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Preface

In number theory one is naturally led to study more general numbers than justthe classical integers
and, thus, to introduce the concept of integral elements in number fields. The rings of integers in
number fields have certain very beautiful properties (such as the uniquefactorisation of ideals) which
characterise them as Dedekind rings. Parallely, in geometry one studies affine varieties through their
coordinate rings. It turns out that the coordinate ring of a curve is a Dedekind ring if and only if the
curve is non-singular (e.g. has no self intersection).
With this in mind, we shall work towards the concept and the characterisation of Dedekind rings.
Along the way, we shall introduce and demonstrate through examples basic concepts of algebraic
geometry and algebraic number theory. Moreover, we shall be naturally led to treat many concepts
from commutative algebra.
The lecture covers the following topics:

• General concepts in the theory of commutative rings

– Rings, ideals and modules
– Noetherian rings
– Tensor products
– Localisation
– Krull Dimension

• Number rings

– Integral extensions
– Noether’s normalisation theorem
– Dedekind rings

• Plane Curves

– Affine space
– Coordinate rings and Zariski topology
– Hilbert’s Nullstellensatz
– Singular points

Good books are the following. But, there are many more!

• E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry.

• Dino Lorenzini. An Invitation to Arithmetic Geometry, Graduate Studies in Mathematics, Vol-
ume 9, American Mathematical Society.

• M. F. Atiyah, I. G. Macdonald. Introduction to Commutative Algebra, Addison-Wesley Pub-
lishing Company.

These notes are a reworked version of my lecture notes of Winter Term 2011/2012, Winter Term
2012/2013 and Winter Term 2013/2014. In preparing them, I used several sources. The most im-
portant one is the lectureAlgebra 2, which I taught at the Universität Duisburg-Essen in the summer
term 2009, which, in turn, heavily relies on a lecture for second year students by B. H. Matzat at the
Universität Heidelberg from summer term 1998.
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Chapter I

Basic ring theory

In this lecture all rings are assumed to be commutative (unless otherwise stated). That’s why
the course is calledCommutative Algebra.

We see the lecture Commutative Algebra as a preparation for deeper study of Algebraic Number
Theory andAlgebraic Geometry. Both subjects relate number theoretic or respectively geometric
properties with properties of rings. These properties are then analysedvia the methods provided by
commutative algebra.
Motivated and inspired by this, we shall let us be guided by examples from number theory and geom-
etry. Accordingly, we will devote some time to introduce the ring of integers in a number field and the
coordinate ring of a curve.
Before doing so, we start the lecture by some general ring theory and bysummarising properties of
especially ‘nice’ rings: Euclidean rings, principal ideal domains (PID),unique factorisation domains
(UFD). They are all generalisations of the integer ringZ and share many properties of it, like the
unique factorisation into prime elements. Unfortunately, many of the rings one encounters naturally
(like the rings of integers of number fields, or coordinate rings of affine plane curves) are not that
‘nice’. We shall in later sections be concerned with finding substitutes for the ‘nice’ properties of
factorial rings and prinicipal ideal domains.

We assume familiarity with ring and field theory to the extent to which it is for exampletaught in the
first three terms of the Bachelor Programme at the University of Luxembourg. For the convenience of
the audience a summary is provided in two appendices.

1 Rings

We do not recall the definition of rings, homomorphisms and ideals here. They are summarised in the
appendix to this section.

Prime ideals and maximal ideals

Since prime and maximal ideals will play an important role for the lecture, we will treat them in full
detail.
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Definition 1.1. LetR be a ring andI �R, I 6= R an ideal.
The idealI is calledmaximalif there is no idealJ �R such thatI ( J ( R.
The idealI is calledprime if, wheneverab ∈ I, thena ∈ I or b ∈ I.

Proposition 1.2. (a) The prime ideals ofZ are precisely(0) and the principal ideals(p) for p a prime
number.1 The only prime ideal that is not also a maximal ideal is(0).

(b) LetK be a field. The prime ideals of the polynomial ringK[X] are (0) and the principal ideals
(f(X)), wheref(X) is a monic (highest coefficient equal to1) and irreducible polynomial in
K[X].

The proof will be given below.

Proposition 1.3. LetR be a ring andI �R an ideal.

(a) ThenI is a prime ideal if and only ifR/I is an integral domain.

(b) ThenI is a maximal ideal if and only ifR/I is a field.

Proof. (a) LetI be a prime ideal and leta + I, b + I ∈ R/I such that(a + I)(b + I) = ab + I =

0 + I = 0, i.e.ab ∈ I. By the property ofI being a prime ideal,a ∈ I or b ∈ I, which immediately
translates toa+ I = 0 or b+ I = 0.
Conversely, assume thatR/I is an integral domain and leta, b ∈ R such thatab ∈ I. This means
(a+ I)(b+ I) = 0, whencea+ I = 0 or b+ I = 0 so thata ∈ I or b ∈ I, proving thatI is a prime
ideal.
(b) Suppose thatI is a maximal ideal and letx + I 6= 0 be an element inR/I. We must show it is
invertible. The conditionx + I 6= 0 meansx 6∈ I, whence the idealJ = (I, x) is an ideal strictly
bigger thanI, whenceJ = R by the maximality ofI. Consequently, there arei ∈ I andr ∈ R such
that1 = i+ xr. This means thatr + I is the inverse ofx+ I.
Now let us assume thatR/I is a field and letJ ) I be an ideal ofR strictly bigger thanI. Let x be
an arbitrary element inJ but not inI. AsR/I is a field, the elementx+ I is invertible, whence there
is y ∈ R such that(x+ I)(y + I) = xy + I = 1 + I ⊆ J . So,1 ∈ J , whenceR ⊆ J , showing that
J = R, whenceI is maximal.

Here are two important consequences.

Corollary 1.4. (a) If p is a prime number (inZ), thenZ/(p) =: Fp is a field, thefinite field with p
elements.

(b) LetK be a field andf ∈ K[X] a non-constant irreducible polynomial. Then(f) is a maximal
ideal of the principal ideal domainK[X] (see below) and the quotientK[X]/(f) is a field. (In
French this field has the namecorps de rupture def .)

Proof. This is just the combination of Propositions 1.2 and 1.3.

1For prime number one can use the ‘school definition’: A natural number p is prime if its only positive divisors are1
andp. In the language of ring theory (see the appendix to this section) the school definition means: irreducible and positive.
As Z is a UFD, the statement is also correct with ‘prime element’ instead of ‘primenumber’, see Proposition 1.25.



6 CHAPTER I. BASIC RING THEORY

Corollary 1.5. Every maximal ideal is a prime ideal.

Proof. Every field is an integral domain.

Example 1.6. A ringR is an integral domain if and only if(0) is a prime ideal ofR.

We later need the existence of maximal ideals.

Proposition 1.7. LetR be a ring different from the zero-ring. ThenR has a maximal ideal.

The proof, which uses Zorn’s lemma, can be found in the appendix to this section.

Corollary 1.8. (a) Every ideala ( R is contained in some maximal idealm ofR.

(b) Every non-unitx ∈ R \R× is contained in a maximal idealm ofR.

Proof. (a) Consider the natural projectionπ : R 7→ R/a. Let m be a maximal ideal ofR/a, which
exists by Proposition 1.7. Thenm := π−1(m) (preimage) is a maximal ideal ofR, becauseR/m ∼=
(R/a)/m is a field.
(b) If x is a non-unit, then(x) is a proper ideal ofR, so we can apply (a).

Euclidean rings

We now start our treatment of ‘nice’ rings, which are all ‘inspired’ by theintegersZ.

Definition 1.9. An integral domainR is called aEuclidean ringif there is a mapδ : R \ {0} → N0

such thatR has a division with remainder w.r.t.δ, i.e. if for all a, b ∈ R, b 6= 0, there areq, r ∈ R

satisfying

a = qb+ r and(r = 0 or δ(r) < δ(b)).

Example 1.10. (a) Z w.r.t. δ = | · | (absolute value).

(b) The Gaussian integersZ[i] := {a + bi ∈ C | a, b ∈ Z} with + and · coming fromC, w.r.t.
δ(a+ ib) = a2 + b2.

(c) K[X] withK a field (but notZ[X]) w.r.t. δ = deg.

Principal ideal domains

Definition 1.11. An integral domainR is called aprincipal ideal domain (pid)if every ideal ofR is
principal.

Proposition 1.12. Every Euclidean ring is a principal ideal domain.

For the proof see the appendix to this section.

Example 1.13. (a) Z, Z[i]

(b) K[X] withK a field, but notZ[X].
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(c) There are principal ideal domains which are not Euclidean. Example: Z[1+
√
−19

2 ], the proof that
the ring is not Euclidean is quite hard.

Proposition 1.14. LetR be a principal ideal domain and letx ∈ R \ (R× ∪{0}). Then the following
are equivalent:

(i) x is irreducible.

(ii) (x) is a maximal ideal.

(iii) (x) is a prime ideal.

(iv) x is a prime element.

In particular, the non-zero prime ideals are the maximal ideals.

Proof. ‘(i)⇒(ii):’ If (x) were not a maximal ideal, then(x) ( (y) ( R for somey ∈ R\ (R×∪{0}),
whencey | x, so thatx would not be irreducible.
‘(ii) ⇒(iii):’ Proved in general in Corollary 1.5.
‘(iii) ⇒(iv):’ and ‘(iv)⇒(i):’ are proved in the context of integral domains in Proposition 1.25.

Proof of Proposition 1.2.This is now an immediate consequence of Proposition 1.14.

Here is one important property of principal ideal domains (that also implies that they are Noetherian
rings, but, this piece of terminology will only be introduced later and is only puthere so that you
recognise it when re-reading this section later).

Definition 1.15. LetR be a ring. We say that inR any chain of strict divisors has finite lengthif the
following property holds:

For all elements{an}n∈N ⊆ R such thatan | an−1 for all n ∈ N, there isN ∈ N such
that for allm ≥ N one has(am) = (aN ).

An equivalent formulation of the property is:

Any ascending chain
a1 ⊆ a2 ⊆ a3 ⊆ . . .

of principal ideals becomes stationary, i.e. there isN ∈ N such that for allm ≥ N one
hasaN = am.

(If one removes the word ‘principal’, then this is precisely the definition ofbeingNoetherian, which
will be introduced later in this lecture.)

Proposition 1.16. LetR be a principal ideal domain. Then inR any chain of strict divisors has finite
lenght. (In later terminology, this proposition states that any principal idealdomain is aNoetherian
ring.)

Proof. Let an = (an). These ideals form an ascending ideal chain:

a1 ⊆ a2 ⊆ a3 ⊆ a4 ⊆ . . .

Form the ideala =
⋃
n∈N

an. It is a principal ideal, i.e.a = (a) for somea ∈ R. Of course,a ∈ (a),
i.e.a ∈ ⋃

n∈N
an, whence there isN ∈ N such thata ∈ (aN ). This means(a) ⊆ (am) ⊆ (a) for all

m ≥ N , whence(a) = (aN ) = (am) for all m ≥ n.
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Factorial rings

It was apparently Gauß who was the first to notice that ‘obvious’ statementslike the one that every
positive integer can be uniquely (up to ordering) written as a product of prime elements needed proof.
Here we give this proof in the generality of factorial rings, of whichZ is an example.

Definition 1.17. An integral domainR is called afactorial ring (or a UFD – unique factorisation
domain) if

• every irreducible elementr ∈ R \ (R× ∪ {0}) is a prime element and

• in R any chain of strict divisors has finite length.

Proposition 1.18. Every principal ideal domain is a factorial ring.

Proof. We have seen both properties.

Hence we have the implications:
Euclidean⇒ PID⇒ UFD.
We shall see later that being factorial is a property that is too strong in many cases. They will be
replaced by Dedeking rings (which arelocally PIDs – definitions come later; examples are the rings
of integers in number fields).

Proposition 1.19. LetR be an integral domain. The following are equivalent:

(i) R is a factorial ring.

(ii) Every r ∈ R \ (R× ∪ {0}) can be written as a finite product of prime elements.

(iii) Every r ∈ R \ (R× ∪ {0}) can be written uniquely(up to permutation and up to associate
elements) as a product of irreducible elements, i.e. ifr = x1 ·x2 · · · · ·xn = y1 · y2 · · · · · ym with
irreducible elementsxi, yj ∈ R \ (R× ∪ {0}), thenn = m and there is a permutationσ in the
symmetric group on{1, . . . , n} such thatxi is associate withyσ(i) for all i = 1, . . . , n.

For the proof see the appendix to this section. We now want to see that not every ring is factorial.

Example 1.20.The ringR := {a+ b
√
−5 | a, b ∈ Z} is a subring ofC. We have

6 = 2 · 3 = (1 +
√
−5) · (1 −

√
−5).

Since all four elements2, 3, 1 +
√
−5, 1 −

√
−5 are irreducible elements ofR, we conclude thatR

is not a factorial ring (but, it is an integral domain in which all chains of strictdivisors have finite
length).

For details see an exercise.

We finish this section with the remark that it makes sense to define greatest common divisors and
lowest common multiples in all rings. But, they need not exist, in general. In factorial rings they
always do!
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Appendix: Background on Rings

The definition of a ring

Definition 1.21. A setR, containing two elements0 and 1 (not necessarily distinct), together with
maps

+ : R×R→ R, (x, y) 7→ x+ y and· : R×R→ R, (x, y) 7→ x · y

is called aunitary ringif the following properties are satisfied:

(a) (R,+, 0) is an abelian group with respect to+ and neutral element0,

(b) (R \ {0}, ·, 1) is a semi-group with respect to· and neutral element1 and

(c) a · (b+ c) = a · b+ a · c for all a, b, c ∈ R (distributivity).

The attributeunitaryrefers to the existence of the element1 in the ring. We only consider such rings,
and will thus usually not mention the word unitary.

If (R \ {0}, ·) is an abeliansemi-group, thenR is called acommutative ring. Most (but not all) of the
lecture will only treat commutative rings; hence, the nameCommutative Algebra. By a ring I shall
usually mean a commutative ring (should be clear from the context – if not, ask!).

If R is a commutative ring and if in addition(R\{0}, ·, 1) is an abelian group (not only a semi-group)
and1 6= 0, thenR is called afield.

A subsetS ⊆ R is called a(commutative) subringif 0, 1 ∈ S and+ and· restrict toS making it into
a ring.
[We recall the definition of a semi-group and a group: A setS, containing an element denoted1, together with
a map· : S × S → S, (s, t) 7→ s · t is called asemi-groupif the following hold:

(a) s · (t · u) = (s · t) · u for all s, t, u ∈ S (associativity),

(b) 1 · s = s = s · 1 for all s ∈ S (neutral element).

If in addition, it holds that

(c) for all s ∈ S there aret, u ∈ S such thats · t = 1 = u · s (notations−1 for both) (existence of inverses),

thenS is called a group. Ifs · t = t · s for all s, t ∈ S, then the (semi-)group is calledabelianor commutative.]

Example 1.22. (a) Z, Q.

(b) MN (Q) (N ×N -matrices).

(c) Z[X], Q[X].

(d) {0} is called thezero-ring(with 1 = 0 and the only possible definitions of+ and ·, namely
0 + 0 = 0 and0 · 0 = 0).

(e) Fp, Fpr for a prime numberp andr ∈ N.
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Integral domains

Definition 1.23. LetR be a ring. An elementr ∈ R is called azero-divisorif there iss ∈ R, s 6= 0

s.t.rs = 0.
A ring is called anintegral domain(or domain, for short) if0 is its only zero divisor.

Definition 1.24. LetR be an integral domain.

(a) An elementr ∈ R is called aunit if there iss ∈ R such thatrs = 1. The set of units forms a
group w.r.t.·, denoted asR×.

(b) An elementr ∈ R \ (R× ∪ {0}) is called irreducibleif, wheneverr = st with s, t ∈ R, then
s ∈ R× or t ∈ R×.

(c) An elementr ∈ R dividesan elements ∈ R (in symbols:r | s) if there ist ∈ R such thats = rt.

(d) Two elementsr, s ∈ R are associateif there is a unitt ∈ R× such thatr = ts (note that being
associate is an equivalence relation).

(e) An elementr ∈ R \ (R× ∪ {0}) is called aprime elementif, wheneverr | st with s, t ∈ R, then
r | s or r | t.

Proposition 1.25. LetR be an integral domain.

(a) Letr ∈ R. Then
r ∈ R× ⇔ (r) = R.

(b) Letr, s ∈ R. Then
r | s⇔ (r) ⊇ (s).

(c) Letr, s ∈ R. Thenr ands are associate if and only if(r) = (s).

(d) Letr ∈ R \ (R× ∪ {0}). Thenr is a prime element if and only if(r) is a prime ideal ofR.

(e) Letr ∈ R be a prime element. Thenr is irreducible.

Proof. (a), (b), (c) and (d) are an exercise.
(e) Letr ∈ R be a prime element. In order to check thatr is irreducible, letr = st with s, t ∈ R. This
means in particular thatr | st. By the primality ofr, it follows r | s or r | t. Without loss of generality
assumer | s, i.e.s = ru for someu ∈ R. Then we haver = st = rut, whencer(1− ut) = 0, which
implies1 − ut = 0 by the property thatR is an integral domain andr 6= 0. Thust ∈ R×, as was to
be shown.

Ring homomorphisms

Definition 1.26. LetR,S be rings. A mapϕ : R→ S is called aring homomorphismif the following
properties are satisfied:

(a) ϕ(1) = 1,
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(b) ϕ(r + s) = ϕ(r) + ϕ(s) for all r, s ∈ R,

(c) ϕ(r · s) = ϕ(r) · ϕ(s) for all r, s ∈ R.

Example 1.27. (a) Z → Fp, a 7→ a.

(b) LetR be a ring andS a subring ofR. The inclusionι : S → R defines a ring homomorphism.

Algebras

Definition 1.28. LetR andS be (not necessarily commutative) rings. We say thatS is anR-algebra
if there is a ring homomorphismϕ : R → S such thatϕ(R) ⊆ Z(S), whereZ(S) = {s ∈ S | ts =

st ∀ t ∈ S} is thecentreof S (note that the conditionϕ(R) ⊆ Z(S) is empty ifS is commutative).
Many people use the terminologyassociativeR-algebraforR-algebra; but, we will stick to the shorter
one since we are not going to encounter any non-associative algebras (like Lie algebras).

Example 1.29.LetK be a field. Then the polynomial ringK[X] is aK-algebra.

ConsiderEndK(V ) for a K-vector spaceV . ThenEndK(V ) is aK-algebra (K embeds into the
scalar matrices, which are equal to the centre ofEndK(V )).

Ideals

Definition 1.30. A subsetI ⊆ R is called anideal if I is a subgroup ofR for the addition+ and for
all r ∈ R and all i ∈ I one hasri ∈ I.

NotationI �R (or I �R).

Example 1.31. (a) {0},R are both trivially ideals.

(b) {nm|m ∈ Z} � Z.

(c) Letϕ : R→ S be a ring homomorphism. Thenker(ϕ) is an ideal ofR.

Definition 1.32. LetR be a ring and letas ∈ R for s ∈ S (some ‘indexing’ set). Denote by(as|s ∈ S)

the smallest ideal ofR containing allas for s ∈ S; it is called the ideal generated by theas, s ∈ S.

An ideal I is called finitely generatedif there arer ∈ N and elementsa1, . . . , ar ∈ I such that
(a1, . . . , ar) = I.

An ideal of the form(a) �R with a ∈ R is called aprincipal ideal.

Example 1.33. (a) (0) = {0}, (1) = R.

(b) (n) = {nm|m ∈ Z} � Z.

(c) (n,m) = (g) with g the greatest common divisor ofn,m ∈ Z.
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Quotient rings

Proposition 1.34. LetR be a ring andI � R be an ideal. The relationx ∼ y :⇔ x− y ∈ I defines
an equivalence relation onR. The equivalence classesx = x+ I form the ring denotedR/I with

• + : R/I ×R/I → R/I, (x+ I, y + I) 7→ x+ y + I,

• 0 = 0 = 0 + I = I as neutral element w.r.t. addition+,

• · : R/I ×R/I → R/I, (r + I, s+ I) 7→ rs+ I,

• 1 = 1 = 1 + I as neutral element w.r.t. multiplication·.

The ringR/I is called thequotient ring orR by I (also calledfactor ring).

Proof. Exercise.

Example 1.35. (a) Q(i) ∼= Q[X]/(X2 + 1).

(b) Fp = Z/(p) for p a prime.

(c) F4 = F2[X]/(X2 + X + 1). This is a field with4 elements and will be studied explicitly in an
exercise.

Homomorphism theorem

The homomorphism theorem is also called isomorphism theorem. There are versions for groups,
vector spaces, modules, etc. Here is the one for rings:

Proposition 1.36. LetR,S be rings andϕ : R→ S be a ring homomorphism. Then the map

R/ ker(ϕ) → im(ϕ), r + ker(ϕ) 7→ ϕ(r)

is well-defined and an isomorphism of rings.

Proof. Exercise.

On maximal ideals

Proof of Proposition 1.7.This proof uses Zorn’s Lemma (which one also needs for the existence of
bases in general (i.e. not finite dimensional) vector spaces).

Let M := {a ( R ideal} be the set of all proper ideals ofR. Of course,(0) ∈ M (here we use that
R is not the zero ring), soM 6= ∅.

Inclusion⊆ gives a partial ordering onM: by definition this means:

• a ⊆ a for all a ∈ M,

• If a ⊆ b andb ⊆ a, thena = b.
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But, for generala, b ∈ M, we do not necessarily havea ⊆ b or b ⊆ a. A subset(ai)i∈I ⊆ M (where
I is any set) is called totally ordered if for anyi, j ∈ I one hasai ⊆ aj or aj ⊆ ai.

Claim: Any totally ordered subset(ai)i∈I ⊆ M has an upper bound, namelya :=
⋃
i∈I ai, meaning

a ⊆ M andai ⊆ a for all i ∈ I.

The claim is very easy to see. The last statementai ⊆ a for i ∈ I is trivial. In order to see thata is
an ideal, letx, y ∈ a. Then there arei, j ∈ I such thatx ∈ ai andy ∈ aj . Because ofai ⊆ aj or
aj ⊆ ai, we have thatx + y ∈ aj or x + y ∈ ai, so thatx + y ∈ a in both cases. Givenr ∈ R and
x ∈ a, there isi ∈ I such thatx ∈ ai, whencerx ∈ ai, thusrx ∈ a, showing thata is an ideal ofR.
If a were equal to the whole ringR, then there would bei ∈ I such that1 ∈ ai. This, however, would
contradictai 6= R. Consequently,a ∈ M, as claimed.

Zorn’s Lemma is the statement that a partially ordered set has a maximal element ifevery totally
ordered set of subsets has an upper bound.

So,M has a maximal element, i.e. anm ∈ M such that ifm ⊆ a for anya ∈ M, thenm = a. This
is precisely the definition of a maximal ideal.

On Euclidean rings

Proof of Proposition 1.12.Let R be a Euclidean ring w.r.t.δ and letI � R be an ideal. We want to
show that it is principal. IfI = {0}, then it is already principal, so that we may supposeI 6= (0).
Consider the setM := {δ(i) ∈ N | i ∈ I \{0}}. As a non-empty subset ofN it has a smallest element
(induction principal, well-ordering principle, . . . ). Letn be this smallest element. It is of the form
n = δ(x) with 0 6= x ∈ I. Note(x) ⊆ I.

Let nowi ∈ I be any element. By the Euclidean property there areq, r ∈ R such thati = qx+ r with
r = 0 or δ(r) < δ(n). Sincei ∈ I andx ∈ I, it follows thatr = i− qx ∈ I. Due to the minimality
of n = δ(x), we must haver = 0. Thusi = qx ∈ (x). We have shown:I ⊆ (x) ⊆ I, hence,I = (x)

is a principal ideal.

On unique factorisation domains

Lemma 1.37. Let R be an integral domain in which any chain of strict divisors has finite length.
Let r ∈ R \ (R× ∪ {0}). Then there are irreduciblex1, . . . , xn ∈ R \ (R× ∪ {0}) such that
r = x1 · x2 · · · · · xn.

Proof. We first show that everyr ∈ R \ (R× ∪ {0}) has an irreducible divisor. Suppose this is not
the case and pick any non-unit divisorr1 | r s.t. (r) ( (r1). If no suchr1 existed, thenr would
be irreducible itself. Of course,r1 is not irreducible. So we can pick a non-unit divisorr2 | r1 s.t.
(r1) ( (r2). Like this we can continue and obtain an infinite chain of strict divisors, contrary to our
hypothesis.

Now, we have an irreducible non-unit divisorx1 | r s.t. (r) ⊆ (x1). If r/x1 is a unit, then we are
done. Otherwiser/x1 has an irreducible non-unit divisorx2 | r/x1. If r/(x1x2) is a unit, then we are
done. Otherwiser/(x1x2) has an irreducible non-unit divisor.

Like this we continue. This process must stop as otherwise we would have aninfinite chain of strict
divisors· · · | r

x1x2x3
| r
x1x2

| r
x1

| r, contrary to our hypothesis.



14 CHAPTER I. BASIC RING THEORY

Proof of Proposition 1.19.(i) ⇒ (ii): Since irreducible elements are prime, Lemma 1.37 takes care of
this implication.
(ii) ⇒ (iii): Recall that the prime elements are precisely the irreducible ones. So, wealready have the
existence. We now show the uniqueness. Let

r = x1 · x2 · · · · · xn = y1 · y2 · · · · · ym.

It follows thatxn dividesy1 ·y2 · · · · ·ym. By the primality ofx1 it must divide one of they’s, say after
renumberingxn | ym. But, sinceym is irreducible, we must havexn ∼ ym (associate!). Dividing by
xn on both sides, we obtain a shorter relation:

x1 · x2 · · · · · xn−1 = ǫy1 · y2 · · · · · ym−1,

whereǫ ∈ R× is a unit. Now it follows thatxn−1 divides the right hand side, and, after renumbering,
we have againxn−1 ∼ ym−1. Dividing byxn−1 (and possibly replacing the unitǫ by a different one)
we obtain an even shorter relation:

x1 · x2 · · · · · xn−2 = ǫy1 · y2 · · · · · ym−2.

Like this we continue, and concluden = m and that, after the above renumbering,xi ∼ yi are
associate for alli = 1, . . . , n.
(iii) ⇒ (i): We need to show that every irreducible element is prime. So, letr ∈ R \ (R× ∪ {0})
be irreducible and suppose thatr | st with s, t ∈ R, i.e. ru = st for someu ∈ R. We may write
s, t andu uniquely (up to ordering and associates) ass = s1 · s2 · · · · · sn, t = t1 · t2 · · · · · tm and
u = u1 · u2 · · · · · uℓ with irreducible elementssi, tj , uk (i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , ℓ).
The uniqueness of irreducible elements occurring in the equation

s1 · s2 · · · · · sn · t1 · t2 · · · · · tm = r · u1 · u2 · · · · · uℓ

implies thatr must be equal to one of thes’s or one of thet’s. This means thatr dividess or it divides
t, as was to be shown.

2 Modules

We now introduce modules over rings. They are natural generalisations of vector spaces. We give the
general definition of module for not necessarily commutative rings.

Definition 2.1. LetR be a (not necessaritly commutative) ring. An abelian group(M,+, 0) together
with a map

. : R×M →M, (r, x) 7→ r.x

is called a(left) R-moduleif the following properties are satisfied:

(a) 1.x = x for all x ∈M .

(b) r.(x+ y) = r.x+ r.y for all r ∈ R and allx, y ∈M .
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(c) (r + s).x = r.x+ s.x for all r, s ∈ R and allx ∈M .

(d) (r · s).x = r.(s.x) for all r, s ∈ R and allx ∈M .

In a similar way one defines right modules and two-sided modules (also called bi-modules).
A subsetN ≤ M is called anR-submoduleofM if 0 ∈ M and+ and . restrict toN making it into
anR-module.

Example 2.2. (a) LetK be a field andV aK-vector space. ThenV is aK-module.

(b) LetR be a ring. ThenR is anR-module (natural+ and . = ·). The (left/right/two-sided)
submodules ofR asR-modules are precisely the (left/right/two-sided) ideals ofR.

(c) LetR be a ring. ThenM := R×R× · · · ×R is anR-module (natural+ and diagonal.).

From now on our rings are again commutative. We can then re-express thedefinition as follows.

Lemma 2.3. LetR be a ring and letM be an abelian groupM (with group operation+ and neutral
element0). Denote byEnd(M) the endomorphism ring ofM as an abelian group. Suppose there is
a map

. : R×M →M, (r,m) 7→ r.m.

ThenM is a leftR-module if and only if the map

R→ End(M), r 7→ (x 7→ r.x)

is a ring homomorphism.

Proof. Exercise.

Definition 2.4. LetR be a ring andM,N beR-modules. A mapϕ : M → N is called anR-module
homomorphism(or short:R-homomorphism, or: R-linear (map)) if

• ϕ(m1 +m2) = ϕ(m1) + ϕ(m2) for all m1,m2 ∈M and

• ϕ(r.m) = r.ϕ(m) for all m ∈M and all r ∈ R.

Lemma 2.5. Thekernelker(ϕ) := {m ∈M | ϕ(m) = 0} is anR-submodule ofM .
Theimageim(ϕ) := {ϕ(m) | m ∈M} is anR-submodule ofN .
By the way, the quotient (see below)N/ im(ϕ) is called thecokernel ofϕ.

Proof. This works precisely as for vector spaces.

Definition 2.6. LetR be a ring andN,M beR-modules. Letϕ : M → N be anR-homomorphism.
We say thatϕ is a monomorphismif ϕ is injective. It is called anepimorphismif ϕ is surjective.
Finally, it is called anisomorphismif it is bijective.
If N = M , then anR-homomorphismϕ : M →M is also called anR-endomorphism.
We letHomR(M,N) (or Hom(M,N) if R is understood) be the set of allR-homomorphismsϕ :

M → N . If M = N , then one letsEndR(M) := HomR(M,M).
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Lemma 2.7. LetR be a ring andN,M beR-modules. ThenHomR(M,N) is itself anR-module
with respect to pointwise defined+ and., i.e.(f+g)(m) := f(m)+g(m) and(r.f)(m) := r.(f(m))

for all f, g ∈ HomR(M,N), all m ∈M and all r ∈ R.

Proof. Exercise.

Note that the intersection of submodules of a given module is again a submodule (however, the similar
statement with the union is false).

Definition 2.8. Let M a anR-module and letmi ∈ M for i ∈ I (some ‘indexing’ set). Denote
by 〈mi|i ∈ I〉 the intersection of all submodules ofM containing allmi for i ∈ I; it is called the
submodule generated by themi, i ∈ I, and it can be seen as the smallest submodule ofM containing
all themi for i ∈ I.
AnR-moduleM is calledfinitely generatedif there arer ∈ N and elementsm1, . . . ,mr ∈ M such
that 〈m1, . . . ,mr〉 = M .
LetMi for i ∈ I be submodules. We write

∑
i∈IMi for the submodule ofM generated by the elements

in all theMi for i ∈ I. It is called thesum of the submodulesMi, i ∈ I. If the setI is finite, one also
writes+, for exampleM1 +M2 + · · · +Mn.

Explicitly, the elements of〈mi|i ∈ I〉 are of the form
∑

i∈I rimi with ri ∈ R for i ∈ I under the
condition thatri 6= 0 only for finitely manyi ∈ I (this is obviously only a relevant condition if the set
I is infinite; it expresses the fact that the sum is finite).
Similarly, the elements of

∑
i∈IMi are all of the form

∑
i∈I mi with mi ∈ Mi (for i ∈ I) and only

finitely many of them non-zero.

Proposition 2.9. LetR be a ring andN ≤ M beR-modules. The relationx ∼ y :⇔ x − y ∈ N

defines an equivalence relation onM . The equivalence classesx = x+N form theR-module denoted
M/N with

• + : M/N ×M/N →M/N, (x+N, y +N) 7→ x+ y +N ,

• 0 = 0 = 0 +N = N as neutral element w.r.t.+,

• . : R×M/N →M/N, (r, x+N) 7→ rx+N .

TheR-moduleM/N is calledthe quotient ofM by (or modulo)N (also calledfactor module).

Proof. This works precisely as for quotient rings, which are treated in an exercise.

Proposition 2.10(Homomorphism and isomorphism theorems for modules). LetR be a ring.

(a) LetM,N beR-modules andϕ : M → N be anR-homomorphism. Then the map

M/ ker(ϕ) → im(ϕ), m+ ker(ϕ) 7→ ϕ(r)

is well-defined and anR-isomorphism.

(b) LetM be anR-module and letN1 ⊆ N2 beR-submodules ofM . Then there is anR-isomorphism

(M/N1)/(N2/N1) ∼= M/N2.
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(c) Let M be anR-module and letN1 and N2 be R-submodules ofM . Then there is anR-
isomorphism

(N1 +N2)/N1
∼= N2/(N1 ∩N2).

Proof. Exercise.

3 Integrality

We assume some basic familiarity with fields and field extensions (see the appendix to this section for
some details). In this section we shall introducealgebraic field extensionsand their natural generali-
sationintegral ring extensionsin parallel.
Our guiding example is the following one. Consider the set

A := {a+ b
√

2 ∈ C | a, b ∈ Z}.

We claim that it is a subring ofC, that is,A ⊂ C is a ring extension. The only thing that one really
needs to check is thatA is stable under multiplication:

(a+ b
√

2)(c+ d
√

2) = (ac+ (
√

2
√

2)bd) +
√

2(ad+ bc) = (ac+ 2bd) +
√

2(ad+ bc) ∈ A.

The only thing we used is
√

2
√

2 = 2 ∈ Z. Formulated in a fancy way this is:
√

2 is a zero of the
polynomialX2 − 2 ∈ Z[X]. This property will be expressed below as ‘

√
2 is integral overZ’.

Let us just point out that the set{a+ b 3
√

2 ∈ C | a, b ∈ Z} is not a subring ofC because3
√

2 3
√

2 6∈ Z.
However, the ring{a + b 3

√
2 + c( 3

√
2)2 ∈ C | a, b, c ∈ Z} is a subring ofC (easy check! One will

notice that the fact that3
√

2 is a zero ofX3 − 2 ∈ Z[X] is the property one needs.).
As a negative example let us state (at this point without proof) that for non ∈ N the set{∑n

i=0 aiπ
i ∈

C | a0, . . . , an ∈ Z} is a subring ofC.

Generation of subrings and subfields

We first explain generation of subrings.

Lemma 3.1. LetR ⊆ S be rings.

(a) Leta ∈ S. Then theevaluation map

eva : R[X] → S,

d∑

i=0

ciX
i 7→

d∑

i=0

cia
i

is a ring homomorphism. The map is expressed more concisely asR[X] ∋ f(X) 7→ f(a) ∈ S.

(b) (The same as (a) for more than one element.) Letai ∈ S for i ∈ I (some ‘indexing’ set). Then
theevaluation map

ev(ai)i∈I
: R[Xi | i ∈ I] → S, f((Xi)i∈I) 7→ f((ai)i∈I)

is a ring homomorphism.
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Proof. Exercise.

Definition 3.2. Assume the set-up of Lemma 3.1.

(a) The image ofeva is calledthe subring ofS generated bya overR and denoted asR[a].

(b) The image ofev(ai)i∈I
is calledthe subring ofS generated by the(ai)i∈I overR and denoted as

R[(ai)i∈I ]. If I = {1, 2, 3, . . . , n} is a finite set, we also writeR[a1, . . . , an].

Note thatR[a] andR[(ai)i∈I ] are indeed subrings, since images of ring homomorphisms are al-
ways subrings. Very explicitly, the elements ofR[a] are all of the form

∑d
i=0 ria

i with d ∈ N
andr0, . . . , rn ∈ R. Of course, sums, differences and products of such elements are again of the same
form (providing a direct proof thatR[a] is a subring ofC).

Example 3.3. (a) The subringZ[2] of C is equal toZ.

(b) The subringZ[
√

2] of C is the ringA discussed in the beginning of this section. Reason:

n∑

i=0

ri
√

2
i
=

n∑

i=0 even

ri2
i/2 + (

n∑

i=1 odd

ri2
(i−1)/2)

√
2.

(c) The subringZ[12 ] of C is contained inQ and has infinite rank as an abelian group. Reason:
Consider a finite set of elementsa1

2e1 , . . . ,
an

2en and letf be bigger than alle1, . . . , en. One can
never express1

2f as aZ-linear combination of the elements of the chosen set. Hence, there cannot
exist a finite generating set.

This (negative) property will be expressed below as1
2 is not integral overZ.

Let us also define the notion of the subfieldgenerated by a set of elements. It need not coincide with
the subring generated by the same set of elements because of the possible existence of non-invertible
elements.
Note that the intersection of any set of subfields of a fieldL is again a field. Hence, it makes sense to
speak of the smallest subfield ofL containing a given set of elements; namely, one can define it as the
intersection of all subfields ofL containing that set of elements.

Definition 3.4. LetL/K be a field extension anda ∈ L. DefineK(a) to be the smallest subfield ofL
containinga. We say thatK(a) is the subfield ofL generated bya overK or K adjoineda.
If ai ∈ L for i ∈ I (some ‘indexing’ set), we defineK(ai | i ∈ I) to be the smallest subfield ofL
containingai for all i ∈ I. It is also calledthe subfield ofL generated bya overK or K adjoined
theai for i ∈ I.

Lemma 3.5. LetL/K be a field extension anda ∈ L. ThenFrac(K[a]) = K(a).

Proof. The inclusionK[a] ⊆ K(a) impliesFrac(K[a]) ⊆ K(a). AsK(a) is the intersection of all
fields containingK anda, one also hasK(a) ⊆ Frac(K[a]).

We now give examples analogous to the previous ones.

Example 3.6. (a) The subringQ(2) of C is equal toQ.
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(b) The subringQ(
√

2) of C is equal toQ[
√

2] because the latter ring is already a field: The inverse
of a+ b

√
2 6= 0 is a

a2−2b2
− b

a2−2b2

√
2. Note that the denominator is never0. For, if it were, then√

2 = a
b ∈ Q.

Below we will give a general argument that also implies this fact because
√

2 will turn out to be
algebraic overQ, in the definition to come.

(c) The subringQ[12 ] of Q is equal toQ.

Algebraic elements

Let us specialise to fields and letR = K ⊆ S = L be a field extension anda ∈ L. The question we
are now going to address is whenK[a] is a finite or an infinite dimensionalK-vector space.
The simple but very important idea is to consider the two alternatives:

(1) The elements1 = a0, a, a2, a3, a4, . . . areK-linearly independent.

(2) The elements1 = a0, a, a2, a3, a4, . . . areK-linearly dependent.

In case (1)K[a] is an infinite dimensionalK-vector space.
In case (2) there exists a linear combination

0 =
n∑

i=0

ria
i

for somen ∈ N, ri ∈ K for 0 ≤ i ≤ n andrn 6= 0. By dividing byrn, we can assume that the linear
combination takes the form

0 = an +
n−1∑

i=0

ria
i.

We can interpret this equality as follows: The monic polynomialf(X) := Xn + rn−1X
n−1 + · · · +

r1X + r0 ∈ K[X] hasa as a zero:f(a) = 0. In the next proposition we see thatK[a] is a finite
dimensionalK-vector space, and in fact even a field itself, hence,K[a] is a finite field extension ofK.

Definition 3.7. LetK be a field andL/K a field extension.
An elementa ∈ L is calledalgebraic overK if there is a non-zero polynomialf ∈ K[X] such that
f(a) = 0 (i.e.a is a zero (also called root) off ).
An elementa ∈ L that is not algebraic overK is also calledtranscendental overK.

Note that algebraic is arelativenotion. An element is algebraicoversome field.

Proposition 3.8. LetK be a field andL/K a field extension anda ∈ L.

(a) Theevaluation mapeva : K[X] → L given byf 7→ f(a) (see Lemma 3.1) is injective if and only
if a is transcendental overK.

(b) If a is algebraic overK, then there is a unique monic polynomialma ∈ K[X] such that(ma) =

ker(eva) (i.e. the principal ideal(ma) is equal to the kernel of the evaluation map).

The polynomialma is called theminimal polynomial ofa overK.
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(c) Leta be algebraic overK. Then the minimal polynomialma ∈ K[X] of a overK is irreducible
(as element ofK[X]). It can also be characterised as the monic polynomial inK[X] of smallest
degree havinga as a zero.

(d) Leta be algebraic overK. Then the induced map

eva : K[X]/(ma) → L, f + (ma) 7→ f(a)

is an injective field homomorphism and identifiesK[X]/(ma) withK[a] andK(a).

(e) Leta be algebraic overK. ThenK(a) is a finite extension ofK and its degree[K(a) : K] is
equal to the degree of the minimal polynomialma of a overK. AK-basis ofK(a) is given by
1, a, a2, . . . , ad−1, whered = [K(a) : K].

Proof. (a) If a is algebraic overK, then there is a non-zero polynomialf ∈ K[X] such thatf(a) = 0.
This just means thatf is in the kernel of the evaluation map, soeva is not injective. Conversely, ifeva
is not injective, then there is some non-zero polynomialf in the kernel of the evaluation map. That,
however, just meansf(a) = 0, whencea is algebraic.
(b) We know thatK[X] is a principal ideal domain. Hence, the kernel ofeva is a principal ideal,
so, it is generated by one elementf . As eva is not injective (a is assumed to be algebraic),f is
non-zero. A generator of a principal ideal is unique up to units in the ring.So, f is unique up to
multiplication by a unit ofK, i.e. up to multiplication by an element fromK \ {0}. If f is of the form
rdX

d + rd−1X
d−1 + · · · + r0 ∈ K[X] with rd 6= 0, thenma := 1

rd
f = Xd +

rd−1

rd
Xd−1 + · · · + r0

rd
is the desired unique polynomial.
(c) Let f ∈ K[X] be a nonzero polynomial such thatf(a) = 0. Thenf ∈ ker(eva) = (ma), so that
ma | f , implying that the degree ofma is less than or equal to the degree off .
If ma were reducible, then we would havema = fg with f, g ∈ K[X] both of smaller degree than
the degree ofma. But 0 = ma(a) = f(a)g(a) would imply thatf(a) = 0 or g(a) = 0. Both would
contradict the minimality of the degree ofma.
(d) Sincema is irreducible,K[X]/(ma) is a field. The injectivity follows from the homomorphism
theorem for rings Proposition 1.36. SinceK[a] is a field,K[a] = Frac(K[a]) = K(a) by Lemma 3.5.
(e) is clear.

Example 3.9. (a) LetK be a field. Everya ∈ K is algebraic overK. Indeed,a is a zero of the
polynomialX − a ∈ K[X].

(b)
√

2 is algebraic overQ. Indeed,
√

2 is a zero of the polynomialX2 − 2 ∈ Q[X]. Note that the
polynomialX −

√
2 may not be used here, since its coefficients are not inQ!

(c) π is transcendental overQ. This is the theorem of Lindemann (from analysis). It implies by
Galois theory that the circle cannot be squared using compass and ruler. By this we refer to the
ancient problem of constructing a square whose area is equal to that ofa given circle, just using
a (non-marked) ruler and a compass.

(d) π is algebraic overR (special case of (a)).

(e) i =
√
−1 is algebraic overQ.
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Let us be more explicit about the fieldK(a). Write the minimal polynomial ofa overK asma =

Xd + cd−1X
d−1 + · · · + c0. We know that thenK(a) can be represented as aK-vector space with

basis1, a, a2, a3, . . . , ad−1. Suppose we have two such elementsα =
∑d−1

i=0 ria
i andβ =

∑d−1
i=0 sia

i

(with ri, si ∈ K). Of course, the addition inK(a) is the addition inL and comes down to:

α+ β =

d−1∑

i=0

(ri + si)a
i.

But, how to multiply them and express the result in terms of the basis? Of course, we have to multiply
out, yielding

α · β =

2(d−1)∑

n=0

( ∑

i,j s.t. i+j=n

risj
)
an.

But, what to do withan for n ≥ d? Apply the minimal polynomial!

ad = −
(
cd−1a

d−1 + · · · + c0
)
.

We can use this to eleminate allan for n ≥ d. Suppose the highest occuring power ofa is am with
m ≥ d. Then, we multiply the above equation through witham−d and obtain:

am = −
(
cd−1a

m−1 + · · · + c0a
m−d).

Using this, we are left with powersam−1 at worst, and can apply this process again and again until
only powersan with n ≤ d− 1 occur.

Example 3.10. Consider the exampleQ(
√

5). The minimal polynomial of
√

5 over Q (say, as an
element ofR) isX2 − 5, soQ(

√
5) is the image ofQ[X]/(X2 − 5) in R. The aboveQ-basis is1,

√
5.

So, we express any element ofQ(
√

5) asa+ b
√

5 with a, b ∈ Q.
Now let two such elements be givenα = a0 + a1

√
5 andβ = b0 + b1

√
5. Then

α+ β = (a0 + b0) + (a1 + b1)
√

5

and

α · β = (a0 + a1

√
5)(b0 + b1

√
5) = a0b0 +

√
5(a0b1 + a1b0) + a1b1(

√
5)2

= (a0b0 + 5a1b1) +
√

5(a0b1 + a1b0).

Integral elements

Integral elements are generalisations of algebraic elements in the context ofa ringR instead of the
field K. For algebraic elements the minimal polynomial is the uniquemonicpolynomial of mini-
mal degree annihilating the element; but, in fact, we do not really care whetherthe polynomial is
monic, since we can always divide by the leading coefficient. So, the choice of defining the minimal
polynomial of an algebraic element as a monic polynomial is actually quite arbitrary, one might do
it differently without changing anything in the theory. Over rings the situationis different, since we
cannot divide by the leading coefficient in general.
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Why are monic minimal polynomials useful? We want to construct extensions: Let L/K be a field
extension anda ∈ L be algebraic overQ with minimal polynomialma = Xn+cn−1X

n−1 + · · ·+c0.
This just means

an = −(cn−1a
n−1 + · · · + c0),

so that we can expressan in terms of linear combinations with coefficients inK of powers ofa of
lower exponents. This is precisely what we need in order for

{rn−1a
n−1 + · · · + r0 | ri ∈ K, i ∈ {1, . . . , n− 1}}

to be a ring (as calculated in the discussion of algebraic elements).
Suppose now we work over a ringR instead of a fieldK. LetS be a ring containingR. Assume for a
moment thata ∈ S satisfies

cna
n = −(cn−1a

n−1 + · · · + c0),

i.e. a non-monic linear combination with coefficients inR. Note that we now cannot expressan as a
linear combination of lower powers ofa with coefficients inR, unlesscn ∈ R×. Hence, the set

{rn−1a
n−1 + · · · + r0 | ri ∈ R, i ∈ {1, . . . , n− 1}}

is not stable under multiplication!
The morale is that we must use monic minimal polynomials (at least polynomials whoseleading
coefficient is a unit), when we work over rings and want to construct extensions similar to those over
fields.
This motivates the following fundamental definition.

Definition 3.11. LetR ⊆ S be rings. An elementa ∈ S is called integral overR if there exists a
monic polynomialf ∈ R[X] such thatf(a) = 0.

Note that integrality is also a relative notion; an element is integralover some ring. Also note the
similarity with algebraic elements; we just added the requirement that the polynomial be monic, for
the reasons explained above.

Example 3.12. (a) The elements ofQ that are integral overZ are precisely the integers ofZ.

(b)
√

2 ∈ R is integral overZ becauseX2 − 2 annihilates it.

(c) 1+
√

5
2 ∈ R is integral overZ becauseX2 −X − 1 annihilates it.

(d) a := 1+
√
−5

2 ∈ C is not integral overZ becausef = X2 − X + 5
2 annihilates it. If there were

a monic polynomialh ∈ Z[X] annihilating a, then we would haveh = fg with some monic
polynomialg ∈ Q[X]. Sinceh ∈ Z[X], a lemma of Gauß that is proved in most basic algebra
classes implies that bothf andg are inZ[X], which is a contradiction.

(e) LetK be a field andS a ring containingK (e.g.L = S a field as above) anda ∈ L. Thena is
integral overK if and only ifa is algebraic overK.

Indeed, asK is a field any polynomial with coefficients inK can be made monic by dividing by
the leading coefficient. So, if we work over a field, then the new notion of integrality is just the
notion of algebraicity from above.
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Algebraic field extensions

Let us now return to field extensions.

Definition 3.13. LetK be a field andL/K a field extension.
The field extensionL/K is calledalgebraic(alternatively,L is called analgebraic field extension
of K) if everya ∈ L is algebraic overK.
If L/K is not algebraic, it is calledtranscendental.

Proposition 3.14. Every finite field extensionL/K is algebraic. It can be generated by finitely many
elements ofL (that are automatically algebraic overK).

Proof. Let a ∈ L be any element. SinceK[a] is a subfield ofL, it must also be a finite extension
of K. Hence,a is algebraic overK.
We now show thatL/K can be generated by finitely many elements ofL (which are automatically
algebraic, since we have already seen thatL/K is algebraic). Take anya1 ∈ L \ K. One has
K ( K(a1), hence[L : K] > [L : K(a1)]. If K(a1) 6= L, then takea2 ∈ L \ K(a1). We get
K(a1) ( K(a1, a2) ⊆ L, hence[L : K(a1)] > [L : K(a1, a2)]. Like this we continue. As the
degree is a positive integer greater than or equal to1, this process will end at some point and then
K(a1, a2, . . . , an) = L.

Proposition 3.15. LetL/K be a field extension anda1, . . . , an ∈ L. Then the following two state-
ments are equivalent:

(i) All the ai for i = 1, . . . , n are algebraic overK.

(ii) The field extensionK(a1, . . . , an)/K is finite.

Proof. (i) ⇒ (ii): Proposition 3.8 and induction.
(ii) ⇒ (i): Every finite field extension is algebraic by Proposition 3.14, hence, bydefinition theai for
i = 1, . . . , n are algebraic overK.

Proposition 3.16. LetM/L/K be field extensions.

(a) AssumeL/K is algebraic anda ∈M is algebraic overL. Thena is algebraic overK.

(b) (Transitivity of algebraicity)M/K is algebraic if and only ifM/L andL/K are algebraic.

Proof. (a) Letma =
∑d

i=0 ciX
i ∈ L[X] be the minimal polynomial ofa overL. The coefficients

ci ∈ L are algebraic overK. Hence, the field extensionM := K(c0, c1, . . . , cd−1) of K is finite.
Of course,a is algebraic overM , henceM(a) is a finite field extension ofM . By multiplicativity of
degrees,M(a) is a finite field extension ofK, hence algebraic. In particular,a is algebraic overK.
(b) One direction is trivial, the other follows from (a).

A very important source of algebraic field extensions (for this course) are number fields, whose defin-
inition we recall.

Definition 3.17. A finite field extensionK of Q is called anumber field.
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Example 3.18. (a) Q is a number field (but:R is not a number field).

(b) Q[X]/(f(X)) is a number field with an irreducible non-constant polynomialf ∈ Q[X].

(c) Q(
√
d) = {a + b

√
d | a, b ∈ Z} for 0, 1 6= d ∈ Z square-free, is a number field of degree2 (a

quadratic field).

Integral ring extensions

We just saw how algebraicity and finiteness of field extensions are related.We now want to generalise
this to integral elements over rings. Of course, vector spaces (ifL/K is a field extension, we sawL
as aK-vector space and that was a very important tool) will have to be replaced by modules. The
important thing to remark is that one does not have the notion of dimension overrings, so the proofs
will have to change a bit.
Recall from Linear Algebra:

Proposition 3.19(Cramer’s rule). LetR be a ring andM = (mi,j)1≤i,j≤n be ann × n-matrix with
entries inR. Theadjoined matrixis defined asM∗ = (m∗

i,j)1≤i,j≤n with entries

m∗
i,j := (−1)i+j det(Mi,j),

whereMi,j is the matrix obtained fromM by deleting thei-th column and thej-th row.
Then the following equation holds:

M ·M∗ = M∗ ·M = det(M) · idn×n.

We can now state and prove the following equivalent description of integrality.

Proposition 3.20. LetS be a ring,R ⊆ S a subring anda ∈ S. Then the following statements are
equivalent:

(i) a is integral overR.

(ii) R[a] ⊆ S is a finitely generatedR-module.

(iii) R[a] is contained in a subringT ⊆ S such thatT is a finitely generatedR-module.

(iv) There is a finitely generatedR-moduleT ⊆ S which contains1 and such that multiplication by
a sendsT into itself.

Proof. (i) ⇒ (ii): As a is integral overR, a relation of the form

an = −(cn−1a
n−1 + cn−2a

n−2 + · · · + c0)

holds. Hence,R[a] can be generated as anR-module by{1, a, a2, . . . , an−1}.
(ii) ⇒ (iii): Just takeT := R[a].
(iii) ⇒ (iv): Take the sameT .
(iv) ⇒ (i): We must make a monic polynomial with coefficients inR annihilatinga. For this we
use Cramer’s rule. AsT is finitely generated as anR-module, we may pick a finite generating set
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{t1, . . . , tn}, i.e. any element oft ∈ T can be represented ast =
∑n

j=1 rjtj with somerj ∈ R for
j ∈ {1, . . . , n}.

In particular, as multiplication bya sendsT to itself,ati can be written as

ati =
n∑

j=1

dj,itj .

Form the matrixD = (di,j)1≤i,j≤n. It has coefficients inR. LetM := aidn×n −D be a matrix with
coefficients inS. Note that we have

M




t1
t2
...
tn


 = 0

By Cramer’s rule, it follows

M∗M




t1
t2
...
tn


 = det(M)idn×n




t1
t2
...
tn


 = det(M)




t1
t2
...
tn


 = 0,

so thatdet(M)tj = 0 for all j ∈ {1, . . . , n}. But, as1 =
∑n

j=1 ejtj for someej ∈ R, it follows

det(M) = det(M) · 1 =
n∑

j=1

ej det(M)tj = 0.

Hence,

f(X) := det(X · idn×n −D)

is a monic polynomial with entries inR such thatf(a) = 0, whencea is integral overR.

Définition. A ring extensionR ⊆ S is calledintegralif all s ∈ S are integral overR.

Corollary 3.21. LetS be a ring andR a subring. Furthermore, leta1, . . . , an ∈ S be elements that
are integral overR.

ThenR[a1, . . . , an] ⊆ S is integral overR and it is finitely generated as anR-module.

Proof. Note that due to the implication (iii)⇒ (i) of the Proposition it suffices to prove finite genera-
tion. We do this by induction. The casen = 1 is the implication (i)⇒ (ii) of the Proposition.

Assume the corollary is proved forn − 1. Then we know thatR[a1, . . . , an−1] is finitely generated
as anR-module, say, generated byb1, . . . , bm. As an is integral overR, we have thatR[an] is
generated by1, an, a2

n, . . . , a
r
n for somer ∈ N. Now,R[a1, . . . , an−1, an] is generated bybia

j
n with

i ∈ {1, . . . ,m} andj ∈ {0, . . . , r}.

Corollary 3.22. LetR ⊆ S ⊆ T be rings. Then ‘transitivity of integrality’ holds:

T/R is integral ⇔ T/S is integral andS/R is integral.
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Proof. This works precisely as for algebraic field extensions!
The direction ‘⇒’ is trivial. Conversely, lett ∈ T . By assumption it is integral overS, i.e. t is
annihilated by a monic polynomialXn + sn−1X

n−1 + · · · + s0 ∈ S[X]. SinceS is integral overR,
all the coefficients lie in the finitely generatedR-moduleU := R[s0, s1, . . . , sn−1]. As the coefficients
of the minimal polynomial oft all lie in U , it follows thatt is integral overU , whenceU [t] is finitely
generated overU . But, asU is finitely generated overR, it follows thatU [t] is finitely generated
overR (a generating system is found precisely as in the previous proof). In particular, t is integral
overR.

Algebraic closure

We now introduce an important notion in field theory.

Definition 3.23. (a) LetL/K be a field extension. The set

KL := {a ∈ L | a is algebraic overK}

is called thealgebraic closure ofK in L.

Note thatL/K is algebraic if and only ifKL = L.

(b) A fieldK is calledalgebraically closedif for any field extensionL/K one hasKL = K.

Note that this means that there is no proper algebraic field extension ofK.

Proposition 3.24. LetL/K be a field extension. The algebraic closure ofK in L is an algebraic field
extension ofK.

Proof. Firstly,0, 1 ∈ KL is clear. Leta, b ∈ KL. We know thatK(a, b) is an algebraic field extension
of K. Thus,K(a, b) ⊆ KL. Consequently,−a, 1/a (if a 6= 0), a+ b anda · b are inK(a, b), hence,
also inKL. This shows thatKL is indeed a field.

Proposition 3.25. A fieldK is algebraically closed if and only if any non-constant polynomialf ∈
K[X] has a zero inK.

Proposition 3.26. LetK be a field. Then there exists an algebraic field extensionK/K such thatK
is algebraically closed.
The fieldK is called analgebraic closure ofK (it is not unique, in general).

The proof is not so difficult, but, a bit long, so I am skipping it.

Example 3.27. (a) C is algebraically closed;R is not.RC = C.

(b) QC = {x ∈ C | x is algebraic overQ} =: Q. We haveQ is an algebraic closure ofQ.

(c) Both Q and C are algebraically closed, butC is not an algebraic closure ofQ because the
extensionC/Q is not algebraic.

(d) Note thatQ is countable (Exercise), since we can count the set of polynomials with coefficients
in Q and each polynomial only has finitely many zeros; but, as we know,C is not countable.
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Integral closure

We now generalise the notion of algebraic closure to rings.

Definition 3.28. LetS be a ring andR ⊆ S a subring.

(a) The setRS = {a ∈ S | a is integral overR} is called theintegral closure ofR in S (compare
with the algebraic closure ofR in S – the two notions coincide ifR is a field).

An alternative name is:normalisation ofR in S.

(b) R is calledintegrally closed inS if RS = R.

We will see in a moment that the integral closure ofR in S is integrally closed inS, justifying the
names.

(c) An integral domainR is called integrally closed(i.e. without mentioning the ring in which the
closure is taken) ifR is integrally closed in its fraction field.

Note thatS is anintegral ring extension ofR if RS = S.
Our next aim is to show in an elegant way thatRS is a ring. The idea is the same as for algebraic
elements; we showed thatK(a) is a finite extension ofK if and only if a is algebraic overK. Then
it is clear that sums and products of algebraic elements are algebraic because the finitess property is
clear.

Corollary 3.29. LetR ⊆ S be rings.

(a) RS is a subring ofS.

(b) Any t ∈ S that is integral overRS lies in RS . In other words,RS is integrally closed inS
(justifying the name).

Proof. (a) Just as for algebraic extensions! Leta, b ∈ RS . As both of them are integral overR, the
extensionR[a, b] is finitely generated as anR-module, hence integral. Thus,a + b, a · b are integral,
whencea+ b anda · b are inRS , showing that it is a ring (since0 and1 are trivially inRS).
(b) Any s ∈ S that is integral overRS is also integral overR (by the transitivity of integrality), whence
s ∈ RS .

Definition 3.30. Recall that anumber fieldK is a finite field extension ofQ. Thering of integers
of K is the integral closure ofZ in K, i.e.ZK . An alternative notation isOK .

Example 3.31.Letd 6= 0, 1 be a squarefree integer. The ring of integers ofQ(
√
d) is

(1) Z[
√
d], if d ≡ 2, 3 (mod 4),

(2) Z[1+
√
d

2 ], if d ≡ 1 (mod 4).

(Proof as an exercise.)

Proposition 3.32. Every factorial ring is integrally closed.
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Proof. LetR be factorial with fraction fieldK. Letx = b
c ∈ K be integral overR. We assume thatb

andc are coprime (i.e. do not have a common prime divisor). We want to show thatx ∈ R.
Start with the equation annihilatingx:

0 = xn + an−1x
n−1 + · · · + a0 =

bn

cn
+ an−1

bn−1

cn−1
+ · · · + a0.

Multiply through withcn and movebn to the other side:

bn = −c
(
an−1b

n−1 + can−2b
n−2 + · · · + cn−1a0

)
,

implying c ∈ R× (otherwise, this would contradict the coprimeness ofb andc), so thatx = bc−1 ∈
R.

Proposition 3.33. Let R be an integral domain,K = Frac(R), L/K a finite field extension and
S := RL the integral closure ofR in L. Then the following statements hold:

(a) Everya ∈ L can be written asa = s
r with s ∈ S and0 6= r ∈ R.

(b) L = Frac(S) andS is integrally closed.

(c) If R is integrally closed, thenS ∩K = R.

Proof. (a) Leta ∈ L have the minimal polynomial

ma(X) = Xn +
cn−1

dn−1
Xn−1 +

cn−2

dn−2
Xn−2 + · · · + c0

d0
∈ K[X]

with ci, di ∈ R anddi 6= 0 (for i = 0, . . . , n− 1). We form a common denominatord := d0 · d1 · · · · ·
dn−1 ∈ R, plug ina and multiply through withdn:

0 = dnma(a) = (da)n +
cn−1d

dn−1
(da)n−1 +

cn−2d
2

dn−2
(da)n−2 + · · · + c0d

n

d0
∈ R[X],

showing thatda is integral overR, i.e.da ∈ S, or in other words,a = s
d for somes ∈ S.

(b) By (a) we know thatL is contained in the fraction field ofS. As S is contained inL, it is clear
that also the fraction field ofS is contained inL, showing the claimed equality. ThatS is integrally
closed means that it is integrally closed inL. We have already seen that the integral closure ofR in L
is integrally closed inL.
(c) This is just by definition: Ifs ∈ S, then it is integral overR; if s is also inK, then asR is integrally
closed (inK), it follows thats ∈ R. The other inclusionS ∩K ⊇ R is trivial.

Appendix: Background on fields

In this section we recall some background on field extension.

Definition 3.34. A commutative ringR is called afield if R× = R \ {0}, that is, if all non-zero
elements are (multiplicatively) invertible.
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Definition 3.35. LetL be a field.
A subringK ⊆ L is called asubfieldif K is also a field. In that case, one also speaks ofL as afield
extensionofK, denoted asL/K or K →֒ L.
If L/K is a field extension, thenL is aK-vector space with respect to the natural+ and ·, i.e. + :

L×L→ L, (x, y) 7→ x+ y (the+ is the+ of the fieldL) and scalar multiplication+ : K×L→ L,
(x, y) 7→ x · y (the· is the· of the fieldL).
ThedegreeofL/K is defined as[L : K] := dimK(L), the dimension ofL asK-vector space.
One says thatL/K is afinite field extension if[L : K] <∞.

Lemma 3.36(Multiplicativity of field degrees). LetK ⊆ L ⊆M be finite field extensions. Then

[M : K] = [M : L][L : K]

(in other words:dimKM = (dimK L)(dimLM).).

Proof. Exercise.

Proposition 3.37. LetR be an integral domain. Then the following statements hold:

(a) The relation
(r1, s1) ∼ (r2, s2) ⇔ r1s2 = r2s1

defines an equivalence relation onR × (R \ {0}). Denote the equivalence class of an element
(r, s) by r

s . LetFrac(R) denote the set of equivalence classes.

(b) Define+ and· onFrac(R) by

r1
s1

+
r2
s2

:=
r1s2 + r2s1

s1s2
and

r1
s1

· r2
s2

:=
r1r2
s1s2

.

ThenFrac(R) is a field with respect to+ and· with 0 = 0
1 and1 = 1

1 .

One callsFrac(R) thefraction field(or field of fractions) ofR.

Proof. It suffices to make some easy checks.

Note that it is essential thatR is an integral domain. We will later in the lecture identify the fraction
field with the localisation ofR at the prime ideal(0).

Proof of Proposition 3.25.(a) Firstly,0, 1 ∈ KL is clear. Leta, b ∈ KL. We know thatK(a, b) is an
algebraic field extension ofK. Thus,K(a, b) ⊆ KL. Consequently,−a, 1/a (if a 6= 0), a + b and
a · b are inK(a, b), hence, also inKL. This shows thatKL is indeed a field.
(b) AssumeK is algebraically closed and letf ∈ K[X] be a non-constant polynomial. Letg =∑d

i=0 ciX
i be a non-constant irreducible divisor off . The natural injectionK → K[X]/(g) =: M

is a finite field extension ofK (remember that(g) is a maximal ideal of the principal ideal domain
K[X]). Now, the classa := X + (g) ∈M is a zero ofg, since

g(a) = g(X + (g)) =
d∑

i=0

ci(X + (g))i =
d∑

i=0

ciX
i + (g) = 0 + (g).
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AsK is algebraically closed,M = K, whencea ∈ K.
Conversely, suppose thatK is such that any non-constant polynomialf ∈ K[X] has a zero inK. This
means that there are no irreducible polynomials inK[X] of degree strictly bigger than1. LetL/K be
a field extension anda ∈ L algebraic overK. The minimal polynomialma ∈ K[X] is an irreducible
polynomial admittinga as a zero. Hence, the degree ofma is 1, whencema = X − a, so thata ∈ K,
showingKL = K.

For constructing field extensions one needs irreducible polynomials. There are two very useful criteria
for deciding that a given polynomial with rational coefficients is irreducible: the reduction criterion
and the Eisenstein criterion.
Let A be a UFD. A polynomialf(X) =

∑d
i=0 aiX

i ∈ A[X] is calledprimitive if the greatest
common divisors of its coefficients is1. In particular, monic polynomials are primitive.
In order to understand the proofs we must recall some theory about the polynomial ringA[X] for a
UFDA.

Theorem 3.38(Gauß). LetA be a UFD with field of fractionsK.

(a) A[X] is a UFD.

(b) Letf, g ∈ K[X] be monic polynomials. Iffg ∈ A[X], thenf, g ∈ A[X].

(c) Letf ∈ A[X] be a non-constant primitive polynomial. Then the following statements are equiv-
alent:

(i) f is irreducible inA[X].

(ii) f is a prime element ofA[X].

(iii) f is a prime element ofK[X].

(iv) f is irreducible inK[X].

Proof. Any book on Basic Algebra.

Proposition 3.39(Reduction criterion). LetA be a UFD andf(X) =
∑d

i=0 aiX
i ∈ A[X] a non-

constant primitive polynomial. For a prime elementp ∈ A we consider thereduction modp:

π : A[X] → A/(p)[X],
r∑

i=0

aiX
i 7→

r∑

i=0

aiX
i,

which is a ring homomorphism (hereai denotes the class ofai in A/(p)).
If p does not dividead andπ(f) is irreducible inA/(p)[X], thenf is irreducible inK[X].

Proof. Suppose the contrary:f = gh with g, h ∈ A[X] non-constant. Hence, we haveπ(f) =

π(gh) = π(g)π(h). Asπ(f) is irreducible, it follows thatπ(g) or π(h) is constant.
We now usep ∤ ad. We writeg(X) =

∑r
i=1 biX

i andh(X) =
∑s

i=1 ciX
i with br 6= 0 6= cs. Since

ad = brcs, we obtain thatp ∤ br andp ∤ cs. Thus, the degree ofπ(g) is equal to the degree ofg, and
the degree ofπ(h) is equal to the degree ofh. One thus sees that eitherg is constant orh is constant.
This contradiction finishes the proof.
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Example 3.40. • Considerf1(X) = X2 +X + 1 ∈ Z[X], f2(X) = X2 + 15X − 53 ∈ Z[X],
f3(X) = X2 + 14X − 55 ∈ Z[X] andf4(X) = X2 + 15X − 54 ∈ Z[X].

These polynomials are monic, hence primitive. Note that the polynomialX2 +X + 1 ∈ F2[X]

is irreducible (for the polynomials of degree at most3 it suffices to verify that they do not have
a zero).

The reduction criterion modulo2 thus shows thatf1 andf2 are irreducible as elements ofQ[X].
This argumentation does not apply tof3. The reduction off3 modulo3 isX2+2X+2 ∈ F3[X]

which is irreducible; hence, we obtain the same conclusion. Forf4 one cannot use reduction
modulo2 nor modulo3. In fact, no criterion can work becauseX2 + 15X − 54 = (X +

18)(X − 3).

• LetA = Q[T ] and consider a polynomial of the formf(T,X) =
∑d

i=0 ai(T )Xi ∈ A[X]. Note
thatT is a prime element ofQ[T ]: if T | g(T )h(T ) with g, h ∈ Q[T ], then eitherT | h(T ) or
T | g(T ).

The reduction of a polynomiala(T ) ∈ A[T ] moduloT is just the evaluation at zero,a(0): if
a(T ) = b0 + b1T + · · ·+ beT

e, then the class ofa(T ) and the class ofb0 = a(0) moduloT are
the same becausea(T ) − b0 = T · (b1 + b2T + . . . beT

e−1) ∈ (T ).

Hence, iff(T,X) is monic in the variableX and f(0, X) is irreducible, thenf(T,X) is
irreducible inA[X] = Q[T,X].

• The polynomialX2 +X+2TX+5T 2X+T 3 +1 ∈ Q[T,X] is irreducible because it is monic
(in the variableX) andf(0, X) = X2 +X + 1 is irreducible.

Proposition 3.41(Eisenstein criterion). LetA be a UFD andf(X) =
∑d

i=0 aiX
i ∈ A[X] a non-

constant primitive polynomial. Letp ∈ A be a prime element such that

p ∤ ad, p | ai for all 0 ≤ i ≤ d− 1 andp2 ∤ a0.

Thenf is irreducibleK[X].

Proof. Suppose the contrary and writef = gh with g(X) =
∑r

i=0 biX
i ∈ A[X] andh(X) =∑s

i=0 ciX
i ∈ A[X] non-constant andbr 6= 0 6= cs. Because ofad = brcs, the conditionp ∤ ad

impliesp ∤ br andp ∤ cs. Because ofa0 = b0c0, the conditionsp | a0 andp2 ∤ a0 imply without loss
of generality thatp | b0 andp ∤ c0.
Let t be the smallest integer between1 andr such thatp ∤ bt. Hence,1 ≤ t ≤ r < d becausep | b0
andp ∤ br. Writing ci = 0 for i > s we find

at︸︷︷︸
divisible byp

= b0ct + b1ct−1 + · · · + bt−1c1︸ ︷︷ ︸
divisible byp

+ btc0︸︷︷︸
not divisible byp

.

This contradiction finishes the proof.

Example 3.42. • Considerf1(X) = X2 +2X+2 ∈ Z[X] andf2(X) = X7 +72X2 +111X−
30 ∈ Z[X]. These polynomials are monic, hence primitive. The Eisenstein criterion with
p = 2 shows thatf1 is irreducible inQ[X]. The irreducibility off2 follows from the Eisenstein
criterion withp = 3.
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• Let p be a prime number andA = Fp[T ]. Let f(T,X) = Xp − T ∈ A[X] = Fp[T,X].
As in Example 3.40 on sees thatT is a prime element ofA. The polynomialf(T,X) satisfies
the assumptions of the Eisenstein criterion as a polynomial in the variableX for the prime
elementT . Hencef(T,X) is irreducible.

This polynomial is actually an example of an irreducible, butinseparablepolynomial.

• Letp be a prime number. Consider the polynomialXp−1 ∈ Q[X]. It is not irreducible because

Xp − 1 = (X − 1) (Xp−1 +Xp−2 + · · · +X + 1)︸ ︷︷ ︸
=:Φp(X)

∈ Z[X].

One callsΦp(X) thep-th cyclotomic polynomial (in German: Kreisteilungspolynom). We now
show thatΦp is irreducible inQ[X].

It suffices to show thatΦp(X + 1) is irreducible (because ifΦp(X + 1) = f(X)g(X), then
Φp(X) = f(X − 1)g(X − 1)). We have

Φp(X + 1) =
(X + 1)p − 1

(X + 1) − 1
=

(X + 1)p − 1

X
=

∑p
i=1 ( pi )X

i

X
= Xp +

p−1∑

i=1

( pi )X
i−1,

which is an Eisenstein polynomial for the primep becausep | ( pi ) for all 1 ≤ i ≤ p − 1 and
p2 ∤ ( p1 ) = p. Hence,Φp(X) is irreducible inQ[X].

4 Affine plane curves

Definition 4.1. LetK be a field andL/K a field extension. Letn ∈ N. The set ofL-points of affine
n-spaceis defined asAn(L) := Ln (i.e.n-dimensionalL-vector space).
LetS ⊆ K[X1, . . . , Xn] be a subset. Then

VS(L) := {(x1, . . . , xn) ∈ An(L) | f(x1, . . . , xn) = 0 for all f ∈ S}

is called the set ofL-points of the affine (algebraic) set belonging toS.
If L = K is an algebraic closure ofK, then we also callVS(K) theaffine set belonging toS.
If the setS consists of a single non-constant polynomial, thenVS(K) is also called ahyperplane
in A(K).
If n = 2 andS = {f} with non-constantf , thenVS(K) is called aplane curve(because it is a curve
in the planeA2(K). ItsL-points are defined asVS(L) for L/K a field extension.

Convention: When the number of variables is clear, we writeK[X] for K[X1, . . . , Xn]. In the same
way a tuple(x1, . . . , xn) ∈ An(K) is also abbreviated asx if no confusion can arise.
The letter ‘V’ is chosen because of the word ‘variety’. But, we will defineaffine varieties below as
‘irreducible’ affine sets.

Example 4.2. (a) K = R, n = 2,K[X,Y ] ∋ f(X,Y ) = aX+ bY + c non-constant. ThenV{f}(R)

is a line (y = −a
bx − c

b if b 6= 0; if b = 0, then it is the line withx-coordinate− c
a and any

y-coordinate).
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(b) K = R, n = 2, K[X,Y ] ∋ f(X,Y ) = X2 + Y 2 − 1. ThenV{f}(R) is the circle inR2 around
the origin with radius1.

(c) K = Q, f(X,Y ) := X2 + Y 2 + 1. NoteV{f}(R) = ∅, but(0, i) ∈ V{f}(C).

(d) K = F2, f(X,Y ) := X2 + Y 2 + 1 = (X + Y + 1)2 ∈ F2[X]. Because off(a, b) = 0 ⇔
a+ b+ 1 = 0 for anya, b ∈ L, L/F2, we have

V{f}(L) = V{X+Y+1}(L),

which is a line.

Lemma 4.3. A plane curve has infinitely many points over any algebraically closed field.More
precisely, letK be a field,K an algebraic closure ofK and f(X,Y ) ∈ K[X,Y ] a non-constant
polynomial.
ThenV{f}(K) is an infinite set.

Proof. Any algebraically closed field has infinitely many elements. This can be provedusing Euclid’s
argument for the infinity of primes, as follows. SupposeK only has finitely many elementsa1, . . . , an.
Form the polynomialg(X) := 1 +

∏n
i=1(X − ai). Note thatg(ai) = 1 6= 0 for all i = 1, . . . , n.

Hence, we have made a polynomial of positive degree without a zero, contradiction.
Back to the proof. We considerf as a polynomial in the variableY with coefficients inK[X], i.e.

f(X,Y ) =
d∑

i=0

ai(X)Y i with ai(X) ∈ K[X].

First case:d = 0, i.e. f(X,Y ) = a0(X). Let x ∈ K be any zero ofa0(x), which exists asK is
algebraically closed. Now(x, y) satisfiesf for anyy ∈ K, showing the infinity of solutions.
Second case:d > 0. Thenad(x) 6= 0 for all but finitely manyx ∈ K, hence, for infinitely manyx.
Note that the polynomialf(x, Y ) =

∑d
i=0 ai(x)Y

i has at least one zeroy, so that(x, y) satisfiesf ,
again showing the infinity of solutions.

Example 4.4. LetK be a field and considerf(X,Y ) = X2 + Y 2.
The only solution of the form(x, 0) is (0, 0) in any fieldK. Suppose now(x, y) is a solution with
y 6= 0. Thenx2 = −y2, or z2 = −1 with z = x

y .
Hence,V{f}(K) = {(0, 0)} if and only ifX2 = −1 has no solution inK.
In particular, V{f}(R) = {(0, 0)} (but: V{f}(C) = V{X−iY }(C) ∪ V{X+iY }(C), union of two lines)
andV{f}(Fp) = {(0, 0)} if and only ifp ≡ 3 (mod 4).

Example 4.5.LetK be a field andf(X) = X3 +aX2 +bX+c be a separable polynomial (meaning
that it has no multiple zeros overK).
Any plane curve of the formV{Y 2−f(X)} is called anelliptic curve. It has many special properties
(see e.g. lectures on cryptography).

Definition 4.6. LetX be a set andO a set of subsets ofX (i.e. the elements ofO are sets; they are
called theopen sets).
ThenO is called atopology onX (alternatively:(X ,O) is called atopological space) if



34 CHAPTER I. BASIC RING THEORY

(1) ∅,X ∈ O (in words: the empty set and the whole space are open sets);

(2) if Ai ∈ O for i ∈ I, then
⋃
i∈I Ai ∈ O (in words: the union of arbitrarily many open sets is an

open set);

(3) ifA,B ∈ O, thenA∩B ∈ O (in words: the intersection of two (and, consequently, finitely many)
open sets is an open set).

A setC ⊆ X is calledclosedif X \C ∈ O (in words: the closed sets are the complements of the open
sets).

The basic example known from any first course on Analysis is the topologyon R or, more generally,
on Rn. In the latter case one definesO to consist of those setsU ⊆ Rn such that for everyx ∈ U

there isǫ > 0 such that ally ∈ Rn with |y − x| < ǫ belong toU . These are by definition the open
subsets ofRn. It is a well-known exercise to show thatO is indeed a topology onRn. One be aware
that this standard topology behaves very differently from the topology onAn(K) that we are going to
define now.

Proposition 4.7. LetK be a field andn ∈ N. Define

O := {An(K) \ VS(K) | S ⊆ K[X1, . . . , Xn]}.

Then(An(K),O) is a topological space. The thus defined topology is called theZariski topology on
An(K).

Note that, in particular, the closed subsets ofAn(K) for the Zariski topology are precisely the affine
sets.

Before we prove this proposition, we include the following lemma. Recall that the sum and the product
of two idealsa, b of some ringR are defined as

a + b = {a+ b | a ∈ a, b ∈ b} anda · b = {
m∑

i=1

ai · bi | m ∈ N, ai ∈ a, bi ∈ b for i = 1, . . . ,m}.

It is clear that both are ideals.

Lemma 4.8. LetK be a field,L/K a field extension andn ∈ N.

(a) V{(0)}(L) = An(L) andV{(1)}(L) = ∅.

(b) LetS ⊆ T ⊆ K[X1, . . . , Xn] be subsets. ThenVT (L) ⊆ VS(L).

(c) Let Si ⊆ K[X1, . . . , Xn] for i ∈ I (some indexing set) be subsets. ThenVS

i∈I Si
(L) =⋂

i∈I VSi
(L).

(d) LetS ⊆ K[X1, . . . , Xn] and leta := (s | s ∈ S) �K[X1, . . . , Xn] be the ideal generated byS.
ThenVS(L) = Va(L).

(e) Leta, b �K[X1, . . . , Xn] be ideals such thata ⊆ b. ThenVa·b(L) = Va(L) ∪ Vb(L).
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Proof. (a) and (b) are clear.
(c) Letx ∈ An(L). Then

x ∈ VS

i∈I Si
(L) ⇔ ∀f ∈

⋃

i∈I
Si : f(x) = 0 ⇔ ∀i ∈ I : ∀f ∈ Si : f(x) = 0

⇔ ∀i ∈ I : x ∈ VSi
(L) ⇔ x ∈

⋂

i∈I
VSi

(L).

(d) The inclusionVa(L) ⊆ VS(L) follows from (b). Let nowx ∈ VS(L), meaning thatf(x) = 0 for
all f ∈ S. Since anyg ∈ a can be written as a sum of products of elements fromS, it follows that
g(x) = 0, proving the reverse inclusion.
(e) Sinceab ⊆ a andab ⊆ b, (b) gives the inclusionsVa(L),Vb(L) ⊆ Vab(L), henceVa(L)∪Vb(L) ⊆
Vab(L). For the reverse inclusion, letx 6∈ Va(L) ∪ Vb(L), meaning that there existsf ∈ a andg ∈ b

such thatf(x) 6= 0 6= g(x). Thus,f(x) · g(x) 6= 0, whencex 6∈ Vab(L).

Proof of Proposition 4.7.We need to check the axioms (1), (2) and (3). Note that (1) is Lemma 4.8 (a).
(2) For open setsAn(L) \ VSi

(L) with Si ⊆ K[X] for i ∈ I, we have:
⋃
i∈I An(L) \ VSi

(L) =

An(L) \ ⋂
i∈I VSi

(L)
Lemma 4.8(c)

= An(L) \ VS

i∈I Si
(L).

(3) By Lemma 4.8 (d), any two open sets are of the formAn(L)\Va(L) andAn(L)\Vb(L) with ideals

a, b�K[X]. It follows: (An(L) \Va(L))∩ (An(L) \Vb(L)) = An(L) \ (Va(L)∪Vb(L))
Lemma 4.8(e)

=

An(L) \ Va·b(L).

Definition 4.9. LetX be a subset ofAn(K). We define thevanishing ideal ofX as

IX := {f ∈ K[X] | f(x) = 0 for all x ∈ X}.

The quotient ringK[X ] := K[X]/IX is called thecoordinate ring ofX .

Lemma 4.10. (a) The vanishing ideal is indeed an ideal ofK[X].

(b) The ring homomorphism

ϕ : K[X] → Maps(X ,K), f 7→
(
(x1, . . . , xn) 7→ f(x1, . . . , xn)

)

(with + and · onMaps(X ,K) defined pointwise:(f + g)(x) := f(x) + g(x) and(f · g)(x) :=

f(x) · g(x)) induces an injection of the coordinate ringK[X ] into Maps(X ,K).

Proof. (a) is trivial. (b) is the homomorphism theorem.

We may even replaceMaps(X ,K) by C(X ,A1(K)), the continuous maps for the Zariski topology
(see exercise).
The coordinate ring consists hence of the polynomial functions fromX toK. There are some special
ones, namely, the projection to thei-th coordinate, i.e.(x1, . . . , xn) 7→ xi; this clearly deserves the
namei-th coordinate function; let us denote it byxi. The namecoordinate ringis hence explained!
Note that any functionf(X1, . . . , Xn) + IX =

∑
ai1,...,inX

i1
1 . . . Xin

n + IX is a combination of the
coordinate functions, namely,

∑
ai1,...,inxi11 . . . x

in
n .
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Lemma 4.11. Let L/K be a field extension,S ⊆ K[X1, . . . , Xn] be a subset,X = VS(L) the
L-points of the associated affine algebraic set.

(a) EveryL-point (a1, . . . , an) ∈ X (L) gives rise to theK-algebra homomorphism

ev(a1,...,an) : K[X ] = K[X1, . . . , Xn]/IX → L, g(X1, . . . , Xn) + IX 7→ g(a1, . . . , an).

(b) If L = K, then the kernel ofev(a1,...,an) is equal to(X1 − a1, . . . , Xn − an).

Proof. (a) is clear.
(b) By a variable transformationYi := Xi − ai (formally, we take theK-algebra isomorphism

K[Y1, . . . , Yn]
Yi 7→Xi+ai−−−−−−−→ K[X1, . . . , Xn]), we may assume that0 = a1 = a2 = · · · = an. The

ideal(X1, X2, . . . , Xn) is clearly maximal because the quotient by it isK. As (X1, X2, . . . , Xn) ⊆
ker(ev(0,...,0)) it follows that the two are equal (asev(0,...,0) is not the zero-map – look at con-
stants).

Example 4.12. • Linef(X,Y ) := X − Y + 2 ∈ R[X,Y ], L := Vf (R):

We haveIL = (X − Y + 2), i.e. that the vanishing ideal ofL is the principal ideal generated
byf . This is a consequence of Proposition 4.13, which will be proved below.

In this case, the coordinate ring is just the polynomial ring in one variable:

R[L] = R[X,Y ]/IL = R[X,Y ]/(X − Y + 2) ∼= R[T ],

where the last isomorphism is given by sending the class ofg(X,Y ) to g(T, T +2). The reason
that this works is that the class ofY is equal to the class ofX + 2 in R[L]. In other words, the
coordinate functions satisfy the equalityx2 = x1 + 2.

• Parabolaf(X,Y ) := X2 − Y + 2 ∈ R[X,Y ], P := Vf (R):

Again by Proposition 4.13 we haveIP = (X2 − Y + 2).

We conclude that the coordinate ring is

R[P] = R[X,Y ]/IP = R[X,Y ]/(X2 − Y + 2) ∼= R[T ],

where the last isomorphism is given by sending the class ofg(X,Y ) to g(T, T 2 + 2). So, it is
again isomorphic to the polynomial ring in one variable.

• Hyperbolaf(X,Y ) := XY − 1 ∈ R[X,Y ], H := Vf (R):

We again haveIH = (XY − 1) by Proposition 4.13. This time we obtain

R[H] = R[X,Y ]/(XY − 1) ∼= R[X,
1

X
]

= {
f∑

i=e

aiX
i | e, f ∈ Z, ai ∈ R} ⊂ R(X) := Frac(R[X]).

Note that this ring is not isomorphic to the polynomial ring in one variable. For, suppose to the
contrary that there is a ring isomorphismϕ : R[X, 1

X ] → R[T ]. AsX is a unit, so isϕ(X).
Thus,ϕ(X) ∈ R[T ]× = R× is a constant polynomial. Consequently, the image ofϕ lands
in R, contradicting the surjectivity.
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Proposition 4.13. Let K be a field andf ∈ K[X,Y ] a nonconstant irreducible polynomial. Let
C = Vf (K) be the associated plane curve.
Then the vanishing idealIC is (f) and the coordinate ringK[C] is isomorphic toK[X,Y ]/(f).

The most conceptual proof uses Hilbert’s Nullstellensatz; we include that proof on page 76. We now
give a direct proof, which relies on the following Lemma 4.14. In fact, oncewe have the notion
of Krull dimension, we can give yet another very short proof. All proofs are essentially the same,
except that in the more direct ones we specialise to curves, which makes thearguments shorter. The
next lemma uses the same idea as Nagata’s normalisation lemma 8.10 specialised to thecase of two
variables.

Lemma 4.14. Let K be a field andI E K[X,Y ] be an ideal containingf ∈ I, a nonconstant
polynomial of total degreed > 0. LetT := X − Y d+1 + I ∈ K[X,Y ]/I.

(a) The ring extensionK[T ] ⊆ K[X,Y ]/I is integral.

(b) If I = IC withC = Vf (K) a curve, thenT is transcendental overK.

Proof. (a) Consider the polynomialg(T,Z) = f(T + Zd+1, Z) ∈ K[T ][Z], i.e. we see it as a
polynomial in the variableZ with coefficients inK[T ]. Let’s write down the polynomialf(X,Y ) =∑

0≤i,j s.t. i+j≤d ai,jX
iY j . Hence,

g(T,Z) =
∑

0≤i,j s.t. i+j≤d
ai,j(T+Zd+1)iZj =

∑

0≤i,j s.t. i+j≤d
ai,jZ

(d+1)i+j+lower degree terms inZ.

This description makes it clear that the coefficient in front of the highest power ofZ does not involve
anyT ; it is one of theai,j , saya := ar,s. This means we can divide by it. Call the resulting monic
polynomialh(T,Z) = 1

ag(T,Z) ∈ K[T ][Z].
Now let us use theT from the assertion, i.e.T = X − Y d+1 + I. Write h(Z) for the image of
h(T,Z) ∈ K[X,Y ]/I. It is a monic polynomial in(K[T ])[Z]. Then we get

h(T, Y ) =
1

a
g(T, Y ) =

1

a
f(X − Y d+1 + Y d+1, Y ) =

1

a
f(X,Y ) ∈ I.

This means that the classY +I is annihilated by the monic polynomialh(Z). Thus,Y +I is integral
overK[T ].
AsK[X,Y ]/I is generated overK[T ] by Y + I, the integrality ofK[T ] ⊆ K[X,Y ]/I follows.
(b) Suppose thatT is not transcendental. ThenK[T ] is a finite dimensionalK-vector space. Due to
the integrality, it follows that alsoK[X,Y ]/I is a finite dimensionalK-vector space. It is generated
by the classesx = x+ I andy = y + I. Note thatK-algebra homomorphismK[X] → K[X,Y ]/I
given byX 7→ x can’t be injective, as otherwise the dimension would be infinite. Thus there isa
polynomialmx ∈ K[X] such thatmx(x) = 0; similarly, there ismy ∈ K[X] such thatmy(y) = 0.
Let nowϕ : K[X,Y ]/I → K be aK-algebra homomorphism. It follows thatϕ(x) is a zero ofmx.
Hence, there are only finitely many possible images forϕ(x); similarly, there are only finitely many
possible images forϕ(y). Consequently, there are only finitely manyK-algebra homomorphisms
ϕ : K[X,Y ]/I → K. But, recall that any point inC(K) gives a differentK-algebra homomorphism,
namely, the evaluation at that point. As we know that the curve has infinitely many points overK, we
have achieved a contradiction.
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First proof of Proposition 4.13.By Lemma 4.14 (a), the ring extensionK[T ] ⊆ K[X,Y ]/(f) is in-
tegral (i.e. we takeI = (f)). Furthermore, by (b) the image ofT in K[X,Y ]/IC is transcendental.
Let g ∈ IC and consider its imageg ∈ K[X,Y ]/(f). The integrality overK[T ] gives

gn +
n−1∑

i=1

ri(T )gi + r0(T ) = 0.

Let’s suppose thatn is minimal with this property. Asg vanishes on all points ofC(K), so does
r0(T ). This implies thatr0(T ) is zero inK[X,Y ]/IC . As T is transcendental inK[X,Y ]/IC , this
implies thatr0 = 0. Thus we have

g(gn−1 +
n−1∑

i=1

ri(T )gi−1) = 0.

In other words

g(gn−1 +
n−1∑

i=1

ri(X − Y d+1)gi−1) ∈ (f).

As f is irreducible, the ideal(f) is prime. Consequently,g ∈ (f) (if g were not in(f), we’d have
gn−1 +

∑n−1
i=1 ri(T )gi−1 = 0, contradicting the minimality ofn).

Lemma 4.15. LetK be a field andn ∈ N. Then the following statements hold:

(a) LetX ⊆ Y ⊆ An(K) be subsets. ThenIX ⊇ IY.

(b) I∅ = K[X].

(c) If K has infinitely many elements, thenIAn(K) = (0).

(d) LetS ⊆ K[X] be a subset. ThenIVS(K) ⊇ S.

(e) LetX ⊆ An(K) be a subset. ThenVIX (K) ⊇ X .

(f) LetS ⊆ K[X] be a subset. ThenVIVS(K)
(K) = VS(K).

(g) LetX ⊆ An(K) be a subset. ThenIV(IX )(K) = IX .

Proof. Exercise.

Lemma 4.16. Let (X ,OX ) be a topological space andY ⊆ X be a subset. DefineOY := {U ∩
Y | U ∈ OX }.
ThenOY is a topology onY, called therelative topologyor thesubset topology.

Proof. Exercise.

Definition 4.17. LetX be a topological space (we do not always mentionO explicitly).
A subsetY ⊆ X is called reducibleif there are two closed subsetsY1,Y2 ( Y for the relative
topology onY such thatY = Y1 ∪ Y2.
If Y is not reducible, it is calledirreducible.
An affine setX ⊆ An(K) is called anaffine varietyif X is irreducible.
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Example 4.18. • Letf(X,Y ) = XY ∈ R[X,Y ]. ThenVf (R) is the union of thex-axis and the
y-axis, so clearlyVf (R) is reducible for the Zariski topology (and also the usual real topology).
More precisely,

Vf (R) = VX(R) ∪ VY (R).

• The lineX−Y +2 is irreducible for the Zariski topology (but also for the usual real topology).

• The hyperbolaH is also irreducible for the Zariski topology. This is a consequence of the next
proposition, since the coordinate ringR[H] is an integral domain. This might contradict our
intuition, since the the hyperbola consists of two branches and is reducible for the usual real
topology.

At the end of this section we are able to formulate a topological statement on an affine algebraic set
as a purely algebraic statement on the coordinate ring! This kind of phenomenon will be encountered
all the time in the sequel of the lecture.

Proposition 4.19. Let ∅ 6= X ⊆ An(K) be an affine set. Then the following statements are equiva-
lent:

(i) X is irreducible for the Zariski topology (i.e.X is a variety).

(ii) IX is a prime ideal ofK[X1, . . . , Xn].

(iii) The coordinate ringK[X ] is an integral domain.

Proof. The equivalence of (ii) and (iii) is Proposition 1.3 (recallK[X ] = K[X]/IX ).
(i) ⇒ (ii): SupposeIX is not a prime ideal. Then there are two elementsf1, f2 ∈ K[X] \ IX such
thatf1 · f2 ∈ IX . This, however, implies:

X =
(
V(f1)(K) ∩ X

)
∪

(
V(f2)(K) ∩ X

)
=

(
V(f1)(K) ∪ V(f2)(K)

)
∩ X ,

sinceV(f1)(K) ∪ V(f2)(K) = V(f1·f2)(K) ⊇ X . Note thatf1 6∈ IX precisely means that there is
x ∈ X such thatf1(x) 6= 0. Hence,X 6= V(f1)(K) ∩ X . Of course, the same argument applies with
f1 replaced byf2, proving thatX is reducible, contradiction.
(ii) ⇒ (i): SupposeX is reducible, i.e.X = X1 ∪ X2 with X1 ( X andX2 ( X closed subsets ofX
(and hence closed subsets ofAn(K), since they are the intersection of some closed set ofAn(K) with
the closed setX ). This meansIXi

) IX for i = 1, 2 as otherwiseX = Xi by Lemma 4.15. Hence,
there aref1 ∈ IX1 andf2 ∈ IX2 such thatf1, f2 6∈ IX . Note thatf1(x)f2(x) = 0 for all x ∈ X ,
as at least one of the two factors is0. Thus,f1 · f2 ∈ IX . This shows thatIX is not a prime ideal,
contradiction.



Chapter II

Modules

5 Direct sums, products, free modules and exact sequences

Direct products and direct sums

We first define direct products and direct sums of modules.

Definition 5.1. LetR be a ring andMi for i ∈ I (some set)R-modules.

(a) Thedirect product of theMi for i ∈ I is defined as the cartesian product
∏
i∈IMi with com-

ponent-wise operation. More precisely, let(xi)i∈I , (yi)i∈I ∈ ∏
i∈IMi and r ∈ R, then one

puts
(xi)i∈I + (yi)i∈I := (xi + yi)i∈I andr.(xi)i∈I := (r.xi)i∈I .

One checks easily that
∏
i∈IMi is anR-module.

If I = {1, . . . , n} is a finite set, one also writes
∏n
i=1Mi = M1×M2×· · ·×Mn and its elements

are denoted as(x1, x2, . . . , xn).

(b) The natural mapπj :
∏
i∈IMi → Mj given by(xi)i∈I 7→ xj is called thej-th projection. One

checks easily thatπj is a surjectivenR-module homomorphism.

(c) Thedirect sum of theMi for i ∈ I is defined as the subset of the cartesian product
∏
i∈IMi

with component-wise operation consisting of those(xi)i∈I ∈
∏
i∈IMi such thatxi 6= 0 only for

finitely manyi ∈ I. The notation ist
⊕

i∈IMi.

One checks easily that
∏
i∈IMi is anR-module.

If I = {1, . . . , n} is a finite set, one also writes
⊕n

i=1Mi = M1⊕M2⊕· · ·⊕Mn and its elements
are denoted as(x1, x2, . . . , xn) or x1 ⊕ x2 ⊕ · · · ⊕ xn.

(d) The natural mapǫj : Mj →
⊕

i∈IMi given byǫ(x) = (xi)i∈I with xj = x andxi = 0 for i 6= j

is called thej-th injection.

One checks easily thatǫj is an injectiveR-module homomorphism.

Corollary 5.2. Let R be a ring andM1, . . . ,Mn beR-modules. Then the identity induces anR-
isomorphism

⊕n
i=1Mi

∼=
∏n
i=1Mi.

40
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Proof. This is obvious.

Proposition 5.3. LetR be a ring andMi for i ∈ I (some set)R-modules.

(a) The direct productP :=
∏
i∈IMi together with the projectionsπi satisfies the following universal

property:

For all R-modulesN together withR-homomorphismsφi : N → Mi for i ∈ I there
is one and only oneR-homomorphismφ : N → P such thatπi ◦ φ = φi for all i ∈ I

(draw diagram).

(b) The direct sumS :=
⊕

i∈IMi together with the injectionsǫi satisfies the following universal
property:

For all R-modulesN together withR-homomorphismsφi : Mi → N for i ∈ I there
is one and only oneR-homomorphismφ : S → N such thatφ ◦ ǫi = φi for all i ∈ I

(draw diagram).

Proof. Exercise.

Free modules

Definition 5.4. LetR be a ring andM anR-module.
Recall the definition of a generating set: A subsetB ⊆M is called agenerating set ofM asR-module
if for everym ∈M there aren ∈ N, b1, . . . , bn ∈ B andr1, . . . , rn ∈ R such thatm =

∑n
i=1 ribi.

A subsetB ⊆M is calledR-free (or:R-linearly independent)if for anyn ∈ N and anyb1, . . . , bn ∈
B the equation0 =

∑n
i=1 ribi implies0 = r1 = r2 = · · · = rn.

A subsetB ⊆M is called anR-basis ofM if B is anR-free generating set.
A moduleM having a basisB is called afreeR-module.

Proposition 5.5. LetR be a ring, letI be a set andFI :=
⊕

i∈I R. Defineǫ : I → FI by ǫ(j) =

(xi)i∈I , wherexj = 1 andxi = 0 if i 6= j.

(a) ThenFI isR-free with basisB = {ǫ(i) | i ∈ I}.

(b) FI together withǫ satisfies the following universal property:

For all R-modulesM and all mapsδ : I →M there is one and only oneR-homomor-
phismφ : FI →M such thatφ ◦ ǫ = δ (draw diagram).

Proof. (a) is clear.
(b) For(xi)i∈I ∈ FI defineφ((xi)i∈I) :=

∑
i∈I xiδ(i); note that this is a finite sum (because of the

definition of the direct sum) and hence makes sense; clearlyφ ◦ ǫ = δ holds. It is trivial to check that
φ is anR-homomorphism.
For the uniqueness note thatφ(ǫ(i)) := δ(i) forcesφ((xi)i∈I) :=

∑
i∈I xiδ(i) by the properties of an

R-homomorphism. This shows the uniqueness.
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Example 5.6. (a) LetR = K be a field. ThenR-modules areK-vector spaces. Hence, allR-
modules are free. Their rank is the dimension as aK-vector space.

(b) LetR = Z. ThenZn is a freeZ-module of rankn.

(c) LetR = Z andM = Z/2Z. ThenM is notZ-free.

Proposition 5.7. LetR be a ring.

(a) LetM be anR-module andB ⊆ M a generating set. Then there is a surjectiveR-homomor-
phismFB → M , whereFB is the freeR-module from Proposition 5.5. In other words,M is a
quotient ofFB.

(b) LetM be a freeR-module with basisB. ThenM is isomorphic toFB.

Proof. (a) Considerδ : B → M given by the identity, i.e. the inclusion ofB intoM . The universal
property ofFB gives anR-homomorphismφ : FB → M . As φ ◦ ǫ = δ, B is in the image ofφ.
As the image contains a set of generators for the whole moduleM , the image is equal toM , i.e.φ is
surjective.
(b) Thenφ (from (a)) is given by(rb)b∈B 7→ ∑

b∈B rbb. If (rb)b∈B is in the kernel ofφ, then∑
b∈B rbb = 0. The freeness of the basisB now impliesrb = 0 for all b ∈ B, showing(rb)b∈B = 0,

i.e. the injectivity.

Lemma 5.8. LetR be a ring andM a finitely generated freeR-module. Then allR-bases ofM have
the same length.
This length is called theR-rankor theR-dimensionofM .

Proof. We prove this using linear algebra. LetB = {b1, . . . , bn} andC = {c1, . . . , cm} with n ≤ m

be twoR-bases ofM . Of course, we can express one basis in terms of the other one:

bi =
m∑

j=1

ti,jcj andcj =
n∑

k=1

sj,kbk, hencebi =
n∑

k=1

(
m∑

j=1

ti,jsj,k)bk.

Writing this in matrix form withT = (ti,j)1≤i≤n,1≤j≤m andS = (sj,k)1≤j≤m,1≤k≤n yields

S · T = idn×n.

Assumem < n. Then we can addn −m rows with entries0 to S on the right andm − n columns
with entries0 to T on the bottom without changing the product. However, the determinant of these
enlarged matrices is0, whence also the determinant of their product is zero, which contradicts the fact
that their product is the identity, which has determinant1.

Exact sequences

Definition 5.9. LetR be a ring and leta < b ∈ Z ∪ {−∞,∞}. For eacha ≤ n ≤ b, letMn be an
R-module. Also letφn : Mn−1 → Mn be anR-homomorphism. In other words, for alla′, b′ ∈ Z
such thata ≤ a′ < b′ ≤ b we have the sequence

Ma
φa+1−−−→Ma+1

φa+2−−−→Ma+2
φa+3−−−→ . . .

φb−2−−−→Mb−2
φb−1−−−→Mb−1

φb−→Mb.
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Such a sequence is called acomplexif im(φn−1) ⊆ ker(φn) for all n in the range. That is the case if
and only ifφn ◦ φn−1 = 0 for all n in the range.
The sequence is calledexactif im(φn−1) = ker(φn) for all n in the range (of course, this implies that
it is also a complex).

We will often consider finite sequences, mostly of the form

(∗) 0 →M1 →M2 →M3 → 0,

where0 denotes the zero module{0} ⊆ R. If a sequence of the form(∗) is exact, then it is called a
short exact sequence.

Lemma 5.10. LetR be a ring.

(a) LetA
α−→ B be anR-homomorphism. Thenα is injective if and only if the sequence0 → A→ B

is exact.

(b) LetB
β−→ C be anR-homomorphism. Thenβ is surjective if and only if the sequenceB

β−→ C → 0

is exact.

(c) Let0 → A
α−→ B

β−→ C → 0 be a complex. It is an exact sequence if and only ifC = im(β) and
α is an isomorphism fromA to ker(β).

Proof. (a) Just note:ker(α) = im(0 → A) = {0}.
(b) Just note:C = ker(C → 0) = im(α).
(c) Combine (a) and (b) with the exactness atB.

Proposition 5.11. LetR be a ring andMi, Ni for i = 1, 2, 3 beR-modules.

(a) Let

0 → N1
φ2−→ N2

φ3−→ N3

be a sequence. This sequence is exact if and only if

0 → HomR(M,N1)
φ̃2−→ HomR(M,N2)

φ̃3−→ HomR(M,N3)

is exact for allR-modulesM . TheR-homomorphism̃φi sendsα ∈ HomR(M,Ni−1) to φi ◦ α ∈
HomR(M,Ni) for i = 2, 3.

(b) Let

M1
ψ2−→M2

ψ3−→M3 → 0

be a sequence. This sequence is exact if and only if

0 → HomR(M3, N)
ψ̃3−→ HomR(M2, N)

ψ̃2−→ HomR(M1, N)

is exact for allR-modulesN . TheR-homomorphism̃ψi sendsα ∈ HomR(Mi, N) to α ◦ ψi ∈
HomR(Mi−1, N) for i = 2, 3.
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For the directions ‘⇒’ one also says that in case (a) that the functorHomR(M, ·) is covariant (pre-
serves directions of arrows) and left-exact and in case (b) that the functorHomR(·, N) is contravariant
(reverses directions of arrows) and left-exact.

Proof. (a) ‘⇒’:

• We know thatφ2 is injective. Ifα ∈ ker(φ̃2), then by definitionφ2 ◦ α is the zero map. This
implies thatα is zero, showing that̃φ2 is injective.

• We know thatφ3 ◦ φ2 is the zero map. This implies thatφ̃3

(
φ̃2(α)

)
= φ3 ◦ φ2 ◦ α is the zero

map for allα ∈ HomR(M,N1). Hence,im(φ̃2) ⊆ ker(φ̃3).

• Let β ∈ ker(φ̃3), i.e.φ3 ◦ β is the zero map. This meansim(β) ⊆ ker(φ3), hence, we obtain
that

φ−1
2 ◦ β : M

β−→ im(β) ⊆ ker(φ3) = im(φ2)
φ−1

2−−→ N1

is an element inHomR(M,N1). It satisfiesφ̃2(φ
−1
2 ◦ β) = φ2 ◦ φ−1

2 ◦ β = β, whence
β ∈ im(φ̃2), showingim(φ̃2) ⊇ ker(φ̃3).

‘⇐’:

• We know thatφ̃2 is injective for allR-modulesM . ChooseM := ker(φ2), and consider the
inclusionι : ker(φ2) → N1. Note that

φ̃2(ι) = φ2 ◦ ι : ker(φ2)
ι−→ N1

φ2−→ N2

is the zero-map. But, as̃φ2 is injective, it follows that alreadyι is the zero map, meaning that
ker(φ2) is the zero module, so thatφ2 is injective.

• We want to showφ3 ◦ φ2 = 0. For this takeM := N1, and consideridN1 the identity onN1.
We know thatφ̃3 ◦ φ̃2 is the zero map. In particular,

0 = φ̃3 ◦ φ̃2(idN1) = φ3 ◦ φ2 ◦ idN1 = φ3 ◦ φ2.

• We want to show thatker(φ3) ⊆ Im(φ2). For this takeM := ker(φ3) and consider the
inclusionι : ker(φ3) → N2. Note that

0 = φ̃3(ι) = φ3 ◦ ι : ker(φ3)
ι−→ N2

φ3−→ N3

is the zero map. We know thatker(φ̃3) ⊆ Im(φ̃2). Hence, there is someβ : ker(φ3) → N1

such thatι = φ̃2(β) = φ2 ◦ β. In particular, the image ofι, which is equal toker(φ3), equals
the image ofφ2 ◦ β, which is certainly contained in the image ofφ2, as was to be shown.

(b) Exercise.

Proposition 5.12. LetR be a ring,M ,N ,Mi andNi for i ∈ I (some set) beR-modules. Then there
are naturalR-isomorphisms:

(a) Φ : HomR(M,
∏
i∈I Ni) →

∏
i∈I HomR(M,Ni) and
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(b) Ψ : HomR(
⊕

i∈IMi, N) → ∏
i∈I HomR(Mi, N).

Proof. (a) Letπj :
∏
i∈I Ni → Nj be thej-th projection. DefineΦ as follows:

Φ(ϕ : M →
∏

i∈I
Ni) := (πi ◦ ϕ : M → Ni)i∈I .

It is clear thatΦ is anR-homomorphism.

Let ϕ ∈ HomR(M,
∏
i∈I Ni) such thatΦ(ϕ) = 0. This meansπi ◦ ϕ = 0 for all i ∈ I. Now we

use the universal property of
∏
i∈I Ni. Namely, there is a uniqueR-homomorphismM → ∏

i∈I Ni

for givenM → Ni. As these maps are all zero, certainly the zero mapM → ∏
i∈I Ni satisfies the

universal property. Consequently,ϕ = 0. This shows thatΦ is injective.

Now for the surjectivity. Suppose hence that we are givenϕi : M → Ni for eachi ∈ I. Then the
universal property of

∏
i∈I Ni tells us that there is a uniqueϕ : M → ∏

i∈I Ni such thatϕi = πi ◦ ϕ
for all i ∈ I. This is precisely the required preimage. Actually, we could have skipped the proof of
injectivity because the uniqueness ofϕ gives us a unique preimage, which also implies injectivity.

(b) Exercise.

Lemma 5.13. LetR be a ring andM anR-module. Then the map

Φ : HomR(R,M) →M, Φ(α : R→M) := α(1)

is anR-isomorphism.

Proof. Clear.

Proposition 5.14. LetR be a ring andF a freeR-module.

(a) ThenF satisfies the following universal property:

For all surjectiveR-homomorphismsφ : M ։ N and all R-homomorphismsψ :

F → N , there exists anR-homomorphismα : F →M such thatφ ◦ α = ψ.

A module that satisfies this universal property is calledprojective. Thus,F is projective.

(b) If 0 → A→ B → F → 0 is a short exact sequence ofR-modules, thenB ∼= A⊕ F .

Proof. (a) LetB be anR-basis ofF , so that we can identifyF with FB; we have the inclusion
ǫ : B → FB. Let henceφ : M ։ N be a surjectiveR-homomorphism andψ : F → N anR-
homomorphism. For eachb ∈ B choose anmb ∈ M such thatφ(mb) = ψ(b), using the surjectivity
of φ.

Consider the mapδ : B → M sendingb ∈ B tomb. By the universal property ofFB there exists the
requiredα.

(b) The universal property of (a) (applied withψ = idF ) shows that there isα : F → B such that
φ ◦ α = idF . Hence, the exact sequence is split and an exercise showsB ∼= A⊕ F .
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Appendix: Tensor products

This section will not be treated in the lecture and the sequel of the lecture does not depend on it.
Tensor products of modules are very important tools in algebra. Without any effort we could state
(almost) the whole section for non-commutative rings. However, then we would have to make distinc-
tions between left and right modules. For the sake of simplicity we stick to commutative rings and all
modules are considered as left modules.

Definition 5.15. LetR be a ring,M,N beR-modules.
LetP be aZ-module (note that this just means abelian group). AZ-bilinear map

f : M ×N → P

is calledbalancedif for all r ∈ R, all m ∈M and alln ∈ N one has

f(rm, n) = f(m, rn).

In this case, we call(P, f) a balanced product ofM andN .
A balanced product(M ⊗R N,⊗) is called atensor product ofM andN overR if the following
universal property holds:

For all balanced products(P, f) there is a unique group homomorphismφ : M ⊗RN →
P such thatf = φ ◦ ⊗ (draw diagram).

Of course, we have to show that tensor products exists. This is what we start with.

Proposition 5.16. LetR be a ring and letM,N beR-modules.
Then a tensor product(M ⊗RN,⊗) ofM andN overR exists. If(P, f) is any other tensor product,
then there is a unique group isomorphismφ : M ⊗R N → P such thatf = φ ◦ ⊗.

Proof. The uniqueness statement is a consequence of the uniqueness in the universal property. This
works similarly as the uniqueness of the direct product, the direct sum, etc.(that are proved in the
exercises).
LetF := Z[M×N ], i.e. the freeZ-module with basisM×N , that is the finiteZ-linear combinations
of pairs(m,n) for m ∈M andn ∈ N .
DefineG as theZ-submodule ofF generated by the following elements:

(m1 +m2, n) − (m1, n) − (m2, n) ∀m1,m2 ∈M, ∀n ∈ N,

(m,n1 + n2) − (m,n1) − (m,n2) ∀m ∈M, ∀n1, n2 ∈ N,

(rm, n) − (m, rn) ∀r ∈ R, ∀m ∈M, ∀n ∈ N.

DefineM ⊗R N := F/G, asZ-module. We shall use the notationm ⊗ n for the residue class
(m,n) +G. Define the map⊗ as

⊗ : M ×N →M ⊗R N, (m,n) 7→ m⊗ n.

It is Z-bilinear and balanced by construction.
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We now need to check the universal property. Let hence(P, f) be a balanced product ofM andN .
First we use the universal property of the free moduleF = Z[M ×N ]. For that letǫ : M ×N → F

denote the inclusion. We obtain a unique group homomorphismφ : F → P such thatφ◦ ǫ = f (draw
diagram).
Claim:G ⊆ ker(φ). Note first thatf(m,n) = φ◦ǫ(m,n) = φ((m,n)) for allm ∈M and alln ∈ N .
In particular, we have due to the bilinearity off for all m1,m2 ∈M and alln ∈ N :

φ((m1 +m2, n)) = f(m1 +m2, n) = f(m1, n) + f(m2, n) = φ((m1, n)) + φ((m2, n)),

whence(m1 +m2, n) − (m1, n) − (m2, n) ∈ ker(φ). In the same way one shows that the other two
kinds of elements also lie inker(φ), implying the claim.
Due to the claim,φ induces a homomorphismφ : F/G→ P such thatφ ◦ ⊗ = f (note that⊗ is just
ǫ composed with the natural projectionF → F/G).
As for the uniqueness ofφ. Note that the image of⊗ is a generating system ofF/G. Its elements are
of the formm⊗n. As we haveφ◦⊗(m,n) = φ(m⊗n) = f(m,n), the values ofφ at the generating
set are prescribed andφ is hence unique.

Example 5.17. (a) LetR = Z,M = Z/(m) andN = Z/(n) with gcd(m,n) = 1. ThenM ⊗N =

Z/(m) ⊗Z Z/(n) = 0.

Reason: As the gcd is1, there area, b ∈ Z such that1 = am+ bn. Then for allr ∈ Z/(m) and
all s ∈ Z/(n) we have:

r ⊗ s = r · 1 ⊗ s = r(am+ bn) ⊗ s = ram⊗ s+ (rbn⊗ s)

= 0 ⊗ s+ rb⊗ ns = 0 ⊗ 0 + rb⊗ 0 = 0 ⊗ 0 + 0 ⊗ 0 = 0.

(b) LetR = Z,M = Z/(m) andN = Q. ThenM ⊗N = Z/(m) ⊗Z Q = 0.

Reason: Letr ∈ Z/(m) and a
b ∈ Q. Then we have

r ⊗ a

b
= r ⊗m

a

mb
= rm⊗ a

mb
= 0 ⊗ a

mb
= 0 ⊗ 0 = 0.

(c) LetR = Z,M = Q andN anyZ-module. ThenQ ⊗Z N is aQ-vector space.

Reason: It is an abelian group. TheQ-scalar multiplication is defined byq.(r ⊗ n) := qr ⊗ n.

(d) LetM be anyR-module. ThenR⊗RM
r⊗m7→rm−−−−−−→M is an isomorphism.

Reason: It suffices to show thatM together with the mapR × M
(r,m) 7→rm−−−−−−→ M is a tensor

product. That is a very easy checking of the universal property.

Next we need to consider tensor products of maps.

Proposition 5.18. LetR be a ring and letf : M1 → M2 andg : N1 → N2 beR-homomorphisms.
Then there is a unique group homomorphism

f ⊗ g : M1 ⊗R N1 →M2 ⊗R N2

such thatf ⊗ g(m⊗ n) = f(m) ⊗ g(n).
The mapf ⊗ g is called thetensor product off andg.
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Proof. The map⊗ ◦ (f, g) : M1 × N1
f,g−−→ M2 × N2

⊗−→ M2 ⊗R N2 makesM2 ⊗R N2 into a
balanced product ofM1 andN1 (draw diagram). By the universal property there is thus a unique
homomorphismM1 ⊗R N1 →M2 ⊗R N2 with the desired property.

Lemma 5.19. LetM1
f1−→M2

f2−→M3 andN1
g1−→ N2

g2−→ N3 beR-homomorphisms.
Then(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2 ◦ f1) ⊗ (g2 ◦ g1).

Proof. (f2 ◦ f1) ⊗ (g2 ◦ g1)(m ⊗ n) = (f2 ◦ f1(m)) ⊗ (g2 ◦ g1(n)) = f2 ⊗ g2(f1(m) ⊗ g1(n)) =

(f2 ⊗ g2) ◦ (f1 ⊗ g1)(m⊗ n).

Corollary 5.20. Letf : M1 →M2 andg : N1 → N2 beR-homomorphisms.
Thenf ⊗ g = (idM2 ⊗ g) ◦ (f ⊗ idN1) = (f ⊗ idN2) ◦ (idM1 ⊗ g).

Proof. This follows immediately from the previous lemma.

Proposition 5.21. LetR be a ring.

(a) LetMi for i ∈ I andN beR-modules. Then there is a unique group isomorphism

Φ : (
⊕

i∈I
Mi) ⊗R N →

⊕

i∈I
(Mi ⊗R N)

such that(mi)i∈I ⊗ n 7→ (mi ⊗ n)i∈I .

(b) LetNi for i ∈ I andM beR-modules. Then there is a unique group isomorphism

Φ : M ⊗R (
⊕

i∈I
Ni) →

⊕

i∈I
(M ⊗R Ni)

such thatm⊗ (ni)i∈I 7→ (m⊗ ni)i∈I .

Proof. We only prove (a), as (b) works in precisely the same way.
First we show the existence of the claimed homomorphismΦ by using the universal property of the
tensor product. Define the map

f : (
⊕

i∈I
Mi) ×N →

⊕

i∈I
(Mi ⊗R N), ((mi)i∈I , n) 7→ (mi, n)i∈I .

This map makes
⊕

i∈I(Mi⊗RN) into a balanced product of
⊕

i∈IMi andN , whence by the universal
property of the tensor product the claimed homomorphism exists (and is unique).
Next we use the universal property of the direct sum to construct a homomorphismΨ in the opposite
direction, which will turn out to be the inverse ofΦ. Let j ∈ I. By ǫj denote the embedding of

Mj into thej-th component of
⊕

i∈IMi. From these we further obtain mapsMj ⊗R N
ǫj⊗idN−−−−→

(
⊕

i∈IMi) ⊗R N . Further consider the embeddingsιj of Mj ⊗R N into the j-th component of⊕
i∈I(Mi ⊗R N) from the definition of a direct sum. The universal property of direct sums now

yields a homomorphismΨ :
⊕

i∈I(Mi ⊗R N) → (
⊕

i∈IMi) ⊗R N such thatΨ ◦ ιj = ǫj ⊗ idN for
all j ∈ J .
Now it is easy to compute on generators thatΦ ◦ Ψ = id andΨ ◦ Φ = id.
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Lemma 5.22. LetR be a ring and letM ,N beR-modules. ThenM ⊗R N ∼= N ⊗RM .

Proof. This is not difficult and can be done as an exercise.

Example 5.23. Let L/K be a field extension. ThenL ⊗K K[X] is isomorphic toL[X] as anL-
algebra.

Lemma 5.24. LetR andS be rings. LetM be anR-module,P anS-module,N anS-module and
anR-module such thats(rn) = r(sn) for all r ∈ R, all s ∈ S and alln ∈ N .

(a) M ⊗R N is anS-module vias.(m⊗ n) = m⊗ (sn).

(b) N ⊗S P is anR-module viar.(n⊗ p) = (rn) ⊗ p.

(c) There is an isomorphism

(M ⊗R N) ⊗S P ∼= M ⊗R (N ⊗S P ).

Proof. This is not difficult and can be done as an exercise.

Lemma 5.25. LetR be a ring, letM,N beR-modules, and letP be aZ-module.

(a) HomZ(N,P ) is anR-module via(r.ϕ)(n) := ϕ(rn) for r ∈ R, n ∈ N , ϕ ∈ HomZ(N,P ).

(b) There is an isomorphism of abelian groups:

HomR(M,HomZ(N,P )) ∼= HomZ(M ⊗R N,P ).

(c) HomZ(P,M) is anR-module via(r.ϕ)(m) := ϕ(rm) for r ∈ R,m ∈M , ϕ ∈ HomZ(P,M).

(d) There is an isomorphism of abelian groups:

HomR(HomZ(P,M), N) ∼= HomZ(P,M ⊗R N).

Proof. (a) and (c): Simple checking.
(b) The key point is the following bijection:

{Balanced mapsf : M ×N → P} −→ HomR(M,HomZ(N,P )),

which is given by
f 7→

(
m 7→ (n 7→ f(m,n))

)
.

To see that it is a bijection, we give its inverse:

ϕ 7→
(
(m,n) 7→ (ϕ(m))(n)

)
.

Now it suffices to use the universal property of the tensor product.
(d) is similar to (b).

Proposition 5.26. LetR be a ring.
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(a) LetN ,M1,M2,M3 beR-modules. If the sequence

M1
f−→M2

g−→M3 → 0

is exact, then so is the sequence

M1 ⊗R N
f⊗id−−−→M2 ⊗R N

g⊗id−−−→M3 ⊗R N → 0.

One says that the functor· ⊗R N is right-exact.

(b) LetM ,N1,N2,N3 beR-modules. If the sequence

N1
f−→ N2

g−→ N3 → 0

is exact, then so is the sequence

M ⊗R N1
id⊗f−−−→M ⊗R N2

id⊗g−−−→M ⊗R N3 → 0.

One says that the functorM ⊗R · is right-exact.

Proof. We only prove (a), since (b) works precisely in the same way. We use Proposition 5.11 and
obtain the exact sequence:

0 → HomR(M3,HomZ(N,P )) → HomR(M2,HomZ(N,P )) → HomR(M1,HomZ(N,P ))

for anyZ-moduleP . By Lemma 5.25 this exact sequence is nothing else but:

0 → HomZ(M3 ⊗R N,P ) → HomZ(M2 ⊗R N,P ) → HomZ(M1 ⊗R N,P ).

As P was arbitrary, again from Proposition 5.11 we obtain the exact sequence

M1 ⊗R N →M2 ⊗R N →M3 ⊗R N → 0,

as claimed.

Definition 5.27. LetR be a ring.

(a) AnR-moduleM is calledflat overR if for all injectiveR-homomorphisms

ϕ : N1 → N2

also the group homomorphism

idM ⊗ ϕ : M ⊗R N1 →M ⊗R N2

is injective.

(b) AnR-moduleM is calledfaithfully flat overR if M is flat overR and for allR-homomorphisms
ϕ : N1 → N2, the injectivity ofidM ⊗ ϕ implies the injectivity ofϕ.
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(c) A ring homomorphismφ : R → S is called(faithfully) flat if S is (faithfully) flat asR-module
via φ.

Lemma 5.28. LetR be a ring and letM ,N beR-modules.

(a) M is flat overR⇔M ⊗R • preserves exactness of sequences.

(b) N is flat overR⇔ •⊗R N preserves exactness of sequences.

Proof. Combine Definition 5.27 and Proposition 5.26.

Example 5.29. (a) Q is flat asZ-module.

Reason: We don’t give a complete proof here (since we haven’t discussed the module theory
over Z). The reason is that any finitely generated abelian group is the direct sumof its torsion
elements (that are the elements of finite order) and a free module. Tensoring with Q kills the
torsion part and is injective on the free part (we will see that below).

(b) Q is not faithfully flat asZ-module.

Reason: ConsiderZ/(p2) → Z/(p), the natural projection (forp a prime), which is not injective.
Tensoring withQ kills both sides (see Example 5.17), so we get0 ∼= Z/(p2) ⊗Z Q → Z/(p) ⊗Z

Q ∼= 0, which is trivially injective.

(c) Fp is not flat asZ-module (forp a prime).

Reason: The homomorphismZ
n7→pn−−−−→ Z (multiplication byp) is clearly injective. But, after

tensoring it withFp overZ, we obtain the zero map, which is not injective.

6 Localisation

Definition 6.1. A ringR is calledlocal if it has a single maximal ideal.

Example 6.2. (a) Every fieldK is a local ring, its unique maximal ideal being the zero ideal.

(b) Letp be a prime number. The ringZ/(pn) is a local ring with unique maximal ideal generated
byp.

Reason:(p) is a maximal ideal, the quotient beingFp, a field. Ifa ( Z/(pn) is a proper ideal
andx ∈ a, thenx = py + (pn), as otherwisex would be a unit. This shows thatx ∈ (p), whence
a ⊆ (p).

Lemma 6.3. LetR be a ring,M anR-module anda � R an ideal. ThenaM = {∑n
i=1 aimi | n ∈

N, ai ∈ a, mi ∈M for i = 1, . . . , n} ⊆M is anR-submodule ofM .

Proof. Easy checking.

Lemma 6.4. LetR be a local ring with unique maximal idealm. Then the set of unitsR× of R is
precisely the setR \ m.
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Proof. The statement is equivalent to the following: The maximal idealm is equal to the set of non-
units.
We already know from Corollary 1.8 (b) that every non-unit lies in some maximal ideal, whence it
lies inm. On the other hand, every element ofm is a non-unit, as otherwisem = R.

We will now introduce/recall the process of localisation of rings and modules,which makes mod-
ules/rings local.

Proposition 6.5. LetR be a ring,S ⊂ R a multiplicatively closed subset (i.e. fors1, s2 ∈ S we have
s1s2 ∈ S) containing1.

(a) An equivalence relation onS ×R is defined by

(s1, r1) ∼ (s2, r2) ⇔ ∃t ∈ S : t(r1s2 − r2s1) = 0.

The equivalence class of(s1, r1) is denoted byr1s1 .

(b) The set of equivalence classesS−1R is a ring with respect to

+ : S−1R× S−1R→ S−1R,
r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2

and
· : S−1R× S−1R→ S−1R,

r1
s1

· r2
s2

=
r1r2
s1s2

.

Neutral elements are0 := 0
1 and1 := 1

1 .

(c) The mapµ : R → S−1R, r 7→ r
1 , is a ring homomorphism with kernel{r ∈ R | ∃s ∈ S : rs =

0}. In particular, ifR is an integral domain, then this ring homomorphism is injective.

Proof. Easy checking.

Note that for an integral domainR, the equivalence relation takes the easier form

(s1, r1) ∼ (s2, r2) ⇔ r1s2 − r2s1 = 0,

provided0 6∈ S (if 0 ∈ S, thenS−1R is always the zero ring, as any element is equivalent to0
1 ).

Example 6.6. (a) LetR be an integral domain. ThenS = R\{0} is a multiplicatively closed subset.
ThenFrac(R) := S−1R is the field of fractions ofR.

Subexamples:

(1) ForR = Z, we haveFrac Z = Q.

(2) LetK be a field andR := K[X]. ThenFracK[X] =: K(X) is thefield of rational functions
overK (in one variable). Explicitly, the elements ofK(X) are equivalence classes written as
f(X)
g(X) with f, g ∈ K[X], g(X) not the zero-polynomial. The equivalence relation is, of course,

the one from the definition; asK[X] is a factorial ring, we may represent the classf(X)
g(X) as a

‘lowest fraction’, by dividing numerator and denominator by their greatest common divisor.
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(b) LetR be a ring andp�R be a prime ideal. ThenS := R \ p is multiplicatively closed and1 ∈ S

and0 6∈ S.

ThenRp := S−1R is called thelocalisation ofR atp.

Subexamples:

(1) LetR = Z andp a prime number, so that(p) is a prime ideal. Then the localisation ofZ
at (p) is Z(p) and its elements are{ rs ∈ Q | p ∤ s, gcd(r, s) = 1}.

(2) LetK be a field and considerAn(K). Leta = (a1, . . . , an) ∈ An(K).

Letp be the kernel of the ring homomorphism

K[X1, . . . , Xn] → K, f 7→ f(a1, . . . , an).

Explicitly, p = {f ∈ K[X1, . . . , Xn] | f(a) = 0}. As this homomorphism is clearly surjec-
tive (take constant maps as preimages), we have thatK[X1, . . . , Xn]/p is isomorphic toK,
showing thatp is a maximal (and, hence, a prime) ideal.

The localisationK[X1, . . . , Xn]p is the subring ofK(X1, . . . , Xn) consisting of elements
that can be written asf(X1,...,Xn)

g(X1,...,Xn) with g(a1, . . . , an) 6= 0.

This is the same as the set of rational functionsK(X1, . . . , Xn) that are defined in a Zariski-
open neighbourhood ofa. Namely, letfg ∈ K[X1, . . . , Xn]p such thatg(a) 6= 0. Then the

functionx 7→ f(x)
g(x) is well-defined (i.e. we don’t divide by0) on the Zariski-open setAn(K) \

V(g)(K), which containsa. On the other hand, if forfg ∈ K[X1, . . . , Xn] the function

x 7→ f(x)
g(x) is well-defined in some Zariski-open neighbourhood ofa, then, in particular, it is

well-defined ata, implying f
g ∈ K[X1, . . . , Xn]p.

(c) LetR be a ring and letf ∈ R be an element which is not nilpotent (i.e.fn 6= 0 for all n ∈ N).
ThenS := {fn | n ∈ N} (use0 ∈ N) is multiplicatively closed and we can formS−1R. This ring
is sometimes denotedRf (Attention: easy confusion is possible).

Subexample:

(1) LetR = Z and0 6= a ∈ N. LetS = {an | n ∈ N}. ThenS−1Z = { r
an ∈ Q | r ∈ R,n ∈

N, gcd(r, an) = 1}.

Proposition 6.7. Let R be a ring andS ⊆ R a multiplicatively closed subset with1 ∈ S. Let
µ : R→ S−1R, given byr 7→ r

1 .

(a) The map

{b � S−1R ideal} −→ {a �R ideal}, b 7→ µ−1(b) �R

is an injection, which preserves inclusions and intersections. Moreover,if b � S−1R is a prime
ideal, then so isµ−1(b) �R.

(b) Leta �R be an ideal. Then the following statements are equivalent:

(i) a = µ−1(b) for someb � S−1R (i.e.a is in the image of the map in (a)).
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(ii) a = µ−1(aS−1R) (hereaS−1R is short for the ideal ofS−1R generated byµ(a), i.e. by all
elements of the forma1 for a ∈ a).

(iii) Every s ∈ S is a non-zero divisor moduloa, meaning that ifr ∈ R andrs ∈ a, thenr ∈ a.

(c) The map in (a) defines a bijection between the prime ideals ofS−1R and the prime idealsp ofR
such thatS ∩ p = ∅.

Proof. Exercise.

Corollary 6.8. LetR be a ring andp � R be a prime ideal. Then the localisationRp ofR at p is a
local ring with maximal idealS−1p.

Proof. Let S = R \ p. Note that∅ = a ∩ S = a ∩ (R \ p) is equivalent toa ⊆ p.

Hence, Proposition 6.7 (c) gives an inclusion preserving bijection between the prime ideals ofS−1R

and the prime ideals ofR which are contained inp. The corollary immediately follows.

Definition 6.9. LetR be a ring. TheJacobson radicalis defined as the intersection of all maximal
ideals ofR:

J(R) :=
⋂

m�R maximal ideal

m

Lemma 6.10. LetR a ring and leta�R be an ideal which is contained inJ(R). Then for anya ∈ a,
one has1 − a ∈ R×.

Proof. If 1 − a were not a unit, then there would be a maximal idealm containing1 − a. Since
a ∈ J(R), it follows thata ∈ m, whence1 ∈ m, contradiction.

Proposition 6.11(Nakayama’s Lemma). LetR be a ring andM a finitely generatedR-module. Let
a �R be an ideal such thata ⊆ J(R). SupposeaM = M . ThenM = 0.

Proof. We first show that there isa ∈ a such that(1 − a)M = 0.

We first use thatM is finitely generated by choosing finitely many generatorsm1, . . . ,mn for M as
anR-module. Now we useaM = M in order to express each generator as ana-linear combination of
these generators. More precisely, for eachi ∈ {1, . . . , n} there areai,j ∈ a (for 1 ≤ j ≤ n) such that

mi =

n∑

j=1

ai,jmj .

We write the coefficients into a matrixA = (ai,j)1≤i,j≤n. It satisfies:

A :=




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
.. .

...
an,1 an,2 · · · an,n




·




m1

m2
...
mn




=




m1

m2
...
mn



.
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We now form the matrixB := idn×n −A. By the previous calculation we obtain

B ·




m1

m2
...
mn




= 0.

LetB∗ be the adjoint matrix, which satisfiesB∗ ·B = det(B) · idn×n. Hence:

0 = B∗ ·B ·




m1

m2
...
mn




= det(B) ·




m1

m2
...
mn



.

Hence, for alli ∈ {1, . . . , n} we finddet(B) ·mi = 0, thusdet(B) ·M = 0. The usual rules for
computing the determinant immediately showdet(B) = 1 − a for somea ∈ A. Hence, we have
(1 − a)M = 0.
By Lemma 6.10 we get(1−a) ∈ R×, letb ∈ R× be such thatb(1−a) = 1. Hence0 = b·(1−a)·M =

M .

The following corollary turns out to be very useful in many applications.

Corollary 6.12. Let R be a local ring with maximal ideala and letM be a finitely generatedR-
module. Letx1, . . . , xn ∈M be elements such that their imagesxi := xi + aM are generators of the
quotient moduleM/aM .
Thenx1, . . . , xn generateM as anR-module.

Proof. Let N be the submodule ofM generated byx1, . . . , xn. Let m ∈ M be any element. By
assumption there existy ∈ N and elementsa1, . . . , an ∈ a such that

m = y +

n∑

i=1

aixi.

Passing to classes inM/N we get

m+N =

n∑

i=1

ai(xi +N)

thusm +N ∈ a(M/N). This showsa(M/N) = M/N . By Proposition 6.11 we obtainM/N = 0,
henceM = N , as required.

Proposition 6.13. LetR be a ring,S ⊂ R a multiplicatively closed subset containing1. LetM be an
R-module.

(a) An equivalence relation onS ×M is defined by

(s1,m1) ∼ (s2,m2) ⇔ ∃t ∈ S : t(s1m2 − s2m1) = 0.
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(b) The set of equivalence classesS−1M is anS−1R-module with respect to

+ : S−1M × S−1M → S−1M,
m1

s1
+
m2

s2
=
s2m1 + s1m2

s1s2

and scalar-multiplication

· : S−1R× S−1M → S−1M,
r

s1
· m
s2

=
rm

s1s2
.

The neutral element is0 := 0
1 .

(c) The mapµ : M → S−1M , m 7→ m
1 , is anR-homomorphism with kernel{m ∈ M | ∃s ∈ S :

sm = 0}.

Proof. Easy checking.

Lemma 6.14. LetR be a ring,S ⊂ R multiplicatively closed containing1. LetM,N beR-modules
andφ : M → N anR-homomorphism.

(a) The map

φS : S−1M → S−1N,
m

s
7→ φ(m)

s

is anS−1R-homomorphism.

(b) Let

0 → A
α−→ B

β−→ C → 0

be an exact sequence ofR-modules. Then the sequence

0 → S−1A
αS−−→ S−1B

βS−→ S−1C → 0

is also exact. One says that localisation is anexact functor.

In particular φS is injective (surjective, bijective) ifφ is injective (surjective, bijective).

Proof. (a) Easy checking.
(b) We know thatα is injective. LetαS(as ) = α(a)

1 = 0; then there iss ∈ S such that0 = sα(a) =

α(sa), whencesa = 0 and, thus,a1 = 0
1 . Hence,αS is injective.

We know thatβ is surjective. Letcs ∈ S−1C. There isb ∈ B such thatβ(b) = c, thusβS( bs) =
β(b)
s = c

s , showing thatβS is surjective.
We now show exactness at the centre of the sequence. First of allβ ◦ α = 0 immediatly implies
βS ◦ αS = 0 becauseβS ◦ αS(as ) = β◦α(a)

s = 0
s = 0. Let now b

s be in the kernel ofβS , that is

0 = βS( bs) = β(b)
s . Hence, there ist ∈ S such that0 = tβ(b) = β(tb). Using the exactness of the

original sequence, we find ana ∈ A such thatα(a) = tb. Thus,bs = α(a)
ts = αS( ats).

Lemma 6.15. LetR be a ring andm a maximal ideal.

(a) The natural mapµ : R→ Rm, r 7→ r
1 induces a ring isomorphism

R/m ∼= Rm/mRm.
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(b) LetM be anR-module and denote byMm its localisation atm. Then:

M/mM ∼= Mm/mRmMm.

Proof. Exercise.

The next proposition gives local characterisations, i.e. it gives criteriasaying that a certain property
(injectivity, surjectivity) holds if and only if it holds in all localisations. We first start with a lemma
that gives a local characterisation of a module to be zero.

Lemma 6.16. LetR be a ring andM anR-module. Then the following statements are equivalent:

(i) M is the zero module.

(ii) For all prime idealsp �R, the localisationMp is the zero module.

(iii) For all maximal idealsm �R, the localisationMm is the zero module.

Proof. ‘(i) ⇒ (ii)’: Clear.
‘(ii) ⇒ (iii)’ is trivial because all maximal ideals are prime.
‘(iii) ⇒ (i)’: Let 0 6= m ∈ M and putN := R.m ⊆ M . Hence, we have the exact sequence of
R-modules

0 → a → R
r 7→r.m−−−−→ N → 0,

wherea is just defined as the kernel of the map on the right. Asm 6= 0, the map on the right is not the
zero map (e.g.1 is not in its kernel), hencea is a proper ideal ofR. As such it is contained in some
maximal idealm. The injectivitiyN →֒ M leads to the injectivity ofNm →֒ Mm by Lemma 6.14.
Hence,Nm = 0. The isomorphismN/mN ∼= Nm/mRmNm from Lemma 6.15 yieldsN/mN = 0,
whenceN = mN . In particular, there isx ∈ m such thatm = xm, thus(1 − x)m = 0. Thus
1 − x ∈ a ⊆ m, donc1 = 1 − x+ x ∈ m, contradiction.

Proposition 6.17. LetR be a ring andϕ : M → N anR-homomorphism. For a prime idealp � R,
denote byϕp : Mp → Np the localisation atp. Then the following statements are equivalent:

(i) ϕ is injective (surjective).

(ii) For all prime idealsp �R, the localisationϕp is injective (surjective).

(iii) For all maximal idealsm �R, the localisationϕm is injective (surjective).

Proof. ‘(i) ⇒ (ii)’: Lemma 6.14.
‘(ii) ⇒ (iii)’ is trivial because all maximal ideals are prime.
‘(iii) ⇒ (i)’: We only show this statement for the injectivity. The surjectivity is very similar. LetK
be the kernel ofϕ, so that we have the exact sequence

0 → K →M
ϕ−→ N.

By Lemma 6.14, also the sequence

0 → Km →Mm
ϕm−−→ Nm

is exact for any maximal idealm. Asϕm is injective, it follows thatKm = 0. By Lemma 6.16,K = 0,
showing thatϕ is injective.
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Appendix: Localisation as a tensor product

Lemma 6.18. LetR be a ring,S ⊂ R multiplicatively closed containing1 andM anR-module. The
map

ψ : S−1M → S−1R⊗RM,
m

s
7→ 1

s
⊗m

is anS−1R-isomorphism, whereS−1R⊗RM is anS−1R-module viaxs .(
y
t ⊗m) := (xs

y
t ) ⊗m.

Proof. First we check thatψ is well-defined: Letm1
s = m2

t , i.e. there isu ∈ S such thatu(tm1 −
sm2) = 0. Now 1

s ⊗m1 = tu
stu ⊗m1 = 1

stu ⊗ tum1 = 1
stu ⊗ sum2 = su

stu ⊗m2 = 1
t ⊗m2. Thatψ

is anS−1R-homomorphism is easily checked.
We now construct an inverse toψ using the universal property of the tensor product. Define

f : S−1R×M → S−1M, (
x

s
,m) 7→ xm

s
.

This is a balanced map overR. Hence, there is a uniqueZ-homomorphismφ : S−1R⊗M → S−1M

such thatφ(xs ⊗m) = xm
s .

It is clear thatφ is anS−1R-homomorphism and thatφ ◦ ψ andψ ◦ φ are the identity.



Chapter III

Advanced ring theory

7 Noetherian rings and Hilbert’s Basissatz

In this short section, we treat Noetherian and Artinian rings and prove Hilbert’s basis theorem.

Definition 7.1. Let R be a ring andM an R-module. The moduleM is calledNoetherian(resp.
Artinian) if every ascending (resp. descending) chain ofR-submodules ofM

M1 ⊆M2 ⊆M3 ⊆ . . .

(resp.M1 ⊇ M2 ⊇ M3 ⊇ . . . ) becomes stationary, i.e. there isN ∈ N such that for alln ≥ N we
haveMn = MN .
The ringR is calledNoetherian(resp.Artinian) if it has this property as anR-module.

Lemma 7.2. LetR be a ring andM anR-module.
ThenM is Noetherian (resp. Artinian) if and only if every non-empty setS of submodules ofM has a
maximal (resp. minimal) element.
By a maximal (resp. minimal) element ofS we mean anR-moduleN ∈ S such thatN ⊆ N1 (resp.
N ⊇ N1) impliesN = N1 for anyN1 ∈ S.

Proof. We only prove the Lemma for the Noetherian case. The Artinian case is similar.
Let S be a non-empty set ofR-submodules ofM that does not have a maximal element. Then
construct an infinite ascending chain with strict inclusions as follows. Choose anyM1 ∈ S. AsM1 is
not maximal, it is strictly contained in someM2 ∈ S. AsM2 is not maximal, it is strictly contained
in someM3 ∈ S, etc. leading to the claimed chain. Hence,M is not Noetherian.
Conversely, letM1 ⊆ M2 ⊆ M3 ⊆ . . . be an ascending chain. LetS = {Mi | i ∈ N}. This
set contains a maximal elementMN by assumption. This means that the chain becomes stationary
atN .

Proposition 7.3. LetR be a ring andM anR-module. The following statements are equivalent:

(i) M is Noetherian.

(ii) Every submoduleN ≤M is finitely generated asR-module.

59
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Proof. ‘(i) ⇒ (ii)’: Assume thatN is not finitely generated. In particular, there are then elements
ni ∈ N for i ∈ N such that〈n1〉 ( 〈n1, n2〉 ( 〈n1, n2, n3〉 ( . . . , contradicting the Noetherian-ness
of M .
‘(ii) ⇒ (i)’: Let M1 ⊆ M2 ⊆ M3 ⊆ . . . be an ascending chain ofR-submodules. FormU :=⋃
i∈N

Mi. It is anR-submodule ofM , which is finitely generated by assumption. Letx1, . . . , xd ∈ U

be generators ofU . As all xi already lie in someMji , there is anN such thatxi ∈ MN for all
i = 1, . . . , d. Hence, the chain becomes stationary atN .

The proposition shows that in particular every principal ideal domain is a Noetherian ring, since all
ideals (recall that the ideals of a ringR are precisely theR-submodules ofR) are generated by a single
element, hence, finitely generated. Hence, we obtain thatZ andK[X] (for K a field) are Noetherian;
however, we do not yet know about the polynomial ring in more than one variable; its Noetherian
property is the content of Hilbert’s Basissatz.

Lemma 7.4. LetR be a ring and0 → N → M → M/N → 0 be an exact sequence ofR-modules.
The following statements are equivalent:

(i) M is Noetherian (resp. Artinian).

(ii) N andM/N are Noetherian (resp. Artinian).

Proof. We only prove this in the Noetherian case. The Artinian one is similar.
‘(i) ⇒ (ii)’: N is Noetherian because every ascending chain of submodules ofN is also an ascending
chain of submodules ofM , and hence becomes stationary.
To see thatM/N is Noetherian consider an ascending chain ofR-submodulesM1 ⊆ M2 ⊆ M3 ⊆
. . . of M/N . Taking preimages for the natural projectionπ : M → M/N gives an ascending chain
in M , which by assumption becomes stationary. Because ofπ(π−1(M i)) = M i, also the original
chain becomes stationary.
‘(ii) ⇒ (i)’: Let

M1 ⊆M2 ⊆M3 ⊆ . . .

be an ascending chain ofR-submodules. The chain

M1 ∩N ⊆M2 ∩N ⊆M3 ∩N ⊆ . . .

becomes stationary (say, at the integern) because its members are submodules of the Noetherian
R-moduleN . Moreover, the chain

(M1 +N)/N ⊆ (M2 +N)/N ⊆ (M3 +N)/N ⊆ . . .

also becomes stationary (say, at the integerm) because its members are submodules of the Noetherian
R-moduleM/N . By one of the isomorphism theorems, we have(Mi +N)/N ∼= Mi/(Mi ∩N). Let
now i be greater thann andm. We hence have for allj ≥ 0:

Mi/(Mi ∩N) = Mi+j/(Mi ∩N).

The other isomorphism theorem then yields:

0 ∼= (Mi+j/(Mi ∩N))/(Mi/(Mi ∩N)) ∼= Mi+j/Mi,

showingMi = Mi+j .
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Proposition 7.5. LetR be a Noetherian (resp. Artinian) ring. Then every finitely generatedR-module
is Noetherian (resp. Artinian).

Proof. Exercise.

Proposition 7.6(Hilbert’s Basissatz). LetR be a Noetherian ring andn ∈ N. ThenR[X1, . . . , Xn]

is a Noetherian ring. In particular, every ideala �R[X1, . . . , Xn] is finitely generated.

Proof. By induction it clearly suffices to prove the casen = 1. So, leta � R[X] be any ideal. We
show thata is finitely generated, which implies the assertion by Proposition 7.3.

The very nice trick is the following:

a0 := {a0 ∈ R | a0 ∈ a} �R

⊆

a1 := {a1 ∈ R | ∃b0 ∈ R : a1X + b0 ∈ a} �R

⊆

a2 := {a2 ∈ R | ∃b0, b1 ∈ R : a2X
2 + b1X + b0 ∈ a} �R

⊆

...

So,an is the set of highest coefficients of polynomials of degreen lying in a. The inclusionan−1 ⊆ an

is true because if we multiply a polynomial of degreen−1 byX, we obtain a polynomial of degreen
with the same highest coefficient.

The ascending ideal chaina0 ⊆ a1 ⊆ a2 ⊆ . . . becomes stationary becauseR is Noetherian, say
ad = ad+i for all i ∈ N. Moreover, sinceR is Noetherian, all theai are finitely generated (as ideals
of R) by Proposition 7.3, say,ai = (ai,1, . . . , ai,mi

).

By construction, for eachai,j there is a polynomialfi,j ∈ a of degreei with highest coefficientai,j .
Let b be the ideal ofR[X] generated by the finitely manyfi,j ∈ a for 0 ≤ i ≤ d and1 ≤ j ≤ mi.

Claim: b = a.

Of course,b ⊆ a. We show by induction one that anyf ∈ a of degreee lies in b. If e = 0, then
f ∈ a0, whencef ∈ b.

Next we treat0 < e ≤ d. Suppose we already know that any polynomial ina of degree at most
e − 1 lies in b. Let nowf ∈ a be of degreee. The highest coefficientae of f lies in ae. This means
that ae =

∑me

j=1 rjae,j for somerj ∈ R. Now, the polynomialg(X) =
∑me

j=1 rjfe,j has highest
coefficientae and is of degreee. But, nowf − g is in a and of degree at moste − 1, whence it lies
in b. We can thus conclude thatf lies inb, as well.

Finally we deal withd < e. Just as before, suppose we already know that any polynomial ina of
degree at moste − 1 lies in b and let againf ∈ a be of degreee. The highest coefficientae of f lies
in ae = ad and, hence, there arerj for j = 1, . . . ,md such thatae =

∑md

j=1 rjad,j . Consequently,
the polynomialg(X) =

∑md

j=1 rjfd,j has highest coefficientae and is of degreed. But, nowf(X) −
g(X)Xe−d is in a and of degree at moste − 1, whence it lies inb. We can thus conclude thatf lies
in b, as well, finishing the proof of the claim and the Proposition.
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Proposition 7.7. Let R be a Noetherian ring andS ⊆ R be a multiplicatively closed subset with
1 ∈ S. ThenS−1R is also a Noetherian ring.

Proof. Exercise.

8 Krull dimension in integral ring extensions

This section has two main corollaries:

• The ring of integers of a number field has Krull dimension1.

• The coordinate ring of a plane curve has Krull dimension1 (fitting well with the intuitive con-
cept that a curve is a ‘geometric object of dimension1’).

Definition 8.1. LetR be a ring. Achain of prime ideals of lengthn in R is

pn ( pn−1 ( pn−2 ( · · · ( p1 ( p0,

wherepi �R is a prime ideal for alli = 0, . . . , n.
Theheighth(p) of a prime idealp � R is the supremum of the lengths of all prime ideal chains with
p0 = p.
TheKrull dimensiondim(R) of the ringR is the supremum of the heights of all prime ideals ofR.

Example 8.2. (a) The Krull dimension ofZ is 1.

Reason: Recall that the prime ideals ofZ are (0) (height0) and(p) for a primep, which is also
maximal. So, the longest prime ideal chain is(0) ( (p).

(b) The Krull dimension of any field is0.

Reason:(0) is the only ideal, hence, also the only prime ideal.

(c) LetK be a field. The polynomial ringK[X1, . . . , Xn] has Krull dimensionn. This needs a
non-trivial proof! See below.

Primes in integral extensions

In the sequel, we are going to consider ring extensionsR ⊆ S. If we denoteι : R → S the inclusion
andb � S an ideal, thenι−1(b) = b ∩ R (in the obvious sense). In particular, ifb is a prime ideal,
then so isι−1(b) = b ∩R (see Exercise).

Lemma 8.3. LetR ⊆ S be a ring extension such thatS is integral overR. Letb � S be an ideal and
a := b ∩R�R.

(a) ThenR/a →֒ S/b is an integral ring extension (note that this is injective because of the homo-
morphism theorem).

(b) Assume thatb is a prime ideal. Thena is maximal⇔ b is maximal.

(c) Assume in addition thatS is an integral domain. Then:R is a field⇔ S is a field.
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Proof. Exercise.

Lemma 8.4. LetR ⊆ S be an integral ring extension.

(a) Letb � S be an ideal containingx ∈ b which is not a zero-divisor. Thenb ∩ R =: a � R is not
the zero ideal.

(b) LetP1 ( P2 be a chain of prime ideals ofS. Thenp1 := P1 ∩R ( P2 ∩R =: p2 is a chain of
prime ideals ofR.

Proof. (a) SinceS is integral overR, there aren ∈ N andr0, . . . , rn−1 ∈ R such that

0 = xn +
n−1∑

i=0

rix
i.

As x is not a zero-divisor, it is in particular not nilpotent, i.e. there is some coefficient ri 6= 0 (for
somei = 0, . . . , n− 1). Let j be the smallest index (≤ n− 1) such thatrj 6= 0. Now we have

0 = xj
(
xn−j +

n−1∑

i=j

rix
i−j),

implying (asx is not a zero-divisor):

0 = xn−j −
n−1∑

i=j

rix
i−j .

Rewriting yields:

rj = x(−xn−j−1 −
n−1∑

i=j+1

rix
i−j−1) ∈ R ∩ b = a,

showing thata is non-zero.

(b) Consider the integral (see Lemma 8.3) ring extensionR/p1 →֒ S/P1. The idealP2/P1 in S/P1

is prime because(S/P1)/(P2/P1) ∼= S/P2 (isomorphism theorem) is an integral domain. This also
means thatP2/P1 consists of non-zero divisors only (except for0). Consequently, by (a), we have
(0) 6= P2/P1 ∩R/p1

∼= p2/p1.

Lemma 8.5. LetR ⊆ S be an integral ring extension and letT ⊆ R be a multiplicatively closed
subset containing1. ThenT−1R ⊆ T−1S is an integral ring extension.

Proof. Exercise.

Lemma 8.6. LetR ⊆ S be an integral ring extension and letp �R be a prime ideal. Then there is a
prime idealP � S lying overp, by which we meanp = P ∩R.

Proof. Let T := R \ p so thatRp = T−1R is the localisation ofR atp. By Lemma 8.5,Rp →֒ T−1S

is an integral ring extension. Letm be a maximal ideal ofT−1S.
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Consider the commutative diagram:

R
integral

//

α

��

S

β

��

Rp
integral

// T−1S.

PutP := β−1(m). It is a prime ideal. Note thatm ∩Rp is maximal by Lemma 8.3, hence,m ∩Rp =

pRp is the unique maximal ideal of the local ringRp. Consequently, we have due to the commutativity
of the diagram:

p = α−1(pRp) = α−1(m ∩Rp) = R ∩ β−1(m) = R ∩ P,

showing thatP satisfies the requirements.

Proposition 8.7(Going up). LetR ⊆ S be an integral ring extension. For prime idealsp1 ( p2 in R
and a prime idealP1 � S lying overp1 (i.e. P1 ∩ R = p1), there is a prime idealP2 in S lying
overp2 (i.e.P2 ∩R = p2) such thatP1 ( P2.

Proof. By Lemma 8.3,R/p1 →֒ S/P1 is an integral ring extension. By Lemma 8.6, there isP2 �

S/P1 lying overp2 := p2/p1 such thatP2 ∩ R/p1 = p2/p1. DefineP2 asπ−1
S (P2) for πS : S →

S/P1 the natural projection. Clearly,P2 ⊇ P1 (asP1 is in the preimage, being the preimage of the
0 class). By the commutativity of the diagram

R //

πR

��

S

πS

��

R/p1
// S/P1,

we have
P2 ∩R = π−1

S (P2) ∩R = π−1
R (P2 ∩R/p1) = π−1

R (p2/p1) = p2.

This also impliesP2 6= P1.

Corollary 8.8. LetR ⊆ S be an integral ring extension. Then the Krull dimension ofR equals the
Krull dimension ofS.

Proof. We first note that the Krull dimension ofR is at least the Krull dimension ofS. Reason: If
Pn ( Pn−1 ( · · · ( P0 is an ideal chain inS, thenPn ∩ R ( Pn−1 ∩ R ( · · · ( P0 ∩ R is an
ideal chain inR by Lemma 8.4.
Now we show that the Krull dimension ofS is at least that ofR. Let pn ( pn−1 ( · · · ( p0 be an
ideal chain inR and letPn be any prime ideal ofS lying overpn, which exists by Lemma 8.6. Then
Proposition 8.7 allows us to obtain an ideal chainPn ( Pn−1 ( · · · ( P0 such thatPi ∩R = pi for
i = 0, . . . , n, implying the desired inequality.

Corollary 8.9. LetR be an integral domain of Krull dimension1 and letL be a finite extension of
K := FracR. Then the integral closure ofR in L has Krull dimension1.
In particular, rings of integers of number fields have Krull dimension1.
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Proof. The integral closure ofR in L is an integral ring extension ofR. By Corollary 8.8, the Krull
dimension ofS is the same as that ofR, whence it is1.

Krull dimension of the coordinate ring of a curve

Our next aim is to compute the Krull dimension ofK[X1, . . . , Xn] for some fieldK. First we need
Nagata’s Normalisation Lemma, which will be an essential step in the proof of Noether’s Normalisa-
tion Theorem and of the computation of the Krull dimension ofK[X1, . . . , Xn].

Proposition 8.10 (Nagata). Let K be a field andf ∈ K[X1, . . . , Xn] be a non-constant polyno-
mial. Then there arem2,m3, . . . ,mn ∈ N such that the ring extensionR := K[f, z2, z3, . . . , zn] ⊆
K[X1, . . . , Xn] =: S with zi := Xi −Xmi

1 ∈ K[X1, . . . , Xn] is integral.

Proof. First note: S = R[X1]. Reason: The inclusion⊇ is trivial. For n ≥ i > 1, we have
Xi = zi +Xmi

1 ∈ R[X1], proving the inclusion⊆.
It suffices to show thatX1 is integral overR. The main step is to construct a monic polynomial
h ∈ R[T ] such thath(X1) = 0. We take the following general approach: For anymi ∈ N for
i = 2, 3, . . . , n the polynomial

h(T ) := f(T, z2 + Tm2 , z3 + Tm3 , . . . , zn + Tmn) − f(X1, . . . , Xn) ∈ R[T ]

obviously hasX1 as a zero. But, in order to prove the integrality ofX1 we need the highest coefficient
of h to be inR× = K[X1, . . . , Xn]

× = K×, so that we can divide by it, makingh monic. We will
achieve this by making a ‘good’ choice of themi, as follows.
Let d be the total degree off in the following sense:

f(X1, . . . , Xn) =
∑

(i1,...,in) s.t.|i|≤d
a(i1,...,in)X

i1
1 · · ·Xin

n

with one of thea(i1,...,in) 6= 0 for |i| :=
∑n

j=1 ij = d. Now we compute (lettingm1 = 1)

h(T )

=
( ∑

(i1,...,in) s.t.|i|≤d
a(i1,...,in)T

i1(z2 + Tm2)i2(z3 + Tm3)i3 . . . (zn + Tmn)in
)
− f(X1, . . . , Xn)

=
∑

(i1,...,in) s.t.|i|≤d
a(i1,...,in)T

Pn
j=1 ijmj + terms of lower degree inT.

Now choosemj = (d+1)j−1. Then the
∑n

j=1 ijmj =
∑n

j=1 ij(d+1)j−1 are distinct for all choices
of 0 ≤ ij ≤ d (consider it as the(d + 1)-adic expansion of an integer). In particular, among these
numbers there is a maximal one with0 6= a(i1,...,in). Then this is the highest coefficient ofh and it
lies inK×, as needed.

Definition 8.11. LetK be a field. A finitely generatedK-algebra is also called anaffineK-algebra.

Proposition 8.12(Noether’s Normalisation Theorem). LetK be a field andR an affineK-algebra
which is an integral domain and which can be generated byn elements (asK-algebra). Then there is
r ∈ N, r ≤ n and there are elementsy1, . . . , yr ∈ R such that
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(1) R/K[y1, . . . , yr] is an integral ring extension and

(2) y1, . . . , yr areK-algebraically independent (by definition, this means thatK[y1, . . . , yr] is iso-
morphic to the polynomial ring inr variables).

The subringK[y1, . . . , yr] ofR is called aNoether normalisation ofR.

Proof. By induction onn ∈ N we shall prove: Every affineK-algebra that can be generated byn
elements satisfies the conclusion of the proposition.
Start withn = 0. ThenR = K and the result is trivially true. Assume now that the result is proved
for n − 1. We show it forn. Let x1, . . . , xn ∈ R be a set of generators ofR asK-algebra. So, we
have the surjection ofK-algebras:

ϕ : K[X1, . . . , Xn] ։ R, Xi 7→ xi.

Its kernel is a prime idealp := ker(ϕ) sinceR is an integral domain.
We distinguish two cases. Assume firstp = (0). ThenR is isomorphic toK[X1, . . . , Xn] and the
result is trivially true. Now we put ourselves in the second casep 6= (0). Let f ∈ p be a non-
constant polynomial. We apply Nagata’s Normalisation Lemma Proposition 8.10 and obtain elements
z2, . . . , zn ∈ K[X1, . . . , Xn] such thatK[X1, . . . , Xn]/K[f, z2, . . . , zn] is an integral ring extension.
Now, applyϕ to this extension and obtain the integral ring extensionR/ϕ(K[f, z2, . . . , zn]), i.e.
the integral ring extensionR/R′ with R′ := K[ϕ(z2), . . . , ϕ(zn)]. Now,R′ is generated byn − 1

elements, hence, it is an integral extension ofK[y1, . . . , yr] with r ≤ n− 1 algebraically independent
elementsy1, . . . , yr ∈ R′ ⊆ R. As integrality is transitive,R is integral overK[y1, . . . , yr], proving
the proposition.

Note that by Corollary 8.8 one obtains that the Krull dimension ofR is equal tor in view of the
following proposition.

Proposition 8.13. LetK be a field. The Krull dimension ofK[X1, . . . , Xn] is equal ton.

Proof. We apply induction onn to prove the Proposition. Ifn = 0, then the Krull dimension is0 being
the Krull dimension of a field. Let us assume that we have already proved that the Krull dimension of
K[X1, . . . , Xn−1] is n− 1.
Let nowm be the Krull dimension ofK[X1, . . . , Xn]. We first provem ≥ n. The reason simply is
that we can write down a chain of prime ideals of lengthn, namely:

(0) ( (X1) ( (X1, X2) ( (X1, X2, X3) ( · · · ( (X1, X2, . . . , Xn).

Now let
(0) ( P1 ( P2 ( P3 ( · · · ( Pm

be a chain of prime ideals ofK[X1, . . . , Xn] of maximal length. We pick any non-constantf ∈
P1 and apply Nagata’s Normalisation Lemma Proposition 8.10, which yields elementsz2, . . . , zn ∈
K[X1, . . . , Xn] such thatK[X1, . . . , Xn]/R withR := K[f, z2, . . . , zn] is an integral ring extension.
Settingpi := R ∩ Pi we obtain by Lemma 8.4 the chain of prime ideal ofR of lengthm:

(0) ( p1 ( p2 ( p3 ( · · · ( pm.
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Since the Krull dimension ofR equals that ofK[X1, . . . , Xn] by Corollary 8.8, this prime ideal chain
is of maximal length.
Let R := K[f, z2, . . . , zn]/p1. Note that this is an integral domain, which can be generated (as a
K-algebra) byn − 1 elements, namely, the classes ofz2, . . . , zn. Let π : R = K[f, z2, . . . , zn] →
K[f, z2, . . . , zn]/p1 = R be the natural projection. We apply it to the prime ideal chain of thepi and
get:

(0) = p1/p1 ( p2/p1 ( p3/p1 ( · · · ( pm/p1,

which is a prime ideal chain ofR of lengthm − 1. By Noether’s Normalisation Theorem Proposi-
tion 8.12 it follows that the Krull dimension ofR is at mostn−1, yielding the other inequalitym ≤ n

and finishing the proof.

Corollary 8.14. LetK be a field andf(X,Y ) ∈ K[X,Y ] be a non-constant polynomial. LetC =

V(f)(K) be the resulting plane curve.
Then the Krull dimension of the coordinate ringK[C] = K[X,Y ]/IC is equal to1.

Proof. This is now immediate by Lemma 4.14.

We include an easy lemma on Krull dimensions, which enables us to give another proof of Proposi-
tion 4.13.

Lemma 8.15. Letϕ : R ։ S be a surjective ring homomorphism.

(a) The Krull dimension ofS is less than or equal to the Krull dimension ofR.

(b) If R is an integral domain and the Krull dimensions ofR andS are equal, thenϕ is an isomor-
phism.

Proof. (a)ϕ−1 of a prime ideal is a prime ideal. Moreover, ifϕ−1(a) = ϕ−1(b), thenϕ(ϕ−1(a)) =

ϕ(ϕ−1(a))ϕ−1(b)), hence,a = b using here the surjectivity ofϕ. This shows that the inverse image
of any prime ideal chain is a prime ideal chain of the same length.
(b) SinceR is an integral domain, any prime ideal chain of maximal length starts with the prime
ideal (0). Let a be the kernel ofϕ. It is contained in anyϕ−1(p). Hence, ifϕ is non-zero, the pull-
back of any chain of prime ideals ofS can be prolonged by starting it with(0), showing that the Krull
dimension ofR is strictly larger than that ofS.

Second proof of Proposition 4.13.(This proof is shorter, but depends on Krull dimensions.) The Krull
dimensions ofK[X,Y ]/(f) andK[C] = K[X,Y ]/IC are both equal to1. As f is irreducible,(f) is
prime andK[X,Y ]/(f) is an integral domain. Consequently, the natural projectionK[X,Y ]/(f) ։

K[X,Y ]/IC is an isomorphism by Lemma 8.15 (b). Thus(f) = IC .

9 Dedekind rings

Lemma 9.1. LetR be an integral domain with field of fractionsK andT ⊆ R a multiplicatively
closed subset containing1.

(a) If R is integrally closed, thenT−1R is integrally closed.
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(b) LetR̃ be the integral closure ofR in K and letT̃−1R be the integral closure ofT−1R in K.

ThenT−1R̃ = T̃−1R.

Proof. Exercise.

Now we can prove the local characterisation of integrally closed integral domains.

Proposition 9.2. LetR be an integral domain. Then the following statements are equivalent:

(i) R is integrally closed.

(ii) Rp is integrally closed for all prime idealsp �R.

(iii) Rm is integrally closed for all maximal idealsm �R.

Proof. ‘(i) ⇒ (ii)’: Lemma 9.1.

‘(ii) ⇒ (iii)’: Trivial because every maximal ideal is prime.

‘(iii) ⇒ (i)’: Let us denote byR̃ the integral closure ofR. By Lemma 9.1, we know that the localisa-
tion R̃m of R̃ atm is the integral closure ofRm.

Let ι : R →֒ R̃ the natural embedding. Of course,R is integrally closed if and only ifι is an
isomorphism. By Proposition 6.17 this is the case if and only if the localisationιm : Rm →֒ R̃m is
an isomorphism for all maximal idealsm. That is, however, the case by assumption and the previous
discussion.

Lemma 9.3. LetR be a Noetherian local ring andm �R its maximal ideal.

(a) mn/mn+1 is anR/m-vector space for the natural operation.

(b) dimR/m(m/m2) is the minimal number of generators of the idealm.

(c) If dimR/m(m/m2) = 1, thenm is a principal ideal and there are no idealsa � R such that
mn+1 ( a ( mn for anyn ∈ N.

Proof. Exercise.

Definition 9.4. A Noetherian local ring with maximal idealm is called regularif dimR/m(m/m2)

equals the Krull dimension ofR.

Proposition 9.5. LetR be a regular local ring of Krull dimension1.

(a) There isx ∈ R such that all non-zero ideals are of the form(xn) for somen ∈ N.

(b) Every non-zeror ∈ R can be uniquely written asuxn with u ∈ R× andn ∈ N.

(c) R is a principal ideal domain (in particular, it is an integral domain).
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Proof. By Lemma 9.3 we know thatm is a principal ideal. Letx be a generator, i.e.(x) = m. We
also know that there are no idealsa �R such thatmn+1 ( a ( mn for anyn ∈ N.

Let 0 6= r ∈ R. We show thatr = uxn with uniqueu ∈ R× andn ∈ N. In order to do so, we
first considerM :=

⋂
n∈N

mn. We obviously havemM = M , whence by Nakayama’s Lemmma
(Proposition 6.11)M = 0.

As r 6= 0, there is a maximaln such thatr ∈ (xn). So, we can writer = vxn for somev ∈ R.
AsR is a local ring, we haveR = R× ∪ m = R× ∪ (x). Consequently,v ∈ R× because otherwise
r ∈ (xn+1), contradicting the maximality ofn.

Let 0 6= a � R be any non-zero ideal. Letuixni (with ui ∈ R×) be generators of the ideal. Put
n := mini ni. Thena = (xn) because all other generators are multiples ofujx

nj , wherej is such
thatnj = n.

None of the idealsmn for n ≥ 2 is a prime ideal (considerx · xn−1). As the Krull dimension is1, it
follows that(0) is a (hence, the) minimal prime ideal, showing thatR is an integral domain.

Our next aim is to prove that regular local rings of Krull dimension1 are precisely the local principal
ideal domains and also the local integrally closed integral domains.

The following lemma is proved very similarly to Nakayama’s Lemma.

Lemma 9.6. LetR be a ring,a �R an ideal andM a finitely generatedR-module. Letϕ : M →M

be anR-homomorphism such that the imageϕ(M) is contained inaM .

Then there aren ∈ N anda0, a1, . . . , an−1 ∈ a such that

ϕn + an−1ϕ
n−1 + an−2ϕ

n−2 + . . . a1ϕ+ a0id

is the zero-endomorphism onM .

Proof. Let x1, . . . , xn be generators ofM asR-module. By assumption there areai,j ∈ a for 1 ≤
i, j ≤ n such that

ϕ(xi) =
n∑

j=1

ai,jxj .

Consider the matrix

D(T ) := T · idn×n − (ai,j)1≤i,j≤n ∈ Matn(R[T ]).

Note thatD(T ) is made precisely in such a way thatD(ϕ)(xi) = 0 for all 1 ≤ i ≤ n. This means
thatD(ϕ) is the zero-endomorphism onM (as it is zero on all generators). We multiply with the
adjoint matrixD(T )∗ and obtainD(T )∗D(T ) = det(D(T ))idn×n. Consequently,det(D(ϕ)) is
the zero-endomorphism onM . We are done because the determinantdet(D(ϕ)) is of the desired
form.

Lemma 9.7. LetR be a local Noetherian integral domain of Krull dimension1 with maximal idealm.
Let (0) ( I �R be an ideal. Then there isn ∈ N such thatmn ⊆ I.

Proof. Exercise.
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Proposition 9.8. LetR be a local Noetherian ring of Krull dimension1. Then the following statements
are equivalent:

(i) R is an integrally closed integral domain.

(ii) R is regular.

(iii) R is a principal ideal domain.

Proof. ‘(ii) ⇒ (iii)’: This was proved in Proposition 9.5.

‘(iii) ⇒ (i)’: Principal ideal domains are factorial (Proposition 1.18) and factorial rings are integrally
closed (Proposition 3.32).

‘(i) ⇒ (ii)’: It suffices to show thatm is a principal ideal because this means thatdimR/m(m/m2) = 1,
which is the Krull dimension ofR, so thatR is regular by definition.

We now construct an elementx such thatm = (x). To that aim, we start with any0 6= a ∈ m. By
Lemma 9.7 there isn ∈ N such thatmn ⊆ (a) andmn−1 6⊆ (a). Take anyb ∈ mn−1 \ (a). Put
x = a

b ∈ K, whereK is the field of fractions ofR.

We show thatm = (x), as follows:

• m
x ∈ R for all m ∈ m becausemx = mb

a andmb ∈ mmn−1 = mn ⊆ (a).

• x−1 6∈ R because otherwiser = x−1 = b
a ∈ R would imply b = ra ∈ (a).

• x−1m 6⊆ m because of the following: Assume the contrary, i.e.x−1m ⊆ m. Then we have the

R-homomorphismϕ : m
m7→mx−1

−−−−−−→ m. As m is finitely generated (becauseR is Noetherian),
there area0, a1, . . . , an−1 ∈ R such that

ϕn + an−1ϕ
n−1 + an−2ϕ

n−2 + . . . a1ϕ+ a0id

is the zero-endomorphism onm by Lemma 9.6 (witha = R). This means that

0 =
(
x−n + an−1x

−(n−1) + an−2x
−(n−2) + . . . a1x

−1 + a0

)
m.

AsR is an integral domain, we obtain

0 = x−n + an−1x
−(n−1) + an−2x

−(n−2) + . . . a1x
−1 + a0,

showing thatx−1 is integral overR. As R is integrally closed, we obtain furtherx−1 ∈ R,
which we excluded before.

So,x−1m is an ideal ofR which is not contained inm. Thus,x−1m = R, whencem = Rx = (x), as
was to be shown.

Definition 9.9. A Noetherian integrally closed integral domain of Krull dimension1 is called a
Dedekind ring.
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Example 9.10.LetK/Q be a number field andZK its ring of integers. We have proved thatZK is an
integrally closed integral domain and that its Krull dimension is1. So,ZK is a Dedekind ring because
it is also Noetherian (this is not so difficult, but needs some terminology thatwe have not introduced;
we will show this in the beginning of the lecture on Algebraic Number Theory).

In a lecture on Algebraic Number Theory (e.g. next term) one sees thatDedekind rings have the prop-
erty that every non-zero ideal is a product of prime ideals in a unique way. This replaces the unique
factorisation in prime elements, which holds in a factorial ring, but, fails to hold more generally, as
we have seen.

Below we shall provide further examples of Dedekind rings coming from geometry.

We can now conclude from our previous work the following local characterisation of Dedekind rings.

Proposition 9.11. LetR be a Noetherian integral domain of Krull dimension1. Then the following
assertions are equivalent:

(i) R is a Dedekind ring.

(ii) R is integrally closed.

(iii) Rm is integrally closed for all maximal idealsm �R.

(iv) Rm is regular for all maximal idealsm �R.

(v) Rm is a principal ideal domain for all maximal idealsm �R.

Proof. All statements have been proved earlier! But, note that the Krull dimension ofRm is 1 for all
maximal idealsm. That is due to the fact that any non-zero prime ideal in an integral domain of Krull
dimension1 is maximal and thatmRm is also maximal and non-zero.

Let us now see what this means for plane curves. Letf(X,Y ) ∈ K[X,Y ] anda, b ∈ K such that
f(a, b) = 0. Recall the Taylor expansion:

TC,(a,b)(X,Y ) =

∂f

∂X
|(a,b)(X − a) +

∂f

∂Y
|(a,b)(Y − b) + terms of higher degree in(X − a) and(Y − b).

Definition 9.12. Let K be a field,f ∈ K[X,Y ] a non-constant irreducible polynomial andC =

V(f)(K) the associated plane curve.

Let (a, b) ∈ C be a point. Thetangent equation toC at (a, b) is defined as

TC,(a,b)(X,Y ) =
∂f

∂X
|(a,b)(X − a) +

∂f

∂Y
|(a,b)(Y − b) ∈ K[X,Y ].

If TC,(a,b)(X,Y ) is the zero polynomial, then we call(a, b) a singular point ofC.

If (a, b) is non-singular (also called:smooth), thenVTC,(a,b)
(K) is a line (instead ofA2(K)), called

thetangent line toC at (a, b).
A curve all of whose points are non-singular is callednon-singular (or smooth).
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Example 9.13. (a) Letf(X,Y ) = Y 2 −X3 ∈ K[X,Y ] withK a field (say, of characteristic0).

We have∂f∂X = −3X2 and ∂f
∂X = 2Y . Hence,(0, 0) is a singularity and it is the only one. (Draw

a sketch.)

This kind of singularity is called acusp(Spitze/pointe) for obvious reasons. The tangents to the
two branches coincide at the cusp.

(b) Letf(X,Y ) = Y 2 −X3 −X2 ∈ K[X,Y ] withK a field (say, of characteristic0).

We have∂f∂X = −3X2 − 2X and ∂f
∂X = 2Y . Hence,(0, 0) is a singularity and it is the only one.

(Draw a sketch.)

This kind of singularity is called anordinary double point. The tangents to the two branches are
distinct at the ordinary double point.

The following lemma relates a geometric property (a point on a curve is nonsingular) and an algebraic
property (the localisation of the coordinate ring is regular).

Lemma 9.14. LetK be an algebraically closed field,f ∈ K[X,Y ] a non-constant irreducible poly-
nomial,C = V(f)(K) the associated plane curve andK[C] = K[X,Y ]/(f(X,Y )) the coordinate
ring. Let (a, b) ∈ C be a point andm = (X − a+ (f), Y − b + (f)) �K[C] be the corresponding
maximal ideal (see Lemma 4.11).
Then the following two statements are equivalent:

(i) The point(a, b) is non-singular.

(ii) K[C]m is a regular local ring of Krull dimension1.

Proof. After a variable transformation (as in the previous lemma) we may assume(a, b) = (0, 0).
Then

f(X,Y ) = αX + βY + higher terms.

Note thatm2 is generated byX2 + (f), Y 2 + (f), XY + (f), so that theK = K[C]/m-vector
spacem/m2 is generated byX + (f) andY + (f). Hence, the minimal number of generators is at
most2, but could be1. Note that we are using the isomorphismsK[C]m/(mK[C]m) ∼= K[C]/m and
(mK[C]/(mK[C])2 ∼= m/m2 from Lemma 6.15 (b).
Note also thatK[C] has Krull dimension1 and is an integral domain becausef is irreducible (see
Corollary 8.14). Asm is not the zero ideal, also the localisationK[C]m has Krull dimension1.
‘(i) ⇒ (ii)’: We assume that(0, 0) is not a singular point. Thenα 6= 0 or β 6= 0. After possibly
exchangingX andY we may, without loss of generality, assumeα 6= 0. It follows:

X + (f) =
1

α

(
− βY − higher terms+ (f)

)
≡ β

α
Y + (f) (mod m2).

So,Y + (f) generatesm/m2 asK-vector space, whence the dimension of this space is1, which is
equal to the Krull dimension. This shows thatK[C]m is regular.
‘(ii) ⇒ (i)’: We now assume that(0, 0) is a singular point. Thenα = β = 0. So,X + (f) and
Y + (f) areK-linearly independent inm/m2, whence theK-dimension ofm/m2 is bigger than the
Krull dimension, showing thatK[C]m is not regular.
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In order to globalise this statement, we need to determine all maximal ideals of the coordinate ring.
We do this in generality by first proving the field theoretic version of Hilbert’sNullstellensatz.

Proposition 9.15 (Field theoretic weak Nullstellensatz). Let K be a field,L/K a field extension
anda1, . . . , an ∈ L elements such thatL = K[a1, . . . , an] (that is, theK-algebra homomorphism

K[X1, . . . , Xn]
Xi 7→ai−−−−→ L is surjective).

ThenL/K is finite and algebraic.

Proof. Let L = K[a1, . . . , an]. It is an affineK-algebra which is a field (and hence an integral
domain). So, we may apply Noether normalisation Proposition 8.12. We obtain elementsy1, . . . , yr ∈
L such thatL/K[y1, . . . , yr] is an integral extension andK[y1, . . . , yr] is isomorphic to a polynomial
ring in r variables. This means, in particular, that there are no relations between theyi.
Assumer ≥ 1. Theny−1

1 ∈ L and hence integral overK[y1, . . . , yr], so that it satisfies a monic
equation of the form

y−n1 + fn−1(y1, . . . , yr)y
−n+1
1 + · · · + f0(y1, . . . , yr) = 0,

wherefi(y1, . . . , yr) ∈ K[y1, . . . , yr]. Multiplying through withyn we get

1 + fn−1(y1, . . . , yr)y1 + · · · + f0(y1, . . . , yr)y
n
1 = 0,

i.e. a non-trivial relation between theyi. Conclusion:r = 0.
Hence,L/K is integral and hence algebraic. It is a finite field extension because it is generated by
finitely many algebraic elements.

We can now determine the maximal ideals of the coordinate ring of any affine algebraic set over an
algebraically closed field.

Corollary 9.16. LetK be an algebraically closed field anda �K[X1, . . . , Xn] a proper ideal.

(a) The maximal idealsm � K[X1, . . . , Xn] which containa are (X1 − a1, . . . , Xn − an) for
(a1, . . . , an) ∈ Va(K).

(b) The maximal ideals ofK[X1, . . . , Xn]/a are (X1 − a1 + a, . . . , Xn− an + a) for (a1, . . . , an) ∈
Va(K).

Proof. (a) We first determine what maximal ideals look like in general. Any ideal of theform (X1 −
a1, . . . , Xn − an) is clearly maximal (factoring it out givesK). Conversely, ifm � K[X1, . . . , Xn]

is maximal then the quotientK[X1, . . . , Xn]/m is a finite algebraic field extension ofK by Proposi-
tion 9.15, hence, equal toK becauseK is algebraically closed. Consequently, denotingai := π(Xi)

for i = 1, . . . , n with π : K[X1, . . . , Xn]
natural projection−−−−−−−−−−→ K[X1, . . . , Xn]/m ∼= K, we find (special

case of Lemma 4.11) thatm = (X1 − a1, . . . , Xn − an).
Now we prove the assertion. Letm = (X1 − a1, . . . , Xn − an), so that{(a1, . . . , an)} = Vm(K).
We have:

a ⊆ m ⇔ {(a1, . . . , an)} = Vm(K) ⊆ Va(K) ⇔ (a1, . . . , an) ∈ Va(K).
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The direction⇒ is trivial. To see the other one, note thatf(a1, . . . , an) = 0 for f ∈ a impliesf ∈ m,

asm is the kernel ofK[X1, . . . , Xn]
Xi 7→ai−−−−→ K.

(b) The maximal ideals ofK[X,Y ]/a are precisely the maximal ideals ofK[X,Y ] containinga.
Thus, (a) implies the assertion.

We now obtain our main theorem about coordinate rings of plane curves. It again relates a geometric
statement (smoothness of a curve) and an algebraic statement (coordinatering is Dedekind).

Theorem 9.17.LetK be an algebraically closed field,f ∈ K[X,Y ] a non-constant irreducible poly-
nomial,C = V(f)(K) the associated plane curve andK[C] = K[X,Y ]/(f(X,Y )) the coordinate
ring.

Then the following two statements are equivalent:

(i) The curveC is smooth.

(ii) K[C] is a Dedekind ring.

Proof. By Lemma 9.14 the maximal idealsm of K[C] are precisely the(X − a+ (f), Y − b+ (f))

for (a, b) ∈ C(K).
By Proposition 9.11 we haveK[C] is a Dedekind ring if and only ifK[C]m is a regular ring for
all maximal idealsm � K[C]; that is the case if and only if all points(a, b) of C are smooth (by
Lemma 9.14).

10 Hilbert’s Nullstellensatz

Proposition 10.1(Hilbert’s Nullstellensatz – weak form). LetK be a field anda �K[X1, . . . , Xn] a
proper ideal. ThenVa(K) 6= ∅, whereK is an algebraic closure ofK.

Proof. Let m �K[X1, . . . , Xn] be a maximal ideal containinga. ThenL := K[X1, . . . , Xn]/m is a
field extension (we factored out a maximal ideal) ofK, which is, of course, the image of a surjective
K-algebra homomorphismπ : K[X1, . . . , Xn] → L (the natural projection!). By Proposition 9.15
it follows thatL/K is a finite algebraic extension, hence,L = K becauseK is algebraically closed.
Writing ai := π(Xi), it follows thatai ∈ K for i = 1, . . . , n. Hence,(X1 − a1, . . . , Xn − an) ⊆
ker(π) = m. Due to the maximality of the ideal(X1 − a1, . . . , Xn − an), it follows thata ⊆ m =

(X1 − a1, . . . , Xn − an). Consequently,Va(K) ⊇ Vm(K) = {(a1, . . . , an)}.

Remark 10.2. In fact the assertion of Proposition 10.1 is equivalent to that of Proposition 9.15, in
the sense that the latter can also be deduced from the former, as follows:

Consider aK-algebra surjectionφ : K[X1, . . . , Xn]
Xi 7→ai−−−−→ L. Its kernelm := ker(φ) is a maximal

ideal, sinceL is a field. By Proposition 10.1, we haveVm(K) 6= ∅. Let (b1, . . . , bn) be an element

of Vm(K), which gives rise to theK-algebra homomorphismψ : K[X1, . . . , Xn]
Xi 7→bi−−−−→ K. Note

that m is contained in the kernel ofψ (we havef(b1, . . . , bn) = 0 for all f ∈ m), whence they are
equal. Consequently,K ⊆ L ⊆ K, and we conclude thatL/K is algebraic. It is finite because it is
generated by finitely many algebraic elements.
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Definition 10.3. LetR be a ring anda �R and ideal. Theradical (ideal) ofa is defined as

√
a := {r ∈ R | ∃n ∈ N : rn ∈ a}.

An ideala is called aradical idealif a =
√

a.

TheJacobson radical ofa is defined as

J(a) =
⋂

a⊆m�R maximal

m,

i.e. the intersection of all maximal ideals ofR containinga (recall the definition of the Jacobson
radical of a ring: intersection of all maximal ideals; it is equal toJ(0)).

Lemma 10.4. LetK be a field anda �K[X1, . . . , Xn] an ideal.

ThenVa(L) = V√
a(L) for all field extensionsL/K.

Proof. The inclusion⊇ is trivial because ofa ⊆ √
a. Let now (a1, . . . , an) ∈ Va(L), that is,

f(a1, . . . , an) = 0 for all f ∈ a. Let now g ∈ √
a. Then there ism ∈ N such thatgm ∈ a,

so thatg(a1, . . . , an)
m = 0. Since we are in an integral domain, this impliesg(a1, . . . , an) = 0,

showing the inclusion⊆.

Proposition 10.5(General Hilbert’s Nullstellensatz). LetK be a field,R an affineK-algebra,a �R

an ideal. Then
√

a = J(a).

Proof. ‘⊆’: Let m � R be any maximal ideal containinga. Let f ∈ √
a. Then there ism ∈ N such

thatfm ∈ a ⊆ m. The prime ideal property ofm now gives thatf ∈ m. This implies
√

a ⊆ m.

‘⊇’: Let f ∈ R \ √a. We want to showf 6∈ J(a).

Fromf 6∈ √
a it follows thatfn 6∈ a for all n ∈ N. So, the setS = {fn | n ∈ N} ⊆ R/a =: R is

multiplicatively closed and does not contain0 (the zero ofR = R/a, of course). We writef for the
classf + a ∈ R. It is a unit inS−1R because we are allowingf in the denominator.

Let q be a maximal ideal ofS−1R. As f is a unit,f 6∈ q. As R is an affineK-algebra, so is the
fieldS−1R/q =: L (we modded out by a maximal ideal). Proposition 9.15 yields thatL/K is a finite
field extension.

Note that the ringR/(R∩ q) containsK and lies inL. Due to the finiteness ofL/K, this ring is itself
a field, so thatR ∩ q is a maximal ideal ofR.

Recall thatf 6∈ q, sof does not lie in the maximal idealR ∩ q.

Setq := π−1(q) with the natural projectionπ : R ։ R = R/a. It is a maximal ideal containinga,
butf 6∈ q. Consequently,f 6∈ J(a).

Theorem 10.6(Hilbert’s Nullstellensatz). Let K be an algebraically closed field and consider an
ideala �K[X1, . . . , Xn].

ThenIVa(K) =
√

a.

In particular, takingVa(K), the radical ideals ofK[X1, . . . , Xn] are in bijection with the affine
algebraic sets inAn(K).
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Proof. ‘⊇’: By Lemmata 4.15 and 10.4 we have
√

a ⊆ IV√
a(K) = IVa(K).

‘⊆’: Let m be a maximal ideal ofK[X1, . . . , Xn] containinga. By Corollary 9.16 we knowm =

(X1 − a1, . . . , Xn − an) for some(a1, . . . , an) ∈ Va(K). Let f ∈ IVa(K). Thenf(a1, . . . , an) = 0

so thatf ∈ m, asm is the kernel ofK[X1, . . . , Xn]
Xi 7→ai−−−−→ K. This showsIVa(K) ⊆ m, and, hence,

IVa(K) ⊆ J(a). By Proposition 10.5 we thus getIVa(K) ⊆
√

a, as was to be shown.
The final statement follows like this:

X = Va(K) 7→ IVa(K) =
√

a 7→ V√
a(K) = Va(K) = X

and
a =

√
a 7→ Va(K) 7→ IVa(K) =

√
a.

This shows the correspondence.

Finally let us prove that the vanishing idealIC of the curve defined by a non-constant irreducible
f ∈ K[X,Y ] (over an algebraically closed fieldK) is (f) and hence the coordinate ringK[C] is
isomorphic toK[X,Y ]/(f).

Third proof of Proposition 4.13 forK algebraically closed.Recall thatK[X,Y ] is a unique factori-
sation domain. Hence any irreducible element is a prime element. Thus,f is a prime element, and
consequently(f) is a prime ideal, implying

√
(f) = (f). Thus Hilbert’s Nullstellensatz 10.6 yields

IC =
√

(f) = (f).
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Exercises

1. LetR be an integral domain. Show the following statements:

(a) Letr ∈ R. Then:r ∈ R× ⇔ (r) = R.

(b) Let r, s ∈ R. Then:r | s⇔ (r) ⊇ (s).

(c) Let r, s ∈ R. Thenr ands are associate if and only if(r) = (s).

(d) Let r ∈ R \ (R× ∪ {0}). Thenr is a prime element if and only if(r) is a prime ideal ofR.

(e) Letr ∈ R be a prime element. Thenr is irreducible.

2. Let i =
√
−1 ∈ C. Convince yourself that the ring of Gaussian integersZ[i] := {a + bi ∈

C | a, b ∈ Z} with + and· is a subring ofC (you don’t have to hand in a proof for this).

Show that it is a Euclidean ring with respect to thenorm:

N(a+ ib) := (a+ ib)(a− ib) = (a+ ib)(a+ ib) = a2 + b2.

3. Consider the subsetR := {a+ b
√
−5 | a, b ∈ Z} ⊂ C.

(a) Check thatR is a subring ofC. Conclude thatR is an integral domain.

(b) We have the remarkable equality:

6 = 2 · 3 = (1 +
√
−5) · (1 −

√
−5).

Prove that all four elements2, 3, 1 +
√
−5, 1−

√
−5 are irreducible elements ofR and that no

two of them are associate.

(c) Conclude thatR is not a unique factorisation domain.

4. LetR be a ring andI �R be an ideal. Show the following statements:

(a) The relationx ∼ y :⇔ x−y ∈ I defines an equivalence relation onR. Denote the equivalence
classesx = x+ I byR/I.

(b) The set of equivalence classesR/I forms a ring with respect to:

• + : R/I ×R/I → R/I, (x+ I, y + I) 7→ x+ y + I,

77
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• 0 = 0 = 0 + I = I as neutral element w.r.t. addition+,

• · : R/I ×R/I → R/I, (r + I, s+ I) 7→ rs+ I,

• 1 = 1 = 1 + I as neutral element w.r.t. multiplication·.
The ringR/I is calledquotient ring (or: factor ring) ofR by I.

Note that the main point is that+ and· indeed define maps, i.e. are well-defined. The other
properties then follow immediately from those ofR and need not be written out in detail.

5. LetF4 := F2[X]/(X2 +X + 1).

(a) Show thatX2 +X + 1 ∈ F2[X] is irreducible. HenceF4 is a field.

(b) Make a list of all elements ofF4.

(c) Write down the addition and the multiplication table ofF4.

6. Show the so-calledhomomorphism/isomorphism theorem for rings. More precisely, show the fol-
lowing statement:

LetR,S be rings andϕ : R→ S be a ring homomorphism. Then the map

R/ ker(ϕ) → im(ϕ), r + ker(ϕ) 7→ ϕ(r)

is well-defined and an isomorphism of rings.

7. LetR be a ring and letM be an abelian groupM (with group operation+ and neutral element0).
Denote byEnd(M) the endomorphism ring ofM as an abelian group. Suppose there is a map

. : R×M →M, (r,m) 7→ r.m.

Show thatM is a leftR-module if and only if the map

R→ End(M), r 7→ (x 7→ r.x)

is a ring homomorphism.

8. Prove the so-calledhomomorphism and isomorphism theorems. More precisely, prove that the
following statements are true:

LetR,S be rings.

(a) Letϕ : R→ S be a ring homomorphism. Then the map

R/ ker(ϕ) → im(ϕ), r + ker(ϕ) 7→ ϕ(r)

is well-defined and an isomorphism of rings.

(b) LetM,N beR-modules andϕ : M → N be anR-homomorphism. Then the map

M/ ker(ϕ) → im(ϕ), m+ ker(ϕ) 7→ ϕ(r)

is well-defined and anR-isomorphism.
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(c) Let M be anR-module and letN1 ⊆ N2 beR-submodules ofM . Then there is anR-
isomorphism

(M/N1)/(N2/N1) ∼= M/N2.

(d) Let M be anR-module and letN1 andN2 beR-submodules ofM . Then there is anR-
isomorphism

(N1 +N2)/N1
∼= N2/(N1 ∩N2).

9. (a) LetR be an integral domain. Show thatR[X]× = R×. In words, show that the unit group of
the polynomial ring overR is equal to the unit group ofR.

(b) LetR ⊆ S be rings anda ∈ S. Show that theevaluation map

eva : R[X] → S, f 7→ f(a)

is a homomorphism of rings.

(c) LetR := Z[
√

2] andS := Z[
√

5]. Prove thatR andS are isomorphic as abelian groups, but
not as rings.

10. Show that the following polynomials are irreducible in the indicated polynomialring:

(1) 5X3 + 63X2 + 168 ∈ Q[X],

(2) X6 +X3 + 1 ∈ Q[X],

(3) X4 +X3 +X2 +X + 1 ∈ F2[X],

(4) X4 − 3X3 + 3X2 −X + 1 ∈ Q[X],

(5) X9 +XY 7 + Y ∈ Q[X,Y ],

(6) X2 − Y 3 ∈ C[X,Y ].

Hint: The two criteria (reduction and Eisenstein) in the appendix on the background on fields help
you, but, they alone do not suffice.

11. (a) LetK ⊆ L ⊆ M be finite field extensions. Provemultiplicativity of degrees, i.e. prove the
formula

[M : K] = [M : L][L : K]

(in other words:dimKM = (dimK L)(dimLM).). Also show that this formula even holds if
the field extensions are allowed to be infinite with the usual rulesn∞ = ∞ for anyn > 0 and
∞∞ = ∞.

(b) Letα := 1+
√

13
2 ∈ Q(

√
13). Compute the minimal polynomial ofα overQ.

Note that your answer is (should be!) a monic polynomial inZ[X], althoughα seems to have
a denominator. This kind of phenomenon will be discussed in the lecture.

(c) Let f(X) = X3 + 3X − 3 ∈ Q[X]. This is an irreducible polynomial (How can one prove
this?), soK := Q[X]/(f) is a field extension ofQ of degree3. Letα := X + (f) ∈ K. Then
the setB := {1, α, α2} is aQ-basis ofK.

(1) Representα−1 and(1 +α)−1 in terms of the basisB, i.e. asQ-linear combination of1, α
andα2.
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(2) Compute the minimal polynomial ofβ := α2 − α+ 2 overQ.

12. LetQ be the algebraic closure ofQ in C. Prove thatQ is countable.

13. Letd 6= 0, 1 be a squarefree integer (meaning that no prime factor dividesd twice). Show that the
ring of integers ofQ(

√
d) is equal to:

{
Z[
√
d], if d ≡ 2, 3 mod 4,

Z[1+
√
d

2 ], if d ≡ 1 mod 4.

14. LetK be a field andf ∈ K[X] an irreducible polynomial of degreed. LetL := K[X]/(f(X)).
Show the following statements:

(a) L is a finite field extension ofK of degreed.

(b) Leta be the class ofX in L. Thenf(a) = 0.

15. LetL/K be a field extension (possibly of infinite degree). Show that the following statements are
equivalent:

(i) L/K is algebraic.

(ii) L can be generated overK by (possibly infinitely many) elements ofL that are algebraic
overK.

16. LetK be a field andn ∈ N. Show the following statements:

(a) LetX ⊆ Y ⊆ An(K) be subsets. ThenIX ⊇ IY.

(b) I∅ = K[X].

(c) If K has infinitely many elements, thenIAn(K) = (0).

(d) LetS ⊆ K[X] be a subset. ThenIVS(K) ⊇ S.

(e) LetX ⊆ An(K) be a subset. ThenVIX (K) ⊇ X .

(f) Let S ⊆ K[X] be a subset. ThenVIVS(K)
(K) = VS(K).

(g) LetX ⊆ An(K) be a subset. ThenIV(IX )(K) = IX .

17. Let(X ,OX ) be a topological space andY ⊆ X be a subset. DefineOY := {U ∩ Y | U ∈ OX }.

Show thatOY is a topology onY. It is called therelative topologyor thesubset topology.

18. LetK be a field. Show that the closed subsets ofA1(K) are∅, A1(K) and finite sets of points.

19. LetK be a field,n ∈ N andX ⊆ An(K) a subset.

With f ∈ K[X1, . . . , Xn] associate (as in the lecture) the map

ϕ : X → A1(K), x 7→ f(x).

Show thatϕ is a continuous map, when we considerX with the relative topology fromAn(K). Of
course,An(K) andA1(K) are equipped with the Zariski topology.

By definition a map between topological spaces is continuous if the preimage ofany open set is an
open set.

Hint: Use Exercise 18.
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20. If you don’t know it, look up the definition of a Hausdorff topologicalspace.

LetK be an infinite field. Show thatA1(K) with the Zariski topology is not a Hausdorff topolog-
ical space.

Hint: Use Exercise 18.

21. If you don’t know it, look up the definition of the product topology on the cartesian product of two
topological spaces.

Let K be an infinite field. Prove that the Zariski topology onA2(K) is not the product topology
onA1(K) × A1(K).

Hint: Use Exercise 18.

22. In this exercise all primitive Pythagorean triples are determined by computating in the factorial
ring Z[i] (recall: it is Euclidean!).

A triple (a, b, c) of positive integers is called aPythagorean Tripleif a2 + b2 = c2. It is called
primitive if the greatest common divisor ofa, b, c equals1 and ifa is odd (and thusb even).

(a) Show how to associate with any Pythagorean Triple a primitive one.

(b) Let(a, b, c) be a primitive Pythagorean Triple. Show thata+ ib anda− ib are coprime inZ[i].

(c) Conclude from (b) thata+ib anda−ib are squares inZ[i] if (a, b, c) is a primitive Pythagorean
Triple.

(d) Conclude from (c) that there areu, v ∈ N such that

a = u2 − v2 and b = 2uv.

(e) Finally, check quickly that – conversely – equations as in (d) alwaysgive a Pythagorean Triple.

23. Letf(X,Y ) = Y 2 −X3 +X ∈ R[X,Y ] and putC := Vf (R).

(a) Make a sketch of the curveC.

(b) Prove that the vanishing idealIC is equal to the principal ideal generated byf .

(c) Is the coordinate ring isomorphic to the polynomial ring in one variable over R? Prove your
answer.

(d) Is the curveC reducible or irreducible for the Zariski topology? Prove your answer.

24. LetR be a ring andMi for i ∈ I (some set)R-modules. Show that the direct product
∏
i∈IMi

together with the projectionsπi satisfies the following universal property:

For allR-modulesN together withR-homomorphismsφi : N → Mi for i ∈ I there
is one and only oneR-homomorphismφ : N → P such thatπi ◦ φ = φi for all i ∈ I

(draw diagram).

25. Uniqueness of products.Let R be a ring andMi for i ∈ I (some set)R-modules. LetP :=∏
i∈IMi together withπi : P →Mi as defined in the lecture. LetP ′ together withπ′i : P ′ →Mi

be anotherR-module that satisfies the same universal property asP .

Show that there is a uniqueR-isomorphismP → P ′.
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26. LetR be a ring,N andMi for i ∈ I (some set) beR-modules. Show that there is anR-
isomorphism:

Ψ : HomR(
⊕

i∈I
Mi, N) →

∏

i∈I
HomR(Mi, N).

27. LetR be a ring.

(a) LetM1, . . . ,Mn beR-modules and putM :=
∏n
i=1Mi. Show that there areR-homomor-

phismsei : M →M for i = 1, . . . , n such that

(1) ei ◦ ei = ei for all i = 1, . . . , n (a homomorphism with this property is called anidempo-
tent).

(2) ei ◦ ej = 0 for all 1 ≤ i, j ≤ n andi 6= j (one says that the idempotentsei, i = 1, . . . , n

areorthogonal).

(3) idM = e1 + · · · + en (one says that theei, i = 1, . . . , n are acomplete set of orthogonal
idempotents ofM ).

(b) LetM be anR-module ande1, . . . , en ∈ HomR(M,M) a complete set of orthogonal idem-
potents ofM , i.e. they satisfy (1), (2) and (3). LetMi := ei(M).

Show that there is anR-isomorphismM → ∏n
i=1Mi.

28. LetR be a ring. State the isomorphism theorems forR-modules in terms of exact sequences.

29. LetR be a ring and0 → A
α−→ B

β−→ C → 0 a short exact sequence. Show that the following
statements are equivalent:

(i) There is anR-homomorphisms : C → B such thatβ ◦ s = idC (s is called asplit).

(ii) There is anR-homomorphismt : B → A such thatt ◦ α = idA (t is also called asplit).

(iii) There is anR-isomorphismA⊕ C → B.

30. LetR be a ring and0 → A→ B → C → 0 a short exact sequence.

(a) Suppose thatA andC have finitely many elements. Prove that#B = #A · #C.

(b) Assume now thatR = K is a field and thatA andC are finite dimensional asK-vector spaces.
Prove thatdimK(B) = dimK(A) + dimK(C).

31. LetR be a ring andN,Mi for i = 1, 2, 3 beR-modules. Show that the functorHomR(·, N) is
contravariant (reverses directions of arrows) and left-exact. Thatis, show the following statement:

If

M1
ψ2−→M2

ψ3−→M3 → 0

is an exact sequence, then

0 → HomR(M3, N)
ψ̃3−→ HomR(M2, N)

ψ̃2−→ HomR(M1, N)

is also exact, wherẽψi sendsα ∈ HomR(Mi, N) to α ◦ ψi ∈ HomR(Mi−1, N) for i = 2, 3.
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32. LetR be a ring andS ⊆ R a multiplicatively closed subset with1 ∈ S. Letµ : R→ S−1R, given
by r 7→ r

1 .

Show the following statements.

(a) The map

{b � S−1R ideal} −→ {a �R ideal}, b 7→ µ−1(b) �R

is an injection, which preserves inclusions and intersections. Moreover,if b�S−1R is a prime
ideal, then so isµ−1(b) �R.

(b) Leta �R be an ideal. Then the following statements are equivalent:

(i) a = µ−1(b) for someb � S−1R (i.e.a is in the image of the map in (a)).

(ii) a = µ−1(aS−1R) (hereaS−1R is short for the ideal ofS−1R generated byµ(a), i.e. by
all elements of the forma1 for a ∈ a).

(iii) Every s ∈ S is a non-zero divisor moduloa, meaning that ifr ∈ R andrs ∈ a, then
r ∈ a.

(c) The map in (a) defines a bijection between the prime ideals ofS−1R and the prime idealsp of
R such thatS ∩ p = ∅.

Hint: Use (b) (iii).

33. LetR be a ring andm be a maximal ideal. Recall thatmRm is the unique maximal ideal of the
localisationRm of R atm. LetM be anR-module and denote byMm its localisation atm.

Show that the natural mapµ : M →Mm, x 7→ x
1 induces an isomorphism

M/mM ∼= Mm/mRmMm.

(Note that this implies in particular that the natural mapµ : R → Rm, r 7→ r
1 induces a ring iso-

morphismR/m ∼= Rm/mRm. If one knows the tensor product, one can first prove this conclusion
directly and then easily derive the general statement.)

34. LetR be a ring and letS ⊆ R be a multiplicatively closed subset containing1. Consider an integral
ring extensionR ⊆ T . Show thatS−1R ⊆ S−1T is an integral ring extension.

35. LetK be a field. LetR = K[X1, X2, . . . ] be the polynomial ring in countably many variables.

IsR a Noetherian ring? Prove your answer.

36. (a) LetR be a ring andM be anR-module. Let furtherMi for i = 1, . . . , n be submodules ofM
such thatM is generated by theMi for i = 1, . . . , n. Show that the following two statements
are equivalent:

(i) M is Noetherian (resp. Artinian).

(ii) Mi is Noetherian (resp. Artinian) for alli = 1, . . . , n.

Hint: You may use Lemma 7.4.

(b) LetR be a Noetherian (resp. Artinian) ring. Conclude from (a) that every finitely generated
R-module is Noetherian (resp. Artinian).
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37. LetR be a Noetherian ring andS ⊆ R be a multiplicatively closed subset with1 ∈ S. Show that
S−1R is also a Noetherian ring.

Hint: Use Exercise 32.

38. LetR be a Noetherian local ring andm �R its maximal ideal. Show the following assertions:

(a) mn/mn+1 is anR/m-vector space for the natural operation.

(b) dimR/m(m/m2) is the minimal number of generators of the idealm.

Hint: Use the corollary of Nakayama’s Lemma (Corollary 6.12).

(c) If dimR/m(m/m2) = 1, thenm is a principal ideal and there are no idealsa � R such that
mn+1 ( a ( mn for anyn ∈ N.

Exam like exercises:

39. Letϕ : R→ S be a ring homomorphism (R andS are rings). Formulate and prove the homomor-
phism theorem.

40. LetR be a ring.

(a) When isR called a factorial ring?

(b) When isR called a principal ideal domain?

(c) When isR called a Euclidean ring?

(d) Prove that every Euclidean ring is a principal ideal domain.

(e) Prove that every factorial ring is integrally closed in its field of fractions.

(f) Is Z[X] a Euclidean ring? Prove your answer.

41. LetK be a field. LetS = K[X1, X2, X3, . . . ], the polynomial ring in countably many variables.

(a) When is a ringR called an integral domain?

(b) IsS an integral domain?

(c) IsS a Euclidean ring?

(d) IsS a principal ideal domain?

(e) When is a ringR called Noetherian?

(f) Is S a Noetherian ring?

42. LetR be a ring andp �R an ideal.

(a) When isp called a prime ideal?

(b) Show that the following two statements are equivalent:

(i) p is a prime ideal.

(ii) R/p is an integral domain.
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(c) Let ϕ : S → R be a ring homomorphism. Prove thatϕ−1(p) is a prime ideal ofS if p is a
prime ideal ofR.

(Hint: Use the definition.)

43. LetR ⊆ S be a ring extension.

(a) Lets ∈ S. When iss called integral overR?

(b) When is the ring extensionR ⊆ S called integral?

(c) Assume now thatR ⊆ S is integral. Letb � S be an ideal anda := b ∩R�R.

Show that the inclusionι : R → S induces an injective ring homomorphismR/a →֒ S/b,
which is an integral ring extension.

(d) Keeping the notation of (c) and assuming thatb is a prime ideal, show the following:

a is maximal⇔ b is maximal.

(e) LetR ⊆ S be an integral ring extension and assume in addition thatS is an integral domain.
Show:

R is a field⇔ S is a field.

44. LetR be a ring.

(a) LetT ⊆ R be a multiplicatively closed subset containing1. What is the definition ofT−1R?

(b) Letp �R be a prime ideal. How is the localisationRp of R atp defined?

(c) LetR be an integral domain. Describe the localisation ofR at (0). Which other name does it
have?

(d) Let R ⊆ S be an integral ring extension. Show thatT−1R ⊆ T−1S is an integral ring
extension.

(e) Assume thatR is an integrally closed integral domain.

Show thatT−1R is integrally closed.

(f) Assume thatR is an integral domain with field of fractionsK. Let R̃ be the integral closure

of R in K and letT̃−1R be the integral closure ofT−1R in K.

ThenT−1R̃ = T̃−1R.

45. (a) How is the Krull dimension of a ringR defined?

(b) LetR be a local Noetherian integral domain of Krull dimension1.

Show that its only prime ideals are(0) andm, wherem is the maximal ideal ofR.

(c) LetR be a local Noetherian integral domain of Krull dimension1. Let (0) ( I � R be an
ideal.

Show that there isn ∈ N such thatmn ⊆ I.

Hint: Let Σ be the set of all idealsI�R such thatmn 6⊆ I for all n ∈ N. This set is non-empty
and contains a maximal elementI. Show thatI = (0). Otherwise,I is not a prime ideal, so it
contains a productxy without containingx andy individually. Now consider(I, x) and(I, y).
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46. LetR be a ring, letMi, Ni for i = 1, 2, 3 beR-modules, and letφi : Mi → Ni, αM : M1 → M2,
αN : N1 → N2, βM : M2 →M3, βN : N2 → N3 beR-module homomorphisms.

(a) When is the sequenceM1
αM−−→M2

βM−−→M3 called exact?

(b) Prove the so-calledSnake lemma: Suppose that the diagram

0 // M1
//

φ1

��

M2
//

φ2

��

M3
//

φ3

��

0

0 // N1
// N2

// N3
// 0

is commutative and has exact rows. Show that there is an exact sequence

0 → ker(φ1) → ker(φ2) → ker(φ3)
δ−→ coker(φ1) → coker(φ2) → coker(φ3) → 0.

(The cokernel of a homomorphismα : M → N is defined asN/ im(α).)

Hint: It is rather easy. But I heard that there is a movie in which the snake lemmais proved...

47. LetK be a field,f ∈ K[X,Y ] a non-constant irreducible polynomial andC = Vf (K) the associ-
ated plane curve.

Let (a, b) ∈ C be a point. Thetangent equation toC at (a, b) is defined as

TC,(a,b)(X,Y ) =
∂f

∂X
|(a,b)(X − a) +

∂f

∂Y
|(a,b)(Y − b) ∈ K[X,Y ].

If TC,(a,b)(X,Y ) is the zero polynomial, then we call(a, b) asingular point ofC.

If (a, b) is non-singular (also called:smooth), thenVTC,(a,b)
(K) is a line (instead ofA2(K)), called

thetangent line toC at (a, b).

(a) Letf(X,Y ) = Y 2 − g(X) ∈ K[X,Y ], whereg(X) ∈ K[X]. Determine all the singularities
of the associated curveC by relating them to the zeros ofg(X).

(b) Letf(X,Y ) = Y 2 −X3 ∈ R[X,Y ].

Make a sketch of the associated curveC. Find all its singularities. Describe the behaviour
of the tangent lines at points on any of the two branches close to the singularity, when they
approach the singularity.

(c) Letf(X,Y ) = Y 2 −X3 −X2 ∈ R[X,Y ].

Make a sketch of the associated curveC. Find all its singularities. Describe the behaviour
of the tangent lines at points on any of the two branches close to the singularity, when they
approach the singularity.

(d) Letf(X,Y ) = Y (Y −X)(Y +X) +X6 − Y 7 ∈ R[X].

Make a sketch of the associated curveC. Find all its singularities.

48. LetR be a ring. An elementx ∈ R is called nilpotent if there isk ∈ N such thatxk = 0. Let
Nil(R) be the subset ofR consisting of the nilpotent elements.
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(a) Show thatNil(R) is an ideal ofR, which is contained in all prime ideals ofR.

(b) Show thatNil(R/Nil(R)) = (0).

(c) Letx ∈ R be nilpotent. Show that1 − x is a unit inR.

49. LetR be a ring.

(a) What is the universal property of a freeR-module over a setI?

(b) Show, using the universal property of a free module over a set (as in (a)), that everyR-
moduleM is a quotient module of a free module.

(c) LetM be anR-module. A free resolution ofM is an exact sequence

· · · → F3 → F2 → F1 → F0 →M → 0

consisting of freeR-modulesFn for n ∈ N.

Show that everyR-moduleM admits a free resolution.

Hint: Use (b) repeatedly.
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