fact that the sum is finite).

Similarly, the elements o} _,_; M; are all of the form) _,_; m; with m; € M; (for i € I) and only
finitely many of them non-zero.

Proposition 2.9. Let R be aring andN < M be R-modules. The relatiom ~ y <z —y € N
defines an equivalence relation ah. The equivalence classgs= =+ N form theR-module denoted
M /N with

e +: M/NxM/N— M/N, (x+N,y+N)—z+y+ N,

e 0=0=0+ N = N as neutral element w.r.t-,

o :RxM/N— MJ/N, (r,x+ N)—rz+ N.
The R-moduleM /N is calledthe quotient of\/ by (or modulo)N (also calledfactor modulg.
Proof. This works precisely as for quotient rings, which are treated in an seerc O
Proposition 2.10(Homomorphism and isomorphism theorems for modules} R be a ring.
(a) LetM, N be R-modules and> : M — N be anR-homomorphism. Then the map

M/ ker(p) — im(p), m+ker(p) = o (r)

is well-defined and aR-isomorphism.

(b) LetM be anR-module and lefV; € N> be R-submodules af/. Then there is atik-isomorphism
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(c) Let M be an R-module and letN; and No be R-submodules of\/. Then there is ank-

isomorphism
(N1 + NQ)/Nl = NQ/(Nl N Ng)
Proof. Exercise. ]
3 Integrality

We assume some basic familiarity with fields and field extensions (see the apiuetinis section for
some details). In this section we shall introdadgebraic field extensiorasnd their natural generali-
sationintegral ring extensiong parallel.

Our guiding example is the following one. Consider the set

A:={a+b/2€C|a,beZ}

We claim that it is a subring of, that is,A C C is a ring extension. The only thing that one really
needs to check is that is stable under multiplication:

(a+0V2)(c+ dV?2) = (ac + (V2V2)bd) + v2(ad + be) = (ac + 2bd) + v2(ad + be) € A.

The only thing we used i§/2v/2 = 2 € Z. Formulated in a fancy way this is/2 is a zero of the
polynomial X2 — 2 € Z[X]. This property will be expressed below ag2 is integral overZ .

Let us just point out that the sét + bv/2 € C | a,b € Z} is not a subring of because/2v/2 ¢ Z.
However, the ring{a + b3/2 + ¢(v/2)? € C | a,b,c € Z} is a subring ofC (easy check! One will
notice that the fact tha{/2 is a zero ofX3 — 2 € Z[X] is the property one needs.).

As a negative example let us state (at this point without proof) that far adN the set{>""" j a;7’ €
C | ao,...,a, € Z} is a subring ofC.

Generation of subrings and subfields

We first explain generation of subrings.

Lemma 3.1. Let R C S be rings.

(a) Leta € S. Then theevaluation map

d d
evy : R[X] — S, ZciXi — Zciai
i=0 i=0

is a ring homomorphism. The map is expressed more concisélyas> f(X) — f(a) € S.

(b) (The same as (a) for more than one element.)d,et S for i € I (some ‘indexing’ set). Then
theevaluation map

Vaye, P BIXi i €1 =S, f((Xi)ier) — f((ai)ier)

is a ring homomorphism.
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Proof. Exercise. O
Definition 3.2. Assume the set-up of Lemmal/3.1.
(a) The image ofv, is calledthe subring ofS generated by over R and denoted a[a].

(b) The image oév ,,),, is calledthe subring ofS generated by théu;);c; over R and denoted as
Rl(ai)ier]. F I ={1,2,3,...,n}is afinite set, we also writ&[ay, . .., ay].

Note thatR[a] and R][(a;);c7] are indeed subrings, since images of ring homomorphisms are al-
ways subrings. Very explicitly, the elements Bfa] are all of the forme:0 riat with d € N
andrg, ...,r, € R. Of course, sums, differences and products of such elements ameo&tiee same
form (providing a direct proof thaR|a] is a subring ofC).

Example 3.3. (a) The subrindgZ[2] of C is equal toZ.

(b) The subringZ[v/2] of C is the ring A discussed in the beginning of this section. Reason:

n

ST = 3 m224 (Y r2l D)
=0

i=0 even =1 odd

(c) The subring%[%] of C is contained inQQ and has infinite rank as an abelian group. Reason:
Consider a finite set of elemenfs, ..., 5= and let f be bigger than alky, ..., e,. One can

never expresgl? as aZ-linear combination of the elements of the chosen set. Hence, theretcanno
exist a finite generating set.

This (negative) property will be expressed belov%eis not integral overZ.

Let us also define the notion of the subfigieherated by a set of elements. It need not coincide with
the subring generated by the same set of elements because of the pogsiblece of non-invertible
elements.

Note that the intersection of any set of subfields of a fieid again a field. Hence, it makes sense to
speak of the smallest subfield bfcontaining a given set of elements; namely, one can define it as the
intersection of all subfields df containing that set of elements.

Definition 3.4. Let L/ K be a field extension ande L. DefineK (a) to be the smallest subfield bf
containinga. We say thaf{(a) is the subfield ofL. generated by over K or K adjoineda.

If a; € L fori € I (some ‘indexing’ set), we defif€(a; | i € I) to be the smallest subfield &f
containinga; for all ¢ € I. Itis also calledthe subfield ofZ. generated by over K or K adjoined
thea; fori € I.

Lemma 3.5. Let L/ K be afield extension ande L. ThenFrac(K|a]) = K(a).

Proof. The inclusionK[a] C K (a) impliesFrac(Kla]) C K(a). As K(a) is the intersection of all
fields containingk” anda, one also ha#((a) C Frac(K|al). O

We now give examples analogous to the previous ones.

Example 3.6. (a) The subringQ(2) of C is equal toQ.
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(b) The subringd(v/2) of C is equal toQ[v/2] because the latter ring is already a field: The inverse
ofa +bv/2 # 0is % — —2-+/2. Note that the denominator is nev@rFor, if it were, then
V2=¢%€eQ.

Below we will give a general argument that also implies this fact becg®swill turn out to be
algebraic overQ, in the definition to come.

(c) The subringQ[3] of Q is equal toQ.

Algebraic elements

Let us specialise to fields and |8t= K C S = L be a field extension and € L. The question we
are now going to address is whéf{a] is a finite or an infinite dimensiond{'-vector space.
The simple but very important idea is to consider the two alternatives:

(1) The elements = a°, a,a?, a3, a?, ... areK-linearly independent.
(2) The elements = a°, a,a?, a3, a?, ... areK-linearly dependent.

In case (1)K [a] is an infinite dimensionak’-vector space.
In case (2) there exists a linear combination

n

0= Zriai

=0

forsomen € N, r; € K for 0 < i < n andr,, # 0. By dividing byr,,, we can assume that the linear
combination takes the form )
e
0=a"+ Z ria’,
i=0

We can interpret this equality as follows: The monic polynonfigX) := X™ +r, 1 X" 1 + .- +
mX +ro € K[X] hasa as a zero:f(a) = 0. In the next proposition we see thAtq] is a finite
dimensionalK’-vector space, and in fact even a field itself, herdcg] is a finite field extension oK.

Definition 3.7. Let K be a field andL/ K a field extension.

An element: € L is calledalgebraic ovelX if there is a non-zero polynomigl € K[X] such that
f(a) =0 (i.e.ais a zero (also called root) of).

An element € L that is not algebraic oveK is also calledranscendental ovex.

Note that algebraic is gelative notion. An element is algebraaversome field.
Proposition 3.8. Let K be a field and./ K a field extension and € L.

(a) Theevaluation mapv,, : K[X] — L given byf — f(a) (see Lemma 3.1) is injective if and only
if a is transcendental ovek .

(b) If a is algebraic overk, then there is a unique monic polynomia), € K[X| such thatim,) =
ker(ev,) (i.e. the principal idealm,) is equal to the kernel of the evaluation map).

The polynomialn, is called theminimal polynomial ofa over K.
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(c) Leta be algebraic overs. Then the minimal polynomiah, € K[X] of a over K is irreducible
(as element of{[X]). It can also be characterised as the monic polynomiakipX| of smallest
degree having as a zero.

(d) Leta be algebraic ovetds. Then the induced map
eve : K[X]/(ma) = L, [+ (ma) — f(a)
is an injective field homomorphism and identifi€gX |/ (m,) with K[a] and K (a).

(e) Leta be algebraic over. ThenK (a) is a finite extension of and its degreéK (a) : K] is
equal to the degree of the minimal polynomiaj, of a over K. A K-basis ofK (a) is given by
1,a,a?,...,a% !, whered = [K(a) : K].

Proof. (a) If a is algebraic ovels, then there is a non-zero polynomjak K[X] such thatf(a) = 0.
This just means that is in the kernel of the evaluation map, &q, is not injective. Conversely, iv,

is not injective, then there is some non-zero polynonfial the kernel of the evaluation map. That,
however, just meang(a) = 0, whenceu is algebraic.

(b) We know thatK [X] is a principal ideal domain. Hence, the kerneleof, is a principal ideal,
S0, it is generated by one elemefit As ev, is not injective ¢ is assumed to be algebraig),is
non-zero. A generator of a principal ideal is unique up to units in the r@,. f is unique up to
multiplication by a unit ofK’, i.e. up to multiplication by an element froi \ {0}. If f is of the form
raX 4+ rg 1 X+ rg € K[X] with g # 0, thenm,, := %f = X4 4 T‘;—;IXCH o2
is the desired unique polynomial.

(c) Let f € K[X] be a nonzero polynomial such théfa) = 0. Thenf € ker(ev,) = (m,), So that
mg | f, implying that the degree of, is less than or equal to the degreefof

If m, were reducible, then we would hawe, = fg with f,g € K[X] both of smaller degree than
the degree ofn,. But0 = mg(a) = f(a)g(a) would imply thatf(a) = 0 or g(a) = 0. Both would
contradict the minimality of the degree of,.

(d) Sincem,, is irreducible,K[X]/(m,) is a field. The injectivity follows from the homomorphism
theorem for rings Proposition 1.36. Sinkdq] is a field, K'[a] = Frac(K|a]) = K (a) by Lemma3.5.
(e) is clear. Ol

Example 3.9.(a) Let K be a field. Everys € K is algebraic overK. Indeed,a is a zero of the
polynomialX — a € K[X].

(b) V2 is algebraic overQ. Indeed,\/2 is a zero of the polynomiaX? — 2 € Q[X]. Note that the
polynomialX — /2 may not be used here, since its coefficients are n@t'in

(c) = is transcendental ove®. This is the theorem of Lindemann (from analysis). It implies by
Galois theory that the circle cannot be squared using compass and B¥ethis we refer to the
ancient problem of constructing a square whose area is equal to tregifen circle, just using
a (non-marked) ruler and a compass.

(d) = is algebraic ovelR (special case of (a)).

(e) i = v/—1is algebraic overQ.
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Let us be more explicit about the field(a). Write the minimal polynomial of. over K asm, =
X% 4 cqg_ 1 X1 4 ... + ¢o. We know that therf{ () can be represented agiavector space with
basisl, a,a?,a?, ..., a%'. Suppose we have two such elements > ! r;a’ andf = > s;a’
(with r;, s; € K). Of course, the addition i (a) is the addition in. and comes down to:

d—1

a+f= Z(m + s;)a’.

1=0

But, how to multiply them and express the result in terms of the basis? Of ¢cowgswmve to multiply
out, yielding

2(d—1)
a-f= Z ( Z risj)a”.
n=0 ijstitj=n

But, what to do witha™ for n > d? Apply the minimal polynomial!
at = —(cd,ladfl +--+ co).

We can use this to eleminate alt for n > d. Suppose the highest occuring powelads ™ with
m > d. Then, we multiply the above equation through withi—¢ and obtain:

a™ = —(cg_1a™ "+ -+ coa™ ).

Using this, we are left with powerg™ ! at worst, and can apply this process again and again until
only powersa™ with n < d — 1 occur.

Example 3.10. Consider the exampl®(1/5). The minimal polynomial of/5 over Q (say, as an
element oR) is X2 — 5, soQ(+/5) is the image of)[X]/(X? — 5) in R. The above)-basis isl, v/5.
So, we express any elemen@Qh/5) asa + bv/5 witha, b € Q.

Now let two such elements be giver= ay + a1v/5 and 3 = by + b1+/5. Then

a+ B = (ao+bo) + (a1 + b1)V5
and

a- 0= (CL() + a1\f5)(bo + bl\/g) = agpby + \/5(a0b1 + albo) + albl(\/g)Q
= (aobo + ba1b1) + v/5(aght + aiby).

Integral elements

Integral elements are generalisations of algebraic elements in the congexingfR instead of the
field K. For algebraic elements the minimal polynomial is the uniquaic polynomial of mini-

mal degree annihilating the element; but, in fact, we do not really care whittgrolynomial is
monic, since we can always divide by the leading coefficient. So, theelbidefining the minimal
polynomial of an algebraic element as a monic polynomial is actually quite aghitrae might do
it differently without changing anything in the theory. Over rings the situasaifferent, since we
cannot divide by the leading coefficient in general.
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Why are monic minimal polynomials useful? We want to construct extensionsL L& be a field
extension and € L be algebraic ove with minimal polynomialm, = X" +c,_1 X" 1+ -+ c.
This just means

a" = —(cp_1a" "t + -+ cp),

so that we can expresd in terms of linear combinations with coefficients i of powers ofa of
lower exponents. This is precisely what we need in order for

{rpqa" Pt | eKie{l,...,n—1}}

to be aring (as calculated in the discussion of algebraic elements).
Suppose now we work over a riffgjinstead of a field<. Let .S be a ring containingz. Assume for a
moment that: € S satisfies

cpa = —(cn_la’%1 + -+ co),

i.e. a non-monic linear combination with coefficientsiin Note that we now cannot expres$ as a
linear combination of lower powers afwith coefficients inR, unless:,, € R*. Hence, the set

{rn_la”_1+-~-+ro]riER,ie{l,...,n—l}}

is not stable under multiplication!

The morale is that we must use monic minimal polynomials (at least polynomials videdieg
coefficient is a unit), when we work over rings and want to construetresions similar to those over
fields.

This motivates the following fundamental definition.

Definition 3.11. Let R C S be rings. An element € S is calledintegral overR if there exists a
monic polynomialf € R[X] such thatf(a) = 0.

Note that integrality is also a relative notion; an element is integval some ring. Also note the
similarity with algebraic elements; we just added the requirement that the polyinoeniaonic, for
the reasons explained above.

Example 3.12.(a) The elements @ that are integral ovetZ are precisely the integers @f.
(b) V2 € Ris integral overZ becauseX? — 2 annihilates it.

(c) 13—‘/5 € R is integral overZ becauseX? — X — 1 annihilates it.

d) a:= % € C is not integral ovelZ becausef = X? — X + % annihilates it. If there were
a monic polynomiah € Z[X] annihilating a, then we would havé = fg with some monic
polynomialg € Q[X]. Sinceh € Z[X], a lemma of Gaul} that is proved in most basic algebra
classes implies that bothand g are inZ[ X |, which is a contradiction.

(e) LetK be afield andS a ring containingK (e.g.L = S a field as above) and € L. Thena is
integral overK if and only ifa is algebraic overk'.

Indeed, asX is a field any polynomial with coefficients ki can be made monic by dividing by
the leading coefficient. So, if we work over a field, then the new notion gfatitg is just the
notion of algebraicity from above.
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Algebraic field extensions

Let us now return to field extensions.

Definition 3.13. Let K be a field and./ K a field extension.

The field extensiol./ K is called algebraic(alternatively, L is called analgebraic field extension
of K) if everya € L is algebraic overk.

If L/ K is not algebraic, it is calledranscendental

Proposition 3.14. Every finite field extensioh/ K is algebraic. It can be generated by finitely many
elements of. (that are automatically algebraic ovek).

Proof. Let a € L be any element. SincE[a] is a subfield ofL, it must also be a finite extension
of K. Henceg is algebraic over'.

We now show thaf./ K can be generated by finitely many elementd.dfvhich are automatically
algebraic, since we have already seen thAak is algebraic). Take any; € L\ K. One has
K C K(ay), hence[lL : K| > [L : K(a1)]. If K(a1) # L, then takeay € L\ K(a1). We get
K(a1) € K(ay,a2) C L, hence[L : K(a1)] > [L : K(a1,a2)]. Like this we continue. As the
degree is a positive integer greater than or equdl tiis process will end at some point and then
K(ay,as,...,a,) = L. Ol

Proposition 3.15. Let ./ K be a field extension ang, ..., a, € L. Then the following two state-
ments are equivalent:

() Allthea; fori =1,...,n are algebraic overk.
(i) The field extensiok (a1, ...,a,)/K is finite.

Proof. (i) = (ii): Proposition 3.8 and induction.
(i) = (i): Every finite field extension is algebraic by Proposition 3.14, henceldiyition thea; for
1=1,...,n are algebraic ovekK. O

Proposition 3.16. Let M/ /L /K be field extensions.
(a) Assumd./K is algebraic andu € M is algebraic overL. Thena is algebraic overk .
(b) (Transitivity of algebraicity// K is algebraic if and only if\/ /L and L./ K are algebraic.

Proof. (a) Letm, = Z?:o c; X' € L[X] be the minimal polynomial ofi over L. The coefficients
¢; € L are algebraic oveK. Hence, the field extensiol := K(cg,c1,...,cq—1) of K is finite.
Of courseq is algebraic oved, henceM (a) is a finite field extension af/. By multiplicativity of
degrees) (a) is a finite field extension of, hence algebraic. In particular,s algebraic ovei.
(b) One direction is trivial, the other follows from (a). O

A very important source of algebraic field extensions (for this courgefamber fields, whose defin-
inition we recall.

Definition 3.17. A finite field extensioix” of Q is called anumber field
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Example 3.18.(a) Q is a number field (butR is not a number field).

(b) Q[X]/(f(X)) is a number field with an irreducible non-constant polynonfia Q[.X].

(c) Q(Wd) = {a+bVd | a,b € Z} for 0,1 # d € Z square-free, is a number field of degrzéa
guadratic field).

Integral ring extensions

We just saw how algebraicity and finiteness of field extensions are reldow want to generalise
this to integral elements over rings. Of course, vector spacds/ {if is a field extension, we saw
as aK-vector space and that was a very important tool) will have to be replacedbblules. The
important thing to remark is that one does not have the notion of dimensiomingsr so the proofs
will have to change a bhit.

Recall from Linear Algebra:

Proposition 3.19(Cramer’s rule) Let R be a ring andM = (m; ;)i<i,j<n b€ @ann x n-matrix with
entries inR. Theadjoined matrixs defined as\/* = (m; ;)1<i j<, With entries

m; ;= (—1)"7 det(M; ),

wherel; ; is the matrix obtained from/ by deleting theé-th column and thg-th row.
Then the following equation holds:

M- M* = M*- M = det(M) - idyxy.
We can now state and prove the following equivalent description of irtsgra

Proposition 3.20. Let S be aring,R C S a subring andz € S. Then the following statements are
equivalent:

(i) aisintegral overR.
(i) Rla] C Sis afinitely generated&-module.
(i) RJa] is contained in a subring” C S such thatT" is a finitely generated:-module.

(iv) There is a finitely generate®-moduleT C S which containsl and such that multiplication by
a sendsT” into itself.

Proof. (i) = (ii): As a is integral overR, a relation of the form
a" = —(cp 10" Fep0d" 4 F o)

holds. HenceR[a] can be generated as &module by{1,a,a?,...,a" 1}.

(i) = (iii): Just takeT := R]a].

(iii) = (iv): Take the samé".

(iv) = (i): We must make a monic polynomial with coefficients ihannihilatinga. For this we
use Cramer’s rule. A is finitely generated as aR-module, we may pick a finite generating set
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{t1,...,tn}, i.e. any element of € T can be represented as= »"_, r;t; with somer; € R for

je{l,...,n}.
In particular, as multiplication by sendsI to itself, at; can be written as

n
ati = Z dj,itj-
j=1

Form the matrixD = (d; ;)i<i j<n- It has coefficients irR. Let M := aid,,x, — D be a matrix with

coefficients inS. Note that we have
t1
to

M| . |]=0
tn
By Cramer’s rule, it follows
t1 t1 1
to t2 t2
M*M | = det(M)idpxn | = det(M) . | =0,
tn tn tn

so thatdet(M)t; = 0forall j € {1,...,n}. But,asl = 377, e;t; for somee; € R, it follows
det(M) = det(M) -1 =" e;det(M)t; = 0.
j=1

Hence,
f(X) :=det(X -idpxn — D)

is @ monic polynomial with entries iR such thatf(a) = 0, whenceu is integral overR. O

Définition. A ring extensiom? C S is calledintegralif all s € S are integral overR.

Corollary 3.21. Let S be aring andR a subring. Furthermore, lai4, ..., a, € S be elements that
are integral overR.
ThenR]ay,...,a,] C Sisintegral overR and it is finitely generated as aR-module.

Proof. Note that due to the implication (iig> (i) of the Proposition it suffices to prove finite genera-
tion. We do this by induction. The case= 1 is the implication (i)=- (ii) of the Proposition.

Assume the corollary is proved far— 1. Then we know thaR[ay, ..., a,—1] is finitely generated
as anR-module, say, generated Iby,...,b,,. As a, is integral overR, we have thatR[a,| is
generated byt, a,,a?,...,a’, for somer € N. Now, R[a1, ..., a,_1,ay] iS generated by;a?, with
ie{l,...,m}andj € {0,...,r}. O

Corollary 3.22. Let R C S C T be rings. Then ‘transitivity of integrality’ holds:

T/Risintegral < T/Sisintegral andS/R is integral.
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Proof. This works precisely as for algebraic field extensions!

The direction = is trivial. Conversely, lett € T. By assumption it is integral ove$, i.e.t is
annihilated by a monic polynomi&™ + s, 1 X"~ +--- + 59 € S[X]. SinceS is integral overR,
all the coefficients lie in the finitely generat&dmoduleU := R[sq, s1, . .., sn,—1]. As the coefficients
of the minimal polynomial of all lie in U, it follows thatt is integral oveil/, whencel [¢] is finitely
generated ovelt/. But, asU is finitely generated oveR, it follows thatU|¢] is finitely generated
over R (a generating system is found precisely as in the previous proof). rticylar, ¢ is integral
overR. O

Algebraic closure

We now introduce an important notion in field theory.
Definition 3.23. (a) LetL/K be a field extension. The set
Ky :={a € L | ais algebraic ovek}
is called thealgebraic closure oK in L.
Note thatL/ K is algebraic if and only ifK;, = L.

(b) AfieldK is calledalgebraically closed for any field extensiod./ K one hask = K.

Note that this means that there is no proper algebraic field extensién of

Proposition 3.24. Let ./ K be a field extension. The algebraic closurdin L is an algebraic field
extension of<.

Proof. Firstly,0,1 € Ky isclear. Leta,b € K. We know thati (a, b) is an algebraic field extension
of K. Thus,K(a,b) C K. Consequently-a, 1/a (if a # 0), a + banda - b are inK (a, b), hence,
also inK . This shows thaf{;, is indeed a field. O

Proposition 3.25. A field K is algebraically closed if and only if any non-constant polynonfiat
K[X] has a zero ink..

Proposition 3.26. Let K be a field. Then there exists an algebraic field extensigii such thati’
is algebraically closed.
The fieldK is called analgebraic closure oK (it is not unique, in general).

The proof is not so difficult, but, a bit long, so | am skipping it.
Example 3.27.(a) C is algebraically closedR is not. R¢ = C.
(b) Qc = {x € C | x is algebraic ove} =: Q. We have) is an algebraic closure df.

(c) BothQ and C are algebraically closed, bu€ is not an algebraic closure of) because the
extensiorC/Q is not algebraic.

(d) Note thatQ is countable (Exercise), since we can count the set of polynomials véfficients
in Q and each polynomial only has finitely many zeros; but, as we kidasynot countable.
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Integral closure

We now generalise the notion of algebraic closure to rings.

Definition 3.28. Let S be a ring andR C S a subring.

(a) The setRg = {a € S | aisintegral overR} is called theintegral closure of? in S (compare
with the algebraic closure ak in S — the two notions coincide R is a field).

An alternative name isnormalisation ofR in S.

(b) Ris calledintegrally closed inS if Rg = R.

We will see in a moment that the integral closurdioh S is integrally closed inS, justifying the
names.

(c) An integral domainR is calledintegrally closedi.e. without mentioning the ring in which the
closure is taken) iR is integrally closed in its fraction field.

Note thatS is anintegral ring extension oR if Rg = S.

Our next aim is to show in an elegant way th@¢ is a ring. The idea is the same as for algebraic
elements; we showed th&i(a) is a finite extension ok if and only if a is algebraic ovefs. Then

it is clear that sums and products of algebraic elements are algebraicsbdbhatfinitess property is
clear.

Corollary 3.29. Let R C S be rings.
(8) Rgis asubring ofs.

(b) Anyt € S that is integral overRg lies in Rg. In other words,Rg is integrally closed inS
(justifying the name).

Proof. (a) Just as for algebraic extensions! keb € Rg. As both of them are integral ovét, the
extensionR|[a, b] is finitely generated as aR-module, hence integral. Thus+ b, a - b are integral,
whencea + b anda - b are inRg, showing that it is a ring (sind@and1 are trivially in Rg).

(b) Any s € S thatis integral oveRg is also integral oveR (by the transitivity of integrality), whence
s € Rg. ]

Definition 3.30. Recall that anumber fieldK is a finite field extension d. Thering of integers
of K is the integral closure of. in K, i.e.Zg. An alternative notation i) .

Example 3.31.Letd # 0, 1 be a squarefree integer. The ring of integer€gh/d) is
(1) Z[Vd],ifd=2,3 (mod 4),

(2) Z[Y4,ifd =1 (mod 4).

(Proof as an exercise.)

Proposition 3.32. Every factorial ring is integrally closed.
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Proof. Let R be factorial with fraction fieldx. Letz = g € K be integral oveR. We assume that
andc are coprime (i.e. do not have a common prime divisor). We want to show: thaR.
Start with the equation annihilating

1 pn bnfl
0=2"+ap 12" +-+a=—+ap-1——+ - +ao.
C C
Multiply through with¢™ and moveb™ to the other side:
b" = —c(an_lb”*1 +can bV P+ 4 cnflao),

implying ¢ € R* (otherwise, this would contradict the coprimeness ahdc), so thatr = bc~! €
R. O

Proposition 3.33. Let R be an integral domaink = Frac(R), L/K a finite field extension and
S := Ry, the integral closure of? in L. Then the following statements hold:

(@) Everya € L can be written ag = > withs € Sand0 # r € R.
(b) L = Frac(S) andS is integrally closed.
(c) If Risintegrally closed, thels N K = R.

Proof. (a) Leta € L have the minimal polynomial

Ma(X) —xngy Snlyn-1y Cn2ym-2 QO € K[X]
dn—l dn—2 d(]
with ¢;,d; € Randd; # 0 (fori =0,...,n—1). We form a common denominatdr.=dgy-dy - - - - -

dn_1 € R, plug ina and multiply through withd™:

Cn_ld

2
0= dnma(a) — (da)n + y Cn—2d

(da)"~" + (day™2 4.4 2

€ R[X],
n—1 n—2 dO [ ]

showing that/a is integral overR, i.e.da € S, or in other wordsq = 7 for somes € S.

(b) By (a) we know thatl. is contained in the fraction field &f. As S is contained inZ, it is clear
that also the fraction field of is contained inZ, showing the claimed equality. Thétis integrally
closed means that it is integrally closed/inWe have already seen that the integral closur® of L
is integrally closed ir.

(c) This is just by definition: Ik € S, then itis integral oveR; if sis also inK, then ask is integrally
closed (inK), it follows thats € R. The other inclusior N K O R is trivial. O

Appendix: Background on fields

In this section we recall some background on field extension.

Definition 3.34. A commutative ringR is called afield if R* = R\ {0}, that is, if all non-zero
elements are (multiplicatively) invertible.
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Definition 3.35. Let L be a field.

A subringK C L is called asubfieldif K is also a field. In that case, one also speaké @fs afield
extensiorof K, denoted ad./ K or K — L.

If L/K is a field extension, theh is a K-vector space with respect to the naturaland-, i.e. + :
LxL— L, (z,y) — x+y (the+ is the+ of the fieldL) and scalar multiplication+ : K x L — L,
(z,y) — x -y (the- is the- of the fieldL).

Thedegreeof L/ K is defined a$L : K| := dimg (L), the dimension of as K -vector space.

One says thal./ K is afinite field extension ifL : K] < occ.

Lemma 3.36(Multiplicativity of field degrees) Let K C L C M be finite field extensions. Then
[M: K] = [M: L|[L : K]

(in other words:dimy M = (dimg L)(dimg M).).

Proof. Exercise. O

Proposition 3.37. Let R be an integral domain. Then the following statements hold:

(&) The relation
(7'17 81) ~ (7’2,82) & Tr189 = 1281

defines an equivalence relation éhx (R \ {0}). Denote the equivalence class of an element
(r,s) by =. LetFrac(R) denote the set of equivalence classes.

(b) Define+ and- onFrac(R) by

T ) 17189 + 1281 1 T9 172
-4+ ==———" and —.—=:=—"=

S1 52 . 5182 S1 52 . 5152.

ThenFrac(R) is a field with respect te- and- with 0 = Y and1 = 1.

One callsFrac(R) thefraction field(or field of fractiong of R.
Proof. It suffices to make some easy checks. O

Note that it is essential thd? is an integral domain. We will later in the lecture identify the fraction
field with the localisation of? at the prime idea(0).

Proof of Proposition 3.25(a) Firstly,0,1 € K is clear. Leta,b € K. We know thatK (a, b) is an
algebraic field extension oK. Thus,K (a,b) C K. Consequently:-a, 1/a (if a # 0), a + b and
a-bareinK(a,b), hence, also irk(;,. This shows thaf(;, is indeed a field.

(b) AssumeK is algebraically closed and lgt € K[X] be a non-constant polynomial. Lgt=
Z?:o ¢; X" be a non-constant irreducible divisor pf The natural injectiork — K[X]/(g) =: M

is a finite field extension of¢ (remember thafg) is a maximal ideal of the principal ideal domain
K[X]). Now, the class := X + (g) € M is a zero ofg, since

d
g9(a) = g(X + (9)) = Zcz-(X +(g)' = ZCiXi +(9) =0+ (g).
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As K is algebraically closed}/ = K, whencex € K.

Conversely, suppose thAtis such that any non-constant polynomfat K [X| has a zero irk. This
means that there are no irreducible polynomial&’iiX| of degree strictly bigger thah Let L/ K be
a field extension and € L algebraic overs. The minimal polynomiain, € K[X] is an irreducible
polynomial admitting: as a zero. Hence, the degreemnf is 1, whencen, = X —a, sothata € K,

showingKy = K. O

For constructing field extensions one needs irreducible polynomialse Binetwo very useful criteria
for deciding that a given polynomial with rational coefficients is irreducilite reduction criterion
and the Eisenstein criterion.

Let A be a UFD. A polynomialf(X) = Z;‘LO a; X' € A[X] is calledprimitive if the greatest
common divisors of its coefficients is In particular, monic polynomials are primitive.

In order to understand the proofs we must recall some theory aboublreomial ring A[X] for a
UFD A.

Theorem 3.38(Gaul3) Let A be a UFD with field of fractiongy.
(a) A[X]isaUFD.
(b) Letf, g € K[X] be monic polynomials. Ifg € A[X], thenf, g € A[X].

(c) Letf € A[X] be a non-constant primitive polynomial. Then the following statements are-equ
alent:
(i) fisirreducible inA[X].
(i) fisaprime elementofl[X].
(i) fis aprime element oK' [X].
(iv) fisirreducible inK[X].

Proof. Any book on Basic Algebra. O

Proposition 3.39(Reduction criterion) Let A be a UFD andf(X) = Z?:o a; X' € A[X] anon-
constant primitive polynomial. For a prime element A we consider theeduction mod:

T AX] - A/p)X], D X' wGX,
1=0 =0

which is a ring homomorphism (hetg denotes the class of in A/(p)).
If p does not dividei; andn(f) is irreducible inA/(p)[X], thenf is irreducible in K [ X].

Proof. Suppose the contraryf = gh with g,h € A[X] non-constant. Hence, we haw€f) =

mw(gh) = w(g)m(h). As7(f) is irreducible, it follows thatr(g) or w(h) is constant.

We now usep { aq. We writeg(X) = >7_; b; X andh(X) = Y7, ¢; X" with b, # 0 # ¢,. Since
aq = bycs, we obtain thap 1 b, andp 1 c¢;. Thus, the degree of(g) is equal to the degree gf and
the degree ofr(h) is equal to the degree af One thus sees that eithgis constant of. is constant.
This contradiction finishes the proof. O
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Example 3.40. e Considerf;(X) = X2+ X +1 € Z[X], f2(X) = X? + 15X — 53 € Z[X],
f3(X) = X? 4+ 14X — 55 € Z[X] and f4(X) = X2 + 15X — 54 € Z[X].
These polynomials are monic, hence primitive. Note that the polynoadial X + 1 € Fo[X]
is irreducible (for the polynomials of degree at m@st suffices to verify that they do not have
a zero).

The reduction criterion moduldthus shows thaf; and f; are irreducible as elements Qff X .
This argumentation does not applyfe The reduction of; modulo3 is X2 +2X +2 € F3[X]
which is irreducible; hence, we obtain the same conclusion. ffarne cannot use reduction
modulo2 nor modulo3. In fact, no criterion can work becausg? + 15X — 54 = (X +
18)(X —3).

e LetA = Q[T and consider a polynomial of the forfifT, X) = S°%_, a;(T) X € A[X]. Note
that T is a prime element d@[T'): if T | g(T)h(T") with g, h € Q[T7], then eitherl" | h(T') or
T |g(T).

The reduction of a polynomial(T") € A[T] moduloT is just the evaluation at zera,(0): if
a(T) =bo+bT+---+b.1°, then the class af(7") and the class oy = a(0) moduloT are
the same becauséT’) — by = T - (b1 + boT + ... b1 1) € (T).

Hence, if f(7, X) is monic in the variableX and f(0, X) is irreducible, thenf (7, X) is
irreducible in A[X] = Q[T X].

e The polynomialX? + X +2TX +5T2X + T3+ 1 € Q[T, X] is irreducible because it is monic
(in the variableX) and f(0, X) = X2 + X + lisirreducible.

Proposition 3.41(Eisenstein criterion)Let A be a UFD andf(X) = Z?:o a; X' € A[X] anon-
constant primitive polynomial. Letc A be a prime element such that

ptag, pla;forall0<i<d—1 andp®¢tao.
Thenf is irreducible K[ X].

Proof. Suppose the contrary and wrife = gh with g(X) = >0 b,X" € A[X] andh(X) =
Yoo c; X" € A[X] non-constant andl, # 0 # cs. Because ofiy = b,.c,, the conditionp { aq
impliesp 1 b, andp 1 cs. Because ofiy = bgcg, the condition | ag andp? 1 ag imply without loss
of generality thap | by andp 1 c.

Let ¢ be the smallest integer betwegmndr such thap { b,. Hence,l < ¢ < r < d because | by
andp 1 b,. Writing ¢; = 0 for i > s we find

ay =bocy +brci—1 + -+ b1c1 + bico
~—~ ~ ~—~
divisible byp divisible byp not divisible byp
This contradiction finishes the proof. O

Example 3.42. e Considerf;(X) = X?+2X +2 € Z[X]and fo(X) = X7 +72X2 + 111X —
30 € Z[X]. These polynomials are monic, hence primitive. The Eisenstein criterion with
p = 2 shows thatf; is irreducible inQ[X]. The irreducibility of f, follows from the Eisenstein
criterion withp = 3.
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e Letp be a prime number and = F,[T]. Let f(T,X) = X? — T € A[X] = F[T, X].
As in Example 3.40 on sees thats a prime element ofl. The polynomialf (T, X) satisfies
the assumptions of the Eisenstein criterion as a polynomial in the varigbfer the prime
elementl’. Hencef (T, X) is irreducible.

This polynomial is actually an example of an irreducible, imseparablg@olynomial.
e Letp be a prime number. Consider the polynomi&l —1 € Q[X]. Itis notirreducible because

XP—1=(X-1)(XP 14+ XP24... 4 X +1) € Z[X].

=:®p(X)

One calls®, (X') thep-th cyclotomic polynomial (in German: Kreisteilungspolynorje now
show thatd,, is irreducible inQ[X].

It suffices to show thab,(X + 1) is irreducible (because i®,(X + 1) = f(X)g(X), then
Q,(X) = f(X —1)g(X —1)). We have

(I)p(X + 1) =

: —1
(X+1)P-1 (X+1)P-1 P (?)X! b -
fry prd 2 2 :Xp p XZ
(X+1)-1 X X +;(l) ’

which is an Eisenstein polynomial for the pripdecause | (¥) forall1 <i < p—1and
p* 1 (}) = p. Hence®,(X) is irreducible inQ[X].

4 Affine plane curves

Definition 4.1. Let K be a field and./ K a field extension. Let € N. The set of_-points of affine
n-spaceds defined as\" (L) := L" (i.e.n-dimensionalL-vector space).
LetS C K[Xy,...,X,] be asubset. Then

Vs(L) :={(z1,...,2zn) € A™(L) | f(21,...,2,) =0forall f € S}

is called the set of.-points of the affine (algebraic) set belongingsto

If L = K is an algebraic closure ok, then we also calVs(K) theaffine set belonging t&.

If the setS consists of a single non-constant polynomial, th&y{K) is also called ahyperplane
in A(K).

If n =2 andS = {f} with non-constanf, thenVs(K) is called aplane curvgbecause it is a curve
in the planeA?(K). Its L-points are defined ags (L) for L/ K a field extension.

Convention: When the number of variables is clear, we wiif& | for K[ X1, ..., X,]. In the same
way atuple(xy, ..., z,) € A"(K) is also abbreviated asif no confusion can arise.

The letter 'V’ is chosen because of the word ‘variety’. But, we will defaffine varieties below as
‘irreducible’ affine sets.

Example 4.2.(a) K =R,n =2, K[X,Y] > f(X,Y) = aX +bY +cnon-constant. Thel ;,(R)
isaline y = —gx — ¢ if b # 0; if b = 0, then it is the line withr-coordinate—¢ and any
y-coordinate).
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(b) K=R,n=2K[X,Y]> f(X,Y) = X?+Y? — 1. ThenV,,(R) is the circle inR* around
the origin with radiusl.

(©) K =Q, f(X,Y):= X2+ Y2 +1. NoteV ;1 (R) = 0, but(0,4) € Vi,(C).

(d K =Fy, f(X,Y) = X?+Y2+1=(X+Y +1)? € Fy[X]. Because of (a,b) = 0 <
a+b+1=0foranya,bc L, L/Fy, we have

V{f}(L) = V{X—FY—FI}(L)a
which is a line.

Lemma 4.3. A plane curve has infinitely many points over any algebraically closed fisldre
precisely, letK be a field, K an algebraic closure of{ and f(X,Y) € K[X,Y] a non-constant
polynomial.

ThenV;, (K) is an infinite set.

Proof. Any algebraically closed field has infinitely many elements. This can be priagd Euclid’s
argument for the infinity of primes, as follows. Suppdsenly has finitely many elements, . . . , a,,.
Form the polynomiah(X) := 1 + [, (X — a;). Note thatg(a;) = 1 # Oforalli =1,...,n.
Hence, we have made a polynomial of positive degree without a zertsadastion.

Back to the proof. We considgras a polynomial in the variablg with coefficients inK'[X], i.e.

d
FXY) = a(X)Y" with a;(X) € K[X].
=0

7

First case:d = 0, i.e. f(X,Y) = ao(X). Letz € K be any zero ofiy(x), which exists agy is
algebraically closed. Nowr, y) satisfiesf for anyy € K, showing the infinity of solutions.

Second casei > 0. Thena,(z) # 0 for all but finitely manyz € K, hence, for infinitely many.
Note that the polynomiaf(x,Y) = Z?:o a;(z)Y* has at least one zeig so that(z, y) satisfiesf,
again showing the infinity of solutions. O

Example 4.4. Let K be a field and considef(X,Y) = X2 + Y2,

The only solution of the forrfw, 0) is (0,0) in any field K. Suppose noWs, y) is a solution with
y # 0. Thenz? = —y?, or 22 = —1 with z = ..

Hence,Vy(K) = {(0,0)} ifand only if X* = —1 has no solution ink’.

In particular, Vs (R) = {(0,0)} (but: V{1 (C) = Vix_iv}(C) UV x4ivy(C), union of two lines)
andVy sy (Fp) = {(0,0)} ifand only ifp = 3 (mod 4).

Example 4.5. Let K be afield andf(X) = X3+ aX?+bX +c be a separable polynomial (meaning
that it has no multiple zeros ové¥).

Any plane curve of the foriiy2_(x)y is called anelliptic curve It has many special properties
(see e.g. lectures on cryptography).

Definition 4.6. Let X’ be a set and) a set of subsets oF (i.e. the elements @ are sets; they are
called theopen sets
ThenQ is called atopology onX (alternatively: (X', O) is called atopological spacef
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(1) 0, X € O (in words: the empty set and the whole space are open sets);

(2) if A; € Ofori € I, thenJ,.; A; € O (in words: the union of arbitrarily many open sets is an
open set);

3) if A, B € O,thenANB € O (in words: the intersection of two (and, consequently, finitely many)
open sets is an open set).

AsetC C X is calledclosedif X\ C' € O (in words: the closed sets are the complements of the open
sets).

The basic example known from any first course on Analysis is the topao@yor, more generally,
onR". In the latter case one definésto consist of those sefg C R™ such that for every € U
there ise > 0 such that ally € R™ with |y — 2| < € belong toU. These are by definition the open
subsets oRR™. It is a well-known exercise to show thétis indeed a topology oR". One be aware
that this standard topology behaves very differently from the topology/dik’) that we are going to
define now.

Proposition 4.7. Let K be a field anch € N. Define
O :={A"(K)\Vs(K)|SCK[Xy,...,X,]}.

Then(A"(K), Q) is a topological space. The thus defined topology is calle@#reski topology on
A"(K).

Note that, in particular, the closed subsetsAdf( K') for the Zariski topology are precisely the affine
sets.

Before we prove this proposition, we include the following lemma. Recall tieaguim and the product
of two idealsa, b of some ringR are defined as
a+b={a+blacabe b}anda-b:{Zai-bi |meN,a; €a,b; ebfori=1,...,m}.

=1

It is clear that both are ideals.

Lemma 4.8. Let K be afield,L /K afield extension and € N.

(a) V{(O)}(L) = A"(L) andV{(l)}(L) = 0.

(b) LetS C T C K[Xy,...,X,] be subsets. Thewr(L) C Vs(L).

(c) LetS; © K[Xy,...,Xy] for i € I (some indexing set) be subsets. Thgn_ s (L) =
mie[ Vs, (L).

(d) LetS C K[Xy,...,X,]andleta:= (s | s € S) < K[Xy,...,X,] be the ideal generated k.
ThenVg(L) = Vq(L).

(e) Leta,b < K[X1,...,X,] beideals such that C b. ThenVy.x(L) = V4(L) U Vy(L).
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Proof. (a) and (b) are clear.
(c) Letz € A™(L). Then

zeVy, (L) evfelJSi:fl@)=0sViel:VfeS: fz)=0
iel
eViel:zeVs(L)eze(|Vs(L).
el

(d) The inclusionV4(L) C Vs(L) follows from (b). Let nowz € Vg(L), meaning thaff (z) = 0 for
all f € S. Since anyy € a can be written as a sum of products of elements fnt follows that
g(z) = 0, proving the reverse inclusion.
(e) Sinceab C aandab C b, (b) gives the inclusion¥, (L), Vo(L) C Vau(L), henceVq(L)UVy(L) C
Vao(L). For the reverse inclusion, let¢ V,(L) U V,(L), meaning that there exisfse a andg € b
such thatf(z) # 0 # g(z). Thus,f(z) - g(z) # 0, whencer & Vqp(L). O

Proof of Proposition 4.7 We need to check the axioms (1), (2) and (3). Note that (1) isLemma 4.8 (a).
(2) For open setd" (L) \ Vs, (L) with S; C K[X] fori € I, we have:{J,.;A"(L) \ Vs, (L) =
AM(L)\ My Vs, (L) MO0 D)\ V6, (D).

(3) By Lemma 4.8 (d), any two open sets are of the fafi L)\ V(L) andA™(L)\ V(L) with ideals

a,b < K[X]. Itfollows: (A"(L)\ Va(L)) N (A™(L)\ Vo(L)) = A™(L)\ (Va(L) U V(L)) “™245E)
A™(L) \ Vao(L). O

Definition 4.9. Let X be a subset oA™(K'). We define theanishing ideal oft’ as
Ix ={f € K[X]| f(z) =0forallz € X}.
The quotient ringK[X] := K[X]/Z~ is called thecoordinate ring oft'.
Lemma 4.10. (a) The vanishing ideal is indeed an ideal/6fX].
(b) The ring homomorphism
¢: K[X] — Maps(X,K), f+ ((@1,...,30) = f(z1,...,20))

(with + and- on Maps(X', K') defined pointwise({f + ¢)(z) := f(z) + g(z) and(f - g)(z) :=
f(z) - g(z)) induces an injection of the coordinate rigg[X'] into Maps(&X', K).

Proof. (a) is trivial. (b) is the homomorphism theorem. O

We may even replacklaps(X, K) by C(X,A'(K)), the continuous maps for the Zariski topology
(see exercise).

The coordinate ring consists hence of the polynomial functions ftoto K. There are some special
ones, namely, the projection to th¢h coordinate, i.e(xy,...,z,) — a;; this clearly deserves the
namei-th coordinate functionlet us denote it by;. The namecoordinate ringis hence explained!
Note that any functiorf (X1, ..., X,,) +Zx = 3. ai,. i, Xi' ... Xi» 4+ Ty is a combination of the
coordinate functions, namely, ai17,__7,~nzc’f oxin,
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Lemma 4.11. Let L /K be a field extension§ C K[Xy,...,X,] be a subset¥ = Vg(L) the
L-points of the associated affine algebraic set.

(a) EveryL-point(ay,...,a,) € X(L) gives rise to thé{-algebra homomorphism
eV(a1,..-,an) : K[X] = K[Xl, Ce ,Xn]/IX — L, g(Xl, . ,Xn) +IX — g(al, NN an).
(b) If L = K, then the kernel ofv,, . ,.)isequalto(X; —ay,..., X, — ap).

Proof. (a) is clear.

(b) By a variable transformatiol; := X; — a; (formally, we take theK-algebra isomorphism
K[Yi,...,Y,] Z25%%, KXy, ..., X,]), we may assume théit= a; = as = --- = a,. The

ideal (X1, Xo,...,X,) is clearly maximal because the quotient by ifis As (X1, X»,..., X,) C
ker(ev(g,.. o)) it follows that the two are equal (asr(q,. ¢y is not the zero-map — look at con-

g0

stants). O

Example 4.12. e Line f(X,Y) =X -Y +2 € R[X,Y], L :=V;(R):

We haveZ, = (X — Y + 2), i.e. that the vanishing ideal df is the principal ideal generated
by f. This is a consequence of Proposition 4.13, which will be proved below.

In this case, the coordinate ring is just the polynomial ring in one variable:
RIL] =R[X,Y]|/I, =R[X,Y]/(X - Y +2) ZR[T],

where the lastisomorphism is given by sending the clag&XfY') to g(7', T + 2). The reason
that this works is that the class ®fis equal to the class of + 2 in R[£]. In other words, the
coordinate functions satisfy the equality= r; + 2.

e Parabolaf(X,Y):= X?-Y +2 € R[X,Y], P :=V;(R):
Again by Proposition 4.13 we ha?® = (X2 — Y + 2).
We conclude that the coordinate ring is

R[P] = R[X,Y]/Zp = R[X,Y]/(X? - Y +2) = R[T],

where the last isomorphism is given by sending the clag$XfY') to g(T, T? + 2). So, itis
again isomorphic to the polynomial ring in one variable.

e Hyperbolaf(X,Y):= XY -1 € R[X, Y], H := V;(R):
We again hav€;; = (XY — 1) by Proposition 4.13. This time we obtain

1
RH] =R[X,Y]/(XY — 1) 2 R[X, Y]

f .

={> aX'|e f €Za; € R} CR(X) := Frac(R[X)).

Note that this ring is not isomorphic to the polynomial ring in one variable, oppose to the
contrary that there is a ring isomorphism : R[X, +] — R[T]. AsX is a unit, so isp(X).
Thus,p(X) € R[T]* = R* is a constant polynomial. Consequently, the image ¢dnds
in R, contradicting the surjectivity.



4. AFFINE PLANE CURVES 37

Proposition 4.13. Let K be a field andf € K[X,Y] a nonconstant irreducible polynomial. Let
C = V¢(K) be the associated plane curve.
Then the vanishing idedl- is (f) and the coordinate rind<[C] is isomorphic taK [X, Y]/(f).

The most conceptual proof uses Hilbert's Nullstellensatz; we include tbaf pn page 76. We now
give a direct proof, which relies on the following Lemma 4.14. In fact, oneehave the notion
of Krull dimension, we can give yet another very short proof. Allgfsoare essentially the same,
except that in the more direct ones we specialise to curves, which makagytiments shorter. The
next lemma uses the same idea as Nagata’s normalisation lemma 8.10 specialisexhse thietwo
variables.

Lemma 4.14. Let K be a field andZ < K[X,Y] be an ideal containing/ € Z, a nonconstant
polynomial of total degreé > 0. LetT := X — Y9! + T € K[X,Y]/T.

(a) Thering extensio [T] C K[X,Y]/Z is integral.
(b) If T = Z with C = V¢ (K) a curve, therl is transcendental ovek'.

Proof. (a) Consider the polynomia}(T, Z) = f(T + Z%*',Z) € K[T][Z], i.e. we see it as a
polynomial in the variableZ with coefficients inK[T]. Let’s write down the polynomiaf(X,Y") =
Zogi,j stit+j<d @i, X"Y7. Hence,

9(T.2)= > aj(T+2")z = > ;2" lower degree terms ig.
0<i,jsti+j<d 0<i,jst.i+j<d

This description makes it clear that the coefficient in front of the highestp of Z does not involve

anyT', it is one of thea; ;, saya := a, . This means we can divide by it. Call the resulting monic

polynomialh(T, Z) = 1¢(T, Z) € K[T][Z].

Now let us use thd" from the assertion, i.€l' = X — Y4+t! 1 7. Write h(Z) for the image of

MT,Z) € K[X,Y]/Z. Itis a monic polynomial i K[T])[Z]. Then we get

h(T,Y) = %g(T, Y) = 2f(X — Yyt L ydtly) = %f(X, Y) €T
This means that the cla3s+ 7 is annihilated by the monic polynomia(Z). Thus,Y + 7 is integral
overK[T].

As K[X,Y]/T is generated ovek [T] by Y + Z, the integrality ofK[T] C K[X, Y]/Z follows.

(b) Suppose thdt is not transcendental. Theii[T] is a finite dimensional-vector space. Due to
the integrality, it follows that alsé([X, Y] /7 is a finite dimensionak’-vector space. It is generated
by the classes = = + 7 andy = y + Z. Note thatK -algebra homomorphisti [X] — K[X,Y]/Z
given by X — T can't be injective, as otherwise the dimension would be infinite. Thus thexe is
polynomialm, € K[X] such thatn,(z) = 0; similarly, there isn, € K[X] such thatn,(y) = 0.
Letnowy : K[X,Y]/Z — K be aK-algebra homomorphism. It follows tha{z) is a zero ofm,.
Hence, there are only finitely many possible imagesA@¥); similarly, there are only finitely many
possible images fop(y). Consequently, there are only finitely mah§algebra homomorphisms
¢ : K[X,Y]/T — K. But, recall that any point it’(K) gives a different<-algebra homomorphism,
namely, the evaluation at that point. As we know that the curve has infinitely pwints overk’, we
have achieved a contradiction. O
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First proof of Proposition 4.13By Lemmd 4.14 (a), the ring extensidn[T] C K[X,Y]/(f) isin-
tegral (i.e. we tak&€ = (f)). Furthermore, by (b) the image @fin K[X,Y]/Z¢ is transcendental.
Let g € Z and consider its image € K[X,Y]/(f). The integrality overs [T] gives

’”+Zn g' +ro(T) = 0.

Let's suppose that is minimal with this property. Agj vanishes on all points of (K), so does
ro(T). This implies that(T) is zero inK[X,Y]/Zc. AsT is transcendental i [ X, Y]/Z¢, this
implies thatro = 0. Thus we have

In other words

g(g" "+ Y (X =Yg e (/).

=1
As f is irreducible, the idealf) is prime. Consequently; € (f) (if g were not in(f), we’'d have
"+ S r(T)g ! = 0, contradicting the minimality of). O

Lemma 4.15. Let K be a field and: € N. Then the following statements hold:

(@) LetX C Y C A"(K) be subsets. Thefy O Iy).

(b) Zy = K[X].

(c) If K has infinitely many elements, thég. k) = (0).

(d) LetS C K[X] be a subset. Theh, g 2 S.

(e) Letx C A"(K) be a subset. TheW, (K) 2 X.

(f) LetS C K[X] be a subset. Thev, () (K) = Vg(K).

(g) Letx C A"(K) be a subset. Theﬁvam(,{) =Tx.

Proof. Exercise. O

Lemma 4.16. Let (X, Ox) be a topological space an® C X be a subset. Defin®,, := {U N
Yy ‘ U e O)(}
ThenOy is a topology ony, called therelative topologyor the subset topology

Proof. Exercise. O

Definition 4.17. Let X be a topological space (we do not always mentidexplicitly).

A subsety C X is calledreducibleif there are two closed subseds, ), C Y for the relative
topology on) such thaty = Yy U )s.

If Y is not reducible, it is calledreducible

An affine seft C A™(K) is called anaffine varietyif X is irreducible.
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Example 4.18. o Letf(X,Y) = XY € R[X,Y]. ThenV,(R) is the union of the:-axis and the
y-axis, so clearlyVs(R) is reducible for the Zariski topology (and also the usual real topology).
More precisely,

Vi(R) = Vx(R) UVy (R).

e ThelineX —Y + 2is irreducible for the Zariski topology (but also for the usual real topology

e The hyperbol& is also irreducible for the Zariski topology. This is a consequence of tke ne
proposition, since the coordinate riri§[#] is an integral domain. This might contradict our
intuition, since the the hyperbola consists of two branches and is reducibledaisual real

topology.

At the end of this section we are able to formulate a topological statement dfirenadgebraic set
as a purely algebraic statement on the coordinate ring! This kind of phemoméll be encountered
all the time in the sequel of the lecture.

Proposition 4.19. Let() # X C A™(K) be an affine set. Then the following statements are equiva-
lent:

(i) X isirreducible for the Zariski topology (i.et is a variety).
(i) Zx is aprimeideal ofK[X,..., X,].
(iii) The coordinate ringK [X] is an integral domain.

Proof. The equivalence of (ii) and (iii) is Proposition 1.3 (recAl|X| = K[X]/Zx).
(i) = (ii): SupposeZy is not a prime ideal. Then there are two elemefitsfo € K[X] \ Zyx such
that f, - fo € Zy. This, however, implies:

X = (Vi) (K)NX) U (Vi (K) N X) = (Vi) (K) UV, (K)) N A,

sinceV ;) (K) U Vi) (K) = V,.5,) () 2 X. Note thatf, ¢ Zy precisely means that there is
x € X such thatf;(z) # 0. Hence X' # V) (K) N X. Of course, the same argument applies with
f1 replaced byf,, proving thatX is reducible, contradiction.

(i) = (i): Supposet is reducible, i.,eX = X; U X with X1 C X andX> C X closed subsets ot
(and hence closed subsetsAdf( K ), since they are the intersection of some closed s&t'¢f() with

the closed set’). This meangy, 2 Zx for i = 1,2 as otherwise¥ = X; by Lemma 4.15. Hence,
there aref; € Zx, and fo € Zy, such thatf;, fo ¢ Zr. Note thatf(z)f2(z) = 0 forall z € X,

as at least one of the two factorslisThus, f; - fo € Zy. This shows thaf y is not a prime ideal,
contradiction. O
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Modules

5 Direct sums, products, free modules and exact sequences

Direct products and direct sums
We first define direct products and direct sums of modules.
Definition 5.1. Let R be a ring andM; for i € I (some setR-modules.

(@) Thedirect product of theM/; for i € I is defined as the cartesian produd,.; M; with com-
ponent-wise operation. More precisely, l@t;)icr, (vi)icr € [[,c; M; andr € R, then one
puts

i€l

(wi)ier + (yi)ier = (w5 + Yi)ier @NAr.(2;)ier = (r.24)icr-
One checks easily tha{, ; M; is an R-module.
If I ={1,...,n}isafinite set, one also writdq" | M; = M; x Ms x - - - x M,, and its elements
are denoted aér1, zo, ..., xy).

(b) The natural mapr; : [],.; M; — M; given by(x;);c; — x; is called thej-th projection One
checks easily that; is a surjectivenk-module homomorphism.

(c) Thedirect sum of theM; for i € I is defined as the subset of the cartesian prodygt; M;
with component-wise operation consisting of thGsg;c; € [[,-; M; such thatr; # 0 only for
finitely manyi € I. The notation istp, ; M;.

One checks easily tha{, ; M; is an R-module.
If I ={1,...,n}isafinite set, one also writé®;" , M; = M, ®M>®---H M, and its elements
are denoted agry, x2,...,oy) OF 1 S x2 @ -+ D Ty

(d) The natural map; : M; — €,c; M; given bye(z) = (z;);e; Withz; = x andx; = 0 fori # j
is called thej-th injection
One checks easily thaf is an injectiveR-module homomorphism.

Corollary 5.2. Let R be a ring andM,, ..., M, be R-modules. Then the identity induces Bn
isomorphisn@®;’_; M; =[], M,.

40
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Proof. This is obvious. O

Proposition 5.3. Let R be a ring andM; for i € I (some setR-modules.

(@) The direct producP := [[,.; M; together with the projections; satisfies the following universal
property:

For all R-modulesN together withR-homomorphismg; : N — M; for ¢ € I there
is one and only oné&-homomorphisng : N — P such thatr; o ¢ = ¢; forall i € T
(draw diagram).

(b) The direct sunt :=
property:

e M; together with the injections; satisfies the following universal

For all R-modulesN together withR-homomorphismsg; : M; — N for ¢ € I there
is one and only on&-homomorphisng : S — N suchthatpoe; = ¢; forall i € T
(draw diagram).

Proof. Exercise. O

Free modules

Definition 5.4. Let R be a ring andM an R-module.

Recall the definition of a generating set: A subBet M is called agenerating set ai/ asR-module
if for everym € M there aren € N, by,...,b, € Bandry,...,r, € Rsuch thatm = > | r;b;.
A subsetB C M is called R-free (or: R-linearly independentf for anyn € N and anyb,,...,b, €
B the equatiord) = """ | r;b; implies0 =ry =7y = -+ =1y,

A subsetB C M is called anR-basis ofM if B is an R-free generating set.

A moduleM having a basis3 is called afree R-module

Proposition 5.5. Let R be a ring, let/ be a set andF; := @, ; R. Definee : I — Frbye(j) =
(xi)icr, wherezx; = 1 andx; = 0if i # j.

(a) ThenFy is R-free with basisB = {e(i) | i € I}.
(b) Fjtogether withe satisfies the following universal property:

For all R-modulesM and all maps : I — M there is one and only onB-homomor-
phism¢ : Fr — M such thatp o e = ¢ (draw diagram).

Proof. (a) is clear.

(b) For (z;)icr € Fr defined((x;)icr) := > ;7 xi0(4); note that this is a finite sum (because of the
definition of the direct sum) and hence makes sense; cléarky= § holds. It is trivial to check that

¢ is an R-homomorphism.

For the uniqueness note tha(te(i)) := 6(i) forcese((x;)ier) := >,y xi6(i) by the properties of an
R-homomorphism. This shows the uniqueness. O
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Example 5.6.(a) Let R = K be a field. ThenkR-modules areK-vector spaces. Hence, alt-
modules are free. Their rank is the dimension &s aector space.

(b) LetR = Z. ThenZ" is a freeZ-module of rank.
(c) LetR =Z andM = Z/2Z. ThenM is notZ-free.
Proposition 5.7. Let R be a ring.

(a) Let M be anR-module andB C M a generating set. Then there is a surjectikehomomor-
phismFg — M, whereF} is the freeR-module from Proposition 5.5. In other words/ is a
quotient ofF'z.

(b) LetM be a freeR-module with basi€3. ThenM is isomorphic toFs.

Proof. (a) Considew : B — M given by the identity, i.e. the inclusion @ into M. The universal
property of Fg gives anR-homomorphismp : Fg — M. As ¢ o e = ¢, B is in the image ofp.

As the image contains a set of generators for the whole madylthe image is equal td/, i.e. ¢ is

surjective.

(b) Then¢ (from (a)) is given by(ry)sep — > ,cpmsb- If (3)sep is in the kernel ofp, then
> »ep 'ob = 0. The freeness of the basisnow impliesr;, = 0 for all b € B, showing(r)secp = 0,

i.e. the injectivity. O

Lemma 5.8. Let R be aring andM a finitely generated fre®-module. Then alR-bases of\/ have
the same length.
This length is called thé&-rankor the R-dimensionof M.

Proof. We prove this using linear algebra. LBt= {b1,...,b,} andC = {ci, ..., ¢} Withn <m
be two R-bases of\/. Of course, we can express one basis in terms of the other one:

b, = iti,jcj andcj Z S5, Lok, henceb Z Z t”sj k

Jj=1 k=1 j=1

Writing this in matrix form withT = (ti,j)lgign,lgjgm andsS = (Sj,k:)lgjgm,lgkgn y|9|dS
ST =idpxn.

Assumem < n. Then we can add — m rows with entried) to S on the right andn — n columns
with entriesO to 7" on the bottom without changing the product. However, the determinant s the
enlarged matrices i whence also the determinant of their product is zero, which contradefach
that their product is the identity, which has determinant O

Exact sequences

Definition 5.9. Let R be a ring andletw < b € ZU {—o00,0}. For eacha < n < b, let M,, be an
R-module. Also let,, : M,,_; — M, be anR-homomorphism. In other words, for all,t’ € Z
such thatz < @’ < V' < b we have the sequence

¢>b2 Pb—1

My 255 My 222 My 2255 222 oy 20 My 2 M,
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Such a sequence is calleccamplexif im(¢,—1) C ker(¢,,) for all n in the range. That is the case if
and only if¢,, o ¢,_1 = 0 for all n in the range.

The sequence is callekactif im(¢,,_1) = ker(¢,,) for all n in the range (of course, this implies that
it is also a complex).

We will often consider finite sequences, mostly of the form
(x) 0— My — My — M3 — 0,

where0 denotes the zero modu{®} C R. If a sequence of the forrfx) is exact, then it is called a
short exact sequence

Lemma 5.10. Let R be a ring.

(@) LetA % B be anR-homomorphism. Themis injective if and only if the sequenbe— A — B
is exact.

(b) LetB LN C be anR-homomorphism. Thefis surjective if and only if the sequenBei C—0
is exact.

(c) Leto - A5 B 5.0~ obea complex. Itis an exact sequence if and only & im(3) and
ais an isomorphism from to ker(3).

Proof. (a) Just noteker(a) = im(0 — A) = {0}.
(b) Just noteC' = ker(C' — 0) = im(«).
(c) Combine (a) and (b) with the exactnes$at Ol

Proposition 5.11. Let R be a ring andM;, N; fori = 1, 2, 3 be R-modules.

(a) Let
0— N, 22 N, 25 N

be a sequence. This sequence is exact if and only if

0 — Homp(M, N1) 2% Homp(M, Na) 2% Homp(M, N3)

is exact for allR-modulesi/. TheR-homomorphisnzﬁi sendsy € Homp(M, N;,_1)top; 0o €
I‘IOHIR(]\47 Nz) fori = 2,3.

(b) Let
My 22 My Y5 My — 0

be a sequence. This sequence is exact if and only if
0 — Homp(Ms, N) 22 Homp(Ms, N) 22 Homp (M, N)

is exact for allR-modulesN. TheR-homomorphisti sends € Homp(M;, N)toa o ¢p; €
HOHIR(MZ‘_l, N) fori = 2,3.
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For the directions=-" one also says that in case (a) that the fundiomp()/, ) is covariant (pre-
serves directions of arrows) and left-exact and in case (b) thatticéoitHom (-, V) is contravariant
(reverses directions of arrows) and left-exact.

Proof. (a) ‘="

e We know thatgs is injective. Ifa € ker(<;32), then by definitionps o « is the zero map. This
implies thatw is zero, showing thap, is injective.

e We know thatps o ¢» is the zero map. This implies thag (d2(a)) = ¢3 o ¢» o  is the zero
map for alla € Hompg (M, N1). Hencejm(¢o) C ker(¢s).

o Let3 € ker(¢s), i.e. g3 o 3 is the zero map. This means(5) C ker(¢3), hence, we obtain

that

b71 06 : M L im(B) C ker(gs) = im(g) 2o Ny

is an element irHompg (M, Ny). It satisfiespa(dy' 0 B) = ¢a 0 ¢;' o f = 3, whence
B € im(¢y), showingim(¢s) D ker(¢s).

e We know thatgs is injective for all R-modules)M. ChooseM := ker(¢2), and consider the
inclusion. : ker(¢2) — N;. Note that

(;;2([,) = ¢2 oL : ker(ngQ) L> Nl ¢—2> N2

is the zero-map. But, as; is injective, it follows that already is the zero map, meaning that
ker(¢9) is the zero module, so tha is injective.

e We want to showps o ¢ = 0. For this takeM := Nj, and consideidy, the identity onV;.
We know thatps o ¢ is the zero map. In particular,

0= 30 da(idn,) = ¢3 0 2 oidn, = b3 0 Ba.

e We want to show thaker(¢s) C Im(¢2). For this takeM := ker(¢s) and consider the
inclusion. : ker(¢3) — N». Note that

0= &3(L) = ¢3 oL ker(gbg) L> N2 ¢—3> N3

is the zero map. We know thatr(¢s) C Im(¢s). Hence, there is somé : ker(¢s) — N
such that = ég(ﬂ) = ¢y o (. In particular, the image af, which is equal tder(¢3), equals
the image ofp, o 3, which is certainly contained in the image®f, as was to be shown.

(b) Exercise. O

Proposition 5.12. Let R be aring,M, N, M; and N; for i € I (some set) b&-modules. Then there
are natural R-isomorphisms:

(a) D . HOIHR(M, Hie[ Nz) - Hie[ HOIHR(M, NZ) and
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(b) ¥ : Homg(P,;c; M, N) — [[;c; Hompg(M;, N).
Proof. (a) Letw; : [[,c; Ni — N; be thej-th projection. Defineb as follows:

<I>(<p:M—>HNi) = (mop: M — Nier.

It is clear that® is an R-homomorphism.

Let ¢ € Hompg(M,[];c; Vi) such thatb(yp) = 0. This meansr; o ¢ = 0 for alli € I. Now we
use the universal property ¢1,_; IV;. Namely, there is a uniquB-homomorphismV/ — [[,.; N;
for given M — N;. As these maps are all zero, certainly the zero map- [],.; IV; satisfies the
universal property. Consequently,= 0. This shows tha® is injective.

Now for the surjectivity. Suppose hence that we are given M — N, for eachi € I. Then the
universal property of [, ; IV; tells us that there is a uniquye: M — [[,.; N; such thatp; = m; 0 ¢
forall i € I. This is precisely the required preimage. Actually, we could have skippedrdof of
injectivity because the uniquenessofjives us a unique preimage, which also implies injectivity.
(b) Exercise. O

Lemma 5.13. Let R be a ring andM an R-module. Then the map
®: Homp(R,M) — M, ®(a:R— M) :=«al)
is an R-isomorphism.
Proof. Clear. 0
Proposition 5.14. Let R be a ring andF' a free R-module.

(a) ThenF satisfies the following universal property:

For all surjective R-homomorphismg : M — N and all R-homomorphismg :
F — N, there exists arR-homomorphisna : F' — M such thatp o oo = 1.

A module that satisfies this universal property is cafpedjective Thus,F is projective.
(b) If0 - A— B — F — 0is a short exact sequence Bfmodules, thelB =2 A® F.

Proof. (a) Let B be anR-basis of F, so that we can identifyF" with Fz; we have the inclusion
€ : B — Fp. Lethencep : M — N be a surjectiveR-homomorphism ang : ¥ — N an R-
homomorphism. For eadhe B choose ann;, € M such thaty(m;) = 1 (b), using the surjectivity
of ¢.

Consider the map : B — M sendingb € B to m;. By the universal property af s there exists the
requiredo.

(b) The universal property of (a) (applied with = idr) shows that there is : F' — B such that
¢ o a = idp. Hence, the exact sequence is split and an exercise sBowsi ¢ F. O
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Appendix: Tensor products

This section will not be treated in the lecture and the sequel of the lectusendbelepend on it.
Tensor products of modules are very important tools in algebra. Withgueffort we could state
(almost) the whole section for non-commutative rings. However, then wéhiawe to make distinc-
tions between left and right modules. For the sake of simplicity we stick to comweitatgs and all
modules are considered as left modules.

Definition 5.15. Let R be a ring,M, N be R-modules.
Let P be aZ-module (note that this just means abelian group).-Ailinear map

f:MxN-=P
is calledbalancedf for all » € R, all m € M and alln € N one has

flrm,n) = f(m,rn).

In this case, we call P, f) a balanced product af/ andN.
A balanced productM ®r N, ®) is called atensor product of\/ and N over R if the following
universal property holds:

For all balanced product$P, f) there is a unique group homomorphigm M @z N —
P such thatf = ¢ o ® (draw diagram).

Of course, we have to show that tensor products exists. This is whaavievgh.

Proposition 5.16. Let R be a ring and letM, N be R-modules.
Then a tensor produd¢tM @z N, ®) of M and N over R exists. If( P, f) is any other tensor product,
then there is a unique group isomorphigm M ®r N — P such thatf = ¢ o ®.

Proof. The uniqueness statement is a consequence of the uniqueness in dresalmvoperty. This
works similarly as the uniqueness of the direct product, the direct sum(tleat.are proved in the
exercises).

Let F' := Z[M x N], i.e. the freeZ-module with basis\/ x N, that is the finitéZ-linear combinations
of pairs(m,n) form € M andn € N.

DefineG as theZ-submodule oft” generated by the following elements:

(my1 4+ ma,n) — (my,n) — (ma,n) VYmy,ma € M, Vn € N,
(m,n1 4+ n2) — (m,n1) — (m, na) VYm € M, Vny,ng € N,
(rm,n) — (m,rn) Vre R, Yme M, Vn € N.

DefineM @r N := F/G, asZ-module. We shall use the notation ® n for the residue class
(m,n) + G. Define the maw as

X :MxN—->M®rN, (mn)—maen.

It is Z-bilinear and balanced by construction.
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We now need to check the universal property. Let hgrige) be a balanced product aff and N.
First we use the universal property of the free modile- Z[M x N]. Forthatlete : M x N — F
denote the inclusion. We obtain a unique group homomorphisri' — P such thatpoe = f (draw
diagram).

Claim: G C ker(¢). Note first thatf (m,n) = ¢oe(m,n) = ¢((m,n)) forallm € M and alln € N.
In particular, we have due to the bilinearity pfor all m;, ms € M and alln € N:

¢((m1+ma,n)) = f(m1 +mz,n) = f(mi,n) + f(me,n) = ¢((m1,n)) + ¢((m2, n)),

whence(my + ma,n) — (m1,n) — (ma,n) € ker(¢). In the same way one shows that the other two
kinds of elements also lie iker(¢), implying the claim.

Due to the claimg induces a homomorphisth: F/G — P such that) o @ = f (note that is just

e composed with the natural projectiégh— F/G).

As for the uniqueness of. Note that the image @b is a generating system &f/G. Its elements are
of the formm @ n. As we havebo®(m,n) = p(m@n) = f(m,n), the values ob at the generating
set are prescribed angis hence unique. Ol

Example 5.17.(a) LetR =Z, M = Z/(m) andN = Z/(n) with gcd(m,n) = 1. ThenM ® N =
Z/(m) @z Z/(n) = 0.
Reason: As the gcd is there area, b € Z such thatl = am + bn. Then for allr € Z/(m) and
all s € Z/(n) we have:

res=r-1®@s=rlam+bn)@s=ram® s+ (ron ® s)
=00s+rb@ns=000+rb®0=0®0+0®0=0.

(b) LetR = Z, M = Z/(m) andN = Q. ThenM @ N = Z/(m) @7 Q = 0.

Reason: Let € Z/(m) and§ € Q. Then we have

a a a a
a_ o e % —gm0=0
reyEremop=rme sy =00y =00

(c) LetR =7, M = QandN anyZ-module. The) ®7 N is aQ-vector space.

Reason: Itis an abelian group. Tl scalar multiplication is defined by.(r ® n) := ¢qr @ n.

d) LetM be anyR-module. Them @ M ~22="™, M is an isomorphism.
P

(r,m)—rm
-

Reason: It suffices to show thaf together with the magR x M M is a tensor

product. That is a very easy checking of the universal property.
Next we need to consider tensor products of maps.

Proposition 5.18. Let R be aring and letf : My — M, andg : Ny — N, be R-homomorphisms.
Then there is a unique group homomorphism

f®g:M ®r Ny — My g No

suchthatf ® g(m ®n) = f(m) ® g(n).
The mapf ® g is called thetensor product of andg.
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Proof. The map® o (f,g) : M1 x Ny LN My x Ny 2, My ®pr No makesMy; ®pr N> into a
balanced product oM and V; (draw diagram). By the universal property there is thus a unique
homomorphism\l; ® zp N1 — My ®g N2 with the desired property. O

Lemma 5.19. Let M; 25 My 22 My and N, 25 N, %2 N be R-homomorphisms.
Then(fa ® g2) o (f1 ® g1) = (f2 0 f1) ® (92 © 91)-

Proof. (f20 f1) ® (920 g1)(m ®@n) = (f2 0 fi(m)) ® (g2 0 g1(n)) = fo ® ga(f1(m) ® g1(n)) =
(fo®g2) o (fi®g1)(m&@mn). O

Corollary 5.20. Let f : My — My andg : N1 — Ny be R-homomorphisms.
Thenf ®g= (isz ®g) © (f ® ile) = (f ® isz) o (idM1 ®g)'

Proof. This follows immediately from the previous lemma. O
Proposition 5.21. Let R be a ring.

(a) LetM; fori € I and N be R-modules. Then there is a unique group isomorphism

P : (@Mi) Qr N — @(Mi ®r N)

iel i€l
such that(m;)icr @ n +— (m; @ n)ier.

(b) LetV; fori € I andM be R-modules. Then there is a unique group isomorphism

®: Mg (@Ni) — GB(M ®r N;)

el el
such thatm ® (n;)ier — (M ® ny)icr.

Proof. We only prove (a), as (b) works in precisely the same way.
First we show the existence of the claimed homomorphisby using the universal property of the
tensor product. Define the map

f: (@ M) x N - @M @r N), ((mi)icr,n) — (mi,n)icr.
el el

This map makeép,;(M;®rN) into a balanced product ép,_; M; andN, whence by the universal
property of the tensor product the claimed homomorphism exists (and isa)niqu
Next we use the universal property of the direct sum to constructremhmrphism¥ in the opposite
direction, which will turn out to be the inverse éf. Letj < I. By ¢; denote the embedding of
M; into the j-th component ofp,_; M;. From these we further obtain maps$; @ N &8N,
(B,cr M;) ®r N. Further consider the embeddingsof M; @ N into the j-th component of
@, (M; ®r N) from the definition of a direct sum. The universal property of direchsunow
yields a homomorphisn¥ : @, ;(M; ®r N) — (P,c; M;) ®r N suchthatl o 1; = ¢; ® idy for
aljelJ.
Now it is easy to compute on generators tfrat U = id and¥ o & = id. O
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Lemma 5.22. Let R be aring and letM, N be R-modules. Thedd @ r N = N Rz M.
Proof. This is not difficult and can be done as an exercise. O

Example 5.23. Let L/K be a field extension. Theh @ K[X] is isomorphic toL[X] as anL-
algebra.

Lemma 5.24. Let R and S be rings. LetM be anR-module,P an S-module,N an S-module and
an R-module such thai(rn) = r(sn) forall r € R, all s € Sand alln € N.

(8) M ®g N is anS-module vias.(m ® n) = m ® (sn).
(b) N ®g P is an R-module viar.(n ® p) = (rn) & p.
(c) There is an isomorphism

(M®rN)®sP=M®eg (N ®sP).

Proof. This is not difficult and can be done as an exercise. O
Lemma 5.25. Let R be aring, letM, N be R-modules, and leP be aZ-module.

(a) Homyz(N, P) is an R-module via(r.¢)(n) := ¢(rn) forr € R,n € N, ¢ € Homgz(N, P).

(b) There is an isomorphism of abelian groups:

Homp(M,Homy(N, P)) = Homz(M ®r N, P).

(c) Homgz(P, M) is an R-module via(r.)(m) := ¢(rm) forr € R,m € M, ¢ € Homz(P, M).
(d) There is an isomorphism of abelian groups:

Homp(Homy (P, M), N) = Homz(P,M ®r N).

Proof. (a) and (c): Simple checking.
(b) The key point is the following bijection:
{Balanced mapg : M x N — P} — Hompg(M, Homz(N, P)),

which is given by
To see that it is a bijection, we give its inverse:
p = ((m,n) = (¢(m))(n)).

Now it suffices to use the universal property of the tensor product.
(d) is similar to (b). O

Proposition 5.26. Let R be a ring.
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(a) LetN, My, M-, M3 be R-modules. If the sequence
/ g
M1 — M2 — M3 — 0
is exact, then so is the sequence
f®id g®id
M @r N — Mo®r N —— M3s®r N — 0.
One says that the functerp g N is right-exact.
(b) LetM, N1, No, N3 be R-modules. If the sequence
N LN LNy 0
is exact, then so is the sequence
id®f id®g
MRr N, —> M Qr No —= M ®r N3 — 0.

One says that the functdr/ ®p, - is right-exact.

Proof. We only prove (a), since (b) works precisely in the same way. We ugeoBitmn 5.11 and
obtain the exact sequence:

0 — Homp(Ms, Homyz(N, P)) — Hompg(Ma, Homy(N, P)) — Hompg(M;, Homz (N, P))

for anyZ-moduleP. By Lemma 5.25 this exact sequence is nothing else but:
0 — Homg(Ms ®g N, P) — Homy(Ms @ N, P) — Homy(M; ®gr N, P).
As P was arbitrary, again from Proposition 5,11 we obtain the exact sequence
My ®r N — My @r N — M3 ®r N — 0,
as claimed. 0
Definition 5.27. Let R be aring.
(&) AnR-moduleM is calledflat overR if for all injective R-homomorphisms
p: Ny — Ny
also the group homomorphism
idy ®p: M®rp Ny — M Qp No
is injective.

(b) An R-module) is calledfaithfully flat over R if M is flat overR and for all R-homomorphisms
¢ : N1 — Ny, the injectivity ofid; ® ¢ implies the injectivity of.
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(c) A ring homomorphism : R — S is called(faithfully) flat if .S is (faithfully) flat asR-module
via ¢.

Lemma 5.28. Let R be aring and letM, N be R-modules.

(a) M isflat overR < M ®pg e preserves exactness of sequences.

(b) N isflat overR < ¢ ® g N preserves exactness of sequences.

Proof. Combine Definition 5.27 and Proposition 5.26. O

Example 5.29.(a) Q is flat asZ-module.

Reason: We don't give a complete proof here (since we haven'tstieduthe module theory
overZ). The reason is that any finitely generated abelian group is the directdlita torsion
elements (that are the elements of finite order) and a free module. Tegseith Q Kills the
torsion part and is injective on the free part (we will see that below).

(b) Q is not faithfully flat asZ-module.

Reason: Considet./(p?) — Z/(p), the natural projection (fop a prime), which is not injective.
Tensoring withQ kills both sides (see Example 5.17), so welget Z/(p?) @z Q — Z/(p) ®z
Q = 0, which is trivially injective.

(c) I, is not flat asZ-module (forp a prime).

n—

Reason: The homomorphisih MmN/ (multiplication byp) is clearly injective. But, after
tensoring it with[F,, overZ, we obtain the zero map, which is not injective.

6 Localisation

Definition 6.1. Aring R is calledlocalif it has a single maximal ideal.
Example 6.2. (a) Every fieldK is a local ring, its unique maximal ideal being the zero ideal.

(b) Letp be a prime number. The ring/(p") is a local ring with unique maximal ideal generated
by p.
Reason:(p) is a maximal ideal, the quotient beiriy}, a field. Ifa C Z/(p™) is a proper ideal
andzx € a, thenz = py + (p™), as otherwiser would be a unit. This shows thate (p), whence

a C (p).

Lemma 6.3. Let R be a ring,M an R-module andr < R an ideal. ThemM = {>"" ,a;m; | n €
N,a; €a, m; € Mfori=1,...,n} C M is an R-submodule of\/.

Proof. Easy checking. O

Lemma 6.4. Let R be a local ring with unique maximal ideat. Then the set of unit®* of R is
precisely the seR \ m.
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Proof. The statement is equivalent to the following: The maximal icked equal to the set of non-

units.
We already know from Corollary 1.8 (b) that every non-unit lies in someimalxideal, whence it
lies inm. On the other hand, every elementwfs a non-unit, as otherwise = R. O

We will now introduce/recall the process of localisation of rings and modwegh makes mod-
ules/rings local.

Proposition 6.5. Let R be aring,S C R a multiplicatively closed subset (i.e. fef, s2 € S we have
s189 € S) containingl.

(a) An equivalence relation ofi x R is defined by

(81,7”1) ~ (32,7“2) & Jte S t(rlsQ — r231) =0.

The equivalence class 6f;, 1) is denoted by%.

(b) The set of equivalence class®s' R is a ring with respect to

4 STIRx SR §TIR, L2 T2t
S1 S9 51852

and
i ST'Rx SR siR, L1202

S1 82 5152.

Neutral elements aré := 2 and1 := 1.

(c) Themag: : R — S™'R, r — T, is a ring homomorphism with kernét ¢ R | 3s € S : rs =

1!
0}. In particular, if R is an integral domain, then this ring homomorphism is injective.

Proof. Easy checking. O

Note that for an integral domaiR, the equivalence relation takes the easier form

(s1,71) ~ (s2,72) < r1sg —7rasy =0,

provided0 ¢ S (if 0 € S, thenS~! R is always the zero ring, as any element is equivaler%l)to

Example 6.6. (a) LetR be anintegral domain. Thesi = R\ {0} is a multiplicatively closed subset.

ThenFrac(R) := S~ R s the field of fractions of:.

Subexamples:

(1) For R = Z, we haverac Z = Q.

(2) LetK be afield and? := K[X]. ThenFrac K[X]| =: K(X) is thefield of rational functions
over K (in one variable) Explicitly, the elements df (X) are equivalence classes written as

% with f, g € K[X], g(X) not the zero-polynomial. The equivalence relation is, of course,

the one from the definition; a&’[ X ]| is a factorial ring, we may represent the cla%% asa
‘lowest fraction’, by dividing numerator and denominator by their greatesnmon divisor.
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(b) LetR be aring andy < R be a prime ideal. Thef := R\ p is multiplicatively closed andl € S
and0 ¢ S.

ThenR, := S~ Ris called thelocalisation ofR atp.

Subexamples:

(1) LetR = Z and p a prime number, so thdip) is a prime ideal. Then the localisation @f
at (p) isZ,) and its elements arg; € Q | p { s, ged(r, s) = 1}.

(2) LetK be afield and considek™(K). Leta = (a1, ...,a,) € A"(K).
Letp be the kernel of the ring homomorphism

K[Xy,...,Xn] = K, fe fla,...,an).

Explicitly, p = {f € K[X1,...,X,] | f(a) = 0}. As this homomorphism is clearly surjec-

tive (take constant maps as preimages), we havehha,, ..., X,]/p is isomorphic tok,
showing thap is a maximal (and, hence, a prime) ideal.

The localisationK [ X1, ..., X,], is the subring of (X7, ..., X,,) consisting of elements
that can be written asﬁ% with g(aq,...,a,) # 0.

This is the same as the set of rational functidgngX, . . ., X,,) that are defined in a Zariski-

open neighbourhood af. Namely, Ietg € K[Xi,...,Xu]p such thatg(a) # 0. Then the
functionz — % is well-defined (i.e. we don'’t divide 1)y on the Zariski-open set™ (K) \
V(g (K), which containsa. On the other hand, if forg € K[Xi,...,X,] the function
T — % is well-defined in some Zariski-open neighbourhood,dahen, in particular, it is
well-defined at,, implyingZ € K[X1, ..., X,]p.

(c) LetR be aring and letf € R be an element which is not nilpotent (i # 0 for all n € N).
ThenS := {f" | n € N} (use0 € N) is multiplicatively closed and we can for§it ! R. This ring
is sometimes denotdd; (Attention: easy confusion is possible).

Subexample:

(1) LetR =Zand0 # a € N. LetS = {a" |n € N}. ThenS™'Z ={L € Q|r € Rn ¢
N, ged(r,a™) = 1}.

Proposition 6.7. Let R be a ring andS C R a multiplicatively closed subset with € S. Let
p: R— S™R, given byr — %.

(@) The map
{6< S 'Rideal} — {a< Rideal}, b+ p'(b)<R

is an injection, which preserves inclusions and intersections. Moreifvuer S~ R is a prime
ideal, then soig.1(b) < R.

(b) Leta < R be anideal. Then the following statements are equivalent:

(i) a=p'(b)for someb <t S~IR (i.e.ais in the image of the map in (a)).



54 CHAPTER Il. MODULES

(i) a=p'(aS7IR) (hereaS~!R is short for the ideal o6 ! R generated by:(a), i.e. by all
elements of the forr for a € a).

(iif) Every s € S is a non-zero divisor modul@, meaning that it € R andrs € a, thenr € a.

(c) The map in (a) defines a bijection between the prime idea$s bR and the prime idealp of R
such thatS Np = 0.

Proof. Exercise. O

Corollary 6.8. Let R be a ring andp < R be a prime ideal. Then the localisatid®, of R atp is a
local ring with maximal idealS—!p.

Proof. LetS = R\ p. Note that) = an S =an (R p) is equivalent tar C p.
Hence, Proposition 6.7 (c) gives an inclusion preserving bijection betteeprime ideals o6 'R
and the prime ideals a® which are contained ip. The corollary immediately follows. O

Definition 6.9. Let R be a ring. TheJacobson radicas defined as the intersection of all maximal
ideals ofR:
J(R) := N m
m<R maximal ideal

Lemma 6.10. Let R aring and leta < R be an ideal which is contained in(R). Then for any: € a,
one hasl —a € R*.

Proof. If 1 — a were not a unit, then there would be a maximal id@atontainingl — a. Since
a € J(R), it follows thata € m, whencel € m, contradiction. O

Proposition 6.11(Nakayama’s Lemma)Let R be a ring andM a finitely generated?-module. Let
a < R be an ideal such that C J(R). SupposeM = M. ThenM = 0.

Proof. We first show that there is € a such thail — a)M = 0.

We first use thatl/ is finitely generated by choosing finitely many generators. . . , m,, for M as

an R-module. Now we useM = M in order to express each generator ag-dinear combination of
these generators. More precisely, for eaeh{1, ... ,n} there arey; ; € a (for 1 < j < n) such that

n
m; = E ai,jmj.
7=1

We write the coefficients into a matri = (a; j)1<i j<n. It satisfies:

ail ai2 v Qip m mi

a1 Q22 -+ G2n ma ma

A=1 . . || . |=

an,1 An2 - Qnn mnp mnp
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We now form the matribx3 := id,,«x, — A. By the previous calculation we obtain
mi
ma
B-| . =0.

Mn

Let B* be the adjoint matrix, which satisfigs" - B = det(B) - id, «x». Hence:

mi mi

mo ma
0=B*-B-| . | =det(B)-

my, My,

Hence, for alli € {1,...,n} we finddet(B) - m; = 0, thusdet(B) - M = 0. The usual rules for
computing the determinant immediately shdet(B) = 1 — a for somea € A. Hence, we have

(1 —a)M =0.
By Lemma6.10 we gdtl —a) € R*, letb € R* be suchthak(1—a) = 1. Henced = b-(1—a)-M =
M. O

The following corollary turns out to be very useful in many applications.

Corollary 6.12. Let R be a local ring with maximal idead and let M be a finitely generatedk-
module. Letrq,...,z, € M be elements such that their imaggs= z; + aM are generators of the
quotient module\//a ).

Thenzq, ..., x, generateM as anR-module.

Proof. Let N be the submodule o/ generated bytq,...,z,. Letm € M be any element. By
assumption there exigte N and elementsa, ..., a, € a such that

n
m=1y + Zam
=1

Passing to classes M /N we get

n
m—|—N:Zai(:vi—|—N)
i=1

thusm + N € a(M/N). This showsi(M/N) = M/N. By Proposition 6.11 we obtaif//N = 0,
henceM = N, as required. Ol

Proposition 6.13. Let R be aring,S C R a multiplicatively closed subset containihgLet M/ be an
R-module.

(&) An equivalence relation ofi x M is defined by

(sl,ml) ~ (82,m2> & dte S t(SlmQ — ngl) =0.
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(b) The set of equivalence class&s! M is an.S~! R-module with respect to
+STIM X STIM — g7y, T T2 s s

51 52 5152

and scalar-multiplication

E
<
3

L STIRx STIM - sy, LT

S1 82 5152.

The neutral element i3 := 2.

(c) Themag: : M — S™'M, m s T, is an R-homomorphism with kerngln € M | 3s € S :
sm = 0}.
Proof. Easy checking. O

Lemma 6.14. Let R be aring,S C R multiplicatively closed containing. Let M, N be R-modules
and¢ : M — N an R-homomorphism.

(a) The map
g :SIM — STIN, ——

is an S~! R-homomorphism.

(b) Let
0-A4%BS oS0

be an exact sequence Bfmodules. Then the sequence
081425 g-1p 55, g-10 ¢

is also exact. One says that localisation isexact functor

In particular ¢g is injective (surjective, bijective) i is injective (surjective, bijective).

Proof. (a) Easy checking.

(b) We know thatx is injective. Letas(%) = @ = 0; then there i € S such thal = sa(a) =
a(sa), whencesa = 0 and, thus{ = % Henceg is injective.

We know thatg is surjective. Letc € S~1C. There isb € B such that3(b) = ¢, thusBs(2) =
@ = ¢, showing that3s is surjective.

We now show exactness at the centre of the sequence. First @foall = 0 immediatly implies
fs o as = 0 becauseds o as() = ﬁOQT@”) = 2 = 0. Let now & be in the kernel of3s, that is
0= ﬂs(g) = @. Hence, there ig € S such that) = t3(b) = §(tb). Using the exactness of the

original sequence, we find anc A such thatv(a) = tb. Thus,2 = ‘“t(g) = as(&). O

Lemma 6.15. Let R be a ring andm a maximal ideal.
(@) The natural mag: : R — Ry, +— § induces aring isomorphism

R/m > Ry /mRy,.
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(b) LetM be anR-module and denote by/,, its localisation atm. Then:

M/mM = My /MRy Mgy,.
Proof. Exercise. O

The next proposition gives local characterisations, i.e. it gives crisaying that a certain property
(injectivity, surjectivity) holds if and only if it holds in all localisations. We fitart with a lemma
that gives a local characterisation of a module to be zero.

Lemma 6.16. Let R be a ring andM an R-module. Then the following statements are equivalent:

(i) M isthe zero module.
(i) For all prime idealsp <1 R, the localisation)/,, is the zero module.

(iii) For all maximal idealsm <1 R, the localisationM,, is the zero module.

Proof. ‘(i) = (ii)": Clear.

‘(if) = (iii)’ is trivial because all maximal ideals are prime.

‘(iiiy = (i): Let 0 # m € M and putN := R.m C M. Hence, we have the exact sequence of
R-modules

0—a—RT" N0,

wherea is just defined as the kernel of the map on the rightnAg 0, the map on the right is not the
zero map (e.gl is not in its kernel), hence is a proper ideal ofz. As such it is contained in some
maximal idealm. The injectivity N — M leads to the injectivity ofV,, — M, by Lemma 6.14.
Hence,N,, = 0. The isomorphismiV/mN = Ny, /mRnNy, from Lemma 6.15 yieldsV/mN = 0,
whenceN = mN. In particular, there i € m such thatn = zm, thus(1 — z)m = 0. Thus
l1—2z€aCm,doncl =1 — z+ z € m, contradiction. O

Proposition 6.17. Let R be aring andp : M — N an R-homomorphism. For a prime ideal< R,
denote byp, : M, — N, the localisation ap. Then the following statements are equivalent:

(i) @ isinjective (surjective).
(i) For all prime idealsp <1 R, the localisationy,, is injective (surjective).
(iii) For all maximal idealsm <1 R, the localisationp, is injective (surjective).

Proof. ‘(i) = (ii): Lemma/6.14.

‘(if) = (iii)’ is trivial because all maximal ideals are prime.

‘(i) = (i)’: We only show this statement for the injectivity. The surjectivity is very similaet K
be the kernel ofy, so that we have the exact sequence

0—-K—M%N.
By Lemmad 6.14, also the sequence
0 — Km— My 2% Ny

is exact for any maximal ideat. As ¢, is injective, it follows thatk,, = 0. By Lemma 6.16 K = 0,
showing thaty is injective. O
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Appendix: Localisation as a tensor product

Lemma 6.18.Let R be aring,S C R multiplicatively closed containinggand M an R-module. The

map

1
v:STIM — STIR®R M, %Hg@?ﬂ

is an S~! R-isomorphism, wher6 'R @ M is anS~' R-module viaZ.(¥ @ m) := (£¥) @ m.

Proof. First we check that) is well-defined: Let™ = ™2, i.e. there isu € S such thatu(tm; —
smg) = 0. NOW%@ml = S’%@ml = ﬁ@tuml = ﬁ@sumg =L ®@mg = %@mg. Thatz)

is anS~!'R-homomorphism is easily checked.
We now construct an inverse tousing the universal property of the tensor product. Define

f:ST'Rx M — S™'M, (f,m) Nl
S S
This is a balanced map ov&. Hence, there is a uniq@&homomorphismp : ST'R@ M — S~1M
such thaip(£ @ m) = “*.
It is clear thatp is anS—!' R-homomorphism and thato ¢ andiy o ¢ are the identity. O
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Advanced ring theory

7 Noetherian rings and Hilbert’'s Basissatz

In this short section, we treat Noetherian and Artinian rings and provetiglbasis theorem.

Definition 7.1. Let R be a ring andM an R-module. The modul@/ is called Noetherian(resp.
Artinian) if every ascending (resp. descending) chaiizesubmodules of/

My C My C M3 C...

(resp.M; D My O M3 D ...) becomes stationary, i.e. thered6 € N such that for alln > N we
haveM,, = My.
The ring R is calledNoetherianresp.Artinian) if it has this property as amR-module.

Lemma 7.2. Let R be a ring andM an R-module.

ThenM is Noetherian (resp. Artinian) if and only if every non-empty$eft submodules off has a
maximal (resp. minimal) element.

By a maximal (resp. minimal) element®fve mean am?-moduleN € S such thatN C N; (resp.
N D Np) impliesN = N; forany N, € S.

Proof. We only prove the Lemma for the Noetherian case. The Artinian case is similar.

Let S be a non-empty set oR-submodules ofd/ that does not have a maximal element. Then
construct an infinite ascending chain with strict inclusions as follows. &heaayM; € S. As M is

not maximal, it is strictly contained in somd, € S. As M, is not maximal, it is strictly contained

in someM3 € S, etc. leading to the claimed chain. Hengé,is not Noetherian.

Conversely, letM; C My C Ms C ... be an ascending chain. L&t = {M; | ¢ € N}. This

set contains a maximal elemehfy by assumption. This means that the chain becomes stationary
atN. O

Proposition 7.3. Let R be a ring and}M an R-module. The following statements are equivalent:
(i) M is Noetherian.

(i) Every submoduléV < M is finitely generated ag-module.

59
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Proof. ‘(i) = (ii)": Assume that/V is not finitely generated. In particular, there are then elements
n; € N fori € N such thatn;) C (n1,ne2) C (n1,n2,n3) < ..., contradicting the Noetherian-ness
of M.

‘(i = (i): Let M7 C My C M3 C ... be an ascending chain é-submodules. Forn/ :=
Uien M;. Itis anR-submodule ofV/, which is finitely generated by assumption. bet..., x4 € U

be generators o/. As all z; already lie in somél/;,, there is anNV such thatz; € My for all

i =1,...,d. Hence, the chain becomes stationaryvat O

The proposition shows that in particular every principal ideal domain isethii¢oian ring, since all
ideals (recall that the ideals of a riitjare precisely thé&-submodules oR) are generated by a single
element, hence, finitely generated. Hence, we obtairtaatd K [ X | (for K a field) are Noetherian;
however, we do not yet know about the polynomial ring in more than oriahla; its Noetherian
property is the content of Hilbert's Basissatz.

Lemma 7.4. Let R be aringandd - N — M — M/N — 0 be an exact sequence Bfmodules.
The following statements are equivalent:

(i) M is Noetherian (resp. Artinian).
(i) N andM/N are Noetherian (resp. Artinian).

Proof. We only prove this in the Noetherian case. The Artinian one is similar.
‘(i) = (ii): N is Noetherian because every ascending chain of submoduléssoélso an ascending
chain of submodules af/, and hence becomes stationary.
To see thaf\/ /N is Noetherian consider an ascending chaiResubmodules\/; C My C M3 C

. of M/N. Taking preimages for the natural projection M — M /N gives an ascending chain
in M, which by assumption becomes stationary. Because(of'(M;)) = M;, also the original
chain becomes stationary.
‘(i) = (i) Let

My C My C M3 C ...
be an ascending chain &Fsubmodules. The chain
MiNNCMNNCM;sNNC...

becomes stationary (say, at the integgrbecause its members are submodules of the Noetherian
R-moduleN. Moreover, the chain

(My + N)/N C (Ma + N)/N C (M3 + N)/N C ...

also becomes stationary (say, at the integgbecause its members are submodules of the Noetherian
R-moduleM /N. By one of the isomorphism theorems, we h&¥§ + N)/N = M;/(M; N N). Let
now+ be greater than andm. We hence have for ajl > 0:

The other isomorphism theorem then yields:
0= (Miy;/(Min N))/(M;/(M; N N)) = Miy; /M,
showingM; = M, ;. O
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Proposition 7.5. Let R be a Noetherian (resp. Artinian) ring. Then every finitely generéedodule
is Noetherian (resp. Artinian).

Proof. Exercise. O

Proposition 7.6 (Hilbert’s Basissatz) Let R be a Noetherian ring and € N. ThenR[X1,..., X,]
is a Noetherian ring. In particular, every ideal< R[ X1, ..., X,,] is finitely generated.

Proof. By induction it clearly suffices to prove the case= 1. So, leta < R[X]| be any ideal. We
show thata is finitely generated, which implies the assertion by Proposition 7.3.
The very nice trick is the following:

ap:={ap € R|ap€a} <R

N

ap:={a1 €R|IpeER: a1 X +bp€a} <R

N

ay:={az € R|3bp,by € R: s X* + b1 X +bgca} <R
N

So,a, is the set of highest coefficients of polynomials of degrégng in a. The inclusiorn,, 1 C a,
is true because if we multiply a polynomial of degree 1 by X, we obtain a polynomial of degree
with the same highest coefficient.

The ascending ideal chaip C a; C ay C ... becomes stationary becauBeis Noetherian, say
aq = agqy; for all i € N. Moreover, sincer is Noetherian, all the; are finitely generated (as ideals
of R) by Proposition 7.3, say,; = (ai1,..-,aim,)-

By construction, for each; ; there is a polynomiaf; ; € a of degreei with highest coefficient; ;.
Let b be the ideal of?[ X] generated by the finitely manfy ; € afor0 <i < dandl < j < m;.
Claim: b = a.

Of courseb C a. We show by induction om that anyf € a of degreee liesinb. If e = 0, then
f € ag, whencef € b.

Next we treatd < e < d. Suppose we already know that any polynomiakiof degree at most
e —1liesinb. Let now f € a be of degree. The highest coefficient, of f lies ina.. This means
thata. = 37 rjac,; for somer; € R. Now, the polynomial(X) = > r;f.; has highest
coefficienta, and is of degree. But, nowf — g is in a and of degree at most— 1, whence it lies
in b. We can thus conclude thgtlies in b, as well.

Finally we deal withd < e. Just as before, suppose we already know that any polynomiabfn
degree at most — 1 lies inb and let agairy € a be of degree. The highest coefficient, of f lies
in a. = a4 and, hence, there arg for j = 1,...,mg such thata, = Z;”:dl rjaq ;. Consequently,
the polynomialy(X) = Z;”:dl r; fa; has highest coefficient. and is of degred. But, now f(X') —
g(X)X°* 4isina and of degree at most— 1, whence it lies irb. We can thus conclude thgtlies
in b, as well, finishing the proof of the claim and the Proposition. O
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Proposition 7.7. Let R be a Noetherian ring and C R be a multiplicatively closed subset with
1 € S. ThenS—!' R is also a Noetherian ring.

Proof. Exercise. O

8 Krull dimension in integral ring extensions

This section has two main corollaries:
e The ring of integers of a number field has Krull dimension

e The coordinate ring of a plane curve has Krull dimensidfitting well with the intuitive con-
cept that a curve is a ‘geometric object of dimensign

Definition 8.1. Let R be a ring. Achain of prime ideals of length in R is

png_pnflg_panQ"'gplnga

wherep, < Ris a prime ideal foralk =0, ..., n.
Theheighth(p) of a prime ideab < R is the supremum of the lengths of all prime ideal chains with

Po=p.
TheKrull dimensiondim(R) of the ring R is the supremum of the heights of all prime idealgof

Example 8.2. (a) The Krull dimension o¥. is 1.

Reason: Recall that the prime idealsZfre (0) (height0) and (p) for a primep, which is also
maximal. So, the longest prime ideal chair{@$ C (p).

(b) The Krull dimension of any field s

Reason:(0) is the only ideal, hence, also the only prime ideal.

(c) Let K be a field. The polynomial rind{[ X1, ..., X,] has Krull dimension.. This needs a
non-trivial proof! See below.

Primes in integral extensions

In the sequel, we are going to consider ring extensi®ns S. If we denote, : R — S the inclusion
andb < S an ideal, then=!(b) = b N R (in the obvious sense). In particular,bifis a prime ideal,
then sois~1(b) = b N R (see Exercise).

Lemma 8.3. Let R C S be aring extension such thétis integral overR. Letb < S be an ideal and
a:=bNR<R.

(@) ThenR/a — S/b is an integral ring extension (note that this is injective because of the homo-
morphism theorem).

(b) Assume thai is a prime ideal. Them is maximalks b is maximal.

(c) Assume in addition thaf is an integral domain. ThenR is a field< S is a field.
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Proof. Exercise. O

Lemma 8.4. Let R C S be an integral ring extension.

(a) Letb < S be an ideal containing: € b which is not a zero-divisor. Thelmn R =: a < R is not
the zero ideal.

(b) LetP; C P be a chain of prime ideals &f. Thenp; := 1 N R C P2 N R =: ps is a chain of
prime ideals ofR.

Proof. (a) SinceS is integral overR, there arer € N andry,...,r,_1 € R such that

n—1
0=2z"+ E Tzt
i=0

As z is not a zero-divisor, it is in particular not nilpotent, i.e. there is some aieffir; # 0 (for
somei = 0,...,n — 1). Letj be the smallest index{n — 1) such that-; # 0. Now we have

n—1
0=2a’ (ac"_j + Z Tixi_j),
=

implying (asx is not a zero-divisor):

n—1
0=a"" — Zrixi J
i=j
Rewriting yields:
n—1
rj=x(—2" I~ Z ra 7 e RNb =a,
i=j+1

showing that: is non-zero.

(b) Consider the integral (see Lemmal8.3) ring extengigp; — S/9;. The idealBs /P in S/P1

is prime becauseS/PB1)/(P2/PB1) = S/P2 (isomorphism theorem) is an integral domain. This also
means thaf, /B, consists of non-zero divisors only (except fjr Consequently, by (a), we have

(0) # Pa2/P1 N R/p1 = pa/p1. O

Lemma 8.5. Let R C S be an integral ring extension and 1& C R be a multiplicatively closed
subset containing. ThenT~'R C T~1S is an integral ring extension.

Proof. Exercise. O

Lemma 8.6. Let R C S be an integral ring extension and Igt< R be a prime ideal. Then there is a
prime ideal]3 < S lying overp, by which we meap =3 N R.

Proof. LetT := R\ p so thatR, = T~ ! Ris the localisation of? atp. By Lemma8.5R, — T~ 1S
is an integral ring extension. Let be a maximal ideal o'~ S.
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Consider the commutative diagram:

integral
R——S§

‘/ ) /6 ‘/
R integral

p T-18.

Put®3 := $~1(m). Itis a prime ideal. Note that N R, is maximal by Lemma 813, hence,N R, =
p R, is the unique maximal ideal of the local ridgy. Consequently, we have due to the commutativity
of the diagram:

p=a l(pRy) =a '(mNR,) =RNB ' (m)=RNY,

showing that]3 satisfies the requirements. Ol

Proposition 8.7(Going up) Let R C S be an integral ring extension. For prime idegls C p2 in R
and a prime ideali3; < S lying overp; (i.e. 1 N R = pq), there is a prime idea3; in S lying
overps (i.e.P2 N R = po) such thatP; < Po.

Proof. By Lemma 8.3,R/p; — S/ is an integral ring extension. By Lemma 8.6, ther&is <
S/ lying overp, = po/p1 such thatB, N R/p1 = po/p1. DefineP, asmg' (Ps) for mg : S —
S/ the natural projection. Clearl§3, O B; (as; is in the preimage, being the preimage of the
0 class). By the commutativity of the diagram

R S
TR ﬂs‘/
R/p1 S/PB1,
we have
PoNR=mg" (P2) "R =73" (P2 N R/p1) = 75" (p2/p1) = P
This also impliesB, # 9. O

Corollary 8.8. Let R C S be an integral ring extension. Then the Krull dimensiomRoéquals the
Krull dimension ofS.

Proof. We first note that the Krull dimension at is at least the Krull dimension &f. Reason: If
PBrn € Pn_1 C --- € Po is an ideal chain irb, thenP, "R T Pr,.1NRC --- C PpN Risan
ideal chain inR by Lemma 8.4.

Now we show that the Krull dimension &f is at least that of?. Letp,, € p,—1 € --- € po be an
ideal chain inR and let3,, be any prime ideal of' lying overp,,, which exists by Lemma 8.6. Then
Proposition 8.7 allows us to obtain an ideal chfin C B,,—1 C - - - € Bo such thaf3; N R = p; for

i1 =0,...,n,implying the desired inequality. O

Corollary 8.9. Let R be an integral domain of Krull dimensiohand let L be a finite extension of
K := Frac R. Then the integral closure @t in L has Krull dimensior.
In particular, rings of integers of number fields have Krull dimension
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Proof. The integral closure of? in L is an integral ring extension d?. By Corollary 8.8, the Krull
dimension ofS is the same as that @, whence it isl. ]

Krull dimension of the coordinate ring of a curve

Our next aim is to compute the Krull dimension 8fX}, ..., X,,] for some fieldK. First we need
Nagata’s Normalisation Lemma, which will be an essential step in the proof efitdos Normalisa-
tion Theorem and of the computation of the Krull dimensiorkgfX, . .., X,,].

Proposition 8.10(Nagata) Let K be a field andf € K[Xy,...,X,] be a non-constant polyno-
mial. Then there areng, ms, ..., m, € N such that the ring extensioR := K|[f, z2, 23, ..., 2,] C
K[X1,...,X,] = Swithz; := X; — X{" € K[X},...,X,]isintegral.

Proof. First note: S = R[X;]. Reason: The inclusio® is trivial. Forn > i > 1, we have
X; = z + X{"" € R[X;], proving the inclusiorLC.

It suffices to show thafX; is integral overR. The main step is to construct a monic polynomial
h € RI[T] such thath(X;) = 0. We take the following general approach: For any € N for

i =2,3,...,nthe polynomial

WT) = f(T, 20+ T™, 25+ T™, ... 2 + T™) — f(X1,...,X,) € R[T]

obviously hasX; as a zero. But, in order to prove the integrality’6f we need the highest coefficient
of hto be inR* = K[X4,...,X,]* = K*, so that we can divide by it, makinfgmonic. We will
achieve this by making a ‘good’ choice of the, as follows.

Let d be the total degree ¢f in the following sense:

f(X1,. o X)) = Z iy,in) X1 X

(i1 in) S.LJi|<d

with one of thea;, . ;) # 0 for [i] := Z;;l i; = d. Now we compute (lettingz; = 1)

h(T)
= D AT e TR (s + T (2 + T)7) = f(X0, ., Xa)
(31 5eenyin) S.L]3|<d

= > agiy .. iy T>=11" + terms of lower degree iff.
(i1,.-nvin) SL.Ji|<d

Now choosen; = (d+1)7~!. Thenthe)__, ijm; = 3"}, i;(d+1)’~" are distinct for all choices

of 0 < i; < d (consider it as th¢d + 1)-adic expansion of an integer). In particular, among these
numbers there is a maximal one with# a(;, ;). Then this is the highest coefficient bfand it

lies in K*, as needed. O

Definition 8.11. Let K be afield. A finitely generateld-algebra is also called aaffine K-algebra

Proposition 8.12(Noether's Normalisation Theorem)et K be a field andR an affine-algebra
which is an integral domain and which can be generated i®}ements (a#’-algebra). Then there is
r € N, r < nand there are elements, . ..,y € R such that
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(1) R/K]|y,-..,yr] is anintegral ring extension and

(2) y1,...,y, are K-algebraically independent (by definition, this means tRdy, . . ., y,| is iso-
morphic to the polynomial ring in variables).

The subringK[ys, . . ., y,| of R is called aNoether normalisation aR.

Proof. By induction onn € N we shall prove: Every affind’-algebra that can be generatedsby
elements satisfies the conclusion of the proposition.

Start withn = 0. ThenR = K and the result is trivially true. Assume now that the result is proved
forn — 1. We show it forn. Letz,,...,z, € R be a set of generators &f as K-algebra. So, we
have the surjection ok -algebras:

gO:K[Xl,...,Xn]—»R, X10—>IL‘Z

Its kernel is a prime idea@l := ker(y) sinceR is an integral domain.

We distinguish two cases. Assume figst= (0). ThenR is isomorphic toK[X}, ..., X,] and the
result is trivially true. Now we put ourselves in the second gasg (0). Let f € p be a non-
constant polynomial. We apply Nagata’s Normalisation Lemma Proposition 8dl6kdain elements
29y ...,2n € K[X1,...,X,] suchthat[ X, ..., X,,)]/K|f, 22, ..., z,] iS @an integral ring extension.
Now, apply ¢ to this extension and obtain the integral ring extensiofp(K|f, 22, ..., z4)), i.€.
the integral ring extensio®/ R’ with R’ := K[p(z2),...,¢(z,)]. Now, R’ is generated by, — 1

elements, hence, it is an integral extensiod&dj, . . . , y,] with » < n — 1 algebraically independent
elementsy,...,y, € R C R. As integrality is transitiveR is integral overK [y, . .., y,], proving
the proposition. O

Note that by Corollary 8.8 one obtains that the Krull dimensionkois equal tor in view of the
following proposition.

Proposition 8.13. Let K be a field. The Krull dimension &f [ X1, ..., X,,] is equal ton.

Proof. We apply induction om to prove the Proposition. H = 0, then the Krull dimension i8 being
the Krull dimension of a field. Let us assume that we have already proaéethinKrull dimension of
K[Xl,...,Xn_l] isn — 1.

Let nowm be the Krull dimension of [ X1, ..., X,,]. We first provemn > n. The reason simply is
that we can write down a chain of prime ideals of lengtmamely:

(0) € (X1) € (X1, X2) C (X1, X2, X3) C -+ C (X1, X0,...,Xp).

Now let
O)CSP1CP2SP3C - C P

be a chain of prime ideals dk[X1, ..., X,] of maximal length. We pick any non-constafite
B1 and apply Nagata’s Normalisation Lemma Proposition 8.10, which yields elemgnts, z,, €
K[X1,...,Xp])suchthatk [ Xy, ..., X,]/Rwith R := K|[f, 22, ..., z,] is an integral ring extension.
Settingp; := R N B; we obtain by Lemma 8.4 the chain of prime idealodf lengthm:
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Since the Krull dimension ok equals that of< [ X7, . . ., X,,] by Corollary 8.8, this prime ideal chain

is of maximal length.

Let R := K|[f, z2,...,2,]/p1. Note that this is an integral domain, which can be generated (as a
K-algebra) byn — 1 elements, namely, the classeszef. .., z,. Letw : R = K[f, 2z9,...,2,] —
K[f,22,...,2,]/p1 = R be the natural projection. We apply it to the prime ideal chain opthend

get:

(0) =p1/p1 S p2/P1 S P3/P1 S -+ C Pm/P1,

which is a prime ideal chain aR of lengthm — 1. By Noether’s Normalisation Theorem Proposi-
tion/8.12 it follows that the Krull dimension @t is at most: — 1, yielding the other inequalityr < n
and finishing the proof. O

Corollary 8.14. Let K be a field andf(X,Y) € K[X,Y] be a non-constant polynomial. Lét =
V(1) (K) be the resulting plane curve.
Then the Krull dimension of the coordinate ridgC| = K[X,Y]/Z¢ is equal tol.

Proof. This is now immediate by Lemma 4.14. O

We include an easy lemma on Krull dimensions, which enables us to give apotivé of Proposi-
tion|4.13.

Lemma 8.15. Lety : R — S be a surjective ring homomorphism.
(8) The Krull dimension of is less than or equal to the Krull dimension &f

(b) If Ris an integral domain and the Krull dimensions®fand S are equal, therp is an isomor-
phism.

Proof. (a) ¢! of a prime ideal is a prime ideal. Moreoverf!(a) = o ~1(b), thenp(¢~!(a)) =
o(p~1(a))p~1(b)), hencea = b using here the surjectivity @f. This shows that the inverse image
of any prime ideal chain is a prime ideal chain of the same length.

(b) SinceR is an integral domain, any prime ideal chain of maximal length starts with the prime
ideal (0). Leta be the kernel ofy. It is contained in any~!(p). Hence, ify is non-zero, the pull-
back of any chain of prime ideals 8fcan be prolonged by starting it witld), showing that the Krull
dimension ofR is strictly larger than that of. O

Second proof of Proposition 4.18This proof is shorter, but depends on Krull dimensions.) The Krull
dimensions o [ X,Y]/(f) andK[C] = K[X,Y]/Z¢ are both equal td. As f is irreducible,( f) is
prime andK [ X, Y]/(f) is an integral domain. Consequently, the natural projeckioX,Y]/(f) —
K[X,Y]/Z¢ is an isomorphism by Lemma 8.15 (b). Thys = Zc¢. O

9 Dedekind rings

Lemma 9.1. Let R be an integral domain with field of fractions andT C R a multiplicatively
closed subset containirg

(@) If Ris integrally closed, theff ! R is integrally closed.
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P

(b) LetR be the integral closure aR in K and letT—1R be the integral closure 6f 'R in K.

ThenT—'R = T-'R.
Proof. Exercise. O

Now we can prove the local characterisation of integrally closed integrahihs.

Proposition 9.2. Let R be an integral domain. Then the following statements are equivalent:
(i) Risintegrally closed.

(i) R, isintegrally closed for all prime ideals < R.

(iii) Ry is integrally closed for all maximal ideala < R.

Proof. ‘(i) = (ii)": Lemma/9.1.

‘(i) = (iii)’: Trivial because every maximal ideal is prime.

‘(iiiy = (i)": Let us denote byﬁ the integral closure of2. By Lemma 9.1, we know that the localisa-
tion Ry, of R atm is the integral closure R,

Let: : R — R the natural embedding. Of coursB, is integrally closed if and only if is an
isomorphism. By Propositidn 6.17 this is the case if and only if the localisationRm < R iS

an isomorphism for all maximal ideats. That is, however, the case by assumption and the previous
discussion. O

Lemma 9.3. Let R be a Noetherian local ring anah < R its maximal ideal.
(@ m™/m"*!is an R/m-vector space for the natural operation.
(b) dimR/m(m/mQ) is the minimal number of generators of the ideal

(c) If dimR/m(m/mQ) = 1, thenm is a principal ideal and there are no ideats< R such that
m"*tl C a C m" for anyn € N.

Proof. Exercise. O

Definition 9.4. A Noetherian local ring with maximal ideah is calledregularif dimR/m(m/m2)
equals the Krull dimension ak.

Proposition 9.5. Let R be a regular local ring of Krull dimensio.
(a) Thereisr € R such that all non-zero ideals are of the fo(mi*) for somen € N.
(b) Every non-zere € R can be uniquely written asz™ withu € R* andn € N.

(c) Ris a principal ideal domain (in particular, it is an integral domain).
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Proof. By Lemma 9.3 we know that is a principal ideal. Let: be a generator, i.dx) = m. We
also know that there are no ideals: R such tham™+! C a C m” for anyn € N.

Let0 # r € R. We show that = uz™ with uniqueu € R* andn € N. In order to do so, we
first considerM := (1, .ym"™. We obviously haven)/ = M, whence by Nakayama’s Lemmma
(Proposition 6.11/ = 0.

As r # 0, there is a maximah such that- € (z"). So, we can writer = vz" for somev € R.
As R is alocal ring, we havd&? = R* Um = R* U (z). Consequentlyy € R* because otherwise
r € (z"*1), contradicting the maximality of.

Let 0 # a < R be any non-zero ideal. Let;x™ (with u; € R*) be generators of the ideal. Put
n := min; n;. Thena = (2") because all other generators are multiples.@f*/, where; is such

thatnj =n.
None of the idealsa™ for n > 2 is a prime ideal (consider - z"~1). As the Krull dimension id, it
follows that(0) is a (hence, the) minimal prime ideal, showing tiais an integral domain. O

Our next aim is to prove that regular local rings of Krull dimensicare precisely the local principal
ideal domains and also the local integrally closed integral domains.
The following lemma is proved very similarly to Nakayama’s Lemma.

Lemma 9.6. Let R be aring,a < R an ideal andM a finitely generatedz-module. Letp : M — M
be anR-homomorphism such that the imagé\/) is contained imuM .
Then there arer € N anday, aq, ..., a,—1 € a such that

O+ 19"+ an_20™ 2+ . a1 + apid
is the zero-endomorphism au.

Proof. Let x4, ..., z, be generators o/ as R-module. By assumption there aig; € a for 1 <
i,j < mn such that

n
px) = ai;u;.
j=1

Consider the matrix
D(T) =T -idyxn — (ai7j)1§i7j§n S Matn(R[T]).

Note thatD(T') is made precisely in such a way thaty)(z;) = 0 for all 1 < i < n. This means
that D(yp) is the zero-endomorphism aW (as it is zero on all generators). We multiply with the
adjoint matrix D(7)* and obtainD(T)*D(T) = det(D(T))idnxn. Consequentlydet(D(p)) is
the zero-endomorphism al/. We are done because the determindsi{ D(y)) is of the desired
form. O

Lemma 9.7. Let R be a local Noetherian integral domain of Krull dimensibwith maximal ideakn.
Let(0) € I < R be anideal. Then there is € N such thatm™ C 1.

Proof. Exercise. O
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Proposition 9.8. Let R be a local Noetherian ring of Krull dimensidn Then the following statements
are equivalent:

(i) Risan integrally closed integral domain.
(i) Risregular.
(i) Ris a principal ideal domain.

Proof. ‘(i) = (iii)": This was proved in Proposition 9.5.

‘(iiiy = (i)": Principal ideal domains are factorial (Proposition 1.18) and faateings are integrally
closed (Proposition 3.32).

‘(i) = (ii)": It suffices to show thatn is a principal ideal because this means th'atR/m(m/m2) =1,
which is the Krull dimension of?, so thatR is regular by definition.

We now construct an elementsuch thatm = (z). To that aim, we start with an # a € m. By
Lemma 9.7 there is € N such thatm™ C (a) andm™ ! ¢ (a). Take anyb € m™~ !\ (a). Put
r = § € K, whereK is the field of fractions ofz.

We show thatn = (), as follows:

e ™ ¢ Rforallm € mbecaus€? = 2 andmb € mm" ! =m" C (a).

e 27! ¢ R because otherwise= 2! = £ € Rwould implyb = ra € (a).

T a

e 2~ 'm ¢ m because of the following: Assume the contrary, ze'm C m. Then we have the

m—ma 1

R-homomorphismp : m m. Asm is finitely generated (becaugeis Noetherian),
there areig, aq,...,a,—1 € R such that

"+ 190"+ an—2" 2 + .. La1p + apid
is the zero-endomorphism emby Lemma 9.6 (withh = R). This means that
0= (m_" + an,lm_(”_l) + an,gm_(”_g) +.oar 4+ ao)m.
As R is an integral domain, we obtain
0=2"+ap12" "V +a, 02 "D+ a7 + ag,

showing thatz~! is integral overR. As R is integrally closed, we obtain further! ¢ R,
which we excluded before.

So,z~'m is an ideal ofR which is not contained im. Thus,>~'m = R, whencem = Rz = (), as
was to be shown. O

Definition 9.9. A Noetherian integrally closed integral domain of Krull dimensibms called a
Dedekind ring
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Example 9.10.Let K/Q be a number field and x its ring of integers. We have proved thiag is an
integrally closed integral domain and that its Krull dimension isS0,Z i is a Dedekind ring because
it is also Noetherian (this is not so difficult, but needs some terminologywhdiave not introduced;
we will show this in the beginning of the lecture on Algebraic Number Theory).

In a lecture on Algebraic Number Theory (e.g. next term) one seeB#d#kind rings have the prop-
erty that every non-zero ideal is a product of prime ideals in a uniqug Wais replaces the unique
factorisation in prime elements, which holds in a factorial ring, but, fails to holdengenerally, as
we have seen.

Below we shall provide further examples of Dedekind rings coming framgtry.

We can now conclude from our previous work the following local chizrégation of Dedekind rings.

Proposition 9.11. Let R be a Noetherian integral domain of Krull dimension Then the following
assertions are equivalent:

() Ris aDedekind ring.

(i) Risintegrally closed.
(i) Ry is integrally closed for all maximal ideala < R.
(iv) Ry is regular for all maximal idealsn < R.

(V) Ry, is a principal ideal domain for all maximal ideats < R.

Proof. All statements have been proved earlier! But, note that the Krull dimensiéi,o$ 1 for all
maximal idealsn. That is due to the fact that any non-zero prime ideal in an integral dorh&ruth
dimensionl is maximal and thah R, is also maximal and non-zero. O

Let us now see what this means for plane curves. fliéf,Y) € K[X,Y] anda,b € K such that
f(a,b) = 0. Recall the Taylor expansion:

TC,(a,b) (X’ Y) =

of

e (X —a) + ==|ap (Y — b) + terms of higher degree X — a) and(Y — b).
Sx a0 gi(,) f higher d [ d

Definition 9.12. Let K be a field,f € K[X,Y] a non-constant irreducible polynomial ard =
V() (K) the associated plane curve.
Let(a,b) € C be a point. Theéangent equation t6 at (a, b) is defined as

of of
T (ap) (X, Y) = ﬁ’(a,b)(X —a)+ W\(a,b)(y —-b) € K[X,Y].

If Tc (a,5) (X, Y) is the zero polynomial, then we céil, b) a singular point ofC'.

If (a,b) is non-singular (also calledsmoot), thenVr, , (K) is a line (instead of\%(K)), called
thetangent line ta” at (a, b).

A curve all of whose points are non-singular is callesh-singular (or smooth)
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Example 9.13.(a) Letf(X,Y) =Y? — X3 ¢ K[X, Y] with K a field (say, of characteristig).

We have%é = —3X? and% = 2Y. Hence(0,0) is a singularity and it is the only one. (Draw
a sketch.)

This kind of singularity is called ausp(Spitze/pointe) for obvious reasons. The tangents to the
two branches coincide at the cusp.

(b) Letf(X,Y) =Y? - X3 - X? € K[X,Y]with K afield (say, of characteristig).

We have?l = —3X2 — 2X and 2 = 2Y. Hence,(0,0) is a singularity and it is the only one.
(Draw a sketch.)

This kind of singularity is called aardinary double point The tangents to the two branches are
distinct at the ordinary double point.

The following lemma relates a geometric property (a point on a curve is nariaijignd an algebraic
property (the localisation of the coordinate ring is regular).

Lemma 9.14. Let K be an algebraically closed field, € K[X, Y] a non-constant irreducible poly-
nomial,C = V) (K) the associated plane curve addC] = K[X,Y]/(f(X,Y)) the coordinate

ring. Let(a,b) € C be apointandn = (X —a+ (f),Y — b+ (f)) < K[C] be the corresponding
maximal ideal (see Lemma 4[11).

Then the following two statements are equivalent:

(i) The point(a,b) is non-singular.
(i) K[C]mis aregular local ring of Krull dimension.

Proof. After a variable transformation (as in the previous lemma) we may assurg = (0,0).
Then
f(X,Y)=aX + Y + higher terms

Note thatm? is generated byX2 + (f), Y2 + (f), XY + (f), so that theK = K[C]/m-vector
spacem/m? is generated byX + (f) andY + (f). Hence, the minimal number of generators is at
most2, but could bel. Note that we are using the isomorphisiKi&C] .,/ (mK[Clm) = K[C]/m and
(mK|[C]/(mK[C])? 2 m/m? from Lemma 6.15 (b).

Note also that<'[C] has Krull dimensiorl and is an integral domain becaugés irreducible (see
Corollary 8.14). Aan is not the zero ideal, also the localisatiBiC],, has Krull dimension.

‘(i) = (ii)": We assume that0,0) is not a singular point. Thea # 0 or 5 # 0. After possibly
exchangingX andY we may, without loss of generality, assumeZ 0. It follows:

1 B

X+ (f) = &( — BY — higher termst (f)) = Y+ (f) (mod m?).

So,Y + (f) generatesn/m? as K-vector space, whence the dimension of this spade vehich is
equal to the Krull dimension. This shows tH&{C1., is regular.

‘(i) = (i) We now assume that0,0) is a singular point. Thea = 5 = 0. So,X + (f) and
Y + (f) are K-linearly independent im/m?, whence the-dimension ofm/m? is bigger than the
Krull dimension, showing thak'[C|., is not regular. O
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In order to globalise this statement, we need to determine all maximal ideals ofdtdrade ring.
We do this in generality by first proving the field theoretic version of HilbeMtslstellensatz.

Proposition 9.15 (Field theoretic weak Nullstellensatz)et K be a field,L/K a field extension

anday,...,a, € L elements such that = Klay,...,a,] (thatis, theK-algebra homomorphism
K[X1,...,X,] 2%, [is surjective).

ThenL/K is finite and algebraic.

Proof. Let L = KJay,...,ay]. Itis an affine K-algebra which is a field (and hence an integral
domain). So, we may apply Noether normalisation Proposition 8.12. We obtaieelgy;, ..., y, €
Lsuchthatl /K[y, ...,y,] is an integral extension arid[y;, . . . , v, is isomorphic to a polynomial
ring in r variables. This means, in particular, that there are no relations betwegn the

Assumer > 1. Theny;1 € L and hence integral oveK [y1, ..., y,], SO that it satisfies a monic
equation of the form

Y+ Fae1 (s y)y " folyn, ) =0,

wheref;(y1,...,yr) € K[y1, ..., yr]. Multiplying through withy™ we get

1 +fn—1(y1,- . ,y'/‘)yl + -+ fO(ylv"' 7y7")y? = 07

i.e. a non-trivial relation between the. Conclusion:r = 0.
Hence,L/K is integral and hence algebraic. It is a finite field extension because ihesaed by
finitely many algebraic elements. O

We can now determine the maximal ideals of the coordinate ring of any affieéralg set over an
algebraically closed field.

Corollary 9.16. Let K be an algebraically closed field and< K[X3, ..., X,,] a proper ideal.

(a) The maximal idealsn < K[X3,..., X,]| which containa are (X; — a1,..., X, — a,) for
((11, ERE an) € Va(K)

(b) The maximalideals &K [ X7, ..., X,]|/aare(X; —a1+a,..., X, —a,+a)for(ay,...,a,) €
Va(K).

Proof. (a) We first determine what maximal ideals look like in general. Any ideal ofdima (X; —
ai,..., X, — ay) is clearly maximal (factoring it out givek’). Conversely, ifm < K[X7, ..., X,,]
is maximal then the quotierdt’ [ X, ..., X,]/mis a finite algebraic field extension &f by Proposi-
tion[9.15, hence, equal t8 becauseX is algebraically closed. Consequently, denoting= m(X;)
fori =1,...,nwithm: K[X,...,X,)] natral projection K[Xy,...,X,]/m = K, we find (special
case of Lemma 4.11) that = (X1 — aq,..., X, — ay).

Now we prove the assertion. Let = (X; —ay,..., X, — ay), so that{(a1,...,a,)} = Va(K).
We have:

aCme {(a,...,an)} = Va(K) CV(K) & (a1,...,a,) € Vo(K).
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The direction=- is trivial. To see the other one, note thfdt,...,a,) = 0for f € aimpliesf € m,
asm is the kernel ofK [ X1, ..., X,] =% K.

(b) The maximal ideals of{[X,Y]/a are precisely the maximal ideals &f[X,Y’] containinga.
Thus, (a) implies the assertion. O

We now obtain our main theorem about coordinate rings of plane cutvagaih relates a geometric
statement (smoothness of a curve) and an algebraic statement (cooridigadeDedekind).

Theorem 9.17.Let K be an algebraically closed fieldf, ¢ K[X, Y] a non-constant irreducible poly-
nomial,C' = V) (K) the associated plane curve addC] = K[X,Y]/(f(X,Y)) the coordinate
ring.

Then the following two statements are equivalent:

(i) The curveC is smooth.
(i) KI[C]is a Dedekind ring.

Proof. By Lemma 9.14 the maximal ideats of K[C] are precisely théX —a + (f),Y — b+ (f))
for (a,b) € C(K).

By Proposition 9.11 we hav& [C] is a Dedekind ring if and only i< [C], is a regular ring for
all maximal idealsm < K[C]; that is the case if and only if all poin{s, b) of C' are smooth (by
Lemmad 9.14). O

10 Hilbert’'s Nullstellensatz

Proposition 10.1(Hilbert’s Nullstellensatz — weak form)Let K be a field anch < K[ X71,..., X,] a
proper ideal. Then,(K) # ), whereK is an algebraic closure ok .

Proof. Letm < K[X1,..., X,] be a maximal ideal containing ThenL := K[X3,...,X,]/misa
field extension (we factored out a maximal ideal)f6f which is, of course, the image of a surjective
K-algebra homomorphism : K[Xi,...,X,] — L (the natural projection!). By Proposition 9/15
it follows that /K is a finite algebraic extension, hende= K becauseX is algebraically closed.
Writing a; := 7(X;), it follows thata; € K fori = 1,...,n. Hence, (X1 — a1,..., X, — a,) C
ker(r) = m. Due to the maximality of the ide&lX; — a1,...,X,, — ay), it follows thata C m =
(X1 —a1,..., X, — ay). Consequentiyy(K) 2 Vn(K) = {(a1,...,as)} O

Remark 10.2. In fact the assertion of Proposition 10.1 is equivalent to that of Propositiaf,9n
the sense that the latter can also be deduced from the former, as follows:

Consider aK -algebra surjections : K[X;, ..., X,] Xt 1 its kernelm = ker(¢) is a maximal
ideal, sinceL is a field. By Proposition 10.1, we havg,(K) # (. Let(by,...,b,) be an element
of Vn(K), which gives rise to thé(-algebra homomorphismy : K[X7,..., X,] Ximbi K Note
that m is contained in the kernel af (we havef(by,...,b,) = 0 for all f € m), whence they are
equal. Consequentlyy C L C K, and we conclude that /K is algebraic. It is finite because it is

generated by finitely many algebraic elements.



10. HILBERT'S NULLSTELLENSATZ 75

Definition 10.3. Let R be aring anda <t R and ideal. Theadical (ideal) ofa is defined as
Va={reR|IneN:r" cal.

An ideala is called aradical idealf a = /a.
TheJacobson radical af is defined as

J(a) = ﬂ m,

aCm<R maximal

i.e. the intersection of all maximal ideals &f containinga (recall the definition of the Jacobson
radical of a ring: intersection of all maximal ideals; it is equal #40)).

Lemma 10.4. Let K be afield andr < K[X7, ..., X,,] anideal.
ThenVy(L) =V (L) for all field extensiond. / K .

Proof. The inclusionD is trivial because ofi C /a. Let now (ai,...,a,) € V4(L), that is,
f(ai,...,a,) = Oforall f € a. Letnowg € /a. Then there isn € N such thaty™ € q,
so thatg(ai,...,a,)™ = 0. Since we are in an integral domain, this impligs,,...,a,) = 0,
showing the inclusiorc. O

Proposition 10.5(General Hilbert’'s Nullstellensatz) et K be a field,R an affineK-algebra,a < R
anideal. Then/a = J(a).

Proof. ‘C’: Let m <« R be any maximal ideal containing Let f € v/a. Then there isn € N such
that f € a C m. The prime ideal property afi now gives thatf € m. This implies,/a C m.

‘D" Let f € R\ v/a. We want to show ¢ J(a).

From f ¢ /a it follows that f* ¢ aforalln € N. So, thesef = {f" | n € N} C R/a =: Ris
multiplicatively closed and does not contdirfthe zero ofR = R/a, of course). We writef for the
classf + a € R. Itis a unitinS—!R because we are allowingin the denominator.

Let g be a maximal ideal o6~'R. As fis a unit,f ¢ §. As R is an affinek -algebra, so is the
field S~'R/q =: L (we modded out by a maximal ideal). Proposition 9.15 yields fhdt is a finite
field extension.

Note that the ring?/(RN{q) containsK and lies inL. Due to the finiteness df/ K, this ring is itself
afield, so thal? N § is a maximal ideal ofz.

Recall thatf ¢ g, so f does not lie in the maximal ide& N q.

Setq := 7~ !(7) with the natural projectiom : R — R = R/a. Itis a maximal ideal containing,
but f ¢ q. Consequentlyf & J(a). O

Theorem 10.6(Hilbert's Nullstellensatz) Let K be an algebraically closed field and consider an
ideala < K[X1,...,Xy].

ThenIVa(K) = \/E

In particular, takingV,(K), the radical ideals ofK[X}, ..., X,] are in bijection with the affine
algebraic sets il\" (K).



76 CHAPTER Ill. ADVANCED RING THEORY

Proof. ‘D’: By Lemmata 4.15 and 10.4 we hayéx C Iy (k) = Dva (k)

‘C’: Let m be a maximal ideal o[ X}, ..., X,,] containinga. By Corollary9.16 we known =
(X1 —a1,..., Xy — a,) forsome(ay, ..., a,) € Vo(K). Let f € Ty, (k). Thenf(ay,...,a,) =0
so thatf € m, asm is the kernel ofK [ X1, ..., X,)] Xz g This showsZy, (k) € m, and, hence,

Ty, (k) € J(a). By Proposition 10.5 we thus g&},_x) € +/a, as was to be shown.
The final statement follows like this:

X = Va(K) = Ty, ) = Va s Va(K) = Vo(K) = X

and
a= \/a'—> Va(K) — IVQ(K) = \/a

This shows the correspondence. O

Finally let us prove that the vanishing ide&t of the curve defined by a non-constant irreducible
f € K[X,Y] (over an algebraically closed fiel) is (f) and hence the coordinate ridg[C] is
isomorphic toK [ X, Y]/(f).

Third proof of Proposition 4.13 fo algebraically closed.Recall thatK'[X, Y] is a unique factori-
sation domain. Hence any irreducible element is a prime element. Fhas prime element, and
consequently f) is a prime ideal, implying,/(f) = (f). Thus Hilbert's Nullstellensatz 10.6 yields

Ic = /() = () H
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Exercises

1. Let R be an integral domain. Show the following statements:

(@) Letr € R. Then:r € R* < (r) = R.
(b) Letr,s € R. Then:r | s < (r) D (s).
(c) Letr,s € R. Thenr ands are associate if and only {f-) = (s).
(d) Letr € R\ (R* U{0}). Thenr is a prime element if and only {f-) is a prime ideal ofR.
(e) Letr € R be a prime element. Thenis irreducible.

2. Leti = /—1 € C. Convince yourself that the ring of Gaussian integéf§ := {a + bi €
C | a,b € Z} with + and- is a subring ofC (you don't have to hand in a proof for this).

Show that it is a Euclidean ring with respect to timm

N(a +ib) := (a + ib)(a — ib) = (a + ib)(a + ib) = a® + b°.

3. Consider the subsét := {a + bv/—5 | a,b € Z} C C.

(&) Check thaf? is a subring ofC. Conclude thaf: is an integral domain.
(b) We have the remarkable equality:

6=2-3=(1+v=5) (1-V-5)

Prove that all four elements 3,1+ +/—5,1 — v/—5 are irreducible elements & and that no
two of them are associate.

(c) Conclude thaR is not a unique factorisation domain.
4. LetR be aring and < R be an ideal. Show the following statements:

(@) Therelatiorr ~ y :< x—y € I defines an equivalence relation n Denote the equivalence
classes =z + I by R/I.
(b) The set of equivalence classegl forms a ring with respect to:
e +:R/IXR/I—R/I, (x+TLy+I)—z+y+1,

77
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0 =0 =0+ I = I as neutral element w.r.t. additiemn,
-:R/IxR/I —-R/I, (r+I,s+I)—rs+]1,

e 1 =1=1+ I as neutral element w.r.t. multiplication

The ringR/I is calledquotient ring (or: factor ring) ofR by I.

Note that the main point is that and- indeed define maps, i.e. are well-defined. The other
properties then follow immediately from those Bfand need not be written out in detail.

5. LetFy := Fy[X]/(X% 4+ X +1).

(@) Show thatX? + X + 1 € Fo[X] is irreducible. Henc&, is a field.
(b) Make a list of all elements d ;.
(c) Write down the addition and the multiplication tableRaf.

6. Show the so-calledomomorphism/isomorphism theorem for rinykore precisely, show the fol-
lowing statement:

Let R, S berings and» : R — S be a ring homomorphism. Then the map

R/ ker(p) — im(p), r+ker(p) — o(r)

is well-defined and an isomorphism of rings.

7. LetR be aring and lef\/ be an abelian group/ (with group operationt and neutral elemert).
Denote byEnd (M) the endomorphism ring a¥/ as an abelian group. Suppose there is a map

iRXxM— M, (r,m)— r.m.

Show thatM is a left R-module if and only if the map
R — End(M), r— (z+— r.z)

is a ring homomorphism.

8. Prove the so-calleHomomorphism and isomorphism theorenMore precisely, prove that the
following statements are true:

Let R, S be rings.

(a) Lety : R — S be aring homomorphism. Then the map

R/ ker(p) — im(p), 7+ ker(p) — ¢(r)

is well-defined and an isomorphism of rings.
(b) Let M, N be R-modules and> : M — N be anR-homomorphism. Then the map

M/ ker(p) — im(p), m + ker(p) — ¢(r)

is well-defined and a-isomorphism.
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(c) Let M be anR-module and letN; € Ny be R-submodules of\/. Then there is amk-
isomorphism
(M/N1)/(N2/N1) = M/Ns.

(d) Let M be anR-module and letV; and N, be R-submodules of\/. Then there is ark-
isomorphism
(Nl + N2)/N1 = N2/(N1 N NQ)

(a) LetR be an integral domain. Show thR{X|* = R*. In words, show that the unit group of
the polynomial ring oveRR is equal to the unit group aR.
(b) LetR C S berings and: € S. Show that thevaluation map

eve: RIX]— S, f— f(a)

is @ homomorphism of rings.

(c) LetR := Z[/2] andS := Z[/5]. Prove thatR andS are isomorphic as abelian groups, but
not as rings.

Show that the following polynomials are irreducible in the indicated polynainigd

(1) 5X3 +63X2% + 168 € Q[X],

(2) X5+ X3 +1€Q[X],

Q) X4+ X3+ X2+ X +1€Fy[X],

(4) X*-3X3+3X%2 - X +1eQ[X],

(B) X+ XY"+Y €Q[X,Y],

(6) X2 -Y3eC[X,Y].

Hint: The two criteria (reduction and Eisenstein) in the appendix on the baigkd on fields help
you, but, they alone do not suffice.

(a) LetK C L C M be finite field extensions. Provaultiplicativity of degreesi.e. prove the

formula
[M: K|]=[M:L][L: K]

(in other wordsdimg M = (dimg L)(dimy, M).). Also show that this formula even holds if
the field extensions are allowed to be infinite with the usual rutes= oo for anyn > 0 and
o000 = Q.

(b) Leta := ”T\/ﬁ € Q(+/13). Compute the minimal polynomial ef overQ.
Note that your answer is (should be!) a monic polynomidZjX ], althougha seems to have
a denominator. This kind of phenomenon will be discussed in the lecture.

(c) Let f(X) = X3 4+ 3X — 3 € Q[X]. This is an irreducible polynomial (How can one prove
this?), soK := Q[X]/(f) is a field extension of) of degree3. Let« := X + (f) € K. Then
the setB := {1, a, a?} is aQ-basis of K.

(1) Represent—! and(1 + a)~! in terms of the basi®, i.e. asQ-linear combination of, «
anda?.
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(2) Compute the minimal polynomial ¢f := o? — a + 2 overQ.
LetQ be the algebraic closure @f in C. Prove thatQ is countable.
Letd # 0,1 be a squarefree integer (meaning that no prime factor dividesce). Show that the
ring of integers ofQ(v/d) is equal to:
{Z[\/ﬁ], ifd=2,3 mod 4,

ZIMYd) ifd=1 mod 4.

LetK be afield andf € K[X] an irreducible polynomial of degreé Let L := K[X]/(f(X)).
Show the following statements:

(&) L is afinite field extension of{ of degreed.
(b) Leta be the class oK in L. Thenf(a) = 0.

LetL/K be afield extension (possibly of infinite degree). Show that the followirtgrsiants are
equivalent:

() L/K is algebraic.
(i) L can be generated ovéf by (possibly infinitely many) elements df that are algebraic
overK.

LetK be a field andh € N. Show the following statements:

(@) Letx C Y C A"(K) be subsets. Thefy 2 Zy.

(b) Zy = K[X].

(c) If K has infinitely many elements, théi. k) = (0).
(d) LetS C K[X] be asubset. Theh, k) 2 S.

(e) LetxX C A"(K) be a subset. Thewz, (K) D X.

() Let S € K[X]be asubset. Thewy, . (K) = Vs(K).

(9) LetX C A"(K) be a subset. Thﬁ‘fh;(zx)(K) =Tx.

Let(X, Ox) be atopological space apidlC X be a subset. Defin@y, :={UNY | U € Ox}.
Show thatOy is a topology ony. It is called therelative topologyor thesubset topology
LetK be a field. Show that the closed subsetabfK ) aref), A'(K) and finite sets of points.
LetK be afieldn € NandX C A"(K) a subset.
With f € K[X,...,X,] associate (as in the lecture) the map

p: X = A(K), z+— f(z)
Show thatp is a continuous map, when we considéwith the relative topology from\™(K). Of
course A"(K) andA'!(K) are equipped with the Zariski topology.

By definition a map between topological spaces is continuous if the preimagg open set is an
open set.

Hint: Use Exercise 18.
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If you don’t know it, look up the definition of a Hausdorff topologisplce.

Let K be an infinite field. Show that! (k) with the Zariski topology is not a Hausdorff topolog-
ical space.

Hint: Use Exercise 18.

If you don’t know it, look up the definition of the product topology oa ttartesian product of two
topological spaces.

Let K be an infinite field. Prove that the Zariski topology AR(K) is not the product topology
onAY(K) x AY(K).

Hint: Use Exercise 18.

In this exercise all primitive Pythagorean triples are determined by datimmy in the factorial
ring Z[i] (recall: it is Euclidean!).

A triple (a, b, c) of positive integers is called Bythagorean Triplef a? + b?> = ¢2. It is called
primitive if the greatest common divisor of b, c equalsl and ifa is odd (and thus even).

(a) Show how to associate with any Pythagorean Triple a primitive one.

(b) Let(a,b, c) be a primitive Pythagorean Triple. Show tlat ib anda — ib are coprime irZ[i].

(c) Conclude from (b) that+ib anda—1ib are squares ifi[:] if (a, b, ¢) is a primitive Pythagorean
Triple.

(d) Conclude from (c) that there atev € N such that

a=u>—v2 and b= 2uw.

(e) Finally, check quickly that — conversely — equations as in (d) algagsa Pythagorean Triple.
Letf(X,Y)=Y? - X3+ X € R[X,Y] and putC := V;(R).

(&) Make a sketch of the curve.
(b) Prove that the vanishing ide&t is equal to the principal ideal generated Ay

(c) Is the coordinate ring isomorphic to the polynomial ring in one variable B Prove your
answer.

(d) Is the curve” reducible or irreducible for the Zariski topology? Prove your answer.

LetR be aring andV/; for i € I (some set)z-modules. Show that the direct prodydt; M;
together with the projections; satisfies the following universal property:

For all R-modulesN together withR-homomorphisms);, : N — M, for ¢ € I there
is one and only on&-homomorphismp : N — P such thatr; o ¢ = ¢; foralli €
(draw diagram).

Uniqueness of productsLet R be a ring andM; for i € I (some set)R-modules. LetP :=
[I,c; M; together withr; : P — M; as defined in the lecture. L&Y together withr) : P" — M;
be anotheR-module that satisfies the same universal properiy.as

Show that there is a unique-isomorphismP — P’.
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26. Let R be a ring, N and M; for i € I (some set) beR-modules. Show that there is ag-
isomorphism:
U : Homp(EP M;, N) — [ [ Homp(M;, N).
i€l el

27. LetR be aring.
(@) LetM;,..., M, be R-modules and pud/ := []"_, M;. Show that there ar&-homomor-
phismse; : M — M fori =1,...,n such that

(1) e;0e; =e; foralli =1,...,n (a homomorphism with this property is calledidempo-
tend.

(2) e;oe; =0forall1 <i,j <nandi# j (one says that the idempotertsi = 1,...,n
areorthogona).

(3) idps = €1 + -+ - + e, (One says that the;, : = 1,...,n are acomplete set of orthogonal
idempotents oit/).

(b) Let M be anR-module ancky, ..., e, € Homg(M, M) a complete set of orthogonal idem-
potents ofM, i.e. they satisfy (1), (2) and (3). L&tl; := e;(M).
Show that there is aR-isomorphismM — T[] | M;.

28. LetR be aring. State the isomorphism theoremsRamodules in terms of exact sequences.

29. LetRbe aringand) - A = B 5, ¢ — 0 a short exact sequence. Show that the following
statements are equivalent:

(i) There is anR-homomorphisns : C' — B such thaij o s = id¢ (s is called asplit).
(i) There is ankR-homomorphisnt : B — A such that o o = id4 (¢ is also called &plit).

(i) There is anR-isomorphismA & C — B.
30. LetRbearingand — A — B — C — 0 a short exact sequence.

(&) Suppose that andC have finitely many elements. Prove tBaB = #A - #C.

(b) Assume now thak = K is a field and thatl andC are finite dimensional a&’-vector spaces.
Prove thaﬂimK(B) = dimK(A) + dlmK(C)

31. LetR be aring andV, M; for i = 1,2,3 be R-modules. Show that the functéfompg(-, V) is
contravariant (reverses directions of arrows) and left-exact. iEhalhow the following statement:

If
My 22 My Y5 My — 0

is an exact sequence, then
0 — Homp(Ms, N) 2% Homp(Ma, N) 22 Homp(Mi, N)

is also exact, wheréi sendsy € Homp(M;, N)to o ¢p; € Homp(M;_1, N) fori = 2,3.
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LetR be aring andd C R a multiplicatively closed subset withe S. Let; : R — S~ R, given

T

by’l“ [d 1-

Show the following statements.

(@ The map
{b<S7'Rideall — {a< Rideal}, b+ pu'(b)<R
is an injection, which preserves inclusions and intersections. Morgbwen,S—! R is a prime
ideal, then sois.~1(b) < R,
(b) Leta < R be anideal. Then the following statements are equivalent:
(i) a=p~!(b)for someb < SR (i.e.a is in the image of the map in (a)).
(i) a=p 1 (aS™IR) (hereaS~!Ris short for the ideal of~! R generated by:(a), i.e. by
all elements of the forng for a € a).

(i) Every s € S'is a non-zero divisor module, meaning that ifr € R andrs € a, then
r € a.

(c) The map in (a) defines a bijection between the prime ideas &R and the prime ideals of
RsuchthatSnp = 0.

Hint: Use (b) (iii).
Let R be a ring andn be a maximal ideal. Recall thatR,, is the unigue maximal ideal of the
localisationR,, of R atm. Let M be anR-module and denote ¥/, its localisation ain.

Show that the natural mgp: M — My, z +— % induces an isomorphism

M/mM = My/mMBRy M.

(Note that this implies in particular that the natural map R — Ry, r — § induces a ring iso-
morphismR/m = R.,/mRy,. If one knows the tensor product, one can first prove this conclusion
directly and then easily derive the general statement.)

LetR be aring andlef C R be a multiplicatively closed subset containingConsider an integral
ring extensionk C 7'. Show thatS—'R C S~!T is an integral ring extension.

LetK be afield. LetkR = K[X, X»,.. .| be the polynomial ring in countably many variables.
Is R a Noetherian ring? Prove your answer.

(a) LetR be aring and// be ankR-module. Let furthetM; fori = 1,...,n be submodules o/
such thatM is generated by th&f; fori = 1,...,n. Show that the following two statements
are equivalent:

(i) M is Noetherian (resp. Artinian).
(i) M, is Noetherian (resp. Artinian) forall=1, ..., n.
Hint: You may use Lemma 7.4.

(b) Let R be a Noetherian (resp. Artinian) ring. Conclude from (a) that everiefjngenerated
R-module is Noetherian (resp. Artinian).
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Let R be a Noetherian ring anfl C R be a multiplicatively closed subset withe S. Show that
S~!Ris also a Noetherian ring.

Hint: Use Exercise 32.

LetR be a Noetherian local ring anal < R its maximal ideal. Show the following assertions:

(@) m"/m"*!is anR/m-vector space for the natural operation.

(b) dimp/(m/m?) is the minimal number of generators of the ideal
Hint: Use the corollary of Nakayama’s Lemma (Corollary 6.12).

(c) If dimR/m(m/m2) = 1, thenm is a principal ideal and there are no ideals: R such that
m"*t! C a C m” for anyn € N.

Exam like exercises:

Lety : R — S be aring homomorphismi andsS are rings). Formulate and prove the homomor-
phism theorem.

LetR be aring.

(&) When isR called a factorial ring?

(b) When isR called a principal ideal domain?

(c) When isR called a Euclidean ring?

(d) Prove that every Euclidean ring is a principal ideal domain.

(e) Prove that every factorial ring is integrally closed in its field of fraction

(f) Is Z[X] a Euclidean ring? Prove your answer.
LetK be afield. LetS = K[X, X2, X3, ...], the polynomial ring in countably many variables.

(&) When is aringr called an integral domain?
(b) Is S an integral domain?

(c) IsS a Euclidean ring?

(d) Is S a principal ideal domain?

(e) When is a ringr called Noetherian?

(f) Is S a Noetherian ring?
LetR be aring ang < R an ideal.

(&) When isp called a prime ideal?

(b) Show that the following two statements are equivalent:
(i) pisaprimeideal.
(i) R/pis an integral domain.
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(c) Lety : S — R be a ring homomorphism. Prove that!(p) is a prime ideal ofS if p is a
prime ideal ofR.
(Hint: Use the definition.)

LetR C S be aring extension.

(a) Lets € S. When iss called integral oveR?
(b) When is the ring extensioR C S called integral?

(c) Assume now thaRk C S'is integral. Leth < .S be anideal and :=b N R < R.

Show that the inclusion : R — S induces an injective ring homomorphisRya — S/b,
which is an integral ring extension.

(d) Keeping the notation of (c) and assuming thét a prime ideal, show the following:
a is maximal< b is maximal.

(e) LetR C S be an integral ring extension and assume in addition$hatan integral domain.
Show:

Ris afielde Sis afield.
LetR be aring.

(@) LetT C R be a multiplicatively closed subset containingWhat is the definition of ~! R?
(b) Letp < R be a prime ideal. How is the localisatidt), of R atp defined?

(c) LetR be an integral domain. Describe the localisatiorRadt (0). Which other name does it
have?

(d) Let R C S be an integral ring extension. Show tHat'R C T-1S is an integral ring
extension.

(e) Assume thaR is an integrally closed integral domain.
Show thatl'~! R is integrally closed.

(f) Assume thatR is an integral domain with field of fractions”. Let R be the integral closure
of Rin K and letT-1 R be the integral closure &f 'R in K.

ThenT—'R = T-1R.

(a) How is the Krull dimension of a ring defined?

(b) Let R be alocal Noetherian integral domain of Krull dimension
Show that its only prime ideals af@) andm, wherem is the maximal ideal oR.

(c) Let R be a local Noetherian integral domain of Krull dimensionLet (0) C I < R be an
ideal.
Show that there i& € N such thain™ C I.

Hint: Let X be the set of all ideals <1 R such thamm™ ¢ I for all n € N. This set is non-empty
and contains a maximal elemehtShow that/ = (0). Otherwise, is not a prime ideal, so it
contains a producty without containinge andy individually. Now considef!, z) and(7, y).
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46. LetR be aring, letM;, N, fori = 1,2,3 be R-modules, and lep; : M; — N;, apr : My — Ms,
ay : Ny — N, By : My — M3, By : No — N3 be R-module homomorphisms.

(a) When is the sequendé; =% M, Poa, M5 called exact?

(b) Prove the so-calleBnake lemmaSuppose that the diagram

0 M, M M3 0
‘Cbl l@ l¢3
0 Ny Ny N3 0

is commutative and has exact rows. Show that there is an exact sequence
0 — ker(¢1) — ker(¢o) — ker(¢s) LN coker(¢1) — coker(¢pe) — coker(ps) — 0.

(The cokernel of a homomorphism: M — N is defined asV/ im(«).)
Hint: It is rather easy. But | heard that there is a movie in which the snake léapnaved...

47. LetK be afield,f € K[X,Y]anon-constant irreducible polynomial a@d= V(K ) the associ-
ated plane curve.

Let (a,b) € C be a point. Theangent equation t@’ at (a, b) is defined as

of of
Tewn(XsY) = 55 lan (X = a) + 55 l@y (Y = b) € K[X, Y.

If Tc (ap)(X,Y) is the zero polynomial, then we cédl, b) asingular point ofC'.

If (a, b) is non-singular (also calledmootf), thenVr,, , , (K) is aline (instead of*(K)), called
thetangent line taC' at (a, ).

(@) Letf(X,Y)=Y?-g(X) € K[X,Y], whereg(X) € K[X]. Determine all the singularities
of the associated curvg by relating them to the zeros gf X).

(b) Letf(X,Y)=Y? - X3 c R[X,Y].
Make a sketch of the associated cute Find all its singularities. Describe the behaviour
of the tangent lines at points on any of the two branches close to the sibgulren they
approach the singularity.

(c) Letf(X,Y)=Y? - X3 - X2 c R[X,Y].
Make a sketch of the associated cute Find all its singularities. Describe the behaviour
of the tangent lines at points on any of the two branches close to the sibhgulren they
approach the singularity.

(d) Letf(X,Y)=Y(Y - X)(Y + X) + X° - Y7 e RIX].
Make a sketch of the associated cuéveFind all its singularities.

48. LetR be aring. An element € R is called nilpotent if there i% € N such thatz* = 0. Let
Nil(R) be the subset aR consisting of the nilpotent elements.
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(a) Show thalNil(R) is an ideal ofR, which is contained in all prime ideals &.
(b) Show thaiNil(R/ Nil(R)) = (0).
(c) Letx € R be nilpotent. Show that — z is a unit inR.

49. LetR be aring.

(&) What is the universal property of a fr&emodule over a set?

(b) Show, using the universal property of a free module over a sein(4a)), that everyR-
moduleM is a quotient module of a free module.

(c) LetM be anR-module. A free resolution a#/ is an exact sequence
= = —-F —-F—->M-=0

consisting of freeR-modulesF,, for n € N.
Show that everyR-moduleM admits a free resolution.
Hint: Use (b) repeatedly.
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