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Preface

This is an English translation of my lecture nodgebre linéaire 2 as taught in the Summer Term
2017 in the academic Bachelor programme at the University of Luxembothg tracks mathematics
and physics (with mathematical focus).

These notes have developed over the years. They draw on varimggesomost notably on Fischer’s
book Lineare Algebra(Vieweg-Verlag) and lecture notes by B. H. Matzat from the Universfty o
Heidelberg.

| would like to thank Luca and Massimo Notarnicola for taking the time to translage thetes from
French to English, and correcting some errors in the process.

Esch-sur-Alzette, 7 July 2017, Gabor Wiese
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Prerequisites

This course contains a theoretical and a practical part. For the pragudidalalmost) all the compu-
tations can be solved by two fundamental operations:

e solving linear systems of equations,
e calculating determinants.

We are going to start the course by two sections of recalls: one abouwtrtiarhents of vector spaces
and one about determinants.

Linear algebra can be done over any field, not only over real or conmpiebers.

Some of the students may have seen the definition of a field in previous soufee Computer
Science, finite fields, and especially the fiélg of two elements, are particularly important. Let us
quickly recall the definition of a field.

Definition 0.1. Afield K is a setK containing two distinct elementfs 1 and admitting two maps

+:KxK—K, (a,b)—a-+b, “addition”
K xK—K, (a,b)r—~a-b “multiplication”,

such that for allz, y, z € K, the following assertions are satisfied:
e neutral element for the addition:+ 0 =z = 0 + z;
e associativity of the addition(z + y) + z = = + (y + 2);

e existence of an inverse for the multiplicatiathiere exists an element calledr such thatr +
(—z) =0=(—2) +x;

e commutativity of the additionz + y = y + «.
e neutral element for the multiplication:- 1 =z =1 - z;
e associativity of the multiplication(z - y) - z =z - (y - 2);

e existence of an inverse for the multiplicatidh:xz # 0, there exists an element called! = %
suchthatr -2z ' =1=2"1 z;

e commutativity for the multiplicationz - y = y - x.
o ditributivity: (z+y)-z2=2z-2+4+y- 2.
Example 0.2. e Q, R, C are fields.
e If pis aprime numbefZ/pZ is a field.
e Z andN are no fields.

For the following, let K be a field. If this can help you for understanding, you can takek’ = R
or K =C.
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1 Recalls: Vector spaces, bases, dimension, homomorphisms
Goals:

e Master the notions of vector space and subspace;

e master the notions of basis and dimension;

e master the notions of linear map ((homo)morphism), of kernel, of image;

e know examples and be able to prove simple properties.

Matrix descriptions and solving linear systems of equations by Gauss’eduction algorithm are

assumed known and practiced.

Definition of vector spaces
Definition 1.1. LetV be a set wittDy € V' an element, and maps
+: VXV =V, (vl,vg)b—>v1+v2:m+v2

(calledaddition) et
K xV =V, (a,v)—a-v=av

(calledscalar multiplicatioh
We call(V, +v, -v, 0y) un K-vector spacé

(Al) Vu,v,w eV :(ut+yv)+yw=u+y (v+y w),

A2 Vo eV :0y +yv=v=u0v+y Oy,

A) VoeViweV :iv+yw=0=w+y v (wewrite—v := w),

(Ad) Vu,veV:iu+yv=0v+yu,

(for mathematicians: these properties say tfit-+y-, 0y/) is an abelian group) and
(MS1)Vae K,Vu,veV:iay (ut+yv)=a-yvu+tya-yuv,
(MS2)Va,be K,YveV :(a+gb) - vv=a-yv+ybyu,
(MS3)Va,be K,YveV :(a-gb)-vv=a-y (byv),

(MSA) Vv eV i1y v=0.

For clarity, we have writtenty, - for the addition and the scalar multiplication Wi, and -+, -k

for the addition and the multiplication i&’. In the following, we will not do this any more.



Example 1.2. Letn € N. The canonicall{-vector space of dimensianis K™, the set of column
vectors of sizen with coefficients inK. As you know, we can add two element&dfin the following

way:
al b1 a1+b1
a2 ba as+bs
)=
an bn an‘;l’bn

This addition satisfies the following properties:

ai b1 c1 a1 b1 c1
a2 b2 c2 az ba c2
a.n b.n C:n, a.n 5;1 C;z
al 0 ai ai 0

az 0 az az 0

an 0 an an 0

al —aq ai—ai 0

az —as az—a2 0

a'n fén an;an O

al b1 a1+by by al

az ba as+ba ) a2
N S o N T I I [ e B

an . b an

bn an';‘bn
Moreover, we have a scalar multiplication: we multiply an elemenk6fby an element of K as
follows:

al rai

a9 ras
r- =

Qnp, ran,

The addition and the multiplication are compatible in the following manner:
by

ai b1 al b1 ai
a2 bo a ba az b2
(MSl)VreK,V<:>, : eK”:r.(<:>+ : ):T.<:>+r. s
an by, an b, an, b,
a3 a3 a5 a5
(MS2)Vr,s € K,V < . ) e K" (r+s)- ( : ) :r.< :>+s- ( : );
a3 a3 a5
(MS3)Vr,s € K,V < : ) eK"r-(s- ( : )):(r-s)- ( : >;

a ax a>
Msa)v [ . Jerma| . =)

This shows thal(™ is indeed ak -vector space.

The following proposition produces a large number of examples.
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Proposition 1.3. Let F be a set. We introduce the notation
F(E,K):={f]|f:E— Kmap}

for the set of maps frolt' to K. We denote the map — K such that all its values aré by 0r
(concretly:0x : E — K defined by the rul®x(e) = 0 for all e € E). We define the addition

+7: F(E,K)x F(E,K) = F(E,K), (f,9)— f+rgouvee E: (f+rg)(e):= f(e)+g(e)
and the scalar mutliplication

r: KxF(E,K)— F(E,K), (z,f)—x-gfouVec E:(x-rf)le):=x-(f(e)).
Then,(F(E,K),+r, r,0r) is a K-vector space.
Proof. Exercise. O
Most of the time, we will not write the indices, but onfy+ g, f - g, etc.
Example 1.4.(a) {f € F(R,R) | f(1) = 0} is a K-vector space.
(b) {f € F(R,R) | f(0) =1} is not aK -vector space.

Lemma 1.5. Let (V, +v, -y, 0y ) be aK-vector space. Then, the following properties are satisfied
forallv € Vandalla € K:

(@ 0-vv=0y,

(b) a-v Oy = Ov;

€ avv=0y=a=0Vv=0y;
(@ (~1)vv=—v.

Proof. (@)0 -y v=(04+0) -y v =0y v+ 0-y v, donco -y v = Oy.
(b)a vy =a-vy (OV +0v) =a-yv Oy +a-v Oy, donca v Oy = 0y
(c) Assumer-yyv = Oy. If a = 0, the assertion = 0Vv = Oy is true. Assume therefore# 0. Then

a~! has ameaning. Consequently=1 -y v = (a"'-a)-yv=a"t-yv(a-yv)=a"! -y 0y =0y
by (b).
@ov+v (=) vov=1vvty (=1)vv=(1+(-1))vv=0yv=0y by (). O

Instead of(V, +v/, -1, Oy) we will simply write V.

Vector subspaces

Definition 1.6. Let V' be a K-vector space. We say that a nhon-empty subBet_ V is a vector
subspace o¥ if
Vwi,weo € WVa € K :a-wi+wy €W.

Notation: W < V.



Example 1.7. e LetV be aK-vector space. The s¢0} is a vector subspace df, called the
zero spacedenoted by for simplicity (do not confuse with the elem@nt

o LetV =R?andW = {(#) | e € R} C V. Then,W is a subspace of .

e LetV =R3andW = {(;l;b) | a,b € R} C V. Then,IW is a subspace df .

e Letn, m € N>;. We consider the system of linear equations

a1,171 +aipx2 + -+ a1,T, = by

a2,1%1 + a2 2x2 + - - + a2 n Ty = ba

Am,1T1 + G 2T2 + - + Gy pTpn = bm

Withbi,ai,j € K for1l <:1<m,1 §j < n.
(a) LetsS be the set of all solutions of the homogeneous systemwity, ..., z, € K, i.e.

T n
x2
S = (:>EK”‘Vie{1,2,...,771}:2&1'7]'.2?]':0
Tn j=1
Then,S is a vector subspace of the standdtdvector spaces™.
T1
T2
(b) Let( . > € K™ be a solution of the system of linear equations, i.e.:

Tn
n
Vi € {1,2,. . .,m} : Z(I@j’f‘j = b;.
=1

LetS be the vector subspace Af* defined in (a).
Then, the solutions if the system of linear equations are the set

1 S1 s1
T2 S2 S2
T S Sn

Here is a general form to obtain and write subspaces.

Definition-Lemma 1.8. Let V' be aK-vector space and& C V' a non-empty subspace. We set
m
(E) = {Zaiei |meN,er,...,em € E aq,...,am, € K}.
=1

This is a vector subspace bf, said to begenerated by-.
By convention, we sé)) = 0, the zero subspace.
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Proof. Since(F) is non-empty (sincé’ is non-empty), it suffizes to check the definition of subspace.
Let thereforew;, w2 € (F) anda € K. We can write

m m
w, = E a;e; etwy = E bie;
i=1 i=1

fora;,b; € K ande; € Eforalli =1,...,m. Thus we have

m

a-wy+ws = Z(aai + b;)es,
i=1

which is indeed an element oF). O

Example 1.9. The set{a- @) +b- <§> | a,b € R} is a subspace dR3.

Sometimes it is useful to characterize the subspace generated by a setri@ theooetical way. To
do so, we need the following lemma.

Lemma 1.10. Let V be a K-vector space andV; < V subspaces foi € I # (). Then,W :=
Nicr Wi is a vector subspace of.

Proof. Exercise. O

In contrast] J,.; W; is not a subspace in general (as you see it in an exercise)!

Example 1.11. How to compute the intersection of two subspaces?

(a) The easiest case is when the two subspaces are given as the sabfittaassystems of linear
equations, for example:

Z1
x

2
: ) € K" suchthaty ! | a; ja; =0forj=1,...,¢, et
:c.n
z1

e V is the subset o(

T2
: ) € K" suchthaty"!" | b, pz; =0pourk =1,...,m.
-Tln

e W is the subset o(

In this case, the subspadéen W is given as the set of common solutions for all the equalities.

(b) Suppose now that the subspaces are given as subspaké&sganerated by finite sets of vectors:
LetV = (E) andW = (F') ou

e1,1 el,m fi fip
e2,1 €2,m " fa1 fo.p "
E = : s : C K"andF = . s ) C K™
€n,1 €n,m fr:,l f’nj,p
Then
m oo
vow ={) al .
i=1 eni
e1,1 el,m fi1 fip
e2,1 €2,m fa1 f2,p
Jb1,...,bp € K :aq : + -4 am : —b . — — b, . :O}.

€n,1 €n,m f’nj,l fn.,p



Here is a concrete examplés = {(i) ) (g)} CK"andF = {((1)) , (
to solve the system

—OoN

)} C K™ We have

With operations on the rows, we obtain

1170 2)):ker((é(l)_ll_f)):ker(<(1)(1)8—11>)7
001 3 001 3

ker((; 0 _01 _01

—1
thus we obtain as solution subspace the line generateé ﬁy) , SO the intersection is given by
1

e (§) e (= (8 1 (= (4

Here is the alternative characterization of the subspace generategby a s

the line

Lemma 1.12. LetV be aK-vector space and@ C V' a non-empty subset. Then we have the equality
(E) = N w
W<V subspace s.CW

where the right hand side is the intersection of all the subsp#iced 1 containingF .

Proof. To prove the equality of two sets, we have to prove the two inclusions.

" C " Any subspacdV containingE, also contains all the linear combinations of element&’pf
hencelV contains(E). Consequently(E) in the intersection on the right.

' D" Since(E) belongs to the subspaces in the intersection on the right, itis clear that thégotten
is contained inE). O

Definition 1.13. Let V' be aK-vector space and’ C V a subset. We say th#t is generated by
(as vector subspac#)V = (E).
Put another way, this means that any elemerit a$ written as linear combination of vectors m.

Definition 1.14. LetV be aK-vector space anéll’; < V subspaces df fori € I # (). We set

> wi=(Jwi),

icl iel
the subspace df generated by all the elements of all tHé’s. We call itthe sum of théV,’s, i € I.
If I ={1,2,...,n}, we can write} ;" , W; explicitly as

ZWZ‘ = {sz ’ wy € Wi, ...w, € Wn}.
=1 i=1

For a generall, this generalizes as:

> Wi ={> wi| (VieI:w; €W;)anduw; # 0 foronly finitely manyi € I}.
icl icl

We use the notatioE;d w; to indicatew; # 0 for only finitely many € I.
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Example 1.15. How to compte/obtain the sum of two subspaces?

The answer is very easy if the two subspaces are given by genertitdrs: (E) andV = (F') are
subspaces of & -vector spacé’, thenU +V = (E U F).

(The question of giving a basis for the sum is different... see later.)

When are thev;, € W; in the writingw = Z;el w; unique?

Definition 1.16. LetV be aK-vector space an@l’; < V the subspace df fori € I # ().
We say that the suiv = ), _; W; is directif for all i € I we have

W; N Z Wj =0.
Jen{i}

Notation for direct sumsp,.; W;.
If I ={1,...,n}, we sometimes write the elements of a direct 69th, W; asw; D wa @& - - - ® w,
(wherew; € W; fori € I, of course).

Example 1.17.In Exampld_1.111 (b), the suii 4+ W is not direct since the intersectidn N W is a
line and thus non-zero.

Proposition 1.18. Let V' be a K-vector spacelV; < V subspaces of fori € I # () andW =
> ic1 Wi. Then the following assertions are equivalent:

) W=Be,Wi;
(ii) forall w € W and alli € I there exists a unique; € W, such thatw = Z/iel w;.

Proof. “(i) = (ii)”: The existence of suclw; € W; is clear. Let us thus show the uniqueness

with w;, w, € W; for all i € I (remember that the notation indicates that only finitely mamy;,
w; are non-zero). This implies fare I:

wi—wgz Z /(w;—wj) eW; N Z szo.
jen{i} jen\{i}

Thus,w; — w} = 0, sow; = w), for all i € I, showing uniqueness.
“(ii) = () Leti € Tandw; € WiN 3 cp iy Wj- Thenw; = Z;d\{i} w; with w; € W; for all
j € I. We can now writé) in two ways

OZZIOZ —w; + Z /U}j.

i€l Jjen{i}

Hence, the uniqueness implesy; = 0. Therefore, we have showi; N Zjel\{i} W; = 0. O
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Bases

Definition 1.19. Let V' be aK-vector space and’ C V a subspace.
We say thatt is K -linearly independenit

n
Vn € NVay,...,a, € KVeq,...,e, € E: (Zaiei:OEVéal :a2:~--:an:0)
=1
(i.e., the onlyK-linear combination of elements &f representing) € V is the one in which all the
coefficients ar®). On the other hand, we say thatis K -linearly dependent
We callE a K-basis ofV if E generated” and E is K-linearly independent.

Example 1.20. How to compute whether two vectors are linearly independent? (Sameatisam
almost always:) Solve a system of linear equations.
Let the subspace

e1,1 e1,m
€21 €2.m

€n,1 €n,m

of K" be given. These vectors are linearly independent if and only if the ohlti@oof the system
of linear equations

€1,1 €1,2 ... €l,m 1
€21 €22 ... €2m (mz )
6»,;71 67;’2 en:m $m
is zero.
1 0 0
0 0 0
Example 1.21.Letd € Nyo. Sete; = | " | ,ea=| | ,...,ea= | | | etE = {e1,ea,...,eq}.
0 0 i
Then:

e [ generates¢:

Any vector = is written asK -linear combination:v = -7 | aze;.

e F is K-linearly independent:

If we have aK -linear combinatior) = Zle a;e;, thenclearlya; = --- = a4 = 0.

e [ isthus ak -basis ofK'¢, sinceF generates<¢ and is K -linearly independent. We call it the
canonical basisf K¢,

The following theorem characterizes bases.

Theorem 1.22.LetV be aK-vector space an® = {ej,eq,...,e,} C V be a finite subset. Then,
the following assertions are equivalent:

() EisaK-basis.
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(i) E is a minimal set of generators &f, i.e.: E generated/, but for alle € FE, the setF \ {e}
does not generat¥.

(i) E is a maximalK-linearly independent set, i.eE is K-linearly independent, but for all €
V' \ E, the setE U {e} is K-linearly dependent.

iv) Anywv € V is written asv = Y . a;e; with uniqueay, ..., a, € K.
=1

Corollary 1.23. Let V be a K-vector space andy C V a finite set generating’”. Then,V has
K-basis contained irk.

In the appendix of this section, we will show using Zorn’s Lemma that anfovepace has a basis.

Example 1.24.(a) LetV = {(%) | a,b e R}. A basis oft/ is{(%) , (%)}

0
o o= (1) (1). () <

4
The setF = {(é) , (%)} is aQ-basis of/. Reason:
e The system of linear equations
o () von () 4o (3) = ()

has a non-zero solution (for instaneg = 1, ao = 1, ag = —1). This imples thatt’
generated/ since we can express the third generator by the two first.

e The system of linear equations
1 2 0
o (3) e (3) = (3)
only hasa; = as = 0 as solution. Thug’ is Q-linearly independent.
(c) TheR-vectore space
V={f:N>R|3ISCNfinteVne N\S: f(n) =0}

1 sin=m, .
) asR-basis.

has{e, | n € N} avece,(m) = 6, (Kronecker delta:o,, ,, = _
0 ifn#m.

This is thus a basis with infinitely many elements.
(d) Similarly to the previous example, tiRevector space
V={f:R—=>R|3ISCRfiniteVz R\ S: f(z) =0}
has{e, | z € R} with e, (y) = J,,,, asR-basis. This is thus a basis which is not countable.

Example 1.25.How to compute a basis for a vector space generated by a finite set ofsie¢Bame
answer than almost always:) Solve a system of linear equations.

Let V be a K-vector space generated Hy,es, ..., ey} (assumed all non-zero). We proceed as
follows:
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Adde; to the basis.

If e5 is linearly independent frora; (i.e. e is not a scalar multiple of;), adde, to the basis
and in this case, e, are linearly independent (otherwise, do nothing).

If e5 is linearly independent from the vectors chosen for the basiseadd the basis and in
this case the elements chosen for the basis are linarly independent (@@ete nothing).

If e4 is linearly independent from the vectors already chosen for the basisc.attdthe basis
and in this case all the chosen elements for the basis are linearly indepefutlearwise, do
nothing).

e etc. until the last vector.

Here is a concrete example Rr:

1 1 4 0
a=(4)-m= (1) o= ()= (1):
2 0 2 1
e Adde; to the basis.

e Adde, to the basis since; is clearly not a multiple o, (see, for example, the second coeffi-
cient), thuse; ete; are linearly independent.

e Are ey, e9,e3 linearly independent?We consider the system of linear equations given by the
matrix

By transformations on the rows, we obtain the matrix

101
013
000 /-
000

. a! o -
We obtain the SO|UtIOI’< 3 ) So, we do not adds to the basis sinces is linearly dependent
fromeq, es.

e Are e, eq, e4 linearly independent? We consider the system of linear equations given by the

matrix
110
101
010 |-
201
By transformations on the rows, we obtain the matrix
100
010
001 |-
000

The corresponding system has no non-zero solution. Thetforg, ¢4 are linearly indepen-
dent. This is the basis that we looked for.

~ OO
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Dimension

Corollary 1.26. Let K be a field andl” a K-vector space having a finith-basis. Then, all the
K-bases ol are finite and have the same cardinality.

This corollary allows us to make a very important definition, that of the dimernsfiarvector space.
The dimension measures the ’size’ or the 'number of degrees of freeafaa/ector space.

Definition 1.27. Let K be a field and/ a K-vector space. I/ has a finite/-basis of cardinalityn,
we say thatl” is ofdimensionn. If V' has no finite/-basis, we say that is of infinite dimension
Notation: dimg (V).

Example 1.28.(a) The dimension of the standaid-vector spacd(™ is equal ton.

(b) The zeraK'-vector spacé{0}, +, -, 0) is of de dimensiof (and it is the only one).

(c) TheR-vector spaceF (N, R) is of infinite dimension.

Lemma 1.29. Let K be a field,VV a K-vector space of dimensionandW < V a subspace.
(@) dimg (W) < dimg (V).

(b) If dimg (W) = dimg (V), thenW = V.

The content of the following proposition is that ak§+linearly independent set can be completed to
become &’-basis.

Proposition 1.30(Basiserganzungssat#d)et V' be a K-vector space of dimension £ C V a finite
set such that’ generated” and{ey,...,e,.} C V asubset that ig{-linearly independent.
Thenr < n and there exist, 11, €,42,...,e, € E suchthat{e,...,e,} isaK-basis ofV.

The propositiorh 1.30 can be shown in an abstract manner or in a congro@inner. Assume that
we have elements,, ..., e, that areK-linearly independent. If = n, these elements arefé-basis
by Lemmd_1.2B (b) and we are done. Assume therefore-tkat.. We now run through the elements
of E until we finde € E such thateq,...,e,, e are K-linearly independent. Such an element
has to exist, otherwise the s&t would be contained in the subspace generatedby..,e,., an
could therefore not generaté. We calle =: e,; and we have d(-linearly independent set of
cardinalityr + 1. It now suffices to continue this process until we arrive &f-dinearly independent
set withn elements, which is automaticallyfa-basis.

Corollary 1.31. LetV be aK-vector space of finite dimensiarand letlW < V be a vector subspace.
Then there exists a vector subspdce< V such thatV = U & V. Moreover, we have the equality
dim(V) = dim(W) + dim(U).

We callU a complemendf W in V. Note that this complement is not unique in general.

Proof. We choose a-basiswy, ..., w, of W and we use the propositién 1130 to obtain vectors
u,...,us € Vsuchthats,...,w,,uq,...,us formak-basis oft. PutU = (uq,...,us). Clearly,
we havel = U + W and alsctU N W = 0, soV = U @& W. The assertion concerning dimensions
follows. O
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Proposition 1.32. Let V' be a K-vector space of finite dimension Let B C V be a subset of
cardinality n. Then, the following assertions are equivalent.

(i) BisaK-basis.
(i) Bis K-linearly independent.
(i) B generated’.

Proof. For the equivalence between (i) and (ii) it suffices to observe thHatlmearly independent
set of cardinalityn is necessarily maximal (thus &-basis by Theorem_1.22), since if it was not
maximal, there would be a maximé&l-linearly independent set of cardinality strictly larger than
thus aK -basis of cardinality different from which is not possible by Corollaty 1.26.

Similarly, for the equivalence between (i) and (iii) it suffices to observedtst of cardinality: that
generated’ is necessarily minimal (thus A-basis by Theorerm 1.22), since if it was not minimal,
there would be a minimal set of cardinality strictly smaller thathat generate¥’, thus ak -basis of
cardinality different fronm. O

Linear maps: homomorphisms of vector spaces

We start with the main idea :
The (homo-)morphisms are maps that respect all the structures

Definition 1.33. Let V, W be K -vector spaces. A map
p: VW
is called K -linearor (homo-)morphism of<-vector spaces

Vo, ve € Vi p(vr +v v2) = p(v1) +w @(v2)

and
VvoeVVae K:playvv)=a-wep).

A bijective homomorphism df -vector spaces is called asomorphism We often denote the iso-
morphisms by a tildaiy : V' = W. If there exists an isomorphisin — W, we often simply write
V=w.

Example 1.34.(a) We start by the most important example. ket N.

a1 ai2 -+ Q1n

a2,1 a2,2 e a2,n . . . ..
LetM = ) be a matrix withn columnsn rows and with coefficients

Gm,1 Gm2 - GOGmn

in K (we denote the set of these matricesNbyt,,, «,, (K ); this is also aK-vector space). It
defines thd{-linear map
oy K" — K™, v Mvu
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whereMw is the usual product for matrices. Explicitely,

n
a1 air2 -+ Alnp U1 Eizl a1,4V;
n
a1 G2 -+ A42n V2 21-:1 a2 Vi
om(v)=Mv=| | . . = .
n
Um,1 Om,2 " OGmn Un Zizl Qm,iVs

The K-linearity reads as
Vae KVv,weV :Mo(a-v+w)=a-(Mov)+ Mow.
This equality is very easy to verify (you should have seen it in your Linkgabsa 1 course).

(b) Leta € R. Then : R — R, z — ax isR-linear (this is the special case = m = 1 of (a) if we
look at the scalar as a matrix(a)). On the other hand, i # b € R, thenR — R, z — az + b
is notR-linear!

(c) Letn € N. Then, the map : F(N,R) = R, f — f(n) is K-linear.

Definition 1.35. LetV, W be K-vector spaces angd : V' — W a K-linear map. Thekernel ofy is
defined as

ker(p) = {v eV | p(v) = 0}.
Proposition 1.36. LetV, W be K-vector spaces ang : V' — W a K-linear map.
(a) Im(p) is a vector subspace &F .
(b) ker(y) is a vector subspace &f.
(c) pis surjective if and only ifm(y) = W.
(d) ¢ isinjective if and only iker(¢) = 0.
(e) If pis an isomorphism, its inverse is one too (in particular, its inverse is Alsiinear).

Definition 1.37. Let M € Mat,,,x,, (K ) be a matrix. We caltank of columnsf M the dimension of
the vector subspace &f" generates by the columns bf. We use the notatiork (/).

Similarly, we define theank of rowsof M the dimension of the vector subspacd®f generated by
the rows ofd/. More formally, it is the rank ofi/'*, the transpose matrix.

We will see towards the end of the course that for any matrix, the rankaineis is equal to the rank
of rows. This explains why we did not mention the word * columns” in the notatiche rank.
If oar : K™ — K™ is the K-linear map associated fd, then

rk(M) = dim(Im(ear))

since the image ap,, is precisely the vector space generated by the columig.of
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Corollary 1.38. (a) Lety : V — X be aK-linear map between twé& -vector spaces. We assume
that V' has finite dimension. Then,

dim(V) = dim(ker(¢)) + dim(Im(yp)).

(b) LetM € Mat,,x,(K) be a matrix. Then, we have
n = dim(ker(M)) + rk(M).

Proof. (a) LetW = ker(yp). We choose a complemebt < V such that = U @ W by Corol-
lary[1.31. ASUNW = 0, the mapp|y : U — X is injective. Moreoverp(V) = p(U+W) = ¢(U)

shows thalm(y) is equal top(U). Consequentlylim(Im(y)) = dim(¢(U)) = dim(U), thus the
desired equality.

(b) follows directly from (a) by the above considerations. Ol

Part (b) is very useful for computing the kernel of a matrix: if we knowrtdngk of M, we deduce the
dimension of the kernel by the formula

dim(ker(M)) = n — rk(M).

Gaul3’ algorithm in terms of matrices

We consider three types of matrices:

Definition 1.39. For 0 # A € K and1 < 4,5 < n, i # j, we define the following matrices in
Mat, xn (K), calledelementary matrices

e P, ; is equal to the identityd,, except that theé-th and thej-th rows are exchanged (or, equiv-

alently, thei-th and thej-th column are exchangedp; ; = b

e S;()) is equal to the identityd,, except that the coefficieit, i) on the diagonal is\ (instead
1

of 1): S;(\) = ") .

"1

is equal to the identityd,, except that the coefficie(d, j) is A (instead oD): Q; ;(A) =

e Qi;(A)
1
( . |
.
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The elementary matrices have a signification for the operations of matrices.
Lemma 1.40.Let\ € K, i,5,n,m € Nsg,i # jandM € Maty, xm(K).

(a) P; ;M is the matrix obtained from/ by exchanging théth and thej-th row.
M P; ; is the matrix obtained from/ by exchanging théth and thej-th coulumn.

(b) S;(A\)M is the matrix obtained from/ by multiplying the-th row by \.
M S;(\) is the matrix obtained fromd/ by multiplying thei-th column byA.

(€) Qi ;(X)M is the matrix obtained from/ by adding\ times thej-th row to thei-th row.
MQ@; ;(X\) is the matrix obtained from/ by adding\ times the-th column to thej-th column.

Proof. Easy computations. O

Proposition 1.41. Let M € Mat,«,»(K) be a matrix and letN € Mat,, x,,(K) be the matrix
obtained from)/ by making operations on the rows (as in Gaul3’ algorithm).

(a) Then there exist matricesy, ..., C, (for somer € N) chosen among the matrices of Defini-
tion[1.39 such thatC; ---C,) - M = N.

(b) ker(M) = ker(IN) and thus Gauf3’ row reduction algorithm can be used in order to compute the
kernel of a matrix.

Proof. (a) By Lemmad_1.40 any operation on the rows can be done by left multiplicationdwf the
matrices of Definitiofn 1.39.
(b) All the matrices of Definition 1.39 are invertible, thus do not change thagke O

Similarly to (b), any operation on the columns corresponds to right multiplicatiaonie of the ma-
trices of Definition 1.3P. Thus, iV is a matrix obtained from a matri&/ by doing operations on
the columns, there exist matric€s, . .., C, (for somer € N) chosen among the matrices of Defini-
tion[1.39 such thad/ - (C; --- C,) = N. Since the matrice§); are invertible, we also have

im(M) = im(N),

and in particular the rank a¥/ is equal to the rank aN.

Often we are interested in knowing a mat€ixsuch thatC’ M = N whereN is obtained fromM/ by
operations on the rows.

In order to obtain this, it suffices to observe thhatid = C, hence applying”' is equivalent to doing
operations on the corresponding rows of the mattixin the following example, we see how this is
done in practice.

Example 1.42.Let M = . We write the augmented matrix and do the operations on the

~N &~ =
co Ot N
© O W
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rows as always, but on the whole matrix.

10012 3 1 001 2 3 1 0 01 2 3
610456(—l-4100 -3 -6|—]—-4 1 00 -3 —6
001789 -7 010 —6 —12 1 -2 10 0 O
1 0 0123 -5/3 2/3 01 0 -1
—(4/3 -1/3 0 0 1 2|+~ | 43 -1/3 0 0 1 2
1 -2 1000 1 -2 100 O
—-5/3 2/3 0
The left half of the final matrix is the matr&X looked for:C' = | 4/3 —1/3 0 |. The right half
1 -2 1

is the matrix obtained by the operations on the rows.
We know that we have the following equality (to convince ourselves, weetdn it by a small
computation):

~5/3 2/3 0\ (1 2 3 10 -1
cM=1|4/3 -1/3 0| |4 5 6|=|0 1 2
1 2 1/ \7 89 00 0

As application of the Gaul¥’s algorithm written in terms of matrices, we obtain thatraertible
square matrix\/ can be written as product of the matrices of Definifion 11.39. Indeed, thatawe
transformM into identity by operations on the rows.

Matrices and representation of linear maps

In Example_1.34 (a) we have seen that matrices give rigé-tmear maps. It is very important and
sometimes callechain theorem of linear algebrioat the inverse assertion is also true:
after choice of basisany K-linear map is given by a matrix.

Notation 1.43. Let V' be a K-vector space and = {vy,...,v,} a K-basis ofV. We recall that
v =1, byv; with uniqueby, ..., b, € K; these are the coordinates offor the basisS. We use the

following notation:
by
b

vs = . e K",
bn
1
0 1 0
Example 1.44.(a) Letn € Nande; = [ ® | ,ea=| |, .. en =
0 0 i
ai
a2
. . . as
ThusE = {ej,ea,...,e,} is a canonicalK-basis of K™. Then, for allv = ° ] e K™ we

al
a
as
havevg =

an
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(b) LetV = R?*andS = {(1), (%)} Itis aR-basis ofV (since the dimension Band the two

vectors areR-linearly independent). Lat = (3) € V. Thenp =3- (1) + (), sovs = ().
The following proposition says that atfy-vector space of dimensionis isomorphic toK™.

Proposition 1.45. LetV be aK-vector space of finite dimensianwith K-basisS = {v1,...,v,}.
Then, the map = ()s : V — K™ given byv — vg is a K-isomorphism.

Proof. Letv,w € V anda € K. We writev andw in coordinates for the bask v = )", b;v; and
w=Y1"¢v;. Thus, we havev + w = >_"" , (ab; + ¢;)v;. Written as vectors we thus find:

by c1 abi+cq
bo €2 abz+ca
vg s ows=1 L] et(av +w)s = : ,

Cn

bn abn:‘FCn
thus the equalitya - v + w)s = a - vs + wg. This shows that the mapis K-linear. We show that it
is bijective.

0
Injectivity: Letv € V be suchthatg = (

0 o
The kernel ofp therefore only containg, so,y is injective.

), i.e.v € ker(p). Thismeansthat=>"" , 0-v; = 0.

ai
a2

ai
Surjectivity: Let < ) e K". We setv := Y " a; -v;. We havep(v) = ( f) and the

an an

surjectivity is proven.
O

Theorem 1.46.Let V, W be two K-vector spaces of finite dimensienandm andy : V. — W a
K-linear map. LetS = {v1,...,v,} be aK-basis oft andT = {wy,...,w,} a K-basis of /.
For all 1 < i < n, the vectorp(v;) belongs tol. We can thus express it asi&linear combination
of the vectors in the basig, so:

m
p(vi) =Y ajw;.
=1

We 'gather’ the coefficients; ; in a matrix:

a1 air2 - Aaln
az,1 a22 - a2.n

MT,S(CP) = . o : € Matmxn(K)‘

am,1 AGm,2 *** Am,n

Then, for allv € V we have
(p(v))r = My s(p) 0 vs.

This means that the matrix produkfr 5(¢) o vs gives the coordinates in basisof the imagep(v).
Then, the matrix\/7 () describes the(-linear mapy in coordinates.

Observe that it is easy to write the matfiXy s(¢): thei-th column of M7 s(p) is (¢(v;))7.
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Proof. We do a very simple matrix computation:

0

a1l ai2 -0 Aip . ai;

a1 a2 -+ Q2n 0 ag;
Mrs@)o@)s=| . . el =] " |= @)

Gm,1 GGmy2 - GOGmn O Qg

where thel is in thei-th row of the vector. We have thus obtained the result for the veofarsthe
basisS.
The general assertion follows by linearity: ket " | b;v;. Then we obtain

Mr,s(p vazS—Zb (Mr,5(¢) © (vi)s)

=1

:sz"( vi))r = Zbl plvi))r = ( Zb vi))r = (e ()7

i=1

This shows the theorem. O

Example 1.47.C has aR-basisB = {1,i}. Letz = z + iy € Cwithz,y € R, thuszp = (},). Let
a =71+ iswithr, s € R. The map

p:C—>C, z—a-z

is R-linear. We describé/p p(¢). The first columniga - 1) = (r +is)p = (5 ), and the second
columnis(a-i)p = (—s+ir)p = (%), thenMp(p) = (% %).

s T

Definition 1.48. Let us denote b¥lom g (V, W) the set of all mapg : V. — W which ateK-linear.
In the special cas&)/ = V, a K-linear mapy : V — V is also called arendomorphisnof V' and
we write

Endg (V) := Homg (V, V).

Corollary 1.49. Let K be a field,V, W two K-vector spaces of finite dimensienand m. Let
S ={v1,...,v,} be aK-basis oft etT = {wy,...,w,} a K-basis ofiV.
Then, the map

Homg (V, W) = Mat,,xn(K), @+ MT,S(SO)

is a bijection.

It is important to stress that the bases in the corollary are fixed! The same matrix can express
different linear maps if we change the bases.

Proof. Injectivity: Suppose thailr s(¢) = Mrs(v) for p,¢ € Homg(V,W). Then for all
v e V,we have(p(v))r = Mr,s(p) ovg = M7 s(¢) ovs = (¢(v))r. Since the writing in
coordinates is unique, we find(v) = ¢ (v) forallv € V, doncy = .
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Surjectivity: Let M € Mat,,x,(K) be a matrix. We defing € Homg (V, W) by

(p(v))r = M ovs

forv € V. Itis clear thatp is K-linear. Moreover, we have

Mr 5(p) ovs = (p(v))r = M ovg

forall v € V. Takingv = v; such that(v;) s is the vector of which theé-th coordinate id and
the rest i9), we obtain that theé-th columns ofM 7 s() and M are the same. This shows that
M = Mrs(p).

O

Definition-Lemma 1.50. LetV be aK-vector space of finite dimensian Let Sy, S, be twoK -bases
of V.. We set
052,51 = M82751 (idV)

and we call it thebasis change matrix
(@) Cs,,s, Is a matrix withn columns anch rows.

(b) Forallv e V:
Vs, = 05'2751 Ovg;-
In words: the multiplication of the basis change matrices by the vectxpressed in coordinates
for the basisS, gives the vector expressed in coordinates for the baSis
(c) Cs,,s, isinvertible with invers&’s, s,.

It is easy to write the matriK’s, s, : its j-th column consists of the coordinates in basif the j-th
vector of basisS;.

Proof. (a) This is clear.

(b) 052751 °vs; = MS27S1 (idV) °vs, = (idV(U))Sz = US,-
(C) CS1,82 o 052751 ovg, = 051752 o Vg, = Vs, for all v € V. This shows thaC'Slﬁ2 o 052751 is
identity. The same reasonning holds with the roles0&nd.S; inverted. O

Proposition 1.51. Let V, W be K -vector spaces of finite dimension, k&t S, be twoK-bases ol
let T3, T» be twoK -bases oWV, and lety € Homg (V, W). Then,

MT275'2 (4,0) = CTQ,T1 o MTLSI (90) ° CSLSQ'

Proof. CTz,T1 o MT1,S1 (90) o CSLSQ 0Vs, = CT2,T1 ° MTLSI (SO)USl = CTQ,Tl o (SO(,U))TI = (@(U))TT
]

Proposition 1.52. Let V, W, Z be K-vector spaces of finite dimension, lebe aK-basis ofl/, T' a
K-basis oftV andU a K-basis ofZ. Lety € Homg (V, W) andy € Homg (W, Z). Then,

My (¥) o M7 5(¢) = My,s(¢ 0 ).
In words: the matrix product corresponds to the composition of maps.

Proof. My, () o Mr,5(¢) o vs = Myr(¢) o (p(v))r = (¥(¢(v)))v = Mur(pop)ovs. O
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Appendix: existence of bases

For lack of time, this section will neither be taught, neither be examined.

In the lecture course “Structures mathématiques” we have introducedtthig@a an intuitive and
non-rigurous point of view. A strict treatment can only take place in a logirse at a more advanced
stage (such a course is not offered at the UL for the moment — you canltbooks for more details).
In set theory, there is an important axiom: the 'axiom of ch@bdh set theory one shows 'Zorn’s
Lemma’ which says that the axiom of choice is equivalent to the followingtisse

Axiom 1.53 (Zorn’s Lemma) Let .S be a non-empty set and a partial order onSE We make the
following hypothesis: Any subsétC S which is totally orderela has an upper bour@l.
Then,S has a maximal eIemth.

To show how to apply Zorn’s Lemma, we prove that ant vector space basis. If you have seen
this assertion in your Linear Algebra 1 lecture course, then it was for-iensional vector spaces
because the general case is in fact equivalent to the axiom of chaoitleu@to Zorn’s Lemma).

Proposition 1.54. Let K be a field and/ # {0} a K-vector space. The] has akK -basis.

Proof. We recall some notions of linear algebra. A finite suliset V is calledK -linearly indepen-
dentif the only linear combinatiod = > agg with a, € K is that wherez;, = O forall g € G.

More generally, a non-necessarily finite subSe€ V is called K -linearly independenif any finite

subsetH C G is K-linearly independent. A subsé&t C V is called aK-basisif it is K-linearly
independet and generatg:

We want to use Zorn’s Lemnia 1]53. Let

S :={G C V subset G is K-linearly independent.

The setS is non-empty sincé = {v} is K-linearly independent for all # v € V. The inclusion of
sets T’ defines an order relation afi (it is obvious — see Algebra 1).

We verify that the hypothesis of Zorn’s Lemma is satisfied: L&t S be a totally ordered subset. We
have to produce an upper bouhde S for T'. We setly := (J,p G. Itis clear thatG C E for all

G € T. One has to show thdt € S, thus thatE is K-linearly independent. Lelf C E be a subset
of cardinalityn. We show by induction on that there exists;/ € T such thatd C G. The assertion
is clear forn = 1. Assume it proven fon — 1 and writeH = H' LI {h}. The existG’, G € T such

IAxiom of choice: LetX be a set of which the elements are non-empty sets. Then there existstiarfyhdefined
on X which to anyM € X associates an elementdf. Such a function is called “function of choice”.
2e recall that by definition the three following points are satisfied:

e s<sforallsesS.
e If s <tandt < sfors,t €S, thens=1t.

o If s <tandt <wufors,t,u € S,thens < u.

3T is totally ordered ifT" is ordered and for all pai, t € T we haves < tort < s.

4g € Sis an upper bound fdf if t < g forall ¢t € T.

5m € S is maximal if for alls € S such thatn < s we havem = s.

bi.e.: any element € V writes asv = >, a;g; Withn € N, a1, ..., a, € K etgi,...,gn € G.
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that H' C G’ (by induction hypothesis because the cardinalityfdis n — 1) andh € G (by the case
n = 1). By the fact thafl is totally ordered, we havé’ C G’ or G’ C G. In both cases we obtain
that H is a subset o7 or of G’. SinceH is a finite subset of a set which is-linearly independent,
H istoo. ThusE is K-linearly independent.

Zorn's Lemma gives us a maximal elemdnte S. We show thatB is a K-basis ofl/. As element
of S, B is K-linearly independent. One has to show tliagenerated’. Suppose that this is not
the case and let us takee V' which cannot be written as A-linear combination of the elements
in B. Then the seG := B U {v} is alsoK-linearly independent, since ady-linear combination
O=av+>  abwithneN,a,a,...,a, € Kandby,...,b, € Bwith a # 0 would lead to the
contradictionw = » " | =%b; (note thatz = 0 corresponds to & -linear combination i3 which is
K-linearly independent). Bu3 C GG € S contradicts maximality of3. O

2 Recalls: Determinants

Goals:
e Master the definition and the fundamental properties of the determinants;
e be able to compute determinants;

e know examples and be able to prove simple properties.

Définition et premieres propriétés

The determinants have been introduced the previous semester. Herealghem form another
viewpoint: we start from the computation rules. Actually, our first propasitan be used as a
definition; it is Weierstrall’ axiomatic (see the book of Fischer).

In this section we allow thak’ is a commutative ring (but you can still také = R or K = C without
loss of information).

mi,1 mi12 0 Min
me,1 m22 v M2n . . . .

If M = e is a matrix, we denote byy; = (i1 miz2 - min ) its -th row, i.e.
Mot Maa = Mo

m1
ma

M:< : )
Mn

Proposition 2.1. Letn € N5 4. Thedeterminants a map
det : Maty,xn(K) — K, M — det(M)
such that

D1 det is K-linearin each row, thatis, foralll < i < n,ifm; = r +AswithA € K, r =
(rir2 - rn)ands = (s1s2 - sn ), then

mi mi mi mi
mi_1 mi—1 mi_1 mi_1

det m; =det | r+xs | = det T + A -det s
mMi41 M1 mi4+1 mi41

Mmn Mp, Mmn Mmn



D2 det is alternating that is, if two of the rows a#/ are equal, therlet(M) = 0.
D3 det is normalized that is,det(id,,) = 1 whereid,, is the identity.
Proof. This has been proven in the course of linear algebra in the previousteemes

We often use the notation

mi1 mi2 - Min mi1 mi2 - Min

ma 1 m22 - Man mo 1 m22 - M2p
= det

Mnp,1 Mn2 * Mnn Mnp,1 Mn,2 ° Mnn

Proposition 2.2. The following properties are satisfied.
D4 Forall A € K, we havelet(\ - M) = A" det(M).
D5 If a row is equal to0, thendet(M) = 0.

D6 If M is obtained from\/ by swapping two rows, theiet(M) = — det ().

25

D7 Let) € Aandi # j. If M is obtained from\/ by adding) times thej-th row to thei-th row,

thendet(M) = det(M).

Proof. D4 This follows from the linearity (D1).
D5 This follows from the linearity (D1).

m1
D6 Let us say that théth and thej-the row are swapped. Thud = : andM =
mj
mn,
mi mi
m; m;
det(M) +det(M) =det [ : | +det
mj mi
Mmn Mn
mi mi mi mi
Zdet | | +det| | +det| | +det
TT;,]‘ myj ml mz
mi mi mi
m1+m] mﬁ-mj mz"l'mj
2 det : + det : = det

Mn Mn Mn

mj

m;

mn
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D7 We have
my mi mi
~ mri—l)\mj' mz Wij
det(M) = det : 2 det ol +A-det | Dzzdet(M)—F)\-():det(M).

Proposition 2.3. The following properties are satisfied.

D8 If M is of (upper) triangular form

A1 mi2 my3 - Mmig
0 A2 maog3 - man
0 0 A3 - man
)
0 0 0 An

thendet(M) = [[;; i
D9 If M is a bloc matrix( 4 Z) with square matricesl andC, thendet(M) = det(A) - det(C).

Proof. Left to the reader. O

Leibniz’ Formula

Lemma 24.For1 < i < n,lete; := (0--010--0) where thel is at thei-th position. Let

€5(1)
€5(2)
o:{l,....,n} = {1,...,n} beamap. Lef = . |- Then
eain)
0 if o is not bijective,
det(M) = o
sgn(o) if o is bijective ¢ € S,,).

Proof. If o is not bijective, then the matrix has twice the same row, thus the determinantfis is
bijective, therv is a product of transpositiors= 7,0 - -o1; (See Algebra 1). Thugn(o) = (—1)".
Let us start by = id. In this case the determinantisand thus equal tegn(c). We continue by
induction and we suppose thus (induction hypothesis) that the result ifotrue- 1 transpositions
(with » > 1). Let M’ be the matrix that corresponds & = 7,._1 o --- o 7y; its determinant is
(—=1)"~! = sgn(o’) by induction hypothesis. The matriX is obtained fromM’ by swapping two

rows, thusdet(M) = —det(M') = —(=1)""! = (=1)". O
mi1,1 M12 -+ Min
. i i m2,1 M22 - M2n
Proposition 2.5(Leibniz’ Formula) Let M = C € Mat,, xn(K). Then,
Mg Mn2 - Mn

det(M) = Y sgn(0) - my (1) - Mao(@) - My o(n)-
0ESn
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Proof. The linearity of rows (D1) gives us

€iy €iq

n mo n n €ig

_ m3 | __ ms
det(M) = E mi g, . = E E m1,i,1M2 5 .
i1=1 m i1=1149=1 m

n n

6i1
€i2

n n
6i3
— .. = E . o g m17i1m27i2 e mn,in .

i1=11i2=1 in=1
in

=) M) M) M) - 580(0),
UESn

62‘1
62'2

where the last equality results from Lemmal2.4. Note that the determinant of thig aef3 is

€in

non-zero only if the;’s are all different; this allows us to identify it with the permutatiofy) = ;.
That the determinant is unique is clear because it is a function of the ¢eeffiof the matrix. [

Corollary 2.6. Let M € Mat,,«,(K). We denote by/*" the transposed matrix. Thedet(M) =
det(M*).

Proof. We use Leibniz’ Formul&2l5. Note first thain (o) = sgn(oc~!) for all & in S, sincesgn is a
homomorphism of groups, ! =1 et(—1)"! = —1. Write now

M1,0(1)M2,0(2) ** Mn,a(n) = Mo=1(0(1)),0(1)Mo=1(0(2)),0(2) " Mo=1(o(n)),0(n)
= Mg-1(1),1Me-1(2),2 " Mo—1(n)n>

where for the last equality we have only written the product in anotherr idee the elements
o(1),0(2),...,0(n) runthroughl, 2, ..., n (only in another order).
We thus have

det(M) = Y sgn(0)my o(1yMa0(2) - Mna(n)

ocESy
= Z Sgn(gil)mofl(l),lma*1(2)72 o Me—1(n)n
UESn
) 1yt t t
= D sen(0 il M1z M
o€Sn
_ tr tr tr
= D sgn(o)myl, )My M ()
oc€ESy
= det(M"™),

where we have used the bijecti6h — S,, given byo — o~ !; it is thus makes no change if the sum
runs throughs € S,, or through the inverses. O

Corollary 2.7. The rulesD1 to D9 are also true for the columns instead of the rows.

Proof. By taking the transpose of a matrix, the rows become columns, but by Cgrllér the
determinant does not change. O
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Laplace expansion

mi1 mi2 v Minp
- m2,1 M22 < M2n
Definition 2.8. Letn € Nygand M = . .o . € Mat,xn(K). Forl <i,j7 < nwe
_ _ M1 Mn2 = My
define the matrices
mi1 - mig—1 0 mijpr 0 mig
mi—1,1 -+ Mi—1,5-1 0 mi—1 541 = Mi—1n
M, ;= 0 - 00 1 o0 w0 € Maty,xn(A)
9
Mit1,1 0 Mit1,5—1 0 M1 541 = Mig1n
Mmn,1 = Mnj—1 0 Mp j+1 = Mnn
and
mi1 o Mij—1 M1+l . Min
! mi;l,l mi—i,j—l mi—i,j+1 mi—ll,n
i,j — | ™Mat1,1 c Mat1i—1 Mit1+1 0 Mitin € Matn—lxn—l(A)‘
m';z,l mn,‘j—l mn,.j+1 m'rlz,n

Moreover, IetMZ-J be the matrix obtained from/ by replacing thej-th column by ? , Where the

1 is at thei-th position.
The determinantdet (), ;) are called theminorsof M.

Lemma 2.9. Letn € Nygand M € Mat,,x,(K). Forall 1 <i,j <n, we have
(8) det(M; ;) = (~1)"* - det(M];),
(b) det(M; ;) = det(M; ;).

Proof. (a) By swapping rows, the row with the zeros is the first one. By swappjmgplumns, we

obtain the matrix

1 0 - 0 0 w0
0 mi1 - Mmij-1 Mgy o Min

Omiil,l mi—i,j—l mi—i,j+1 miil,n c Matnxn(A)

0mit1,1 - Mit1,5—1 Mit1 41 = Mitln

0 m;b,l mn:j—1 mn:j+1 m’r‘l,’n.
of which the determinant iéet(Mi’J.) (because oD9), which proves the result.
(b) Adding —m; j, times thej-th column to the:-th column ofM; ; makes the coefficierit, k) equal
to 0 for k # i without changing the determinant (Corollary]2.7). O

Proposition 2.10(Laplace expansion for the rowshetn € Nyo. Forall 1 < i < n, we have the
equality

n

det(M) = (1) m; ; det(M ;)
=1
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Proof. By the axiomD2 (linearity in the rows), we have

mi
n : n
mz 1 sy e
det(M Z i i, Zm”det Z(—l)HJmi,jdet(MZ-’J).
= . J=1
in

O]

Corollary 2.11 (Laplace expansion for the columngjor all n € Nygand all1 < j < n, we have
the formula

n

det(M) :=> " (=1)"m; ; det(M] ).

=1
Proof. It suffices to apply Propositidn 2.110 to the transposed matrix and to reme@beilary2.6)
that the determinant of the transposed matrix is the same. Ol

Note that the formulas of Laplace can be written as
n
det(M Z m; j det(M; ;) = Z mi ; det(M,
=1

Adjoint matrices

Definition 2.12. The adjoint matrixadj(M) = M#* = (mfj) of the matrixM € Mat,xn,(A) is
defined byn? := det(M;;) = (—1)"*7 det(M],).

Proposition 2.13. For all matrix M € Mat,, < (K ), we have the equality
M# .M = M- M#* = det(M) -id,,.

Proof. Let N = (n; ;) :== M - M#. We compute, ;:

n n
nj = mekmm = Z det(My, ;)my, ;.

= k=1
If i = j, we findn, ; = det(M) by Laplace’s formula. But we don’t need to use this formula and we
continue in generality by usindet(M}, ;) = det(Mk,i) by Lemmd2.B (b). The linearity in theth
column shows tha}_j_, det(My ;)my. ; is the determinant of the matrix of which tih column is
replaced by thg-th column. Ifi = j, this matrix isAM, som; ; = det(M). If i # j, this determinant
(and thusy; ;) is 0 because two of the columns are equal.
The proof forM# - M is similar. O

Corollary 2.14. Let M € Mat,,x,(K).

(a) If det(M) is invertible in K (for K a field this meandet(M) # 0), thenM is invertible and the

inverse matrix)/ ~! is equal todl 6] M#,
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(b) If M is invertible, themV/ —! det(M) = M#.

Proof. Propositior Z.113. O
We finish this recall by the following fundamental result.

Proposition 2.15. Let M, N € Mat,, x,,(K).

(@) det(M - N) = det(M) - det(N).

(b) The following statements are equivalent:

() M isinvertible;

(i) det(M) isinvertible.
In this case:det(M ") = g7y

Proof. (a) was proved in the lecture Linear Algebra 1.
(b) is obvious because of Propositlon 2.13. O

3 Eigenvalues

Goals:
e Master the definition and fundamental properties of eigenvalues andrewers;
e be able to compute eigenspaces;
e know examples and be able to prove simple properties.

Example 3.1.(a) ConsiderM = (39) € Matax2(R). We have:

o (i) (1)=
o (2410) (1)
(d) ConsiderM = (%1) € Matax2(R). We have:

e (33)(6)=2-(§)foralla e R.
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e LetA € R. Welookat(33)(§) = (2
0OANA=2Va=0))V ()\ 2ANb=
Thus, the only solutions df/ (§) =
M(§)=2-(g)witha € R.

e ConsiderM = ( % §) € Matay2(R). Welookat( % §) () = (2, ). This vector is equal
toA-(%)ifand onIy ifb = X\-aanda = —\ - b. This givesz = —\? - a. Thus there is no
A € R with this property if( § ) # ().

ort) = & (2a+b=XaA2b=Xb) & (b=
0) & b—O/\()\—Z\/a—O).
A~ (%) with a vector(§) # () are of the form

We will study these phenomena in general. Eetbe a commutative (as always) field ahda K-
vector space. We recall thatfé-linear applicationy : V' — V is also callecendomorphisnand that
we denotéind i (V') := Hompg (V, V).

Definition 3.2. LetV be aK-vector space of finite dimensienandy € Endg (V).

e )\ € K is calledeigenvaluef ¢ if there exist®) # v € V such thatp(v) = v (or equivalently
: ker(p — A -idy) # 0).

We setE,(\) := ker(p — A - idy). Being the kernel of d(-linear application, E,()) is a
K-subspace oV'. If A is an eigenvalue op, we call E,()) the eigenspace for.

Any0 # v € E,(\) is calledeigenvector for the eigenvalue

We denot&pec(¢) = {\ € K | X est valeur propre de}.

Let M € Mat,,x,(K). We know that the application

al al
opm: K" — K™, ()HM()

is K-linear, thuspys € Endg(K™). In this case, we often speak of eigenvalue/eigenvector
of M (in stead ofp,,).

Proposition 3.3. The eigenspacel,,(\) and E; () are vector subspaces.

Proof. This clear since the eigenspaces are defined as kernels of a matrix/lwean@phism, and
we know that kernels are vector subspaces. O

We reconsider the previous example.
Example 3.4.
(a) LetM = (8 (2)) € Matzxg(R).

e Spec(M) ={2,3};

o« Bun(2) = {(9));

e En(3)={(p))-

e The matrix)/ is diagonal and the canonical bas(g ) , ({) consists in eigenvectors 8f .
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(b) LetM = (8 %) € Matgxg(R).

* Spec(M) = {2,3};

o En(2) = (1))

o En(3) = ((g))-

e The matrixM is not diagonale, buf? has basig | ) , (!, ) whose elements are eigenvec-
tors of M.

e Let us define the matrix whose columns are the above base véttors (§ Y ). This
matrix is invertible (since the columns form a basis) and we have

Cc'Mo = (}9),

a diagonal matrix with eigenvalues on the diagonal! Note that we do not teeedmpute
with matrices, the product of matrices is just a reformulation of the statenseptsbefore.

(c) LetM = (2, [j) € Mataxa(R).

Spec(M) = {6,9};

Ep(6) = (1))

En(9) = (1))

The eigenvector$]), (1) form a basis ofK? and thus the matrbdC' := (] }) whose
columns are these base vectors is invertible and

CT'MC = (8 8) )
again a diagonal matrix with the eigenvalues on the diagonal!
(d) LetM = ((2) %) S Matgxg(R).

e Spec(M) ={2};

o En(2)=(($))

e K? has no basis consisting of eigenvectorgbfthus we cannot adapt the procedure of the
previous examples in this case.

(e) LetM = (2 §) € Mataxa(R).

e Spec(M) = 0;
e The matrix)/ has no eigenvalues R.

Example 3.5.Let K = R andV = C*°(R) be theR-vector space of smooth functiofis R — R.
LetD : V — V be the derivationf — Df = % = f’. Itis anR-linear application, whence
D e EndR(V)

Let us considelf (z) = exp(rz) withr € R. From Analysis, we know th@(f) = r-exp(rz) = r- f.
Thus(z — exp(rz)) € Endg(V) is an eigenvector for the eigenvalue

We thus findpec(D) = R.
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In some examples we have met matridéssuch that there is an invertible matdxwith the property
thatC~!MC is a diagonal matrix. But we have also seen examples where we could cisufih a
matrix C.

Definition 3.6. (a) A matrix)M is said to bediagonalizablef there exists an invertible matri' such
thatC~' M C is diagonal.

(b) LetV be aK-vector space of finite dimensienand ¢ € Endg (V). We say thap is diagonal-
izableif V' admits aK -basis consisting of eigenvectorsyaf

This definition precisely expresses the idea of diagonalization mentionedebefs the following
lemma tells us. Its proof indicates how to find the magiXwhich is not unique, in general).

Lemma 3.7. Lety € Endi (V) andSpec(p) = {A1, ..., A\ }. The following statements are equiva-
lent:

(i) o is diagonalizable.

(i) There is a basisS of V' such that

A1 00 0 0 0 O 0 0O

0 .0 0OOO O 0O 0 O0 O
0 00X O O OO OO OTUDO
0 0O OXNOOUO O0O0TO0OTUO
0000 0Mm0 0000
Mss(p) = g
0O 0 0 0 0 O 0O 0 0 O
0O 0 00 0 O o 0 0
0O 0 OO 0O 0O 0O O X-00
0O 0 0 0 0 O 0 0 0

0 Ar

[e=]
[en]
o
[en]
o
[e=]
()]
=]
[e=]

Proof. “(i) = (ii)": By definition, there exists a’-basis oflV consisting of eigenvectors. We sort
them according to the eigenvalues:

S = {1)171,. . 71)1,6171)2717"‘71)2,627" .,...,...,1)7»71,.. . ,Ur7e,,,}
where for alll < i < r the vectorsy; 1, ..., v; ., are eigenvectors for the eigenvalie The form of
the matrixAs s(yp) is clear.
“(ii) = (i)": The basisS consists of eigenvectors, hengés diagonalizable by definition. O

Proposition 3.8. Let M € Mat,,«,(K) and ¢, be theK-linear application K™ — K™ given by
al al
< : > — M( : ) The following statements are equivalent.

an an

() s is diagonalizable.

(i) There existsC' € Mat,x,(K) invertible such thatC~!MC is a diagonal matrix; thus\/ is
diagonalizable.
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Proof. “(i) = (ii)": Let S be theK-basis of K™ which exists in view of diagonalizability ap,,. It
suffices to take& to be the matrix whose columns are the elements of lsasis

“(if) = (i)": Let e; be thei-th standard vector. It is an eigenvector for the mafrix' M/ C, say with
eigenvalue\;. The equalityC~ ' MCe; = \; -e; givesMCe; = \; - Ce;, i.e.Cle; is an eigenvector for
the matrixM/ of same eigenvalue. Buf/e; is nothing but the-th column ofC. Thus, the columns
of C form a basis ofK™ consisting of eigenvectors. Ol

The question that we are now interested in, is the following: how can weealadidtherp (or M) is
diagonalizable and, if this is the case, how can we find the m&tpixn fact, it is useful to consider
two “sub-questions” individually:

e How can we comput8pec(y)?
e For\ € Spec(y), how can we compute the eigenspdeg\)?

We will answer the first question in the following section. For the moment, wesidenthe second
question. Let us start by, (). ThisisE(A) = ker(M — X -id,,). This computation is done using
Gauss’ reduction.

Example 3.9. (a) For the matrixA/ = (> 1) € Matax2(R) and the eigenvalué we have to
compute the kernel df %, ) —9- (39) = (Z;1). Recall that in order to compute the kernel
of a matrix, one is only allowed to do operations on the rows (and not ondluennis since these
mix the variables). We thus have

ker((41)) = ker(( 51 §)) = ().

For the eigenvalué we do a similar computation:
ker(( 5 10) —6-(§9)) =ker((Zi 1)) = ker(( %' 5)) = ((1))-

(b) The matrixM = (_33 _%1 _%) € Mats3(R) has eigenvalues 1, 1, 2.

For the eigenvalué, we compute the kernel
2 1 1 100 1
e (55 5) ~1-(§3E) = (5,1 3)
—ker ((1)—12(1)) —ker((
000
For the eigenvalue-1, we compute the kernel
2 1 1 100 3 1 1
er (5,2 5)+1-(§09)) =rer (5,3, 5))
= ker ( (

For the eigenvalu@, we compute the kernel

ker(<§3§151}’2> -2 (é%%)) - ker((§3§1§’4>) - ker((égé)) - <<j1>>

1
1

oo
oo
oo
N
S—
Il
—
/~
K=
—_
N—
~

oow
o=
o
——
~—
|
g
=
—~
/N
[elelog
oro
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1 0 1
0 1 1

We write these vectors in the matrix= (71 L4

) in order to have
cl.moc= ((1)_018).
00 2

This explains how to find the eigenspaces in examples. If one wishes to tothgueigenspace
E,(\) = ker(p — A -idy) in a more abstract way, one has to chooge-basisS of IV and represent
¢ by the matrix\/ = Mg s(p). In the basisS, E () is the kerneker(M — X - id,), and we have
already seen how to compute this one.

Let us finally give a more abstract, but useful reformulation of the dialigablility. We first need a
preliminary.

Lemma 3.10. Let ¢ € Endg (V) and A, ..., \, be two by two distinct. Thery_;_, E,(X\;) =
@7{:1 E<p()‘i)-

Proof. We proceed by induction on > 1. The case: = 1 is trivial. We assume the result true
forr — 1 > 1 and we show it forr. We have to show that for all < 7 < r we have

0=E,(\)N > E,(\)=E,)N @ Es(\),
j=1,j#i j=1,j#i

where the second equality follows from the induction hypothese (the ssm hal factors). Let
v € Ep(N) Ny s Ep(Nj). Thenw =370 . vj avecv; € Ey();). We have

plv) =Ai-v= Z i - vj = ¢( Z vj) = Z p(vj) = Z Aj + vy,
J=Lj#1 J=Lj#i J=Lj#i J=Lj#i
thus
0= Z ()\j—)\i)wj.
J=1.5#i
Since the sum is direct and; — \; # 0 for all « # j, we conclude that; = O forall1 < j <,
j # i, sothatw = 0. O

Proposition 3.11. Lety € Endg (V). The following statements are equivalent:
(i) ¢ is diagonalizable.

(i) V= GBAESpeC(go) EW(A)

Proof. “(i) = (ii)”: We have the inclusionzkespec(w) E,(\) € V. By Lemma3.1ID, the sum is
direct, therefore we have the inclusi€B, cgpe.(,) Eo(A) € V. Sincey is diagonalizable, there
exists aK -basis ofl” consisting of eigenvectors fgr. Thus, any element of this basis already belongs
t0 D) cspec(y) Eo(A), Whence the equalith, cq e () Eo(A) = V.

‘(i) = () For all A € Spec(y) let Sy be aK-basis of the eigenspadg,(\). ThusS =
Unespec(s) 91 is @K -basis ofV” consisting of eigenvectors, showing thats diagonalizable. [
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4 Excursion: euclidean division and gcd of polynomials
Goals:
e Master the euclidean division and Euclide’s algorithm;

e be able to compute the euclidean division, the gcd and a Bezout identity usitigdss algo-
rithm.

We assume that notions of polynomials are known from highschool or &#htrre courses. We
denote byK [ X]| the set of all polynomials with coefficients i, whereX denotes the variable. A
polynomial can hence be written as finite s@fzo a; X" with ag, ...,aq € K. We can of course
choose any other symbol for the variable, e:gT’, O; in this case, we writé"%_ a;z’, Y9 a; T,
S, a0 Kz], K[T), K[O), etc.

The degree of a polynomiglwill be denotedieg( f) with the conventionleg(0) = —oco. Recall that
forany f,g € K[X]we havedeg(fg) = deg(f) + deg(g) anddeg(f + g) < max{deg(f),deg(g)}.

Definition 4.1. A polynomialf = Z‘fzo a; X" of degreed is calledunitaryif a; = 1.
A polynomialf € K[X] of degree> 1 is calledirreducibleif it cannot be written as product = gh
with g, h € K[X] of degree> 1.

It is a fact that the only irreducible polynomials ®[X] are the polynomials of degree (One
says thatC is algebraically closed Any irreducible polynomial ifR[X] is either of degreé (and
trivially, any polynomial of degree is irreducible), or of degre2 (there exist irreducible polynomials
of degree2, such asX? + 1, but also reducible polynomials, such &8 — 1 = (X — 1)(X + 1);
more precisely, a polynomial of degreés irreducible if and only if its discriminant is negative).

Definition 4.2. A polynomialf € K[X] is calleddivisor of a polynomialg € K[X] if there exists
q € K[X] such thaty = ¢f. We use the notation notatigh| g.

If f dividesg, we clearly haveleg(f) < deg(g).
For everything that will be done on polynomials in this lecture course, thildeaa division plays a
central role. We now prove its existence.

Theorem 4.3(Euclidean division) Letg = Z?:o b;X? € K[X] be a polynomial of degre¢ > 0.
Then, for any polynomiaf € K[X] there exist unique polynomiajsr € K|[X] such that

f=qg+r and deg(r) <d.
We callr therestof the division.

Proof. Let f(X) = Y1 ,a; X" € K[X] of degreen.

Existence: We prove the existence by induction enlf n < d, we sety = 0 andr = f and we are
done. Let us therefore assume> d and that the existence is already known for all polynomials of
degree strictly smaller tham We set

A(X) = F(X) = an - b7 X" g(X).
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This is a polynomial of degree at most- 1 since we annihilated the coefficient in front.&f*. Then,
by induction hypothesis, there agg r; € K|[X] such thatf; = ¢1g + 1 anddeg(r;) < d. Thus

FX) = f1(X) + anby  g(X) X" = q(X)g(X) +r1(X)

whereq(X) := q1(X) + a,b; ' X"~¢ and we have shown the existence.

Uniqueness:Assume thalf = qg +r = q1g + 1 With ¢, g1, r,r1 € K[X] anddeg(r), deg(r1) < d.

Theng(q — q1) = r1 —r. If ¢ = ¢1, thenr = r; and we are done. if # ¢, thendeg(q — ¢1) > 0

and we finddeg(r, —r) = deg(g(¢ —q1)) > deg(g) = d. This is a contradiction, thug+# ¢; cannot
appear. O

In the exercises, you will do euclidean divisions.

Corollary 4.4. Let f € K[X] be a polynomial of degreéeg(f) > 1 and leta € K. Then, the
following statements are equivalent:

(i) fla)=0
(i) (X—a)l|f
Proof. (i) = (ii): Assume thatf(a) = 0 and compute the euclidean division £fX) by X — a:
f(X)=a(X)(X —a)+r

for r € K (a polynomial of degree: 1). Evaluating this equality im, givesO = f(a) = q(a)(a —
a) +r = r, and thus the rest is zero.

(i) = (i): Assume thatX — «a divides f(X). Then we havef(X) = ¢(X) - (X — a) for some
polynomialg € K[X]. Evaluating this iz gives f(a) = g(a) - (a — a) = 0. O

Proposition 4.5. Let f, g € K[X] be two polynomials such thgt # 0. Then there exists a unique
unitary polynomiall € K[X], calledgreatest common divisg@rged( f, g), such that

e d| fandd | g (common divisoy and

e for all e € K[X] we have((e | fande | g) = e | d) (greatestn the sense that any other
common divisor divideg).

Moreover, there exist polynomiaisb € KX | such that we have Bezout relation
d=af + bg.
Proof. We show that Euclide’s algorithm gives the result.

e PreparationWe set

fo=f, fi=g if deg(f) > deg(g),
fo=g, fi=f otherwise.

We also sef3y = ({ 9).
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If f1 =0, westopand set := fj.
If f1 # 0, we do the euclidean division

Jo= fiq1 + f2 whereqy, fo € Asuchthatfs = 0 or deg(f2) < deg(f1)).

We setd; := ( - 1) B; = A1 By.

We have(jﬁf) — 4, (f;) B (fo)

If fo =0, westopand we setl := fi.
If fo # 0, we do the euclidean division

f1 = faq2 + f3  wheregs, f3 € Asuchthalf3 = 0 or deg(f3) < deg(f2)).

We setdsy = (_1(]2 (1)), By = Ay Bj.

Wehave(ﬁ):A <f1) BQ( )

If f3 =0, westopand setl := fs.
If f3 # 0, we do the euclidean division

f2= f3q3 + fa wheregs, fy € Asuchtha(fy = 0or deg(fs) < deg(f3)).

We setd; .= (7{13 (1)), B3 := A3 Bs.

we have( 1) = 4q (1) = B4 (1)

If f, =0, westopand setl := f,, 1.
If f,, # 0, we do the euclidean division

fn—1= fnqn + fnt1 Wheregq,, fn,r1 € Asuchthat f,+1 = 0or deg(fn+1) < deg(fn))-

We setA, := (70 ), By := ApBn_1.

B
We have(f"“) A, (ffnl) - (ﬁ)

It is clear that the above algorithm (it is Euclide’s algorithm!) stops since

deg(fn) < deg(fn—1) <--- < deg(f2) < deg(f1)

are natural numbers efoo.
Let us assume that the algorithm stops with= 0. Then,d = f,,_1. By construction we have:

fn _ _ _ _ +8
()= =B (B) =D (f) = (o520,
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showing
d=rf1+sfo. 4.1

Note that the determinant of; is —1 for all i, hencedet(B,_1) = (—1)"!. Thus the matrix
C = (-1)""1 ( * 7)istheinverse oB,_;. Therefore

(B) =B (B)=c (= (4S00).

showingd | fi1 andd | fy. This shows thatl is a common divisor offy and f;. If e is any common
divisor of fy and f1, then by Equation (411) divisdesd. Finally, one dividesi, r, s by the leading
coefficient ofd to maked unitary.

If we haved, dy unitary gcds, ther; dividesd, andd, dividesd;. As both are unitary, it follows
thatd; = ds,proving the uniqueness. O

In the exercises, you will train to compute the gcd of two polynomials. We daetptire to use
matrices in order to find Bezout's relation; it will simply suffice to “ go up” thgbuthe equalities in
order to get it.

5 Characteristic polynmial

Goals:
e Master the definition of characteristic polynomial;
e know its meaning for the computation of eigenvalues;
e be able to compute characteristic polynomials;
e know examples and be able to prove simple properties.

In Sectiori B we have seen how to compute the eigenspace for a givenatigerHere we will answer
the questionHow to find the eigenvalues?
Let us start with the main idea. Late K andM a square matrix. Recall

Ep(A) =ker(A-id — M).
We have the following equivalences:
(i) Mis an eigenvalue folM .
(i) Ear(A) #0.
(iii) The matrix A - id — M is not invertible.
(iv) det(\-id — M) = 0.

The main idea is to consider as a variableX. Then the determinant oX - id — M becomes a
polynomial in K[X]. It is the characteristic polynomial By the above equivalences, its roots are
precisely the eigenvalues 6f.
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Definition 5.1. e Let M € Mat,x,(K) be a matrix. Thecharacteristic polynomial ol is
defined by
charpoly ;(X) := det (X -id,, — M) € K[X].

e LetV be aK-vector space of finite dimension apde Endx (V) and S a K-basis ofV. The
characteristic polynomial ap is defined by

charpoly4(X) := charpolyMS’S(%,) (X).

Remark 5.2. Information for ‘experts’. Note that the definition of characteristic polymmmuses

the determinants in the ring’ [ X|]. That is the reason why we presented the determinants in a more
general way in the recall. Alternatively, one can also work in the field of naidunctions overy,

i.e. the field whose elements are fractions of polynomials with coefficiehts in

Lemma5.3. Let M € Mat,,xn (K).
(@) charpoly,,(X) is a unitary polynomial of degree.

(b) charpoly,,(X) is conjugation invariant, i.e., for alN € GL,,(K) we have the equality

charpoly;(X) = charpoly,; N"'MN(X).

Proof. (a) This is proved by induction om. The case: = 1 is clear because the matrix(i& —m; 1),
hence its determinant i& — mq ;.

For the induction step, recall the notatiMl{J for the matrix obtained by/ when deleting theé-th
row and thej-th column. Assume the result is proved for- 1. By Laplace expansion, we have

n
charpoly;(X) = (X —mq,1) CharpolyM{’l(X) — Z(—l)"mm ~det (X -id — ]\4);1
=2

By hypothesis inductionc;harpolme(X) is a unitary polynomial of degree — 1, hence(X —
my1) charpoly,, | (X) is unitary of degree. In the matrix(X - id — M);’1 with i # 1, the variable
X only appears. — 2 times. Thus in the characteristic polynomial, it can only appear ta the-th
power at most. Consequentiarpoly,,(X) is unitary.

(b) We use the multiplicativity of the determinant for the riRgX | (Proposition 2.15).

charpoly y—1,,5(X) = det(X -id,, — N"'MN) = det(N" (X -id,, — M)N)
= det(N) " det(X -id,, — M) det(N) = det(X - id, — M) = charpoly;(X).
O
Corollary 5.4. LetV be aK-vector space of finite dimensieon
(@) charpoly,,(X) is a unitary polynomial of degree.

(b) charpoly,,(X) is independent from the choice of the basi¥ akhich appears in its definition.
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Proof. (a) Lemmd5.B (a).
(b) Let S and T be two basis of’. The statement follows from Lemnia 5.3 (b) and the equality

Mrp(p) = Cqip o Mss(p) o Csr. O

We reconsider the examples of Secf{ion 3.
Example 5.5.(a) LetM = (g g) € Matay2(R). We find

charpoly ;(X) = (X — 3)(X — 2).
(It is important to know the factorization in irreducible polynomials of the eleteristic polyno-
mial. Thus it is useless to write it @2 — 5X + 6.)

(b) LetM = (g ;) € Matay2(R). We find once again

charpoly ;(X) = (X — 3)(X — 2).

(c) LetM = (54 110> € Matay2(R). We find
charpoly /(X)) = (X —=5)(X —10)+4 = (X —6)(X —9).

Note that in order to simplify the computation, Lemimd 5.3 (b) allows us to useottjegate

-1
. 1 1 1 1 1 . .
matrix g = 60 for the computation of the characteristic
1 4 -4 10 1 4 09

polynomial, thus one can immediately write the factorization in linear factors (megg, this
will not be possible).

;) € Matayo(R). We find

2
(d) LetM = (0

charpoly ;(X) = (X — 2)?,
a polynomial with a double root.

0 1

1 O) € MatQXQ(R). We find

(e) LetM = (

charpoly;(X) = X? +1,
a polynomial that does not factor in linear factorsij.X].

() LetM = (33 i :132> € Matsx3(R). For the characteristic polynomial, we compute the deter-

minant
X-2 -1 -

_ X-2 -3 11 1
’ 3 X1_2X_f2 =(X=2)- |72 x| 3| 7 xael 3 x5

=X -2)(X-2)(X+2)+3)+3- (- (X+2)+1)+3-(3+(X —-2))
= (X-2)(X?’-1)=(X-2(X-1D(X+1)
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Proposition 5.6. (a) For M € Mat,,x, (K ) we have
Spec(M) = {a € K | charpoly,;(a) =0} ={a € K| (X —a) | charpoly,,(X)}.
(b) For ¢ € Endg (V) with a K-vector spacé/ of finite dimension, we have
Spec(¢) = {a € K | charpoly,(a) =0} = {a € K| (X —a)|charpoly,(X)}.
Proof. It suffices to prove (a). The first equality follows from (withe K):

a € Spec(M) < ker(a-id,, — M) # 0 < det(a - id,, — M) = 0 < charpoly,,(a) = 0.

=charpoly /(a)

The second equality is just the fact that K is a root of a polynomiaf if and only if (X — a)|f
(Corollary(4.4). O

We have thus identified the eigenvalues with the roots of the characteristimomaigl. This answers
our question in the beginnindn order to compute the eigenvalues of a matrix, compute its char-
acteristic polynomial and find its roots.

But the characteristic polynomial has another important property that isesvered by Cayley and
Hamilton. We first need to introduce some terminology.

Definition 5.7. (a) LetM € Mat,«,(K) be a matrix. Iff(X) = Z;‘LO a; X' € K[X]is a polyno-
mial, then we sef (M) := 2% a;M? € Mat,,x,(K). Note: M° = id,,.

(b) Lety € Endg (V') be an endomorphism of &-vector spacéd’. If f(X) = Z?:o a; X' € K[X]

is a polynomial, then we sgt(y) := Zfzo a;¢?, which is still an endomorphism iBind x (V).

Be careful:p’ = pogo---opetp’ =idy.

N———
i times
Definition-Lemma 5.8 (For mathematicians onlyYa) The application “evaluation”
evy : K[X] = Matyun(K), f(X)— f(M)

is a ring homomorphism (even a homomorphisnkeflgebras).

(b) The application “evaluation”
evy : K[X] = Endg(V), f(X) = f(p)

is a ring homomorphism (even a homomorphisnkedlgebras).

Proof. Easy computations. O

Theorem 5.9(Cayley-Hamilton) Let M € Mat,,x,(K). Then,

charpoly (M) = 0,, € Maty, xn(K).
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Proof. The trick is to use adjoint matrices. Mat,, ., (K[X]) we have
(X -idy, — M)# - (X -idy, — M) = det(X -id, — M) - idy & charpoly, (X) -idp.  (5.2)

The idea of the proof is very simple: if one replacésy M in (5.2), one obtains, since on the left
hand side we have the factQ¥/ -id,,— M) = M —M = 0. The problem is that iVat,, ., (K [X]), X
appears in the coefficients of the matrices, and we are certainly not altoweplace a coefficient of a
matrix by a matrix. What we do is to write a matrix whose coefficients are polynoasglslynomial
whose coefficients are matrices:

d k d K
D011 kXY e Y001k X g [k 0 Qink

:Z : : X" id,.

d k d k k=0
Zk:[} an,l,kX o Zk:() an,n,kX n 1k " Onnk

Having done this, one would have to show that the evaluation of this polynaitlamatrix coeffi-
cients in a matrix gives rise to a ring homomorphism. Unfortunately, the matrix rimgtisommuta-
tive, hence the developed theory does not apply. The proof thatweeagoids this problem by doing

a comparison of the coefficients instead of an evaluation, but is baseé eartie idea.

The definition of adjoint matrix shows that the largest poweXathat can appear in a coefficient of
the matrix(X -id,, — M)* isn— 1. As indicated above, we can hence write this matrix as polynomial
of degreen — 1 with coefficients inMat,, »,, (K):

n—1
(X -id,, — M)* = ZBZ»Xi with  B; € Mat, x,(K).
i=0

We write charpoly,(X) = Y, a; X" (0Ua, = 1) and consider Equation (3.2) Mat,,x, (K):

n n—1
charpoly y/(X) -idp = Y a; -idy - X' = () B;X')(X -id, — M)
=0 =0

n—1

|
—

n
= (BiX"' -~ BMX") = -BoM +» (B;_1 — BiM)X"' + B, 1 X".
i =1

I
o

We compare the coefficients (still matrices!) to obtain
agp - idn = —BQM, a; -+ idn = Bi—l — BZ‘M for 1 <i<n-1 and Bn—l = idn.

This comparision of coefficients allows us to continue with our calculationddn, ,(K) in order
to obtaincharpoly,,(M) = 0,, as follows:

n n—1
charpoly /(M) -idp = > a;- M' = =BoM + Y (Bi—1 — BiM)M' + B, 1 M"
=0 i=1

O]
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The theorem of Cayley-Hamilton is still true if one replaces the malfiby an endomorphismp <
Endg (V).

Theorem 5.10(Cayley-Hamilton for endomorphismdl)etV be aK -vector space of finite dimension
andy € Endg(p). Thencharpoly,(¢) = 0 € Endg (V).

Proof. By definition we havegharpoly,,(X) = charpoly , .(,)(X) and by Theorern 519
0 = charpoly yz () (Ms,s(0)) = Msg,s(charpoly yr, () (¢)) = Ms,s(charpoly,(¢)),

thuscharpoly, () = 0. This computation is based dds s(¢") = (MS,S(cp))i (see exercises) [

6 Minimal polynomial
Goals:
e Master the definition of minimal polynomial;
e know its meaning for the computation of eigenvalues;
e know how to compute minimal polynomials;
e know examples and be able to prove simple properties.
Beside the characteristic polynomial, we will also introducerttigimal polynomial
Definition-Lemma 6.1. Let M € Mat,, «,,(K) be a matrix.

(a) There exists a unique unitary polynomiaipo,,(X) € K[X] of minimal degree with the prop-
erty mipo,;(M) = 0,. This polynomial is called theinimal polynomial of)/.

(b) Any polynomialf € K[X] with the propertyf (M) = 0,, is a multiple ofmipo,,(X).
(c) Forany invertible matrixN. € Mat,, ., (K), we havemipoy -1, (X) = mipoy,(X).

(d) Lety € Endg (V) for a K-vector spacé’ of finite dimension withik-basisS. We set

mipo, (X) := mipoyy, ¢ () (X)

and call it minimal polynomial ofp. This polynomial is independent from the choice of the
basisS.

Proof. (a,b) By Theorem of Cayley-Hamiltdn 5.9 there exists a polynomiigt f € K|[X] that
annihilates)M . Let us now consider the set of such polynomials

E={f € K[X]| f #0andf(M) = 0}.

We choose unitary € E of minimal degree among the elementsfof
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We will use the euclidean division to show the uniqueness and (b). fLet E. We thus have
q,r € K[X] such that = 0 or deg(r) < deg(g) and

f=a9+r,
which implies
0=f(M)=q(M)g(M)+r(M)=q(M) 0+r(M)=r(M).

Consequently, let = 0, letr € E. This last possibility is excluded as the degree-a$ strictly
smaller that the degree gfwhich is minimal. The fact that = 0 meansf = qg, thus any other
polynomial of £ is a multiple ofg. This also implies the uniqueness:fihas the same degree than
and is also unitary, thefi= g.

(c) It suffices to noté N 1M N)! = N~ M*N, hence for allf € K[X]

f(N'MN) = N'f(M)N = 0, & f(M) = 0.

(d) The independence of the basis choice is a consequence of (tyeedualityMr () = C;lT o

Mg s(p) o Cs r for any other basi§’. O

Proposition 6.2. LetV be aK -vector space of finite dimension apd= Endg (V). ThenSpec(y¢) =
{fa€e K| (X —a)|mipo,(X)} = {a € K | mipo,(a) = 0}.

Clearly, the same statement holds for matrités Mat,, ., (K). Compare this proposition to Propo-
sition[5.6.

Proof. The second equality is clear (same argument as in the proof of PropdspnT® see the
first equality, first assume thaX — a) { mipo,,(X). From this we deduce that the gcd(0f — a)
andmipo,(X) is 1, which allows us (by Euclide/Bézout algorithm) to fibde € K[X] such that
1 =b(X)(X — a) + ¢(X) mipo,(X). Letnowv € V t.q.p(v) = av. We have

v =idyv = b(p)(¢(v) — av) + ¢(p) mipo,(¢)v = 0+ 0 = 0,

hencea ¢ Spec(p).

Assume now thatX — a) | mipo,(X) which allows us to writemipo,(X) = (X — a)g(X) for
someg € K[X]. Since the degree gfis strictly smaller than the degree wfipo,(X), there has to
be av € V such thatw := g(p)v # 0 (otherwise, the minimal polynomiahipo,,(X) would be a
divisor of g(X') which is impossible). We thus have

(¢ — a)w = mipo,(p)v =0,
hencea € Spec(y). O

It is useful to observe that Propositidns]5.6 6.2 statecthapoly,, (X ) andmipo,,(X) have the
same factors of degrde Moreover, the characteristic polynomiglarpoly ,(X) is always a multiple
of the minimal polynomiatnipo,,(X), by the theorem of Cayley-Hamilton, as we will now see.
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Corollary 6.3. Let M € Mat,,«,(K). Then, the minimal polynomiahipo,,(X) is a divisor of the
characteristic polynomiatharpoly,,(X). We also have the same statementfas Endx (V).

Proof. By the Theorem of Cayley-Hamiltén 5cBarpoly,, (M) = 0,,, and hencenipo,,(X) divides
charpoly,;(X) by Lemmd®6.1L. O

Example 6.4.Here are key examples to understand the difference between minimetharadtteristic
polynomial:

¢ The following three matrices have the same characteristic polynofial; 1)2:
My = ((lJ(l])v My = ((1)%)7 Ms = ((1]6?1)

The minimal polynomial a#/; is X — 1. SinceM, —1-idy = () # 0, andMs —1-idy =
(9691 # 0o, the minimal polynomial i$X — 1)? in both cases. Note that we used the fact that
the only non-constant normalized divisors(af — 1) are X — 1 and (X — 1)2, therefore the
minimal polynomial has to be one of them.

e The same arguments give the minimal polynomials of the following matricesn(ite that
there is one more possibility ):

100 110 110
My = (010),M5:: <010),M6:: (011).
0 001 001

Example 6.5. Let us treat a more complicated example. Let

4 3 -37
_ (7 0 -37
M_(6—1—26)'

—1-4 4 —4

There are (at least) two ways to proceed:
() Compute the characteristic polynomial and deduce the minimal poliatom
A computation shows:
charpoly (X)) = X% +2X3 — 11X?% — 12X 4+ 36 = (X +3)% - (X — 2)%.

We know that the linear factors in the minimal polynomial are the same as irhdraateristic
one. We thus know that
mipoy, (X) = (X +3)* - (X - 2)°

forl <a,b<2.

We compute the minima polynomial trying out the possibilities.

e \We start with the possibility of the lowest degree:

7T 3 =37 2 -3 7
M3::M+3.id:<g 33 g), MQ::M—Q-idz(g_%_i Z;)
1 -4 4 -1 -1-4 4 —6

and we compute
10 —10 10 10
M_5 - My = <150 ~10 10 150> £ 0.
—5 5 —5-5
Thus(X — 3)(X + 2) is not the minimal polynomial.
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e We increase the powers, one by one
We compute
2 50 20 50 50
MZ3- M; = < 25 —25 25 25 > 7 0.
—25 25 —25 —25
Thus the minimal polynomial is néK — 3)2(X + 2).
We continue and compute

mipo,, (X) = (X +3) - (X —2)? = X3 - X? - 8X +12.

M_g-M22:<

[elelole]
(elelelen]
[elelole]
[elelole]

We thus finished and found that

(I If one does not know the characteristic polynomial and if one duatswant to compute it,
one can proceed differently. This will lead us to the standard ansimesrder to compute the
minimal polynomial, we have to solve systems of linear equations.

We proceed by induction on the (potentiel) degtexd the minimal polynomial.
d =1 If the degree i4, the matrix would be diagonal. This is obviously not the case.
M = <1 4 13 1)'

—4 9 95
Now, we have to consider the system of linear equations:

d =2 We compute

OZ(ZQM2—|—(11M—|—CL0:

12 —13 13 3 4 3 -3 7 1000
. 3 —4 13 3 . 7 0 =37 {0100

-4 9 -9 5 —-1-4 4 -4

These are 16 linear equations. In practice, one can write the coeffidieatbig matrix.
The first row contains the coefficier{ts 1) of the three matrices, the second row contains
the coefficientsl, 2), etc., until row 16 which contains the coefficie(ts4):

12
—13
13
3
3
—4
13
3
-1
—4
13
-1
—4
9
-9
5

| | |1 | |
i loll lowlonalws
—HOOOOROOOO—ROOOOR

We find that this system does not have a non-zero solution since thef ttweknoatrix is3.

32 11 —-11 59
3 _ 59 —16 —11 59
M _<47 —12 —15 47)'

—-12 —-23 23 -39

d = 3 We compute
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Now, we have to consider the system of linear equations:

0=asM>+asM?+ a1 M +ay =
32 11 —-11 59 12 —13 13 3 4 3 =37 1000
(59 —16 —11 59 (3 -1 133 (7 0 -37 (o100
as (47 12 —15 47 )+a2 (1 413 1)—1—@1 <6 “1-2 6 >+a0 (0010)'
12 —23 23 —39 4 9 -9 5 14 4 —4 0001

These are 16 equations. We write the matrix with the coefficients (note thafides
to add the first column). We also provide a generator of the kernel ifuddaby Gaul’’
algorithm (in general)):

Ut
©
w
| | | I 1 | |
ael ol ol oNal ws

HOOOOHROOOOHOOOOH
/N
=
(Sl
~
OO0 0O

We see that the result is the polynomiat — X2 — 8X + 12, the same as in (l).

7 Diagonalization and spectral decompostion

Goals:
e Know and master the spectral decomposition;

e be able to decide whether a matrix/endomorphism is diagonalizable; if soJd®walmmpute
the diagonal form and a matrix of basis change;

e be able to compute the spectral decompostion of a matrix/endomorphism;
e know examples and be able to prove simple properties.

A diagonal form is certainly the simplest form that one can wish a matrix to.l&wewe already saw
that matrices do not have this form in general. Elpectral decompostioand theJordan formare
simple forms that one can always obtain. In the most advantageous tteesesforms are diagonal.
Let V' be aK-vector space (of dimensior) andy € Endg (V') be an endomorphism. We first do a
fundamental, but simple, observation concerning block matrices.

Lemma 7.1. (a) LetW <V be a subspace such thatiV') C (W). LetS; be a basis ofV that we
extend to a basi§ of V. Then,

MS,S(SO):( ]\gl ’ Z:Z Q

with My = Mg, s, (¢lw).
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(b) LetV = W; @ W, be such thaip(W;) C W, fori = 1, 2. LetS; be aK-basis ofil¥/; for i = 1, 2;
hence,S = S; U Sy is a K-basis ofVV. Then,

v~ (] £2)

with My = Mg, s, (¢lw,) and My = Mg, s, (@lw, ).

Proof. It suffices to apply the rules to write the matriXs s(y). Ol
We will continue by a lemma.
Lemma 7.2. Lety € Endg (V).

(@) Letf € K[X]andW := ker(f(y)). Then,IW is a subspace df that is stable undep, i.e. for
all w € W we havep(w) € W. This allows us to restricp & W'; we will denote the restricted
map byp|w : W — W.

(b) Letf, g € K[X] be two coprime polynomials, i.epged(f(X), g(X)) = 1. Then,

ker(f(p) - g(¢)) = ker(f(p)) ker(g(y)) -
=W =W =Ws

Before the proof, a brief word about the notatigf(y) is a K-linear applicationt/ — V, then one
can apply it to a vector € V. Our notation for this is;f (¢)(v) or f(¢)v. Note the different roles
of the two pairs of parenthesis in the first expression. One could also (iigg)(v), but I find this

notation a bit cumbersome.

Proof. (a) The kernel of anys-linear application is a subspace. WrjteX) = Z‘LO a; X’ Letthen
weW,ie fp)w=3%,ae (w) = 0. We compute

d d d
F@)pw) =D aig' (p(w) =Y aiwp™ (w) = o) aip'(w)) = ¢(0) = 0.
1=0 1=0 1=0

(b) Itis clear thaf?; € W andW, C W, whencelW; + Wy C W. We have to prove that
e W1 N Wy =0 (the zeroK -vector space) and
o Wi +Wy=W.

SinceK [X] is a euclidean ring, we can use Euclide’s algorithm (Bézout) to obtain twe ptheno-
mialsa,b € K[X] such thatl = a(X) f(X) + b(X)g(X). First considew € W; N W,. Then

w = idy (w) = a(p) f(p)w + b(p)g(p)w =0+ 0 =0,
which proves the first point. For the secondde€ W. The equation that we used reads

w = wy + wy With wa := a(y) f(p)w andw; := b(y)g(p)w.
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But, we have
fle)(wi) = b(@) f(p)g(p)w = b(p)0 =0 = w1 € W)
and
9(0)(w2) = a(p)f(0)g(P)w = a(p)0 = 0 = wy € Wy,
which concludes the proof. O

Theorem 7.3(Spectral decomposition) ety € Endg (V') be an endomorphism with minimal poly-
nomialmipo,,(X) = fi*(X) - f5*(X) - ... - f7(X) where the polynomialg;(X) are irreducible
(they are therefore prime elements in the principal ri§¢X |) and coprime, i.epged( f;, f;) = 1 for

all 1 <14 < j < n (if one chooses th¢;'s monic, then the condition is equivalent to saying that the
polynomials are all distinct). Sé¥; := ker(f{(¢)). Then the following statements hold.

(a) V= @;:1 Wi.

(b) If one chooses a basis of the subspacd/; for1 < i < r,thenS = S, US U---US,isa
basis ofl¥/ for which we have:

My | [ o J[ o] ... [ o]
0 My 0 . [ o]

o . [0 ] [0
o] ... [o]|lo M,

with M; := MSi,Si(QO|Wi) forl1 <i<r.

Mg s(p) =

Proof. (a) follows from Lemma 7]2 (b) by induction.
(b) is clear: Write the matrix with these rules in order to obtain this form. Note tlediltitks outside
the diagonal are zero singéV;) C W;. O

The most important case is whep(X) = X — a; with a; # a; for i # j (which implies that the
fi are irreducible and distinct). The spectral decomposition is in fact onlgeiqde!) step towards
Jordan reduction. In the next proposition we will also see its importanadidgonalization. For the
moment we illustrate the effect of the spectral decomposition by an examplereBhis, it can be
useful to recall how one applies the results for linear applicatjpttsmatrices.

Remark 7.4. Let M € Mat,, (K ). One can apply the spectral decompostiodfcas follwos. For
0

1

the canonical basi$? = (| . |, 0 ;oo | . |) the matrixM describes aK-linear applica-
; |

tion ¢ = ) and one has\l = Mp ().

The spectral decomposition gives us a basisLet C' := Mp s(id) be the matrix of basis change

betweensS and the canonical basis. Then, we have

OO
[es]esles)

o0 -

Mgs(p) =C tMC.
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To be still concreter, let us recall how to write the mat€ix If S = (vy, ..., v,) and the vecors; are
given in coordinates for the standard basis, thenitiie column ofC is just the vectow,.
Then, the spectral decomposition can be used to compute a similar matdefibition, two matrices
A, B are similar if one is the conjugate of the other: there exists an invertible matrisuch that
B = C~'AC) a M having the nice form of the theorem.
1 2 3
Example 7.5.(a) LetM := |0 1 4 | with coefficients ifR. The characteristic polynomial is
0 05
(X —1)%(X —5). Itis clear thatker(M — 5 - id3) is of dimensiori; i.e. 5 is an eigenvalue of
multiplicity 1 (by definition: its eigenspace is of dimension Without computation, it is clear
thatdim ker((M —id3)?) =3 — 1 = 2.

Theoreni 713 implies the existence of a maffiguch that

1
ct.m-c=1|o
0

S = 8
o O

for somer € R that needs to be determined.

In fact, one easily sees that# 0, since in this case, the minimal polynomial would(Bé —
1)(X — 5) which is false (also see Propositibnl7.7).

Let us compute such a matiix. For this, we have to compute a basis of the kernel of the matrix

0 2 3\ /0 2 3 0 0 20
(M —id3)*=10 0 4[]0 0 4|=[0 0 16
0 0 4/\0 0 4 0 0 16
1 0
We can thus simply takpo0 | , | 1
0 0
We also have to compute the kernel of the matrix
-4 2 3
M-5-id3=|[0 -4 4
0 0 O
-4 0 5
To compute this kernel, we addtimes the second row to the first and obtdin0 —4 4
0 0 O

5
The kernel is thus generated by the vector | .
4
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1 05
The desired matrixC is therefore| 0 1 4 |. To convince ourselves of the exactness of the
0 0 4
computation, we verify it
1 0 =5/4 1 2 3 1 0 5 1 2 0
c'mMc=101 -1 01 4]0 1 4|=[0 10
0 0 1/4 0 05 0 0 4 0 05

The theorem on Jordan reduction will tell us (later) that we can choost¢han matrixC' such
that the2 appearing in the matrix is replaced byla

2 -1 3
(b) LetM :=| -2 1 —4 | with coefficients iR. Firstly we compute its characteristic polyno-
1 1 0
mial:
X -2 1 -3
charpoly ;(X) = det( 2 X-1 41)
-1 -1 X

= (X=2)(X—1)X —4+6—3(X—1)+4(X—2)—2X = X?>—3X2+ X3 = (X —3)(X2+1).

For this computation we used Sarrus’ rule. To obtain the factorization, wergasmall integers
to find a zero (herg). The other factorX? + 1 comes from the division of® — 3X? + X — 3
by (X — 3). Note thatX? + 1 is irreducible inR[X] (but not inC[X]).

Let us start with the computation of

-1 -1 3
En(3) =ker(M —3-id,) =ker(| -2 -2 —4]).
1 1 -3

Now one would have to do operations on the rows to obtain the echelon fohemiatrix in order
1
to deduce the kernel. But we are lucky, we can just ‘see’ a vector ingitmek namely| —1
0
This vector then generatds, (3) (the dimension cannot kdesince in this caséX — 3)2 would
be a divisor of the characteristic polynomial).

Let us now compute

10 0 10
ker(M? + M°) =ker(| =10 —0 —10|).
0 0 0
1
This kernel is clearly of dimensiahgeneratedby] 0 |, |1

-1
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1 1
Thus we can write the desired matri€:= | —1 0 1
0 -1 0
We verify our computation:
1 0 1 2 -1 3 1 1 0 3 0 0
c'Mc=100 -1|[-2 1 —4]]l-1 0 1]=]0 -1 -1
1 1 1 1 1 0 0O -1 0 0 2 1

Before giving another characterization of the diagonalizability we reealy @roperties of diagonal
matrices in a lemma.

Lemma 7.6. Let D € Mat,, «,(K) be a diagonal matrix with\;, Ao, ..., \,, on the diagonal.
(@) Spec(D)={\;|i=1,...,n}.
Note that# Spec(D) < n if and only if there exist < i < j < n such that\; = ;.
(b) mlpOD(X) = H)\ESpec(D) (X - >\)
Proof. These statements are clear. O

The form of the minimal polynomial in the lemma, allows us to give another chaizatien of the
diagonalizability:

Proposition 7.7. Let V' be K-vector space of finite dimension apde Endg (V). The following
statements are equivalent:

(i) o is diagonalizable.

(i) mipo,(X) = L espec(p) (X —a)-
The same statements are also true for matrddes Mat,, «,, (K).

Proof. We write Spec(y) = {a1,...,a,}.

“(i) = (ii)": We choose a basi$ such thatM := Mg s(¢) is diagonal (see Propositibn 3]11). A very
easy computation shows thg,_, (M — a;) = 0,,. Then,mipo,,(X) is a divisor of[[;_; (X — a;).
But Propositiori 6.2 shows that for allone has(X — a;) | mipo,(X). Therefore,mipo,(X) =
[T;_, (X — a;) (the two polynomials are unitary).

“(i) = (i)": We apply the spectral decompositibn17.3 and it suffices to note that théce®\/; are
diagonal sincéV; = E,(a;) is the eigenspace for the eigenvalye Ol

1
Example 7.8. Consider the matri¥/ := | 0 with coefficients ifR. Its minimal polynomial
0

o = O
= W N

is (X — 1)(X —4), thus, it is diagonalizable.
(To obtain the minimal polynomial it suffices to see that the eigenspacedaidgienvaluel is of
dimensiorR.)
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8 Jordan reduction

Goals:
o Know and master the Jordan reduction;

e be able to decide on different possibilities for the Jordan reduction kmpthie minimal and
characteristic polynomial;

e be able to compute Jordan’s reduction of a matrix’endomorphism as wellealsasdis change
if the characteristic polynomial factorizes into linear factors;

e know examples and be able to prove simple properties.

In Propositior 3.111 we have seen that diagonalizable matrices are similar tmdiagatrices. The
advantage of a diagonal matrix for computations is evident. Unfortunatelglimatrices are diago-
nalizable. NOur goal is now to choose a basisf V' in such a way thad/s s(¢) has a “simple, nice
and elegant” form and is close to be diagonal.

We also saw that the spectral decomposition 7.3 gives us a diagonal ifofstotks”. Our goal for
Jordan’s reduction will be to make these blocks have the simplest posditnie fo

We presentlordan’s reduction(the Jordan normal form from an algorithmic point of view. The
proofs can be shortened a bit if one works without coordinates, buidrc#ise, the computation of
the reduction is not clear.

For the sequel, let” be akK -vector space of dimensionandy € Endg (V') an endomorphism.

Definition 8.1. Letv € V. We set
(v)y = (¢'(v) | i €N),
the subspace df generated by, p(v), p?(v), .. ..
Remark 8.2. The following statements are clear and will be used without being mentiopéditsty.
(@) (v), is stable under, i.e.,p((v),) C (V).

(b) If W C V is a vector subspace that is stable ungeand ifv € W, then(v), C W.

Lemma 8.3. The minimal polynomial of the matrix ¥at,, x,, (K)

a 1 0 0o ... 0
0 a 1 0o ... 0
0 0

: 0
0 0 0 a 1
0 0 0 0 a

is equal to(X — a)™.
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Proof. Exercise. O
This matrix appears very naturally, as we will now see.

Lemma 8.4. Leta € K, e € Nygandv € V such that

(p—a-id)¢(v) =0 and (¢ —a-id)* (v) #0.

We set:
Ve 1=,
Ve—1 := (p — a-id)(v),
v = (p — a-id)*?(v),
vy = (p — a-id)* (w).
(a) We have:

p(v1) = avy,
@(v2) = v1 + avy,
©(v3) = v2 + avs,

@(ve) = Ve—1 + QVe.

(b) (v), = (v1,...,ve), the subspace df generated by, ..., v..

(c) The minimal polynomial @ acting on(v),, is equal to(X — a)°.

(d) The vectorsy, ..., v, are K-linearly independent and consequently form a basaf (v),,.
a 1 0O ... 0
0O a 1 0 ... 0
0 0
(€) Mss(elw),) =
Do : .1 0
0O 0 ... 0 a 1
00 ... 0 0 a

Proof. (a) This is a very easy computation:

(p—a-id)v; = (¢ —a-id)v =0 =p(v1) = avy.
(p—a-id)vy = vy =p(v2) = v1 + ave.

(p—a-id)ve = Ve—1 =p(Ve) = Ve—1 + ave.
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(b) The equations in (a) show thaty, ..., v.) is stable undep. Asv = v, € (v),, We obtain the
inclusion(v), C (v1,...,ve). The inverse inclusion can be seen by definition:
ve—i = (¢ —a-id)'(v) = > (}) a" " (v). (8.3)
k=0

(c) The polynomial X — a)¢ annihilatesv and thus{v),,. As (X — a)¢~! does not annihilate, the
minimal polynomial ofip| (), is (X — a)°.
(d) Assume that we have a non-trivial linear combination of the form

J
0= g QVe—;
i=0

for a; # 0 and0 < j < e — 1. By Equation[(8.B), we obtain

J i j—1
0= Zai (,@) ai_kgok(v) = Z (Z@i (;’C) ai_k)wk(v) + aj‘Pj<U)~
i=0 k=0 k=0 =k

We thus have a non-zero polynomial of degje€ e — 1 that annihilates) and thus(v),. Thisis a
contradiction with (c).
(e) Part (a) precisely gives the information to write the matrix. Ol

We will now specify what we mean by “the Jordan form”.

Definition 8.5. A matrix M € Mat,,»,(K) is said to have “the Jordan form” if\/ is diagonal in
blocks and each block has the form of Leniméa 8.4(e).
More preciselyM has the Jordan form if

My | [ 0o | 0
0 M, 0

| 0

M:

[en}

B

(diagonal matrix in blocks), where, forall < i < r,

a; 1 0 0 ... O

0 ag 1 0 ... O
M, = 0 0

. . .1 0

0 0o ... 0 a; 1

0 0 0 0 a

(We do not ask that the’s are two-by-two distinct here. But we can bring together the blocksigav
the samae;; this will be the case in Theorem 8.8.)
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The procedure to find an invertible matii such thatC—! A/C has the Jordan form is calledbrdan
reduction We also callordan reductiothe procedure (to present) to find a baSisuch that\/s s(¢)
has the Jordan form (for an endomorphisth It may also happen that we call the obtained matrix
Jordan reduction o/ or of ¢.

Example 8.6. We reconsider the matrices of Examiple 6.4.

e The matricesM; := (}9), My := (} 1) have the Jordan form, but nadt/; := ({ ') (its
Jordan reduction is\/3).

e The matrices

1 0 0 1 1 0 1 10
My:=10 1 0} ,Ms:=1]10 1 O0|,Mg:=1]0 1 1
0 01 0 01 0 0 1
also have the Jordan form.
1 20
e The/one Jordan reduction ofthe mat>0 1 0 | obtained in Example7.5(a) by the spectral
0 05
110
decompositioni 0 1 0 | (explained later).
0 05

Be careful: with our definitions, there exist matrices that do not havedadaeduction (except if one
works overC, but not overR); we can weaken the requirements to have a Jordan reduction for any
matrix; we will not continue this in this lecture course for time reasons. In theceses, you will see
some steps to the general case.

We now present the algorithm of Jordan’s reduction. For this we set:
e p,:=p—a-id,
o V; = ker(¢})
For the moment, we make the hypothesis
mipo,,(X) = (X —a)".
From this we obtain

V=VedVe1DVeoD---DVi=E,(a) D Vy=0.
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We can imagine the vector spakeas being in a rectangular box:

Ve\Veer | E n
Vee1 \ Ve—a L I I
Veo\Ves | B HE BN
o\ V1 H B H N [ |
Vil i B B 0 0 0 N

Each black block represents a non-zero vector, and the set of akkthers in the diagram is linearly
independent. In the algorithm, we want to order the rectangular box. Eantdment, we put the
black blocks in an arbitrary way to indicate that we do not yet have manyniaftion about its
vectors (there is no deep meaning in the image). The fact that there ardowks in the first row
means thatlim V, — dim V._; = 2, etc. We can observe that the number of blocks does not decrease
when moving from the top to the bottom.

(1.) We choose a vectar; € V. \ V._;. Then we have the non-zero vectasg(z,) € V._1,
©2(z1) € Ve_o, and more generallypi(z1) € V._; pouri = 0,...,e — 1. We modify the

image:
Ve \ Vet T [ ]
Vee1 \ Ve—a || @al21) C I
Voo \ Vees | @2(a1) NN
o\ Vi || & 2(z1) W HE N [ ]
Vilecl(zy) @ @ B B B H H

The first column hence contains a basigof) .
If (x1), = V (if no black block remains), we are done. Otherwise, we continue.

(2.) Now we compute the integér such that(x,), + Vi, = V, but (z1), + Vi—1 # V. Inour
examplek = e.

We choose a vectar, in Vi \ ({(z1), + Vix—1). We thus have the non-zero vectgigzs) € Vi_;
fori =0,...,k — 1. We change the image:

‘/e \ Vvefl T o
Veer \Vea | @alz1)  @alze) W
Veo \Ves | ¢a(z1)  ¢i(z2) W [
o\ VI || @& 2(x1) @& 2(x2) E N n
Villeetz1) ¢ (es) @ B B H B B

The second column hence contains a basi&gf,. Lemma8.Y tells us that the sufn, ), +
(x2),, is direct.

If (x1), ® (x2), = V (if no black block relains), we are done. Otherwise, we continue.
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(3.) Now we compute the integérsuch thatz),®(x2),+ Vi, = V, but(z1), ®(z2) o+ Vi1 # V.
In our examplek = e — 1.

We choose a vectars in Vi, \ ((z1)y @ (z2), + Vi—1). We thus have the non-zero vectors
ot (z3) € Vy_; fori =0,...,k — 1. We change the image:

Ve \ Voot 1 x2
Ve—1i \ Ve—a || @a(z1) Ya(x2) T3
Veeo \ Vees || @2(z1) 02 (z2) ©Va(T3) |
Vo\VI || @& 2(z1) @& 2(z2) @& 3 (x3) u u
Vil oe o) i Hae) i ies) W oH H H OH

The third column thus contains a basigof) .. Lemmd8.7 tells us that the sufm, ), ® (z2),+
(x3), is direct.

If (1), ® (x2),, ® (x3), = V (if N0 black block relains), we are done. Otherwise, we continue.

(...) We continue like this until no black block remains. In our example, we obtaimihge:

Ve \ Vet x1 T2
Vee1 \ Ve—a || @a(z1) ©a(z2) z3
Veeo\Vees | w2(x1)  @a(z2)  @alzs) T4

o\ VI || @& 2(xz1) @& %(x2) @& (x3) @& Mwa) w5
Vi|| weMar) g Maa) e (ws)  wi(xa)  walws) mg w7 as

Each column contains a basis(af;),, and corresponds to a block. More precisely, we put the vectors
that are contained in a box into a baSisbeginning in the left-bottom corner, then we go up through
the first colums, then we start at the bottom of the second column and godgenphe third column
from bottom to top, etc. Ther/s s(¢) will be a block matrix. Each block hason the main diagonal
and 1 on the diagonal above the main diagonal. Each column correspaaditoirk, and the size of
the block is given by the height of the column. In our example, we thus &ilecks, two of sizee,

one of sizee — 1, one of size= — 2, one of size2 and three of sizé.

In order to justify the algorithm, we still need to prove the following lemma.

Lemma 8.7. Let L = (z1), @ (w2), & --- ® (), constructed in the previous algorithm. By the
algorithm, we have in particular

dimK<:r1><p Z dimK<x2>¢ Z e Z dlmK<$Z><P

(The dimension is here equal to the height of the corresponding column.)

Letk be the integersuchthdt+ Vy, =V andL +V,_1 #V.Wehavd/, Z L + V,_;.
By the algorithm, we also have< dimg (x;).,.

If y € Vi, \ (L + Vi—1) is any vector, then the sum+ (y),, is direct.
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Proof. If V, C L+ Vi_q,thenVi, + L =V;_1 4+ L (asViy_1 C V). This implies the first statement:
Vi & L+ Vi_;.

Let us now show that the sufm+ (y),, is direct, i.e.,L. N (y), = 0. Letw € LN (y),,. We suppose
w # 0. Letj be the maximum such that € Vj,_;. We haved < j < k — 1. Consequently, we can

write w = E’;;é T 08 (y) for ¢, € K with ¢ # 0. Hence

k—j—1
Coy + Z Cq@a
q=1
By construction off., we can write
w = ¢y ({)

for ¢ € L. This is the case sincé N V},_; is generated byS™ (x,,) for 1 < m <iandj < e, =
dimg (zm)y — (k= j).
Thus we obtain

k—j—1
0=ol(coy—t+ Y cgpl(y)).
q=1
This implies
k—j—1
zi=coy— L+ Y cqpl(y) € V5 C Vi,
q=1

Using thatzg;{_l cqpely) € Vi—1, we finally obtain

k—j—1
1 J

1 1
=0+ —z+— > cgplly) € L+ Vi,
o o o = q(pa()

a contradiction. Therefore = 0. O

Combining the spectral decomposition with the algorithm above, we finally obtithdorem about
Jordan’s reduction.
Theorem 8.8(Jordan’s reduction)Assume that the minimal polynomialefis equal to

r

mipo,(X) = H(X —a;)"

=1

with differenta; € K ande; > 0 (this is always the case K is “algebraically closed” (see Alge-
bra 3), e.g.K = C).

Then,p has a Jordan reduction.

We can precisely describe the Jordan reduction, as follows. Complting ker ((go —a;- id)ei),
we obtain thespectral decompositiofsee Theorein 7.3), i.e.:

V=@V and o(V;)CViforalll <i<r
=1
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Forall 1 <1 <, we apply the above algorithm to construgl, ..., z; s, € V; such that
Vi=(2ine® & @is)e € o((Tij)e) C (Tij)e-
Lete; ; the minimal positive integer such thap — a; - id)%(z; ;) = Oforall 1 < ¢ < r and
1<7<s;.
For each spacé€z; j),, we choose the basks; ; as in Lemma8l4. We put

S = 5171 U 51’2 U---u 51’51 U 5271 U 52’2 U---u 52732 U...... - U ST751”'

Then,S is a K-basis ofV such that

M |0 | [0 ]

(diagonal block matrix), where, forall < i < r,

N;1 0]l o

0 Nia 0 oo ]
| 0]

o .. [0 gl [
(o] ... [0

e
Z
)

(diagonal block matrix), where, for all < j < s;,

a; 1 0 O 0
0 a; 1 O 0
Nm' = 00 ) ’
. 1
0 O 0 a 1
0 O 0 0 a

which is of sizez; ;. TheN; ;'s are called theJordan blockgfor the eigenvalue,).
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Remark 8.9. Explicitely, the basis is the following:

(o —ap-id)1 7 Yz q), (o —ap-id) 1" 2(211), ... (p—ay-id)(z11), @11,
(o —ay-id)2 Yz 9), (o —ay-id) 2 2(219), ... (p—ay-id)(z12), 12,
(‘P —ap- id)el’sl_l(xl,ﬂ)v (SO —ar- id>el’51 _2(331,81)7 ce (90 —ar- id)($1,81)> T1,s15
(p —ag-id)>1 7 H(221),  (p—az-id)*1 (221), ... (p—ag-id)(z21), w21,
((p — a9 - id)62’271<1’272), ((p —as - id)627272($272), R (90 —ay - id) (1’272), 2,2,
(90 —az- id)e2’8271(l‘2,82)’ (90 —az- id)e2’32 72(562752)7 s (90 —az- id) ('732,52)7 L2595
(QO —as - id)€:3,1—1($3’1)7 ((p —as - id)e3*1_2(l‘3’1), . . ((,0 —as - ld) (16371), 31,
(o —ar- id)er’”_l@r,sr% (o —ar- id)er’s"_2(xr,sr)’ v (P —ap-1d)(2rs,),  Trs,

Note that theJordan reduction is not unique in general (we can for instance permeaiteldbks).
Thus, to be precise, we would rather speak dbedan reduction, which we will sometimes do.SIf
is a basis such that/g 5(¢) has the form of the theorem, we will say thefs s(¢) is the/a Jordan
reductionor that it haghe/a Jordan form

To apply Theoreri 818 to matrices, take a look (once again) at Rémark 7.4.

1 2 0
Example 8.10.(a) The/a Jordan reduction of the matrix0 1 0 | obtained by the spectral de-
0 05
1 10
composition in Example4.5(a) is0 1 0 | for the following reason.
0 05

The matrix satisfies the hypothesis of Thedremn 8.8, thus it has a Jodiactien. As itis not diag-
onalizable, there can only be one block witlon the diagonal, but the characteristic polynomial
shows thatl has to appear twice on the diagonal. Therefore, there is no other possibility.

1 10
(b) Consider the matrix/ := | —1 3 0 | with coefficients irR.
-1 1 2

A computation shows thaharpoly,,(X) = (X — 2)2. Then,» = 1 in the notations of Theo-
rem[8.8 and, hence, the Jordan reduction has to be among the followirgrttatrices:

2 00 210 210
0 2 0], 0 2 0f, 0 2 1
0 0 2 0 0 2 0 0 2
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We easily find thatnipo,,(X) = (X — 2)2. From this we can already deduce that the Jordan
210

reductionis| 0 2 0
0 0 2

The question becomes unpleasant if one asks to compute a r@asuch thatC—'MC =
2 10

0 2 0 ].Butthisis notso hard. We follow the algorithm on Jordan’s reduction:
0 0 2
-1 1 0
e Wehavell —2idg=| -1 1 0
-1 1 0
0 1
e Thenker(M —2id3) = (|0 ], 1]).
1 0

e We have thatnipo,,(X) = (X — 2)? (which is easily verified:(M — 2 -id3)? = 03).
According to the algorithm, we choose

0 1
z1 € ker((M — 2id3)?) \ ker(M — 2id3) =R3\ ([o |, |1 ]),
1 0

1
for instancer; = | 0
0

o We start writing our basis. The first vector of the basis is, according to the algorithm,

-1 1 0 1 -1
v = (M — 2id3)$1 = -1 1 0 0 == -1
-1 1 0 0 -1
and the second one is just := x.
¢ In the second step, we have to choose a vector
0 1 -1 1
y € ker(M — 2id3) \ (vi,v2) = (10|, |1 [)\N{(] =1|,]0]).
1 0 -1 0
0
We choosg = | 0 | and we immediately set, = .
1
o |t suffices to write the vectors, vs, v3 as columns of a matrix:
-1 10
C:=1-1 00

-1 0 1
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Theorent 88 tells us that

0 -1 0 1 10\ /=110 2 10
c'mMc=11 -1 0||-1 3 0]|l-100|=]020],
0 -1 1/ \-1 12/ \=-10 1 00 2

which can be verified.

Remark 8.11. In some examples and exercises you saw/see that the knowledge ofithalpoly-
nomial already gives us many information about the Jordan reduction.

More precisely, ifa is an eigenvalue op and (X — a)€ is the biggest power ok — « dividing the
minimal polynomiakipo,,(X), then the size of the largest Jordan block witbn the diagonal is.

In general, we do not obtain the entire Jordan reduction following this metifiddr instance,(X —
a)¢*? is the biggest power of — a dividing charpoly,(X), then, we have two possibilities: (1) there
are two Jordan blocks for the eigenvaluef sizee and2; or (2) there are three Jordan blocks far
of sizee, 1 and1.

Example 8.12. We do an example. Let

-2 -1 -5 -3 6 -4

-1 2 -1 -1 1

M= 2 1 4 2 =2 1
4 2 4 6 -5 2
0 1 -1 1 3 -1
1 -1 1 0 -1 5

Its characteristic polynomial is
charpoly;(X) = X% — 18X5 + 135X — 540X3 + 1215X2 — 1458X + 729 = (X — 3)S.

Let us first compute

2 1 1 2 -2 1
Ms = M + 3id =
3 +ol 4 2 4 3 -5 2|’
0 1 -1 1 0 -1
1 -1 1 0 -1 2
then
0 5 -1 3 -2 —5 0 3 3 0 -3 -3
00 0 0 0 0 00 0 0 0 0
11 -1 1 1 -1 11
Mz = 0 . M3 = 0 0 , Mi=0
0 -3 1 -2 1 3 0 -2 -2 0 2 2
01 1 0 -1 -1 00 0 0 0 0
0 -2 0 -1 1 2 0 -1 -1 0 1 1
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We thus have

mipoy, (X) = (X — 3)°"

and

Vi =ker(M3) =R° 2 V3 2 V5 2 Vi = En(3) 20.

We first compute

0110 -1 -1 1 0 0 0 0
0000 O O 0 0 1 0 1
ngker(Mg’) ~ ker 0000 O O .y 0 ’ 0 ’ -1 7 0 7 0 ).
0000 O O 0 1 0 0 0
0000 O O 0 0 0 1 1
0000 O O 0 0 0 -1 0

In fact, it is not necessary for the algorithm to give an entire basigsofit suffices to find a vector

that does not belong to the kernel. Itis very easy. We will tgke: and we compute

[elelele] o]

0 -1 5 3
5 7! 2 o 3 0
Ir = 8 ,Mgd}l = % ;ngl = —3 ,M3l‘1 = _9
0 1 1 0
0 —1 —2 -1

We thus already have a Jordan block of sizé hus there is either a block of si2eor two blocks of
sizel. We now compute

01 1 0 -1 -1 011 0 -1 -1
00 -6 3 3 0 001 —-1/2 —1/2 0
00 2 -1 -1 0 000 0 0 0
_ 2\ _
Va=ker(Mg) =ker | o o0 5 o o |TE g 0 0 o 0 0
00 2 -1 -1 0 000 0 0 0
00 0 0 0 0 000 0 0 0
010 1/2 -1/2 -1 1\ /o 0 0
00 1 —-1/2 —1/2 0 ol 1] [1/2] | =172
000 0 0 0 o o] |12 1/2
:k =
“fo oo o 0 0 Qol- ol {o || 1 |
000 0 0 0 ol |o 1 0
000 0 0 0 o/ \1 0 0
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Finally, we compute the eigenspace for the eigenvalue

Vi = ker(M3) = ker

1
0
0
~ k
ero
0
0
10 0
01 0
00 1
~k
“fo o o
00 0
00 0

)
1

2
4
0
1
0
1
0
0
0
0

1
1/2

~1/2
0
0
0

-1 -5 -3 6
-1 -1 -1 1
1 1 2 =2
2 4 3 =5
1 -1 1 0
-1 1 0 -1
0 1 -1 1
-1 1 0 -1
-6 3 1 0
-2 1 0 0
2 -1 0 0
6 -3 -1 0
-1 1
0 -1
(1) 8 = ker
0 0
0 0

—4 1
0 0
1
9 = ker 8
-1 0
2 0
1 0
0 1
0 0
=k
er 0 0
0 0
0 0
1 0 0 1
01 0 1/2
0 0 1 —-1/2
0 0 O 0
0 0 O 0
0 0 O 0

o O = O O O

8 JORDAN REDUCTION

-1 2
1 0 -1
-3 1 6
-1 0 2
2 0 -3
3 -1 —6
-1 1
0 -1
0 0
1 0
0 0
0 0
~1 -1
1 ~1/2
0 1/2
o'l 1
0 0
1 0

Thus there are eigenvectors, hence two blocks in total. Thus the second block is @f diehave
to find a vector inl; which is not inVy + (x1, M3z, M3z1, M3x1), thus an element of

0

1 0
1
0

O O O O O -
— o O O = O

1/2
1/2

)

0
~1/2
1/2
1
0
0

1

A

_ o O O =

~1
~1/2
1/2

O O O O = O

5 3
0 0
-1 —1
) -3 ) _9 >
1 0
-2 —1

To find such an element, we test if the vectors (one by one) of the basiamf linearly independent

form the space on the right. We are lucky that it already works out$or=

from a standard computation). We thus calculate

o =

)

O O O O o =

M3$2 =

-5

= O = DN

o

9| (as one can see
0
0



We can now write the matrix

3 5 -1 0 -5 1

0 0 -1 1 -1 0

-1 -1 1 0 2 0
“=19 3 2 0 4 0
0 1 1 0 0 O

-1 -2 -1 0 1 O

and a computation verifies

31 00 0O

03 1 000

c-lyc— 003 100
0 003 00

00 0 0 31
00000 3
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Remark 8.13. Here are some remarks that are easy to prove and can sometimesfoéfos com-

putations. Supposeipo,,(X) = (X — a)°.

(a) The size of the largest Jordan blocleis

(b) Each Jordan block contains an eigenspace of dimenkionthe eigenvalua.

(c) The number of Jordan blocks is equal to the dimension of the eigea$pr the eigenvalue.

9 Hermitian spaces

Goals:

e Know the definitions of euclidian and hermitian spaces;

e know fundamental properties of euclidian and hermitian spaces;

e be able to compute orthonormal basis using the method of Gram-Schmidt;

e know examples and be able to prove simple properties.

We will start by a motivation of some of the topics that will follow.

Let M € Mat,x,(K) be a matrix. Consider the application:

“ay\ (o
<,>]\/[:Kn><Kn—>K, < : s : >]\/[::(a1 ag
an b.n
We thus have the equality
(z,y)p = 2" My.

- an)M

b1
ba

b



68 9 HERMITIAN SPACES

If M is the identity, then
al b1 by n
a2 b2 b2
<<> P a) ) =Y ab
a'n b:ﬂ b-n =1

This is the well-known canonical scalar product. This gives moreovéf @ R)

a1 al
a2 @2 2, 2 2
<< : )7( : >>:a’1+a2+'”+an>0
an an
al
a
for all ( : ) # 0.
an

Let us treat another exampl&f = (12). Then

((81), (52)) = (a1 a2) (53) (32) = arbr + 2410 + Bazby + dasbs.
In general, we immediately observe the following properties:

(a) Linearity in the first variableFor ally € K™, the application
(yyvm K" > K, - (x,y)m
is K-linear, i.e., for allz1, z9 € K™ and alla € K, we have
(x1 + azxo,y)pr = (x1,y) M + alx2, y) -
(b) Linéarité dans la deuxiere variabl&or allz € K™, the application
(x, W K" = K, y—{(x,y)m
is K-linear, i.e. for ally;,y2 € K™ and alla € K, we have
(91 +ay2)m = (T, y1) M + alx, y2) -

Question: When do we have thdt, ), is symmetric, i.e.{z,y)rs = (y,x)p forall z,y € K"?
To see the answer to this question, chaese e; as thei-th canonical vector angl= e;. Then

(eiyejyn = ef* Me; = e;(j-th column of M) = i-th coeff. of (j-th column of M) = m, ;.

Hence, (e;,e;)m = (ej,e;)n impliesm; ; = m;; forall 1 < 4,5 < n, in other words,M is
symmetricM = M*"™.
Conversely, let us start from a symmetric matkik= A/**. We do a small, but elegant computation:

(@, y) i = 2" My = (a" My)" = y" M" (&) = y" Ma = (y,x)u,

where we used that'* My is a matrix of sizel, hence equal to its transpose, as well as the following
lemma:
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Lemma9.1. Let M € Mat,, ,,(K)andN € Mat,, ,(K) be matrices. Then
(M . N)tr — Ntr . Mtr.
Proof. Exercise. O

We thus obtained the equivalence:
(, ) is symmetric= M is symmetric:M = M.

Question: For K = R, when do we havér, x),, > 0 for all z € R"?

We have seen that it is the caséff is the identity and , ) is hence the canonical scalar product. We
will come back to this question later.

For the moment, let us move 6 = C. We denot& = = — iy the complex conjugate = x +iy € C

with = Re(z) andy = Im(z).

For complex numbers, it is not true tHa}._, 22 is greater than or equal t0, in fact, this is even not a
question that one may ask singeis in general not a real number, hence asking if it is greater than zero
is meaningless. On the other hand, the absolute vate= |z;|? is always real and non-negative.
Thus it is useful to change the definition in the c&Se= C:

() :C*"xC" = C, (v,y)u:=2"My

wherey is the vector obtained when applying complex conjugation on all coefficidlute that the
definition is the same as the one given befor& it= R since complex conjugation does not have an
effect on real numbers.

With M being the identity, this gives

al b1 by "
a2 b2 Do _
<<:>7 . ) =(a1 az - an) | . :Zaibi.
an y : i=1

bn b

This is once more the well-known canonical scalar product. Moreowegain

al a1
a2 a2 2 2 2

(]| ) =laal"+laz|*+-+l]an| >0
an an

Let us look the following properties:

al
az

forall [ . | #0.

(a) Linearity in the first variable:Unchanged!
(b) Sesqui-linearity in the second variableor allz € C", the application
(x, ) v K" = K, y—={(x,y)m
is sesqui-linear, i.e., for al);, y» € K™ and alla € K, we have

(z,y1 + ay2) v = (@, y1)m + alx, y2) m-
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By the same computations as above, we obtain the equivalence:

(x,y)nm = (y,z)ps forall z,y € C* <= M = M,

A matrix M such thatM = M*r is calledhermitian
For the sequel of this section we sek’ = R or K = C.

Definition 9.2. LetV be aK-vector space. An application
(,):VxV =K (v,w)— (v,w)
is calledherlitian formif for all v, vq, v9, w, w1, we € V and for alla, b € K we have
e (avy + vo,w) = a(vy,w) + (ve, w) (linearity in the first variable),

o (v,bw +w2) = b{v,w1) + (v, w2) (Sesqui-linearityn the second variable) and

o (v,w) = (w,

v)-
A hermitian form(-, -) is said to bepositiveif
v)

e YueV: (vu)>0. (Note that(v,v) = (v,v), whence(v, v) € R.)
It is said to bepositive definiteif
e VOF#veV:(vu) >0.

A hermitian positive definite form is also callegealar product
We callhermitian spacany tuple(V, (-, -)) where(-, -) is a positive definite hermitian form.

Remark 9.3. Note that forK = R the last two conditions of the definition of a hermitian form read
o (v,bwy + wa) = b(v,w1) + (v, we) (linearity in the second variable) and
e VveVVweW: (v,w) = (w,v).

We refer this to as a bilinessymmetricform.

In the literature, if K = R, one rather uses the nansiclidian spacén stead of hermitian space
(which is often reserved foK' = C). Here, to simplify the terminology, we will always speak of
hermitian spaces, evenif = R.

We have already seen the canonical scalar product®faandC". Similar definitions can also be
made in spaces of functions (of finite dimension):

Example 9.4. (a) The canonical scalar produgt, ), for M the identity is indeed a scalar product
if K =RorK =C.

(b) LetC ={f:[0,1] — R | fis continuoud} be the set of all continuous functions frotn1] to R.
It is an R-vector space for- and- defined pointwise. The application

() :CxCoR, (fg /f

is a hermitian positive definite form.
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(c) LetC = {f:[0,1] — C| f is continuous} be the set of all continuous functions frém1] to C.
It is a C-vector space for and- defined pointwise. The application

l —_—
():CxC=C ()= [ S
is a hermitian positive definite form.

Definition 9.5. Let(V, (-, -)) be a hermitiank -space.

We say thav, w € V areorthogonalb L w if (v,w) = 0. Note:v L w < w L v.

LetW < V be a subspace. We say that V andW areorthogonab | Wifv | wforallw e W.
Note:v L W < W L v (with evident defintions).

LetU < V be another subspace. We say thaand W are orthogonalU 1. W if U L w for all
weW.Note:U LW W LU.

Theorthogonal complement d¥ is defined as

Wt={veV]|vlW}

Thenorm (“length”) of v € V is defined agv| := /(v,v) and |v — w]| is said to be thelistance
betweeny andw.

Proposition 9.6. Let (V, (-, -)) be a hermitiank'-space.
(a) Forallv e V we havgv| > 0andjv| =0 < v = 0.

(b) Forallv € Vandalla € K we havela-v| = la| - |v| .
—— ~~ =~

|| inV []inK |-]inV

(c) Forallv,w € V we have(v,w)| < |v| - |w| (Cauchy-Schwarz inequalily
—— ~~ ~~

|-|in K [inV |-]inV

(d) Forallv,w € V we havev + w| < |v| + |w| (triangular inequality.
—_—— ~— =~

[-]inV [linV  ||inV

Proof. (a) Defintion.

O |a-v?*={(a-v,a-v)=a-a-
(c) 1st casew = 0. Then, (v, w) = (v,0 - w) = 0(v,w) = 0, whence(v, w)| =0 = |v| - |w|.
2nd casew # 0. Letc := % Then

w]

(v,0) = laf? - Jv]?.

0<|w? (v—rc-w,v—c-w)
= wl? - (v,0) = [w? ¢ (w,v) — w2 (v, w) + w|* c-T (w,w)

= ’w‘Q ’ ‘UP - <v,w> ’ (w,v> - (v,w) ’ <’U,U)> + <v,w> ’ (v,w> :

=|(w:w)| =0
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(d)

v+ w|* = (v+w,v +w)
= (v,v) + (v,w) + (w, v) + (w, w)
= [v]? + |w]? + (v, ) + {v,w)
= [v]* + |w|* + 2 - Re({v, w))
< o + [w]® + 2 [{v, w)|
< [of* + [wl® + 2+ o] - [w]

= (fol + fe)?.
O
Proposition 9.7 (Pythagoras)If v L w, then|v + w|? = |v]? + |w|?.
Proof. |v 4+ w|? = (v + w,v + w) = (v,v) + (w,w) = |v|* + |w|?. O

Note that any hermitian positive definite form is non-degenerate. it) = 0 for all w € W, then in
particular(v,v) = |v|> = 0, whencev = 0. The same argument also shows that 0 si (v, w) = 0
forallv e V.

Definition 9.8. Let (V,(-,-)) be a hermitianK-space andS = {s; | i € I} (with I a set, e.g.,
S={s1,...,sptif I ={1,2,...,n}).
We say that5 is anorthogonal systemif

e (s;,5;) > 0foralli c I and
o (s;,s5) =0foralli,jel,i#j.

We say thats is anorthonormal systenif (s;, s;) = d; ; pour touti, j € 1.
If S is a basis oft which is an orthogonal/orthonormal system, we speak obrinogonal/ortho-
normal basis

Example 9.9. The canonical basis &" (or of C*) is an orthonormal basis for the canonical scalar
product of Example 914.

Proposition 9.10(Gram-Schmidt Orthonormalization).et (V, (-, -)) be a hermitiank-space and
$1,82,...,8, € V K-linearly independent vectors.
Themethod of Gram-Schmidsee proof) computes the vectorsio, .. ., t, € V such that

o (t;,t;)=d;;forall 1 <4,j <nand

e (s1,89,...,8) = (t1,ta,...,t,) forall 1 < r < n (in words: the subspaces &f generated
by sy, so,...,s.and byty,ts, ..., t. are equal for alll < r < n).

Proof. We present the method of Gram-Schmidt.
Itis an induction on- = 1,2, ..., n; hence there are steps.

. S
r = 1t1 = ‘?h
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r = r + 1. By induction hypothesis we already hate. .., ¢, such that(t;,t;) = J;; forall 1 <
i,7 <rand(sy,sa,...,8) = (t1,t2,...,t).
We have to find, ;. First we define

r

Wy41 = Sp41 — Z<3r+lati>ti~
i=1

This vector satisfies forall < j < r

T

(Wry1,t5) = (Sp41 — Z<5r+17ti>tiatj>
=1
I8

= (Sp4+1,tj) — Z<<Sr+1a ti)tis tj)

=1
= (Sp41,t5) — ((Sr41, )5, 15)

= (Sr41,t5) — (Sr41,t5) - (5, 1))
-0

Since(si, s2,...,8) = (t1,t2, ..., t,), we havew, 1 & (t1,te,...,t,), hence, in particulaty, 1 #
0. This allows us to define
Wr41
t7~+1 = .
‘wr—‘rl‘
This vector clearly satisfie§,1,t;) = 6,41, foralll < i < r+1and(si,s2,...,S,S4+1) =
<t1,t2,...,t7«,t7~+1>. O

Example 9.11. We apply the method of Gram-Schmidt to the following vectors:

1 —1
S1 = ? y 82 = _3 y 83 = -3
0 -2 —6
1 5 3
surRS avec le produit scalaire canonique.
(1) Let us compute the length of:
’81‘ = \/ZI = 2.
Thus
1/2
1 1/2
tl = =851 = 102
2"\
1/2
(2) Let us now compute
1 1/2
3 1/2
-2
(s2,t1) = ( 3] 1(/)2 ) =6.

0
5 1/2
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Thus
1/2

2
%2 1/2 0

Wy = S9 — <52, t1>t1 = E -6 1(/)2 = 62 .
2 A -2

The length ofv, is

]w2] = \/ﬁ = 4.
Donc
—1/2
1 0
o = —wg = B/Q
—1/2
1/2
(3) Now compute
1 1/2
5 1/2
(53,t1><(23), 12 |) =2
3 1/2
and
1 —-1/2
3 U
(s, )= (| Z|,| /| =4
—6 —-1/2
3 1/2
Thus
B 1/2 —1/2
51 1/2 ? ) 2
w3 = S3 — <83,t1>t1 — <83,t2>t2 = _23 —2 1(/)2 —4 70/ = —44 .
—6 0 —-1/2 —4
3 1/2 1/2 0
The length otvs is
|w3| = \/6>4 = 8.
Thus
1[/)2
1 1/2
—1/2
0

Corollary 9.12. Let(V, (-, -)) be a hermitiank’-space of finite dimension (or even countable). Then,
V' has an orthonormals-basis.

Proof. Direct consequence of Gram-Schniidt 9.10. O

Corollary 9.13. Let(V, (-, -)) be a hermitian/{-space andV < V' be a subspace of finite dimension.
Letsy,...,s, € W be an orthonormalk-basis ofi/’ (which exists in view of Corollary 9.12). We
define

mw:V =W, v Z(v,si>si.
i=1
This application is calledhe orthogonal projection oW .
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(a) mw is K-linear and satisfiesyy o my = myy.
O V=Waewt.

(c) Forallv € V, we have

n

[mw ()2 =D 1w, s < [of.

=1
This isBessel's inequality

(d) Forallv € V, my(v) can be characterized as the uniquec W such thafv — w| is minimal.
The applicationryy is therefore independent from the choice of the basis.

Proof. (a) Simple computations.
(b) Letv € V. We writev = my (v) + (v — mw (v)). We clearly havery, (v) € W. Let us show that
v — my (v) € W for this it suffices to prove thaty — my (v), s;) = 0forall 1 < j < n:

n n

(v —mw(v),85) = (0,55) = (O (v, 8)80,85) = (v,85) = Y _ (v, 80) - (s, 55) = (v,8;) = (v, 55) = 0.
i=1 i=1

This gives us’ = W + W+, thus it suffices to show that the sum is direct. ket W N W=, In

particularw L w, i.e.,(w,w) = |w|?> = 0, whencew = 0.

(c) We have just seen thaty (v) L (v — mw(v)), hence by Pythagoras 9.7 we have

[0 = |mw (v) | + o — 7w (),

whence|my (v)|? < |v|2. This already proves the inequality. Let us now prove the equality:

n

2

|mw (v)]* = (mw (v (v,85)( (v, s) (85, 5k) Z] (v, 85)]

HM:

(d) We use again Pythagoflas]9.7 to obtaimnfos W

v = wf? = | (v—mw () + (T (v) = w) |* = [v = 7w (V)]? +mw (v) — w].
—_————

ewd ew indépendant dey

Thus|v — w| is minimal if and only if|my (v) — w| = 0, i.e. if and only ifw = 7y (v). O

10 Normal, adjoint, self-adjoint operators and isometries
Goals:
e Master the concepts of normal, adjoint and self-adjoint operators;
e master the notion of isometry and the notions of unitary and orthogonal matrix;

e know the fundamental properties of normal and self-adjoint operatareisometries;



76 10 NORMAL, ADJOINT, SELF-ADJOINT OPERATORS AND ISOMETRIES

e be able to decide whether these notions are satisfied;
e know examples and be able to prove simple properties.

We continue withKX' € {R, C}. In this section, we are interested in the question when in a hermitian
space, a linear application is “ compatible” with the scalar product; more pigcige would like to
compare

(Mv,w),(Mv, Mw), (v, Mw), and{v, w)

wherelM is a matrix ancv, w are vectors.

This will lead us to symmetric, hermitian, orthogonal, unitary matrices and isomeatvisvill prove
later that any symmetric matrix with real coefficients is diagonalizable, and@esions of this.
We make/recall the following definitions:

Definition 10.1. (a) We callsymmetric matrixor self-adjoint matrixany matrix\M/ € Mat,,x,(R)
such thatM/t* = M.

(b) We callhermitian matrixor self-adjoint matrixany matrix\/ € Mat,, ., (C) such thatV/® = M.

Note that a symmetric matrix is hothing but a hermitian matrix with real coeffisie
(c) We callorthogonal matri>or isometryany matrixM € Mat,,»,(R) such thatM* M = id.

(d) We callunitary matrixor isometryany matrixM € Mat,,»,,(C) such thatM ™M = id.

Note that an orthogonal matrix is nothing but a unitary matrix with real cogfits.

Definition 10.2. We define the following matrix groups where the multiplication law is the composi-
tion of matrices:

(@) GL,(K) ={M € Mat,x,(K) | det(M) # 0}, thegeneral linear groupver K,
(b) SL,,(K) = {M € Mat,,«xn(K) | det(M) = 1}, thespecial linear groupver K,
(€) O, = {M € GL,(R) | M** M = id}, theorthogonal group

(d) SO,, = {M € SL,(R) | M* M = id}, thespecial orthogonal groyp

(e) U, = {M € GL,(C) | M"*M = id}, theunitary group

(f) SU,, = {M € SL,(C) | M*™M = id}, thespecial unitary group

Lemma 10.3. Let M € Mat,,«,,(K) be a square matrix.

(a) The following statements are equivalent:

() M is self-adjoint.
(i) Forall v,w € K™ we havew™ MY"w = v Mw.

Note that in terms of scalar product, this statement can be rewritten as follows
(Mv,w) = (v, Mw).
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(b) The following statements are equivalent:

(i) M is anisometry.

(i) Forall v,w € K™ we havew™ M Mw = v"w.
Note that in terms of scalar product, this statement can be rewritten as follows
(Mv, Mw) = (v, w).

Proof. We have proved part (a) in the beginning of secfibn 9. The proof af(bars obtained using
exactly the same arguments. More precisely, it is immediate in view of the forfidlée; = m; ;
for any square matrid/ = (m; ;). O

It is very easy to provide examples of symmetric or hermitian matrices (chobieagy real coeffi-
cients on the diagonal, write arbitrary real coefficients (or complew,rt#ipg on the situation) in the
part below the main diagonal, fill the part above the main diagonal with thesmonding values).

Lemma 10.4. Let M € Mat,,«,,(K) be a square matrix. The following statements are equivalent:
() M is anisometry (i.e. unitary or orthogonal);

(ii) the columns of\/ form an orthonormal basis dk™ (for the canonical scalar product);

(i) the rows of M form an orthonormal basis d&k™ (for the canonical scalar product).

Proof. By the definition of the multiplication of two matrices, statement (ii) is precisely thaldgu
M™M = id, hence (i). Statement (iii) is statement (ii) fot the mathi®*. Thus the equivalence
between (iii) and (i) is the same as the equivalence

MYM =id & MMt = id.

Since in groups inverses are unique, the equality on the left hand sidailsleqt toM/ M = id,
and it suffices to apply complex conjugation to obtain the equality in the rightt biale. O

Lemma 10.5. We have

sin(a) cos(a) sin(a) — cos(a)

02 _ {(cos((a)) —sin(a)) c GLQ(R) | 0<a< 27‘(} U {(cos((a) sin(a) ) c GLQ(R) | 0<a< 271.}

Proof. First note that thé// = (COS("‘) _Sin(")) is orthogonal:

sin(a) cos(a)

MYM = < cos(a) sin(a)) (cos(a) —sin(a)) _ (cos2(a)+sin2(a) 0 ) —

0
—sin(a) cos(a) sin(a) cos(a) 0 cos?(a)+sin? (o) 1> ’

O

cos(aw) sin(a)

: ) is similar.
sin(a) — cos(a)
LetnowM = (2 %) be an orthogonal matrix, i.e.

The computation for the matri<<

T 24+¢2 abtcd
MUM = (35) (25) = (Giaiid) = 3.
From the equalitiea® + ¢ = 1 andb? + d? = 1, we obtaind < «, 8 < 27 such that

a = cos(a), ¢ = sin(a), d = cos(B), b = sin(f).
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The equalityad + cd = 0 hence gives
0 = cos(a) sin(B) + sin(a) cos(f) = sin(a + 3).

From this we conclude
a+pB=mn

for somem < Z. If mis even, we find:
cos(f) = cos(m — ) = cos(m) cos(a) + sin(m) sin(a) = cos(«)

and
sin() = sin(m — a)) = sin(m) cos(a) — cos(m) sin(a) = — sin(«)
which gives
ab\ _ [ cos(a) —sin(a)
(C d) - (sin(a) cos(a) ) ’

If m is odd, we find:

cos(f) = cos(m — «) = cos(m) cos(a) + sin(m) sin(a) = — cos(«)
and
sin(f) = sin(m — a) = sin(m) cos(«) — cos(m) sin(a) = + sin(«)
which gives
ab) _ [ cos(a) sin(a)
(c d) - (sin(a) —cos(a)) )
as desired. O

We now change the view point: in stead of matrices, we consider linear ajglishetween hermitian
spaces.

Proposition 10.6. LetV and W be two hermitian/’-spaces of dimensiomsandm and lety : V' —
W be aK-linear application.

(@) There exists a uniquk-linear applicationy®d : W — V such that for ally € V and allw € W
(p(v), w) = (v, o™ (w)).

Note that the scalar product on the left is the one fidfm and the scalar product on the right is
the one fromV/.

The applicationy?? is calledthe adjoint ofy.

(b) LetS be an orthonormal-basis ofl” andT be an orthonormak -basis ofi’. Then

Mg (™) = My (o)t

(the matrix obtained from the transpose by complex conjugation).

If M is a matrix, we denoté/? the matrix " = M and call it theadjoint matrix Thus
Mg r(p*?) is the adjoint matrix of\/1 s ().



79

Proof. LetS = sq,...,s, andT = t4,...,t,, be the two orthonormal basis. Let

Mrs(p) = (aij)i<i<m,1<j<n,

i.e. p(si) = Y0, arite. We will take (b) as definition ofsd: it is the K-linear application
represented by/r s()™. Concertely, we have®(t;) = S"1_, ajxsk.

We first verify:
m m
(p(si),t5) = (Z g itks tj) = Zak,i<tk7tj> = aj;
k=1 =1
m m
(si, 0™ (1)) = (s, > Tise) = Y _ ajw(si, sk) = ajg
k=1 k=1

We can now obtain (a) by linearity: let= """ , b;s; andw = Y

(p( Zb si),
szw 32
- sz-Zcmo(s ),t)
=1 j=1
= Z@Z@KSMO

i=1 =1

Zb SszCM (t5))

7=1

= <Z bisi, 0™ (D city)
i_1 =
= (v, " (w)).

For the uniqueness gf*4, write *(¢;) = >_7_, d jsk, and compute

i1 ¢itj; we have

CJ t;)

aji = (p(si),ty) = (50, (1)) = (50, Y dijsi) = D dij(si, s) = dij.
k=1 k=1

We thus obtaini; ; = a;;, the uniqueness. O

Note that if K = R, the adjoint of a matird/ is the transpose.

Proposition 10.7. LetU, V, W be hermitiank -spcaes of finite dimensions and 2% vV 2 W be
K-linear applications. Then:

(a) id = idy,
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(0) (0 + )™ = ! + 4,

(€) Vz € K : (zp)2 = 7],

(d) (nop)*! =p*ondand

(@) (p*)* = .

The same statements hold for matrices.

Proof. The statements for matrices are easily verified. The only point where @uks e be careful
is (M o N)® = N o M, itis LemmgQ.lL. O

Definition 10.8. Let V' be a hermitiank’-space of finite dimension and let: V' — V be a K-
endomorphism.
We say that is self-adjointif ¢ = 9,

In view of Propositio 1016, we thus have
@ is self-adjoint & Mg s(y) is self-adjoint,

for an orthonormal basiS of V.
For the proof of the next proposition, we need a small lemma.

Lemma 10.9. Let(V, (,)) be a hermitian space. ThenufL V forv € V, thenv = 0.

Proof. If v L V, we have in particular L v, whence) = (v,v) = |v|*> which impliesv = 0. O

Proposition 10.10. Let V' be a hermitianK-space of finite dimension and let: V' — V be a
K-endomorphism.

(a) The following statements are equivalent.

(i) ¢ is self-adjoint (p = ©*d).

(i) (v,w), = (p(v),w) forv e Vandw € V is a hermitian form.
(b) If pis self-adjointthenyy =0 < Yo e V: (v,v), =0.

Proof. (a) It is always true (even ip is not self-adjoint) that:, -),, is linear in the first variable and
sesquilinear in the second. One therefore has to check the third prop#réydefinition of hermitian
forms[9.2. Let, w € V. First we do the computation

(v, w)p = (p(v),w) = (v, p*d(w)) = (P*(w), v) = (W, V) yaa.

We thus have
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by Lemmd_10.B.
(b) If o = 0, it follows trivially that

(v,v)p = (p(v),v) = (0,v) = 0.
Suppose now thaw, v), = 0 forallv € V. Letv,w € V anda € K. We compute

0= (v+aw,v+ aw),

=a{p(v),w) + al{p(w),v)
=a(p(v),w) + a(w, ¢(v))
= a(p(v), w) + af

With ¢ = 1, we obtain) = Re((¢(v), w)), and witha = i we find0 = Im({y(v), w)). Consequently,
we have foralb,w € V

0 = (p(v), w).
For allv € V, we thus findp(v) L V, whence the desired resylfv) = 0 by Lemmd 10.0. O

If one applies the previous proposition with, for a square matrid/, we find back the result of the
discussion in the beginning if sectibh 9. Then:

(@) M = M < M is self-adjoints (v, w) — v'" Aw is a hermitian form.
(b) If M is self-adjoint, thenM =0 < Vv € K" : v Mv = 0.
We now introduce the applications that preserve lengths: the “ isometries”.

Definition 10.11. Let V' be a hermitian space. We cédlometryany ¢ € Endg (V') such that for all
veV

[p(v)] = [ol.

Lemma 10.12.Let V' be a hermitian space and let € Endx (V). The following statements are
equivalent:

(i) ¢ isanisometry.
(i) ¢*d oy =idy (in particular, ¢ is an isomorphism).
(i) Forall v,w € W: (p(v), p(w)) = (v, w).

Proof. “(i) = (ii)”: We have for allv € V:

(0,0) = (p(v), p(v)) = (v, ™ (p(v))),
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hence
(v, (™ o p —idy)(v)) = 0 et, alors,((¢* o p — idy ) (v),v) = 0.
Note thaty®d o ¢ — idy is self-adjoint, thus Propositidn 10]10(b) implies that o ¢ — idy = 0,
whencep? o ¢ — idy.
“(i) = (iii)": Let v,w € V, then
(p(v), p(w)) = (v,0™(p(w))) = (v, w).

“(iii) = (i)": Let v € V. Then,

By this lemma, we have
@ is an isometry< Mg s(p) is an isometry (i.e. orthogonal or unitary)

for an orthonormal basiS of V.

Until now we always considered two types of endomorphisms/matricesagjelint and isometries.
We would like to treat some of their properties in parallel. We thus look for a camgeaeralization.
Normal operators are such a generalization. We first give the definitiati metric’way

Definition 10.13. Let V' be a hermitian space. We calbrmal operatoany ¢ € Endg (V') such that
forallveV

|o(v)] = [ (v)]-
Example 10.14. e If ¢ is self-adjoint, we have?! = o, whencey is normal.
e If ¢ is an isometry, we have thatis an isometry and*! = =1, As|p(v)| = |v| we find
l?d(v)] = |~ (V)] = |v], is normal.

Proposition 10.15.Let V' be a hermitian space and let € Endx (V). The following statements are
equivalent:

(i) ¢ is normal.

(i) ¢ op=pop

Proof. First we compute

o) = [* (W) * = (p(v), 0(v)) — (¢} (v), " (v))
= (p(v), (¢*))*(v)) — (™ (v), ¢} (v))
= (¢™ 0 9(v),v) = (p 0™ (v),v)

= ((¢* 0o — o ©*!)(v),v).

Note thaty o ¢4 — 24 o ¢ is self-adjoint. Consequently, (Proposifon 10.10(b)) we have

(Vo eV :fp)]? = 0™ (v)]?) & ¢* o =pop
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In terms of matrices, we thus have:

——tr def|n|t|on

pis normal <= MM = MM M is normal

whereM = Mg s(¢) for an orthonormal basiS of V.

Lemma 10.16.Let V' be a hermitian space and let € Endx (V) be normal. Letz € Spec(y) be
an eigenvalue op.

(@) Eo(a) = E u(a).

(b) If ¢ is self-adjoint, them € R.
(c) If pis anisometry, thefu| = 1
Proof. (a) We first prove thakter(¢) = ker(¢?4) for any normal operator. Let ¢ V, then,

déf. normallte| ad

v e ker(p) & p(v) =04 |p(v)| =0 (v)] =0 & ¢™(v) =0 < v € ker(p™).

Now putiy := ¢ — a - idy. This is also a normal operator:

o™ = (p—aidy)o(p—aidy)™ = (p—aidy)o(p™—a-idy) = pop™—a-¢*—a-p+a-aidy
= ocp—a-goad—a-go-i-a'a'idvz ((p—a-idv)ado(go—a'idv) :@Dadoq/).

The previous computation gives us

E,(a) = ker(p — a-idy) = ker(¢)) = ker(¢*) = ker(¢p™ — @ -idy) = E aa(a).

(b) For allv € E,(a) we havev € E,(a), hencen - v = p(v) = ¢*(v) = @ - v, thatis,a = @ and
consequently, € R.

(c) Forallv € E,(a) we havev = o1 (p(v)) = ¢ Ha-v) =a- ¢ (v)=a-a-v=|a* v

whencela|? = 1. O

Example 10.17.This example gives us an idea of the spectral theorem.
(a) Firstly we continue the analysis 6% of Lemma10]5.

(1) LetM = (C."S(a) _Sm(o‘)>. Its characteristic polynomial is

sin(a) cos(a)
(X — cos(a))? +sin*(a) = X? — 2cos(a) X + 1

whose discriminant ig cos? (o) — 4 < 0 with equality if and only if cos(«)| = 1, if and only

if « € 7.

Consequently, ife € wZ, thenM has no eigenvalue and is therefore not diagonalizable. This
is also geometrically clear sinck/ represents the rotation by angtethat does not fix any
vector unless the angle is a multiplemaf

If o is an even multiple of, thenM = id. If « is an odd multiple ofr, thenM = —id.
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(2) LetM = (Cos(a) sin(a) ) Its characteristic polynomial is

sin(a) — cos(a)
X2 — cos?(a) —sin®(a) = X2 -1 = (X — 1)(X +1).

The matirx)M is thus diagonalizable with eigenvalued and1.
Geometrically, it is a reflexion by one axis (eigenvector for eigenvBjue

(b) LetM € Matsx3(R) be an orthogonal matrix. Its characteristic polynomial is monic of degree

and has therefore a real root;. By Lemma_10.16, this root is eithéror —1. There is thus an
eigenvecton; for the eigenvalue\;. We can normalize it such that;| = 1.

By Gram-Schmidt, we can find vectess v such that, vo, v3 form an orthonormal basis @&3.
Moreover, sinceV/ is an isometry, foi = 1, 2, we have

0= <Ui,’U1> = <MU¢,M’01> = )\1<M’U¢,U1>.

This means that/ sends the subspad® < R? generated by, vs into itself.

If one writes the vectors, , v2, v3 as columns in a matrig’ (which is orthogonal'), we thus obtain

A 0 0
CY"MC =0 a b
0 ¢ d

The matrixA := (¢ }) is orthogonal and belongs 0.

If det(A) = det(M)/A = 1, we have thatd = (ZTS&? ;2;?&3”) for some0 < o < 2m. If
det(A) = —1, we can find a basis, w3 of W consisting of normalized eigenvectofay| = 1
for i = 2, 3 for the eigenvalue$, —1. Consequentlyy, wo, w3 is an orthonormal basis d&3. If

D is the (orthogonal!) matrix whose columns are these vectors, we finally ha

M 0O 0
DYMD=|0 1 0
0 -1

for Ay € {1, —-1}.

11 Spectral Theorem

Goals:

e Know the spectral theorems;
e be able to compute the diagonalization of normal complex matrices, adjoint matrices
e be able to compute the normal form of orthonormal matrices;

e know examples and be able to prove simple properties.
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Let V be a hermitian space and [t/ < V be two vector subspaces. We write DW for U + W
if the sum is directly @ W) and the two subspaces are orthogonall( ).

Lemma 11.1. Let V be a hermitian space angg € Endg (V) normal. Then, for all distinct
ai,...,an € Spec(p), we have

Ey(a1) + Ey(az) + -+ Egy(an) = Ey(ar) OEy(a2) O - DEy(an).

Proof. In Lemmd 3.1D wa have already seen that the sum of eigenspaces is dit€c# b € E,(a;)
and0 # w € Ey(aj) with i # j (i.e. w € E.a(a;) by Lemmd 10.16). We have

<90('U)7w> = <aiv,w> = ai<vvw>7

but also
(p(v),w) = (v, " (w)) = (v,G5w) = a;{v,w),

whence(v, w) = 0. O

We first prove the spectral theorem for normal operators with complefficents. The reason for
this is that in this case we have the following theorem.

Theorem 11.2(Fundamental Theorem of Algebrainy polynomialf € C[X] of degree> 1 has a
zero.

Proof. Analysis Course. O]

Theorem 11.3(Spectral Theorem for normal operatorgpet V' be a hermitianC-space of finite di-
mension ang € Endg (V). The following statements are equivalent:

(i) ¢ is normal.
(i) V =Daespec(p) Ep(a) (in particular, ¢ is diagonalizable).
(i) V has an orthonormal basis consisting of eigenvectorsgfor

Proof. “(i) = (ii)": We have already seen that’ := @aESpec(go) E,(a) is a subspace of" and
we know that the sum is orthogonal by Lemma 11.1. Corollary]9.13(b) yiekl®xistence of on
orthogonal complemerit = W @ W+. The aim is to showV’* = 0.
Lemma[10.16 implies thalt’ = @, cspec(,) Epma (@), Wwhencep® (W) C W. Let nowwv € W,
Then for allw € W,

(p(v), w) = (v, 6" (w)) =0,

showing thatp(v) € W+L. Hence we can restrict to W+, Let f = charpoly, € C[X]
be a characteristic polynomial. Assume th&t- # 0, so thatdeg(f) > 1. By the Fundamental
Theorem of Algebra 1112, this polynomial has a zere C. SincecharpolymwL | charpoly,, we
find z € Spec(y), whencelV- N W = 0, leading to a contradiction. Therefoié,- = 0, as desired.
“(if) = (iii)”: It suffices to choose an orthonormal basis of ed¢(a) and take the union; we will
then automatically have an orthonormal basi¥’dfecause the eigenspaces are orthogonal.
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“(ii) = (i) Let S = s1,...,s, be an orthonormal basis &f consisting of eigenvectors. Let be
the eigenvalue associatedd¢o(we do not require that the’s are two by two distinct). Thus we have
©(si) = a; - s;. Letl < j < n. We have
(55,0 (50) = @isi) = (55,94 (s0)) — (55, Tass) = (p(s5), 50) — ai(s, si) = (a; — ai)(sj, 51) = 0.
Therefore(p®(s;) — @;s;) L V, whencep®d(s;) = @; - s;. The computation
P(e™(s1)) = (@i - si) = @ - p(s:) = T - a; - s
(1) = *™Ya; - 55) = ai - ™ (s:) = a; - @ - 54,
implies p o ¢4 = x?*d 6 ¢, the normality ofp. O
Let us now provide the translation in terms of matrices of the spectral thébien
Corollary 11.4. Let M € Mat,,»,,(C) be a matrix. Then the following statements are equivalent:
(i) M isnormal,i.e M- M = M -M".
(i) There exists ainitarymatrix C' € Mat,, »,,(C) such thatC"" - M - C'is a diagonal matrix.

Proof. “(i) = (ii)": Let ¢ = ¢y be the endomorphism @f" such thatMs s(¢) = M whereS is the
canonical basis (which is orthonormal for the canonical scalar ptd&y Proposition 10.6 we have
M = Mg s(p*?). Therefore the hypothesis thaf is normal translates the fact thats normal. We
use Theorerm 1113 to obtain an orthonormal bdsef eigenvectors. Thué‘S‘E,, - Mg s(p)-Csr =
Mr (p) is a diagonal matrix. Recall now that the columns’bf= Cs 1 are the vectors of basi.
SinceT is orthonormal for the canonical scalar product, we haves" = id,, and the statement is
proven.

“iiy = (i): Let c" - M-C = diag(ay,...,a,), be the diagonal matrix having, ..., a, on the
diagonal. First notice that

tr

(C"-MC) =C"-M"-C = diag(a, ..., an).
Since diagonal matrices commute, we find

—tr tr —tr —tr ——=tr —tr —tr ——=tr
(c-mMC) -(C"-MC)=C"-M -C-C"-MC=C"-M" -MC
—~r —~r tr —ir —~Ur—-1Ur —ir vl
=" -MmMC)-(C"-MC) =C" - M-Cc.C"MT.c=C"-M-M"-C,

thusM" - M = M - M. O
Lemma 11.5. Let M € Mat,,«,,(R) be a matrix which we consider @i
(a) Forall 4 € Candallv € C™ we have the equivalence:c Ey(u) < v € Ey(fi).
(b) For i € C we have the equivalencg: € Spec(M) <= T € Spec(M).

(c) Foru € R, the eigenspac&;; (1) C C™ has a basis iR".



87

(d) Letu € Spec(M) such that, € C\ Rand letv € Ey(p) such thafv| = 1.
Setr := 5 (v +7),y = ;5(v —7) € En(p) & Eu (7).
Then|z| =1,|y| =1,z Ly, Mz = Re(p) - * — Im(p) - y and My = Re(p) - y + Im(p) - .

Proof. (a) We observeMv = - v <= Mv = Mv = i-v = i - v which implies the result. (b) is
a direct consequence of (a).

(c) It suffices to show thak,;(x) admits a system of generatorsit. Letwv,...,v, € C" be a
C-basis of Ejr(p). Setx; = Re(vj) andy; = Im(v;) for j = 1,...,r. These vectors belong to
En(p) since so does; for all j. Sincev; = z; + iy;, the vectorsey, ..., 2, y1,...,y, generate
En(p).

(d) First observe that | v sinceEy(u) L Eyn (@) asp # . We have

1
V2

1

2|2 = (z,2) = (—=)* (v + 0,0 +T) = §(<v,v> + (7,7) + (v,0) + (5,1})) =1.

The calculation ofy| is similar:
(v —T,0 —T) =

yl* = (v, y) = ( ((v,v) + (B,D) — (v,0) — (B,0)) = 1.

%\H
[\
N | =

We also have:
(z,1) = %@ 70— T) = %((v,v} @, + (B,0) — (0,)) = 0.

Let us now compute the action &f:

M = 2= (Mo -+ MD) = (a0 +7) = == ((u + Do +7) + (= 1) (v = 7))
= S(ut ) — - (u Wy = Re) - & — (1) -y

My = (Mo = M) = (= 70) = 2= ((u+ 7)o = 7) + (1= 7) (v +7)
= S(ut My + o (4~ e = Re(u) -y + Tm(y) - .

Corollary 11.6. Let M € Mat,,«,(R) be a normal matrix, i.eM** - M = M - M,
LetAy, ..., A\r, f1ye s

Lsy BTy - -, s fOrm = r+2sandXAq, ..., A\, € Randuy,..., us € C\R be the diagonal coefficients
of the matrix of Corollary 11J4. We sat = Re(u;) and8; = Im(p;) for1 <i < s.
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Then, there exists aorthogonaimatrix C' € Mat,, ., (R) such that

A 0 0 O O O 0 0 0 o0
0O X 0O O O 0 0 O

[an)
)

0 0 0

y 0 0 a, B 0 0 0 0
Ch-M-C=1 0 -8, a1 0 0 0 0
0 0 0 0 0 0

0 0 0 0 . . 0 0

0 0 0 0 0 0 a5 B

0 0 0 0 0 0 —B a

Proof. In view of Corollary(11.4 and Lemnia11.5, we have an orthonormal basis
wy, w2, ... ,wT,Ul,Tl,UQ,@, .. 'rUs;Uis
of C™ consisting of eigenvectors for the eigenvalues

)\13>\27'~'a)\T‘vljllam,,u27Wa”'7//Jsvm

wheren = r + 2s and the propertyy; € R” for 1 < i < r is satisfied. As in the lemma, set
zj = J5(vj +75) ety; = =5 (v; = 7).

Then,wy, wo, ..., wr, 1, Y1, T2, Y2, .. ., Ls, Ys fOrm an orthonormal basis @&". If this orthonormal
basis is written in the columns @f (which is then orthogonal), thefi—' M C has the desired form.
This follows from the computations in Lemrha1/1.5. O

Remark 11.7. Let M € Mat,,«,(K) for K € {R,C}. To compute the matrig' of corollaries[11.4
and[11.6, we can use the techniques that we already studied. We paxésibws:

(1) Compute the characteristic polynomial.
(2) Compute the eigenvalues@h(as roots of the characteristic polynomial).
(3) If M € Maty,xn(C), for all a € Spec(M ), compute &-basis ofEys(a).

(4) If M € Mat,xn(R), for all a € Spec(M) real, compute arR-basis of Ej/(a), and for all
a € Spec(M) not real, compute &-basis ofE,(a).

(5) Using Gram-Schmidt, compute an orthonormal basi&'gf(a) (on R if the original basis is on
R) for all @ € Spec(M).
Note that ifa € C\ R and M € Mat,,»,(R), then we obtain an orthonormal basis B, (a) by
applying complex conjugation to the orthonormal basi€gf ().

(6) If M € Mat,«,(C), write the vectors of the orthonormal bases as columns of the ni@trix
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(7) If M € Mat,x,(R), arrange the eigenvalues 8f (seen as matrix with complex coefficients) as
follows: first the real eigenvalues, . .., A, thenuy, ..., us, i1, ..., s € C\ R.

For each vectow of the orthonormal basis of a proper spa€g, (u;) foralli = 1, ..., s, compute
the vectorse, y as in Corollary[11.6 and obtain an orthonormal basis with real coefficierfits
En (i) © En (1)

Write the vectors of the real orthonormal basisof;(\;) fori = 1,...,r and of Eps(u;) ®
E(1r;) as columns of the matrik'.

Example 11.8. Let us treat a concrete example for a symmetric matrix. Let

14 38 —40
M=138 71 20
—40 20 5

Its characteristic polynomial i§X + 45)(X — 45)(X — 90).
Let us compute the eigenspaces:

59 38 —40 2
Ep(—45) =ker | 38 116 20 | = (| -1]),

—40 20 50 2

—31 38 —40 4
Eyv(45) =ker | 38 26 20 | =(|-2])

—40 20 —40 -5

and

—-76 38 —40 1
Ey(90) =ker | 38 —19 20 | =(|2|).

—40 20 -85 0

These vectors are already orthogonal by Lenima]11.1. One can easilly . Thus, it suffices to
normalize them and to write them as columns of a matrix:

2 4 1
3 3v5 V5

Cc=|=t =2 2
3 3V3 V5
2 =5
3 3

By construction(' is orthogonal, which can also be checked by a direct computation. Wandhta
construction (to check by computation):

—45 0 0
CYMC=1| 0 45 0
0 0 90

We can now state a stronger resulpifs self-adjoint.

Corollary 11.9. Let K € {R,C}. LetM € Mat,«,(K) be a matrix. Then the following statements
are equivalent:
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() M is self-adjoint (symmetric/hermitian).

(i) There exists an isometry (unitary/orthogonal matriX)c Mat,,«, (K) such that0'"" - M - C =
diag(ai,...,a,)withay,...,a, € R.

Proof. “(i) = (ii)": Since M is self-adjoint, itis normal. We can thus apply Corollary 11.6. Moreover,
we obtainr = n ands = 0 in the notation of the corollary, sin@ec(M) C R by Lemm&10.16.

“(if) = (i) Let c" - M-C = diag(ai, ..., a,), the diagonal matrix withu,,...,a, € R on the
diagonal. Taking the adjoint on both sides, we have- M - C = C" - M"" - C since the diagonal
matrix is invariant. Thereforel/ = . O

Corollary 11.10. Let K € {R,C}. LetV be a hermitianK-space of finite dimension and €
Endg (V). Then the following statements are equivalent:

(i) ¢ is self-adjoint.
(i) V =Daespec(p) Ep(a) (in particular, ¢ is diagonalizable) andpec(y) C R.
(i) V has an orthonormal basis consisting of eigenvectors for the real eddiges of.o.

Proof. We will deduce this theorem from Corolldry 111.9. For this ddie an orthonormal basis ®f.
Then,y is normal/self-adjoint if and only if\/ := Mg s(¢) is normal/self-adjoint (this comes from
Propositio 10.6).

“(i) = (ii)": It suffices to apply Corollary 11]9 to the matrix/.

“(ii)y = (iii)": It suffices once again to choose an orthonormal basis in eacimsjzee.

“(iii) = (i)": Let T be the orthonormal basis in the hypothesis. Cdbe the matrix whose columns
are the vectors of the basis. Then,@tr - Mg s(p) - C is diagonal with real coefficients, hence
Corollary[11.9 tells us that/s () is self-adjoint, therp I'est aussi. O

Corollary 11.11. (a) LetM € Mat,«,(C) be an isometry. Then there existsigitary matrix C' €
Maty, x»(C) such thatC" MC'is diagonal and all the coefficients on the diagonal have absolute
valuel.

(b) LetM € Mat,x,(R) be an isometry. Then there exists@thogonalmatrix C' € Mat,,xn(R)

such that
A 0 0 O 0 0 0 O 0 0
0 X 0 O 0 0 0 0 0 0
0 0 A 0 0 0 O 0 0
0 0 cos(ay) sin(ag) 0 O 0 0
C"- M -C= .
0 0 —sin(ag) cos(ag) 0 O 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 cos(as) sin(as)
0 0 0 0 0 0 —sin(as) cos(as)

where, ..., A\, € {-1,1}.
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Proof. (a) This is an immediate consequence of Corollary|11.4 and of Ldmmal 10.16.
(b) This follows from Corollary 1116 and from Lemrha 10.16 sincefor C with absolute valué
we haveRe(z) = cos(a) andIm(z) = sin(«) if one writesz = exp(ia). O

Part (b) is a generalization of Example 10.17.

Corollary 11.12. Let K € {R,C}. LetV be a hermitiank -space of finite dimension and let e
Endg (V') be an isometry.

(i) If K = C, then there exists an orthonorm@tbasisS of V' such thatMs s () is diagonal and
all the coefficients on the diagonal have absolute value

(i) If K =R, then there exists an orthonorm@tbasisS of V' such thatMg s(¢) is as in part (b)
of Corollary[11.11.

Proof. Its the translation of Corollafy I1.11 in the case of endomorphisms. O

Definition 11.13. (a) LetV be a hermitiank -space of finite dimension and lete Endx (V') au-
toadjoint. One says thap is positive (positive definitejf the hermitian form(, ), of Proposi-
tion[10.10 is positive (positive definite).

(b) LetM € Mat,«,(K) be an autoadjoint (symmetric (f = R) or hermitian (if X' = C)) matrix.
One says thad/ is positive (positive definitelf the hermitian formv, w) s := v™ Mw is positive
(positive definite).

Lemma 11.14.Let V be a hermitianK -space of finite dimension with orthonormal baSisnd let
¢ € Endg (V') be self-adjoint. Then:

(a) ¢ is positive (positive definite}= Mg () is positive (positive definite).

(b) ¢ is positive<=> Spec(p) C R>o.

(c) ¢ is positive definite—> Spec(¢) C Rxo.

Proof. Exercise. O]

Lemma 11.15.Let M € Mat,«,(K) be a positive and self-adjoint matrix (symmetricKif= R) or
hermitian (if K = C)). Then there exists a positive matik € Mat,, (K ) such thatN? = M and
NM = M N. Moreover,M is positive definite if and only iV is.

Proof. Exercise. O

Theorem 11.16(Décomposition polaire)Let V' be a hermitiank -space of finite dimension and let
¢ € Endg (V') be an isomorphism (i.e. an invertible endomorphism).

Then there exists a unique autoadjoint and positivec Endx (V) and a unique isomerty €
Endg (V') such thatp = y o 1.
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Proof. Existence:By one of the exercises;®! is also an isomorphism. Define the isomorphism
0 := ¢ o . Itis self-adjoint:

ad ) ad ad

= (p™ 0 ) = ™o (o)

1=y op=9,
henceSpec(f) C R by Lemmd 10.16. Let us now show that it is positive definite:
(v,0)0 = (B(v),0) = (™ (p(v)),v) = {p(v), p(v)) = |(v)|* > 0

forall 0 # v € V. Therefore, by Lemma_11.1L5 there exists positive definite End i (V') such that
? = 0. Puty := p o yp~L. To finish the proof of existence it suffices to prove thas an isomerty:

Xfl:wogofl:1/}7101#20%071:1#710008071
:w_lo@ado(;oo@_l:¢_lo¢ad:(¢0¢_l)adzxad

where we usedy )24 = (y2)~1 = ~1 asy is self-adjoint.
UniquenessAssume thatp = x1 o 91 = x2 o 1y for isometriesyy, xo and self-adjoint positive
definite isomorphisms, 1». We obtain

Xzt oxi =0yt = B.

On the left hand side we have an isometry and on the right hand side alg@iftgositive definite
endomorphism. Thus there exists an orthonormal héisssich thatMs ¢(/5) is diagonal, and the
coefficients on the diagonal are positive reals (sifiig positive self-adjoint) and of absolute value
(sinceg is an isometry). It is therefore the identity,= id, whencex; = x2 ety = 1s. Ol

12 Quadrics

Goals:
e Be able to do simultaneous operations on rows and columns;

e know the link with elementary matrices;

be able to compute a diagonal matrix using simultaneous operations on rowslanuhs;

know the definition of quadrics;

know the definition of equivalence of quadrics;

know the classification of quadrics;

be able to compute the type in the classification for a given quadric;

know examples and be able to prove simple properties.
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Simultanoeus operations on rows and columns

We go back to the study of elementary operations (Gauf3 algorithm) on ralxamns (see Defini-
tion[1.39 and the following), except that we now do simultaneous operatiotieaows and columns,
i.e. any operation that is done on the rows has to be done on the columnstaoestBnce, if we add
the third row to the fifth, then we also have to add the third column to the fifth coldrma.advan-

tage is that a symmetric matrix will stay symmetric. Along with Lenimal1.40, we have th&info

lemma.

Lemma12.1.Let)A € K,i,j,n € Nyg, i # jand M € Mat,,xn (K).

() P“M P; ; is the matrix that is obtained from/ by interchanging thé-th row with j-th row and
thez th cqumn with theg-th column.

(b) S;(N)MS;(N) is the matrix that is obtained from/ by multiplying thei-th row and thei-th
column byA. In particular, the coefficient ai, i) is multiplied byA2.

(€) Qi ;j(N)MQ; () is the matrix that is obtained from/ by adding\ times thei-th row to the
j-th row, andX times thei-th column to thej-th column.

Proof. Il suffices to use LemmiaT.40. O
1 2 3

Example 12.2.LetM = |2 4 5
3 5 6

we do the operations on the rows and columns (only on the right half). & the left half only

if we want a real matrixC' such thatC M C* (Be careful: in the above considerations, we had the

transpose at the left, here it is at the right) coincides with the matrix obtaineddmgfisrming the

rows and columns simultaneously.

. Itis a symmetric matrix. We write the augmented matrix and

10 0 1 0 0 1 0 0 1 0 0
-3 0 1/V3 0 —/3 0 |—=|[-v3 0 1//3 0 -1 0
-3 V3 —-1/V/3 0 0 1

100123 1 0012 3 1 001 0 3
010245[=|-21000-1|—]-2100 0 -1
001356 0 0135 6 0 013 -1 6
1 001 0 3 1 001 0 0
-2 100 0 -1|~|-2100 0 -1
-3 010 -1 -3 3010 -1 -3
1 001 0 0 1 001 0 0
—»|1-3010 -1 -3|—=]|-3010 -3 -1
2100 0 -1 2100 -1 0
1 0 0 1 0 0 1 0 0 1 0 0
—»|-30 1 0 -3 -1|—=[-30 1 0 -3 0
-1 1 -1/3 0 0 1/3 -11 -1/3 0 0 1/3

-3 V3 -1/¥3 0 0 1/V3
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Note that the—1 in the middle of the right half cannot be transformed ifitsince one can only mul-

1 0 0
tiply/divide by squares. L&t be the left half of the final matrix0 = [ —v/3 0 1/v/3 |. The
V3 VB —1/V3

right half is the matrix obtained by simultaneous operations on the rowsealndns. By Lemmia12.1,
we have the following equality (to convince yourself, you can verify it by sbmputaion):

1 0 O

CMC"™ =10 -1 0

0O 0 1
1 0 O
Writing D = C*, we have the transpose atthe leR*MD = |0 —1 0
0 0 1

We will now generalize what we have seen in the example.

Proposition 12.3. Let K be a field such that + 1 # 0 and letM € Mat,,«,(K) be a symmetric
matrix. Then there is a matri€' € GL,,(K) such thatC* M/ C is a diagonal matrix.

Proof. The proof is done by induction an The case: = 1 is trivial (there is nothing to do). Assume
the proposition is proven for matrices of size- 1.

mi1 M2 ... Mip
ma1 M22 ... M2y _ . : .

Let M = . If M is the zero matrix, there is nothing to do. Let us
mn,l mn’Q e mn,n

therefore suppose thaf is non-zero. We will use simultaneous operations on the rows and columns.
We proceed in two steps.

(1) Transform the matrix so that; ; # 0.

Case 1: there existssuch thatn; ; # 0: In this case, we interchange tih and the first row and
the:-th and the first column.

Case 2m;; =0foralli =1,...,n: Since M is not the zero matrix, there is# j such that
m; ; 7 0. We add the-th to thej-th row and the-th to thej-th column. This givesn; ; +m;; =
2m, ; at position(j, j) and we are thus back to Case 1.

(2) By (1), we haven;; # 0. Foralli = 2,...,n, we add—m; ;/m; ; times the first row to thé-th
row and—m; ;/my 1 times the first column to theth column.

min 0 e 0

mo2 mo
We obtain a matrix of the for "
0 mpo ... Mnn

The induction hypothesis applied to the remaining block of size1 finishes the proof. O
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Corollary 12.4. The rank of a matrix is invariant under simultaneous operations on the iamwd
columns.

Proof. Assume thatV is obtained from\/ by simultaneous operations on the rows and columns. By
Propositiof 1213 we hav€'* M C = N for an invertible matrixC. SinceC" is also invertible (for
instance, sinc@® # det(C) = det(C™)), we haverk(N) = rk(C"MC) = dim(im(C*"MC)) =
dim(im(C*"M)) = dim(C¥ (im(M)) = dim(im(M)) = rk(M). O

Quadrics

In the whole section, lel be a field such that + 1 # 0, for instanceK = R or K = C. First
recall thatK[X1, Xo,...,X,] denotes the ring of polynomials in variablés, X», ..., X, with
coefficients inK. An element ofK[ X, X», ..., X,] is of the form

di  do

dn
o .oyl iz i
E E g @iy in,.in X1 XKoo - Xy

i1=0i2=0  in=0

In the sequel, we will only consider quadratic polynomials.

Definition 12.5. We callquadratic polynomial (im variables and with coefficients i) any element
of K[X1, Xo,...,X,] of the form

n
q(X1, Xo,..., Xp) = Z i j XiXj + Zao,in‘ + ao .

1<i<j<n i=1

Example 12.6.(a) Letn = 1. Let X be the variable. Any quadratic polynomial is of the form
a11X? + a1 X +apo = aaX? + a1 X + ag
where we relabelled the coefficients in a standard way.
(b) Letn = 2. Let X, Y be the variables. Any quadratic polynomial is of the form
6L1,1X2 + a1 2 XY + a2,2Y2 +ag1 X + ap2Y + app.
In particular, we have the following example:

@) 5 +¥ 1

a? b2
@) X -v

Lemma12.7.Letn € Nand letA € Mat(, 1)« (n+1)(K) be a symmetrienatrix. Its coefficients will
be calleda; ; for 0 < i, j < n (note that the numeration starts @k). Let X be the vector containing
the variables preceded hy

ap,0 aop1 ... Qon 1
a071 CL171 al,n

agn Ain --- Qnn Xn
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Then the polynomial
_ _ n n
qA(Xl, ... ,Xn) = X"AX =2 Z ai,inXj + Z CLM'XE + 2 Z a()’iXZ‘ + ap,0
1<i<j<n i=1 i=1
is quadratic and any quadratic polynomial arises from a unique symmettdxm by this formula.

Proof. Clear. 0

xr1

As in the preceding lemma, far = < :

Tn

) e K", we denoter = I: , the vectorz preceded
by 1. o
Definition 12.8. We callquadric (in dimensiom) any set

Qa = Qa(K) = {x € K" | #" A7 = 0}

whereA is a symmetric matri®at ,, 1) (n+1) (K).

Example 12.9.Considern = 2.

-1 0 0
() LetA=| 0 = 0 [. WehaveQ, = {z € R? | f—; + ’g—; — 1 = 0}. Geometrically, it
0 0 %

k=

defines an ellipse.

-1 0 0

(2 LetA=1]0 L 0 [ WehaveQs = {z € R*| f—; - 55—22 — 1 = 0}. Geometrically, it
0 0 =
b2

defines a hyperbola.

0 0
2
(3) LetA=| 0 a% 0 |.WehaveQ, = {z € R? | )Cf—; —Y = 0}. Geometrically, it defines a
5 0 0
parabola.

We also define an augmented matrix:det= (¢; ;) € Mat,,»,,(K) be a matrix and) € K™ a vector.
We set:

1 0 0
—~ Y1 C11 C1
Cy = _ "

Yn Cn1l ... Cpn

Lemma 12.10.Let A € Mat(,, ;1) (n41) (/) b€ @ symmetric matrix an@ 4 the associated quadric.
Lety : K™ — K" be anaffinity, i.e. an application of the form

¢(v) = Bv+ By
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1 o ... O

~ — -y ¢ ... Cq,
whereB € GL,(K) andy € K". LetC := (B~!)_, = "
—Yn Cpn1l ... Cpn

Thenp(Q4) = Qa4 The image of a quadric by an affinity is therefore also a quadric.

Proof. The claim follows from the equality

e —~—— - e

Co(x) =C(Bx+By)=(—y+z+y) =17

We therefore obtain the equality

—_—~ L~ —

~ ~ ——1tr -~ ~
2" Az = (Cop(2))" A(Cyp(x)) = p(z) (CTAC)p(x),
which proves the result. O

Definition 12.11. Letq; (X1, ..., X,) etg2(X1, ..., X,,) be quadratic polynomials arising from the
symmetric matricesl, B € Mat (,, 4 1)x (n+1)(K), .8.q1 = g4, ¢2 = ¢B-

We say that (X1, ..., X,) etg2(X, ..., X,,) are equivalentf there exist® € GL,(K),y € K"
and0 # z € K such tha@trA@ =zbB.

Thus, by Lemm&a7I2.10 we have that( X, ..., X,,) andgp(X1, ..., X,) are equivalent if and only
if there exists an affinity : K™ — K™ such thatp(Q4) = @ 5.

Our next goal is to characterize the quadrics up to equivalence. Fomnhisieed the following
definition.

Definition 12.12. We callsystem of representatives &f* modulo squareany setR € K \ {0}
verifying that for allz € K< there is a unique: € R andy € K such thate = r - 3.

Example 12.13.(a) If K = C, thenR = {1} is a system of representatives@f modulo squares.
Indeed, any element &f is a square.

(b) If K = R, thenR = {—1,1} is a system of representatives®f modulo squares. Indeed, any
positive element AR is a square, and any negative element is minus a square.

(c) We callsquarefreany integerm € Z that is not divisible by any square of a prime number. Let
R ={m € Z | mis squarefrea.
If K =Q, thenR is a system of representativ@ modulo squares. Indeed, one can write

3= = (i)

. 2
whereab = mg? for squarefreen € Z. Moreover, ifm = m/ (£)” andm, m’ are squarefree,
thenm' | m; similarly, m | m’; sincem andm’ have the same sign, we obtain= m’, proving
uniqueness.
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In the theorem of the classification of quadrics, we will use the followingtimots: Forn € N, the
coefficients of the symmetric matricels€ Mat,,41)x (n+1)(K) Will be labelled as follows:

ap,0 a071 e CLO’n

ap,1 a11 ... Qln
A=

aon Aln .- Qpn

Let A,, denote the block of size x n of A in the bottom-right corner:

ailr ... Q1n
Ay, =

Aln --- Qnpn

Lemma 12.14.Let A € Mat(;, 1) (n41)(K) be symmetricC’ € GL,(K) andy € K™. Then
(C,"AC,) =" A,C.

In particular, the rank ofd,, is equal to the rank ofC, " AC,) . Thus, the rank oft,, is invariant
under equivalence of quadratic polynomials.

1
, —tr 0 , i
Proof. The facts that the first column @f, "is the vector( :> and that the first row o’ is the
0
vector(10 .. o) show the result. O

Theorem 12.15(Classification of quadrics)Let R be a system of representatived<af modulo
squares. Let4(X,...,X,) be the quadratic polynomial associated to the symmetric matrix

Mat (1) (nt1) (/). Letr be the rank of the matrid,,.
We have the three following cases:

() If rk(A) = r, then there exist, a3, ...,a, € R such thatgs(X,...,X,) is equivalent to
X12 + a2X22 + ang 4+ aTXf.

(1 If rk(A) = r + 1, then there existy, as, .. .,a, € R such thatg4(X1,...,X,) is equivalent
t0a1 X? +as X2+ -+ +a, X2+ 1.

() 1If rk(A) = r 4 2, thenr < n — 1 and there exist, as, ..., a, € Rsuch thatgs(Xy,...,X,)
is equivalent tar; X7 + ap X3 + - + @, X2 + 2X,41.

Proof. In order to obtain these special forms, we are allowed to only use these sieautoperations
on the rows and columns that correspond to the mat@ewith C being one of the matrices of
Definition[1.39 and; € K™ any vector.

We proceed in more steps:



99

(1) In view of Lemmd 1214, Propositién 12.3 shows that using matigeshe matrixA can be
transformed into

boo bo1 ... boyr bory1 ... bon

boi b O 0 0 0

: 0 .0 0 0

B=| by, 0 ... by, 0 0
bogsr 0 ... 0 0 0

bow O ... 0 0 ... 0

for b;; # 0 for 1 <14 <rin such away thag4 andgp are equivalent.

. . ——t
(2) Note that adding théthe row (fori > 1) to the first corresponds to the matiik., ' wheree; 1
is the:-th canonical vector. We can thus transform our matrix to obtain

boo O ... 0 boys1 ... bon

0 byp 0 O 0 0

o 0 0 0

B=| 0 0 ... b, 0 0
bors1 O 0 0 0

bO,n 0 0 0 0

(3) Itis here where case distinctions have to be made.

() Assumebpy = bor+1 = bory2 = -+ = bon, = 0. In this case the rank aB (which is
equal to the rank ofl) is equal te. We could furthermore divide by, ; (because of the
elemen® # z € K in the definition of equivalence) to obtain

0 0 .0 0 ... 0
01 0 ... 0 0..0
0 boso 0 . 0
B_|00 o0 0 0 ... 0
0 0 0 by 0 ... 0

0 0 0 0 ... 0
0 0 0 0 0 0

Finally, multiplying thei-th column and thé-th row for2 < i < r by a suitable element
in K (that is, multiplyingb; ; by a*) we can choose; ; in R. Now, g5 is precisely of the
form (I) in the statement.
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() Assumebg ;41 = bory2 = -+ =bon = 0, butbg o # 0. In this case, the rank a8 (which
is equal to the rank afl) is equal tor + 1. After division bybg o, we obtain

1 0 ... ... 0 O . 0
0 by O ... 0 0 ... 0
: 0 by 0 .0
s_lo 0 0o 0 0 .0
0 0 ... 0 by 0 ... 0
0 O 0 0 .0
o 0 ... O 0O 0 ... 0

As in (I), we can achievé;; € R for 1 < i < r. Now, ¢p is precisely of the form (Il) in
the statement.

(1) Assume there exists +- 1 < ¢ < n such thabg; # 0. Interchanging simultaneously rows
and columns, we can first obtain, 1 # 0. Dividing the matrix byb 41, we can thus put
this coefficient to bé. Adding —b ; times the(r+ 1)-throw to thej-thforr+2 < j <n

(which corresponds to the matri®), ;1 )o )we manage to annihilatg ; for those;j. We
thus have the matrix

00 ... 0 0 1 0 0
0 biy 0O 0 0 0 0

0 byy O 0 0

0 0 0 0 0 0 0
B=1o 0 0 0 b, 0 0 0
1 0 0 ... 0 0 0 0

0 0 0 0 0 0
P R :
00 ... ... 0 00 0

We see that the rank d# is equal tor + 2. As in (I) and (lI), we can achievg ; € R for
1 <4 <r. Now, gp est precisely of the form (111) in the statement.

This finishes the proof. O

Corollary 12.16. Let K = C. Letgq(Xy,...,X,) € C[X},..., X,] be a non-zero quadratic polyno-
mial. Then it is equivalent to a unique polynomial among3he- 1 polynomials listed below:

() X2+ -+ X2for1 <r<mn;
) X2+ +X2+1for1 <r<mn;

amy X2+ +X2+2X, g fort <r<n-1,
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Proof. We know thatR = {1} is a system of representatives ©@f modulo squares. Hence The-
orem[12.16 implies that is equivalent to one of the listed polynomials. The uniqueness follows
from the fact that in this case, the rank together with the type ((1), (lll)) (s enough to uniquely
characterize the polynomial. O

Our next goal is an explicit classification of real quadrics. For this, axeHho show the following
theorem of Sylvester. First, we need a lemma.

Lemma12.17.LetA € Mat, «,(R) be a symmetric matrix and lét, w) 4 := (Av, w) the symmetric
form defined byd onR".

(a) There exist subspac&s, V_, V5 < R" such that

o R" =V, QV_ DV,
e forall 0 # v € V,, we havelv,v) 4 > 0,
e forall 0 # v € V_, we have(v,v) 4 < 0 et
e forall 0 # v € V), we have(v, v) 4 = 0.

(b) If V., V_ V, are subspaces having the properties in (a), then

e dim V, is the number of positive eigenvaluestf
e dim V_ is the number of negative eigenvaluesdoét

e dim 1} is the number off eigenvalues ofl.

We have to count the eigenvalues with multiplicity, i.e. the number of times time &lige appears
on the diagonal after diagonalization.

Proof. By the spectral theorem, we have an orthonormal basis

V1y.vs Vs Us1y ooy Upy Urtly - o3 Un

of R™ such that; for 1 < i < s are eigenvectors for a positive eigenvalugfor s + 1 < i < r are
eigenvectors for a negative eigenvalue aptbr s + 1 < i < r are eigenvectors for tHeeigenvalue.
We takel/, to be the subspace generatediby. . . , vs andV; the subspace generateddhy 1, ..., v,
and V) the subspace generated @9y, 1, ..., v,. Itis clear that all the properties of (a) and (b) are
satisfied for these spaces.

LetnowV/, V', Vi be other spaces having the properties of (a). We showthat (V' & V) = 0:

if 0% v=w_+wyforw_ € V! andwy € Vj were a vector in the intersection, we would have
(v,v)4 > 0 on one side andw_ + wy, w— + wo)a = (w_,w_) 4 + (wo,wp)4 < 0 on the other
side. This shows thdt}, & V! @ Vj is a subspace dk”, hencedim V. < dim V. By symmetry,
we also havelim V] < dim V., and thus equality. The arguments for the two other equalities are
similar. O

Theorem 12.18Sylvester) Let A € Mat,, x,,(R) be a symmetric matrix and It € GL,,(R). Then,
A andC" AC have the same number of positive eigenvalues. The same statemerfibhoktsative
eigenvalues.
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Proof. We use the notation of Lemria 1217 for the bilinear fdtmy. ConsidetC—1V,. If 0 £ v €
C~'V, (henceCwv € V), then
0 < (Cv,Cv) g = (ACv, Cv) = (CT ACv,v) = (v, V) cwr ac-
Moreover, ifw € C~1V_, then
0 = (Cv,Cw) s = (ACv, Cw) = (C" ACv,w) = (v, w)ctr ac,

and thusC—'V, OC~'V_. By similar arguments, we obtain that—'V,, C~'V_, C~'V; are
subspaces that satisfy the properties in (a) of Lefnmal2.17 for the biloreac f) -« 4. Hence the
dimension of,. (which is the number of positive eigenvaluesAifis equal to the number of positive
eigenvalues of '* AC'. The argument for negative eigenvalues is the same. O

Corollary 12.19. Let K = C. Letgq(X;y,...,X,) € C[X;,..., X, be a non-zero quadratic polyno-
mial. Then it is equivalent to a unique polynomial among%ﬁgg"i” — 1 polynomials listed below:

0 X3+ 4+X2-X2, - —X2for1 <s<r<m
(1)) X12—|—-~-+X52—XS2+1—--~—X§+1for0§s§r§n,1Sr;
mmy X+ +X2-X2, - —X2+2X, 1 for0<s<r<n-1,1<r.

Proof. We know thatR = {—1, 1} is a system of representativesi®f modulo squares. Therefore
Theorem 12,75 implies thatis equivalent to one of the listed polynomials.. The uniqueness follows
from the fact that the difference between the big matrix and the rank ofltok bf sizen in the
bottom-right corner determines the type ((1), (1), (111)). Thus itfezds to know the number of positive
eigenvalues (and negative ones) in view of Sylvester's Thebrem|12.18

The number of polynomials of type (I) of rankis equal tor (the sign in front ofX; is always+),
hence there exist + 2 + --- +n = w polynomials of type (I). The number of polynomials
of type (Il) of rankr is equal tor + 1 (the sign in front ofX; can bel or —1), hence there exist

243+--+(n+1) = w — 1 polynomials of type (l1). Similarly, the number of polynomials
of type (lll) of rankr is equal tor + 1, butr is bounded by: — 1, hence there exi®+3+---+n =
@ — 1 polynomials of type (lI). We thus obtain
2
n(n+1) N (n+1)(n+2) 14 n(n+1) - 3n‘ +5n 1
2 2 2 2
the desired number. O
13 Duality
Goals:

e Master the concepts of dual space and dual application;

e know the relation to transpose matrices;
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e know the definition and fundamental properties of bilinear forms;
o know the relation to the rank of rows and columns of matrices;
e know examples and be able to prove simple properties.

In this section, we introduce a theory of duality, that is valid for any fi€l¢nhot only forR andC).
The main results of this section are

¢ the interpretation of transpose matrices as matrices representing “dubtasipps;

¢ the rank of the columns of a matrix is equal to the rank of the rows; this is somaigeéd for
computations.

We start with the interpretation of transpose matrices as matrices represgumirgpplications. For
this, we first introduce the dual vector spab&l of a vector spacé’.

Lemma 13.1. LetV, W be twoK -vector spaces.
(a) The set of{-linear applications
Hompg (V,W) :={f:V — W | fis K-linear}
is a K-vector space for the addition
(f +9) () := f(v) + g(v) for f,g € Homg (V,W) andv € V
and the scalar multiplication

(x.f)(v) == x.(f(v)) = f(z.v) for f € Homg (V, W), z € K andv € V.

(b) LetS be a K-basis ofV and f : S — W be an application. Then, there exists a unique
F € Homg (V, W) such thatF'|s = f, namelyF (3" g ass) = > cgasf(s).

Proof. Simple computations. O
Definition 13.2. LetV be aK-vector space. Th& -vector space (see Lemina 13.1(a))

V* := Homg (V, K)
is called thedual space of/.

Proposition 13.3. Let V' be aK-vector space of finite dimension

(a) LetS = {si1,...,s,} be aK-basis ofV. Forall 1 < i < n, lets] be the unique (by Lemma
1 ifi=j
[13:3(b)) element ifv* such that for alll < j < n we haves}(s;) = §;; = {0 . Z . J_’
It 2 % 7.

Then,S* := {s7, ..., s;} is aK-basis ofl’*, called thedual basis

(b) If V has finiteK -dimension, thedimg (V*) = dimg (V).
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Proof. (a) Linear independenceet0 = >, a;s; with ay,...,a, € K. Then, foralll <j <n

we have
n n
0= Zaisf(sj) = Zai(Sm = aj.
i=1 =1

GeneratingLet f € V*. Forl < j < n, seta; := f(s;) andg := >, a;s} € V*. We have

g(s;) = aisi(s;) = a; = f(s;)
=1

forall1 < j <n,thusf =g.
(b) The dimension ol/ is the cardinality of any basis df. By (a), the dual basis has the same
cardinality as any basis &f, thus the dimension df * equals the dimension 6f. O

Definition-Lemma 13.4. Let V, W be twoK -vector spaces angd : V' — W be aK-linear applica-
tion. Then, the application

P W=V feet(f)=fop
is K-linear. It is called thedual application ofp.

Proof. Firstly we note thapo f is K-linear; but, this follows from the fact that the composition of two
linear applications is linear. Let ¢ € W* andxz € K. We conclude the proof by the computation

e (- f+9)v) =z f+9)op)(v)=(z-f+9)(p(v)
=zf(p(v)) + g(p(v)) = (z"(f) + ¢"(9))(v).
foranyv € V, whencep*(z - f + g) = z¢*(f) + ¢*(9). O

Proposition 13.5. LetV, W be twoK -vector spaces angd : V' — W be aK-linear application. Let
moreoverS = {si,..., s, } be aK-basis oft andT = {t1,...,t,} a K-basis ofW. Then,

tr *
(Mr,s(9))”" = Mg= 1+ ().
Thus, the matrix representing® for the dual bases is the transpose of the matrix represemting

Proof. We write

a1 ar2 o Qlp big bi2 - bim

a1 G22 -+ A2y . bo1 bao - bam
Mrs(e) =] . . .| andMgs 7+ (¢*) =

m,1 Gm2 **° Ommn bn,l bn,? T bn,m

This means
m n
p(s5) =D aijti andg®(t) = Y bigs;
=1

i=1
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forall1 < j <nandl <k < m. Thus, on the one hand
(" (i) (s5) = th(p() = (D _aijti) =Y aijth(t:) = ar;
=1 =1
and on the other hand .
(@ () (s5) = Y biksi(s;) = bjks
=1
whenceay, ; = b; i, as desired. O

The dual space gives rise to a natural bilinear form, as we will see in Be&@BB(b); first we make
the necessary definitions.

Definition 13.6. Let V, W be twoK -vector spaces. One calilinear formany application
() VxW—=K
such that

e Vaec KVu,vg € VVweW: (av; + v2,w) = a(v,w) + (ve,w) (linearity in the first
variable) and

e Vbe KVv eV Vwy,wy €W : (v,bw +wa) = b{v,w;) + (v, ws) (linearity in the second
variable).

Let(.,-) : V x W — K be a bilinear form. For a subspadg < V, we call
Vit ={weW |YweV: (v,w)=0} <W

theorthogonal complement df; in .
For a subspacél; < W, we call

Wir={veV|VweW; : (v,w)=0}<V

theorthogonal complement é¥7 in V.
We say that the bilinear foriis non-degeneraté

e VOFveVIweW: (v,w) #0and

e VOF#weW3IveV:(v,w) #0.
In the sequel, we will writgv, W;) = 0 for Vw € W, : (v, w) = 0 (and vice-versa).
Lemma 13.7. LetV, W be twoK -vector spaces an¢l,-) : V. x W — K be a bilinear form.

(a) For any subspac®&; < V, the orthogonal complement &f in W is a subspace dil” and for
any subspacél’; < W, the orthogonal complement f; in V' is a subspace of .

(b) LetW; < Wy < W be two subspaces. Theii;- < Wit.
Also: V;+ < Vit for any subspacek; < Vo < V.
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(c) The bilinear form is non-degenerate if and onlylif- = 0 andV+ = 0.

Proof. (a) LetV; < V be a subspace. Let;, ws € Vi-, i.e., (v,w;) = 0fori =1,2and allv € V7.
Thus, for alla € K we have the equality

(v, awy + we) = a{v,w1) + (v, ws) =0,

whenceaw; + wy € Vi-. The argument fobV;- is the same.

(b) Letv € Wi-. By definition (v, W») = 0, hence in particulatv, W1) = 0, i.e. v € Wi-. The
second statement follows by the same argument.

(c) This is another way of writing the definition. O

Example 13.8.(a) The application

al bl bl
a9 b2 bg s
<‘,~>:Kn><Kn—>K, < i s . >:<a1 as ... an) i :Zaibi
. . . i=1
an by, by

is bilinear and non-degenerate.
(b) LetV be aK-vector space of finite dimension. The application
<'a'>:V*XV—>K7 <f,?./> Z:f(’U>

is bilinear and non-degenerate.

LetS = {s1,...,s,} be aK-basis of\’ and S* the dual basis. Lef = > , a;s7 € V* and
v=>",bs;€V.Then

(fro) = aisi, Y bis) = > > aibilsi,s;) = > > aibjsi(sy)
i=1 j=1

i=1 j=1 i=1 j=1

We have found the bilinearity of (a).

Proposition 13.9. Let V, W be twoK -vector spaces of finite dimensions and) : V x W — K be
a non-degenerate bilinear form.

(&) The applications
0 VoW v o) =: o, With o, (w) := (v, w),

and
YW =V w e p(w) =: iy, With 9y, (v) 1= (v, w)

are K-linear isomorphisms.
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(b) dimg (V) = dimg (W).

Proof. The K-linearity of ¢ and is clear. We show the injectivity ap. For this, letv € ker(yp),
i.e., oy (w) = (v,w) = 0forallw € W. The non-degeneracy of the bilinear form implies that 0,
which proves the injectivity. From this we dedutieny (V) < dimg (W*) = dimg (W).

The same arguments applies ¢ogive that is injective and thuslimg (W) < dimg(V*) =
dimg (V), d'ot dimg (V) = dimg(W). Consequentlyy and are isomorphisms (because the
dimension of the image is equal to the dimension of the target space which swegjhai). Ol

Corollary 13.10. LetV, W be twoK -vector spaces of finite dimensions.
(a) Then, the application
YV — (V) vy =evy, : VF— K wherey,(f) =evy(f) = f(v) for f e V*
is a K-linear isomorphism.

(b) Leta : V — W be aK-linear application. Then, the diagram

V = w

U1 wzl
*)*

(V*)* (a (W*)*

is commutative, where; andi), are the isomorphisms from (a), i.@2 o a = (a*)* 0 9y.

(c) Letty,...,t, be aK-basis of’*. Then, there exists A-basissy, ..., s, of V such that;(s;) =
05 forall 1 <i,j <n.

Proof. (a) The bilinear form’* x V' — K, given by(f,v) — f(v) from Exampld_13I8(b) is non-
degenerate. The applicatignis thet of Proposition 13.9.

(b) Letv € V. On the one hand, we haye*)*(1(v)) = (a*)*(ev,) = ev, o o and on the other
handys(a(v)) = ev,(.,) with notations from (a). To see that both are equalflet W*. We have

evy(a(f)) = evy(f o @) = f(a(v)) andevay) (f) = fa(v)),

thus the desired equality.
(c) Lett],....t;, € (V*)* be the dual basis, i.¢;(t;) = ¢;; forall 1 < i, j < n. Sincey from (a)

is an isomorphism, there exist, ..., s, (automatically akK'-basis ofVV because it is the image of
a basis by an isomorphism) such thats;) = evs, = t}, thust;(f) = f(s;) forall f € V*. In
particular, we have; (t;) = ti(s;) = d;,;. O

Proposition 13.11.Let V, W be twoK -vector spaces of finite dimensions and) : V x W — K a
non-degenerate bilinear form.

(@) LetS = {s1,...,s,} be aK-basis oflV. Then, there exists &-basisT = {t1,...,t,} of W
such that(s;, ;) = 9, ; forall 1 <4, j < n.
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(b) For any subspack; < V we have(ViH)* = V4.

Also: for any subspacB; < W we havg W)+ = 7.
(c) Forany subspack; < V we havedimK(Vll) = dimg (V) — dimg (V1).

Also: for any subspacl; < W we havedim g (Wit) = dimg (W) — dimg (W7).
Proof. (a) We consider thd(-isomorphismy : V — W* of Proposition 1319 and we s¢f :=
©(s;) = s, forall 1 < i < n. Corollaryl13.1ID allows us to choose&basisty, . .., t, of W such
that f;(¢;) = 9, ; forall 1 <, j < n. Finally, we haves;, t;) = ¢, (t;) = fi(t;) = d; , as desired.
(b,c) We choose & -basissy, . . . , sq Of V4 that we extend to & -basis

81y-++38d;Sd+15-+-55n

of V' by Propositio.1.30. Using (a), we obtaif&basisty, . . ., t, of W such that(s;, ¢;) = 9, ; for
alll1 <i,j <n.

We first show thaVll = (tg+1,-..,tn). Theinclusion D" is clear. Let thereforev = Y | a;t; €
Vit ie (Vi,w) =0, thus for alll < j < dwe have

n n
0= (sj,w) = (s;, Y aits) = Y _ ai(sj,t:) = aj,
i=1

i=1

and thereforev € (tq,1,...,t,). Consequentlylimy (Vit) = n — d = dimg (V) — dimg (V7).
The same argument used fgf- shows that(si, . .., s;) is a K-basis of(V;-)* which is therefore
equal tol;. O

Corollary 13.12. LetV, W be twoK -vector subspaces angd: V' — W a K-linear application. We
have the equalites

(1) im(p)* = ker(¢*) (Where L comes from the natural bilinear foriv* x W — K),
(2) ker(p)t = im(¢*) (where L comes from the natural bilinear fortd* x V — K),
(3) dim (im(p)) = dimg (im(y")) and
(4) dimg (ker(p)) = dimp (ker(0")).
Proof. We firstly show (1). Letf € W*. Then
fem(p)t & VeV 0= (f o) = flpW) & fop=0s f € ker(s"),

whence (1).
We slightly adapt the arguments in order to obtain (2) as followsvlet. Then

veim(p)t &V feW 0= (g"(f).v) = (fop,v) = flp(v) = (f,¢(v))
e o) e Wt e () =0 < v e ker(p),

whenceim(¢*)*+ = ker(y). Applying Propositio 13.11 we obtaim(¢*) = ker(p)*; this is (2).
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By Corollary[1.38, we havdimg (V') = dimg (im(p)) + dimg (ker(y)). Proposition 13.11 gives us
dim (im(p)) = dimp (V) — dimpg (ker(p)) = dimpg (ker(p)") = dimg (im(¢*)),

whence (3). The argument to obtain (4) is similar:
dime (ker(i2)) = dimg (V) — dim (im(i2)) = dimp (im()") = dimp (ker(2")),

which achieves the proof. O

Definition 13.13. Let M € Mat,,,»,,(K) be a matrix.

Therank of column®f M is defined as the dimension of the subspadg’éfgenerated by the columns
of M (seen as elements &f'™).

Therank of rowsof M is defined as the dimension of the subspad&’®fjenerated by the rows aff
(seen as elements &f™).

Corollary 13.14. Let M € Mat,,x,(K). Then, the rank of columns @f is equal to the rank of
rows of M. We simply talk of theankde M.

Proof. The rank of M is the dimension of the image qf,,;, the K-linear applicationk™ — K™

associated td/ (which sends € K" to Mv € K™). The matrix representing;, for the dual basis

is M. Thus the corollary immediately follows from Corolldry 13.12 since the rankofiimns of

M*™ is equal to the rank of rows d¥/. O

3 5 1

1 2 3|. We are interested in its rank (of columns). Itis
4 7 4

obvious that the third row is the sum of the two first rows (which are lineadgpendent). Thus the

rank of M is 2. It seems more difficult to “see” a non-trivial combination of the coluning we know

that there is one.

Example 13.15.Consider the matri

We finish this section with useful properties.

Proposition 13.16.LetV, W be twoK -vector subspaces of finite dimensions ang : VxW — K
be a non-degenerate bilinear form. Uét;, < W andW, < W be subspaces. Then, we have

@ (WinWa)t =wi +Wws and
(b) (Wi + Wa)t = Wit n Wi
Also withV in stead ofiV.

Proof. (a) “2": Since W, N Wy < W is a subspace far= 1,2, we havelWW;- < (W; N W)+, thus
Wit + Wik < (W N Wa)* becausdW; N Ws,)* is a subspace.

(b) “C™: Fori = 1,2 we havelW; < W, + Wy, thus we obtair(TV; + W)+ < WiL which implies
(W + W)t < Wi N Wi

(a) “C": Combining the proven inclusions, we have

WiNWy = (W nWo)H)t < (Wit + WiHt < (WHEn(WhHt = Wi n Wy,

thus we have equality everywhere and, in particuldf; N Wa)*+ = Wit + Wi
(b) It suffices to use (a) withVi- and W3- in stead ofi¥; and W, to obtain (Wi N Wih)+ =
(W) + (WiH)+ and thusVit N Wit = (Wy + Wh)+. O
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14 Quotients

Goals:
e Know and master the definition of quotient of vector spaces;
e know the isomorphism theorems and other important results;
e be able to compute in quotients of vector spaces;
e know examples and be able to prove simple properties.

Definition 14.1. Let V' be aK-vector space an@l’ < V a subspace.
Any set of the form
v+ W ={v+w|lweW}

with v € V' is calledaffine subspace
Two subspaces, + W andwvs + W are calledparallel They are thus both parallel td/.

In order to understand the sequel, it is useful to recall the definitionrajre@nces moduln, i.e. the
setZ/nZ (for n € N>;), learned in the lecture cour&tructures mathématique3o underline the
analogy, we can writ® = Z andWW = nZ = {nm | m € Z}.

We recall that the set

a+nZ={a+mn|meZ}={..,a—2n,a—n,a,a+n,a+2n,...}
is the equivalence class afe Z for the equivalence relation defined @rby
ar~pzd & a=d modn & nl(a—d) & a—denZ & a+nZ=d +nZ.
We will essentially do the same definition in the case of vector spaces.

Definition 14.2. LetV be aK-vector space andll’ C V' a vector subspace. The binary relation on
V given by

definition
V1 YW U2 — v1—veW

for vy, vy € V defines an equivalence relation.
The equivalence classes are the affine subspaces of the form

v+W={v+w|weW}

The set of these classes is dendt@dil” and calledthe set of classes following/. It is the set of all
the affine subspace that are parallellio.

Let us also recall the ‘'modular’ addition, that is the additioZghZ. The sum ofx + nZ andb + nZ
is defined as
(a +nZ)+ (b+nZ) := (a+b) + nZ.

To see that this sum is well-defined, we makeftiedamental observation leta,a’, b, € Z such
that

a=d modn and b=V modn,
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i.e.,
a+nZ=d +nZ and b+nZ =0 +nZ
then,
a+b=d +b modn,
i.e.,

(a+0b)+nZ=(a+b)+nZ.
The proof is very easy: sinee| (¢’ — a) andn | (b’ — b), there exist, d € Z such tha' = a + ¢cn
andb’ = b + dn; thus
ad+V=(a+cn)+ (b+dn)=(a+b)+n(c+d)
so that,n divides(a’ + V') — (a + b), whence(a’ + b') + nZ = (a + b) + nZ. A small example:
(3=13 mod 10 et 6=-24 mod10) = 9=-11 mod 10.
Here comes the generalization to vector spaces. Note that it does noe soiffiefine an addition only,
but one also needs to define a scalar multiplication.

Proposition 14.3. Let K be a field,V a K-vector spacell < V a K-vector subspace anid/1V the
set of classes following/.

(a) Forall vy,vy € V the clasgv; + v2) + W only depends on the classes+ W andwvs + W.
Thus, we can define the application, calkdtition

—i—:V/WXV/W—)V/VV, (U1+W,1)2+W)i—>(1)1+W)+(U2+W) = (U1+U2)+W

(b) Foralla € K and allv € V, the classi.v + W only depends on the class+ W. Thus, we can
define the application, callestalar multiplication

S K xV/W = V/W, (a,o+W)—a(v+W):=av+ W
() (V/W,+,.,0+ W) is aK-vector space, calledquotient ofVV by IV.

(d) The application
T V=aV/W, veo+W

is K-linear and surjective with kernéler(7) = W, it is called natural projection

Proof. (a) Assumev; + W = v} + W andvy + W = v + W. Therefore there exisb,, wy €

W such thatv; = v} + w; andvy = v + we. Thenuvy + va = v} + v§ + (w1 + we2) whence
(v1 + va) — (V] —vh) € Wand thusv, + v2) + W = (v] +vh) + W.

(b) Assumev + W = o' + W. Therefore there exist# € W such thatv = v’ + w. Then
av = a(v' + w) = av’ + aw whenceav — av’ = aw € W and thusav + W = av’ + W.

(c) Standard verfication of the axioms defining a vector space (seeitivefibh.).

(d) Linearity: Letvy, vy € V anda € K, thenm(avy +v2) = (avy +v2) + W = a(vi + W) + (ve +

W) = am(v1) + m(v2).

Surjectivity: The class + W is the image ob underr.

Computation of the kernel: Let € V. Thenv € ker(r) ifand only ifv + W =0+ W = W and
this is the case if and only if € W. O
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Theorem 14.4(1st isomorphism theorem/Homomorphiesatzgt K be a fieldandy : V — Y a
K-linear application. LetiV := ker(y) be its kernel.
(a) Forv € V, the imagep(v) only depends on the classt V.
(b) Part (a) allows us to defing(v + W) := (v) for v € V. This defines an application
p:V/IW =Y, v+Wrgv+W):=p)
which isK-linear and injective. It gives rise to & -linear isomorphism

P V/W — im(yp).

Proof. (a) Letv,v’ € V such tha + W = v' + W. Then there exist® € W such that = v' + w.
We havep(v) = p(v' + w) = ¢(v') + p(w) = ¢(v') becausep(w) = 0 asw € W = ker(yp).
(b) Linearity: Letvy,v2 € V anda € K. We haveg(a(vi+ W)+ (va+W)) = p((av1+v2)+ W) =

p(avy + v2) = ap(v1) + (v2) = aP(v1) + B (v2).
Injectivity: Letv + W € ker(®). Theng(v + W) = ¢(v) = 0 whencev € ker(¢) = W, thus
v+ W =0+ W. This showsker(p) = {0 + W}, so thatp is injective. O

The next proposition is important because it describes the vector sisspiguotient vector spaces.

Proposition 14.5. Let K be a field,V a K-vector spacelV < V a vector subspace, and: V' —
V /W the natural projection.

(a) The application
® : {vector subspaces &f/IW} — {vector subspaces & containingi¥’},
given byX — 7~1(X) is bijective. The invers& of ® is Y > 7(Y).
(b) LetX;, Xo < V/W be two vector subspaces. Then

X, C Xg =4 (I)(Xl) - (I)(XQ).

Proof. (a)

e For a subspac& < V/W the preimageb(X) = = !(X) is indeed a vector subspace: let
vi,v2 € V such thaty € 7~1(X) andvy € 7 1(X), thenw(vy) = v1 + W € X and
m(v2) = ve+ W € X. Then fora € K, we haveur(avy + va2) = 7(v1) +m(v2) € X, whence
avy +vp € T H(X).

Moreover,m (W) 2 7= 1({0}) = ker(7) = W.

e We know by Propositioh 1.36 that the images of the linear applications betwetar gpaces
are vector subspaces, thii$Y) = 7 (Y") is a vector subspace of/ .
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e Here is an auxiliary statement :

Let7 : V — V'’ be aK-linear homomorphism between vector spaces Eind V a vector
subspace containiriger(7). Thent (7 (Y)) =Y.

We verify this equality:
“C” Letz € n1(n(Y)), thenw(z) € 7(Y), i.e. m(z) = =(y) for somey € Y. Therefore
0 =n(z) —7(y) = n(x —y), thusz —y € ker(r) C Y, thusz —y = ¢/ € Y, thus
r=y+y €Y.
“D" Lety € Y, thenr(y) € 7(Y), and thereforgy € 7= (7(Y)).

e LetY < V be avector subspace such thatC Y.
By the auxiliary statement we havé(¥(Y)) = 7~ 1(n(Y)) = Y.

e Here is another auxiliary statement:

Letw : V — V' be a surjective application (not necessarily between vector spackX) anV”’
a vector subspace. Théa = 7(r~(X)).

We verify this equality.

“C” Let x € X. Sincer is surjective, there exists € V such thatr(v) = z. Therefore
ven Y(X)andr = 7(v) € n(r~H(X)).

“D" Let v’ € m(r~1(X)). Then, there exists € 7—!(X) such that' = 7 (v). But,v' = 7(v)
belongs taX sincev € 7~ 1(X).

e Let X < V/W be a vector subspace.
By the auxiliary statement we hav#(® (X)) = (7 }(X)) = X.
(b) is clear. Ol

Proposition 14.6(Second isomorphism theorenbet K be a field,VV a K-vector space an&, W C
V' vector subspaces. Then, thelinear homomorphism

o: X > (X+W)/W, z—ax+W,
“induces” (by the isomorphism theordm 1#.4) tRelinear isomorphism
o X/(XNW) = (X+W)/W, 24+ (XNW)—»ax+W.

Proof. The homomorphisnp is obviously surjective and its kernel consists of the elements X
such thatr + W = W, thusz € X N W, showingker(p) = X N W. The existence of hence
follows from a direct application of the isomorphism theofem 14.4. O

Proposition 14.7(Third isomorphism theorem) et K be a field,V a K-vector space antl’; C W,
two vector subspaces bf. Then, the/(-linear homomorphism

(,0:V/W1—>V/W2, v+ Wi—= v+ Wy
“induces” (by the isomorphism theorem 14.4) thelinear isomorphism
@:(V/Wl)/(WQ/Wl)%V/WQ, U+W1+(W2/W1)'—>U+W2.
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Proof. The homomorphisnp is obviously surjective and its kernel consists of the element$l’; €
V/W7 such that + W, = W, which is equivalent ta + Wy € Wy /W7, Thusker(y) = Wy /Wh.
The existence of thus follows from a direct application of the isomorphism theoremi14.4. [J



	Recalls: Vector spaces, bases, dimension, homomorphisms
	Recalls: Determinants
	Eigenvalues
	Excursion: euclidean division and gcd of polynomials
	Characteristic polynmial
	Minimal polynomial
	Diagonalization and spectral decompostion
	Jordan reduction
	Hermitian spaces
	Normal, adjoint, self-adjoint operators and isometries
	Spectral Theorem
	Quadrics
	Duality
	Quotients

