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Preface
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Prerequisites

This course contains a theoretical and a practical part. For the practicalpart, (almost) all the compu-
tations can be solved by two fundamental operations:

• solving linear systems of equations,

• calculating determinants.

We are going to start the course by two sections of recalls: one about the fundaments of vector spaces
and one about determinants.
Linear algebra can be done over any field, not only over real or complex numbers.
Some of the students may have seen the definition of a field in previous courses. For Computer
Science, finite fields, and especially the fieldF2 of two elements, are particularly important. Let us
quickly recall the definition of a field.

Definition 0.1. A fieldK is a setK containing two distinct elements0, 1 and admitting two maps

+ : K ×K → K, (a, b) 7→ a+ b, “addition”

· : K ×K → K, (a, b) 7→ a · b “multiplication”,

such that for allx, y, z ∈ K, the following assertions are satisfied:

• neutral element for the addition:x+ 0 = x = 0 + x;

• associativity of the addition:(x+ y) + z = x+ (y + z);

• existence of an inverse for the multiplication:there exists an element called−x such thatx +

(−x) = 0 = (−x) + x;

• commutativity of the addition:x+ y = y + x.

• neutral element for the multiplication:x · 1 = x = 1 · x;

• associativity of the multiplication:(x · y) · z = x · (y · z);

• existence of an inverse for the multiplication:if x 6= 0, there exists an element calledx−1 = 1
x

such thatx · x−1 = 1 = x−1 · x;

• commutativity for the multiplication:x · y = y · x.

• ditributivity: (x+ y) · z = x · z + y · z.

Example 0.2. • Q, R, C are fields.

• If p is a prime number,Z/pZ is a field.

• Z andN are no fields.

For the following, let K be a field. If this can help you for understanding, you can takeK = R
or K = C.
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1 Recalls: Vector spaces, bases, dimension, homomorphisms

Goals:

• Master the notions of vector space and subspace;

• master the notions of basis and dimension;

• master the notions of linear map ((homo)morphism), of kernel, of image;

• know examples and be able to prove simple properties.

Matrix descriptions and solving linear systems of equations by Gauss’ row reduction algorithm are
assumed known and practiced.

Definition of vector spaces

Definition 1.1. LetV be a set with0V ∈ V an element, and maps

+ : V × V → V, (v1, v2) 7→ v1 + v2 = v1 + v2

(calledaddition) et

· : K × V → V, (a, v) 7→ a · v = av

(calledscalar multiplication).

We call(V,+V , ·V , 0V ) unK-vector spaceif

(A1) ∀u, v, w ∈ V : (u+V v) +V w = u+V (v +V w),

(A2) ∀ v ∈ V : 0V +V v = v = v +V 0V ,

(A3) ∀ v ∈ V ∃w ∈ V : v +V w = 0 = w +V v (we write−v := w),

(A4) ∀u, v ∈ V : u+V v = v +V u,

(for mathematicians: these properties say that(V,+V , 0V ) is an abelian group) and

(MS1) ∀ a ∈ K, ∀u, v ∈ V : a ·V (u+V v) = a ·V u+V a ·V v,

(MS2) ∀ a, b ∈ K, ∀v ∈ V : (a+K b) ·V v = a ·V v +V b ·V v,

(MS3) ∀ a, b ∈ K, ∀v ∈ V : (a ·K b) ·V v = a ·V (b ·V v),

(MS4) ∀ v ∈ V : 1 ·V v = v.

For clarity, we have written+V , ·V for the addition and the scalar multiplication inV , and+K , ·K
for the addition and the multiplication inK. In the following, we will not do this any more.
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Example 1.2. Let n ∈ N. The canonicalK-vector space of dimensionn is Kn, the set of column
vectors of sizen with coefficients inK. As you know, we can add two elements ofKn in the following
way: ( a1

a2
...
an

)
+




b1
b2
...
bn


 =




a1+b1
a2+b2

...
an+bn


 .

This addition satisfies the following properties:

(A1) (

( a1
a2
...
an

)
+




b1
b2
...
bn


) +

( c1
c2
...
cn

)
=

( a1
a2
...
an

)
+ (




b1
b2
...
bn


+

( c1
c2
...
cn

)
).

(A2)

( a1
a2
...
an

)
+

( 0
0
...
0

)
=

( a1
a2
...
an

)
=

( a1
a2
...
an

)
+

( 0
0
...
0

)
.

(A3)

( a1
a2
...
an

)
+




−a1
−a2

...
−an


 =




a1−a1
a2−a2

...
an−an


 =

( 0
0
...
0

)
.

(A4)

( a1
a2
...
an

)
+




b1
b2
...
bn


 =




a1+b1
a2+b2

...
an+bn


 =




b1
b2
...
bn


+

( a1
a2
...
an

)
.

Moreover, we have a scalar multiplication: we multiply an element ofKn by an elementr of K as
follows:

r ·




a1
a2
...
an




=




ra1
ra2

...
ran



.

The addition and the multiplication are compatible in the following manner:

(MS1) ∀ r ∈ K, ∀
( a1
a2
...
an

)
,




b1
b2
...
bn


 ∈ Kn: r · (

( a1
a2
...
an

)
+




b1
b2
...
bn


) = r ·

( a1
a2
...
an

)
+ r ·




b1
b2
...
bn


;

(MS2) ∀ r, s ∈ K, ∀
( a1
a2
...
an

)
∈ Kn: (r + s) ·

( a1
a2
...
an

)
= r ·

( a1
a2
...
an

)
+ s ·

( a1
a2
...
an

)
;

(MS3) ∀ r, s ∈ K, ∀
( a1
a2
...
an

)
∈ Kn: r · (s ·

( a1
a2
...
an

)
) = (r · s) ·

( a1
a2
...
an

)
;

(MS4) ∀
( a1
a2
...
an

)
∈ Kn: 1 ·

( a1
a2
...
an

)
=

( a1
a2
...
an

)
.

This shows thatKn is indeed aK-vector space.

The following proposition produces a large number of examples.
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Proposition 1.3. LetE be a set. We introduce the notation

F(E,K) := {f | f : E → K map}

for the set of maps fromE to K. We denote the mapE → K such that all its values are0 by 0F
(concretly:0F : E → K defined by the rule0F (e) = 0 for all e ∈ E). We define the addition

+F : F(E,K)×F(E,K) → F(E,K), (f, g) 7→ f+F g où∀e ∈ E : (f+F g)(e) := f(e)+g(e)

and the scalar mutliplication

·F : K ×F(E,K) → F(E,K), (x, f) 7→ x ·F f où∀e ∈ E : (x ·F f)(e) := x · (f(e)).

Then,(F(E,K),+F , ·F , 0F ) is aK-vector space.

Proof. Exercise.

Most of the time, we will not write the indices, but onlyf + g, f · g, etc.

Example 1.4. (a) {f ∈ F(R,R) | f(1) = 0} is aK-vector space.

(b) {f ∈ F(R,R) | f(0) = 1} is not aK-vector space.

Lemma 1.5. Let (V,+V , ·V , 0V ) be aK-vector space. Then, the following properties are satisfied
for all v ∈ V and alla ∈ K:

(a) 0 ·V v = 0V ;

(b) a ·V 0V = 0V ;

(c) a ·V v = 0V ⇒ a = 0 ∨ v = 0V ;

(d) (−1) ·V v = −v.

Proof. (a)0 ·V v = (0 + 0) ·V v = 0 ·V v + 0 ·V v, donc0 ·V v = 0V .
(b) a ·V 0V = a ·V (0V + 0V ) = a ·V 0V + a ·V 0V , donca ·V 0V = 0V .
(c) Assumea·V v = 0V . If a = 0, the assertiona = 0∨v = 0V is true. Assume thereforea 6= 0. Then
a−1 has a meaning. Consequently,v = 1 ·V v = (a−1 · a) ·V v = a−1 ·V (a ·V v) = a−1 ·V 0V = 0V
by (b).
(d) v +V (−1) ·V v = 1 ·V v +V (−1) ·V v = (1 + (−1)) ·V v = 0 ·V v = 0V by (a).

Instead of(V,+V , ·V , 0V ) we will simply writeV .

Vector subspaces

Definition 1.6. Let V be aK-vector space. We say that a non-empty subsetW ⊆ V is a vector
subspace ofV if

∀w1, w2 ∈W, ∀a ∈ K : a · w1 + w2 ∈W.

Notation:W ≤ V .
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Example 1.7. • Let V be aK-vector space. The set{0} is a vector subspace ofV , called the
zero space, denoted by0 for simplicity (do not confuse with the element0).

• LetV = R2 andW = {( a0 ) | a ∈ R} ⊆ V . Then,W is a subspace ofV .

• LetV = R3 andW =
{(

a
b
2b

)
| a, b ∈ R

}
⊆ V . Then,W is a subspace ofV .

• Letn,m ∈ N≥1. We consider the system of linear equations

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

with bi, ai,j ∈ K for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(a) LetS be the set of all solutions of the homogeneous system withx1, x2, . . . , xn ∈ K, i.e.

S =





( x1
x2
...
xn

)
∈ Kn | ∀i ∈ {1, 2, . . . ,m} :

n∑

j=1

ai,jxj = 0



 .

Then,S is a vector subspace of the standardK-vector spaceKn.

(b) Let

( r1
r2
...
rn

)
∈ Kn be a solution of the system of linear equations, i.e.:

∀i ∈ {1, 2, . . . ,m} :
n∑

j=1

ai,jrj = bi.

LetS be the vector subspace ofKn defined in (a).

Then, the solutions if the system of linear equations are the set

{( r1
r2
...
rn

)
+

( s1
s2
...
sn

)
|
( s1
s2
...
sn

)
∈ S

}
.

Here is a general form to obtain and write subspaces.

Definition-Lemma 1.8. LetV be aK-vector space andE ⊆ V a non-empty subspace. We set

〈E〉 := {
m∑

i=1

aiei | m ∈ N, e1, . . . , em ∈ E, a1, . . . , am ∈ K}.

This is a vector subspace ofV , said to begenerated byE.

By convention, we set〈∅〉 = 0, the zero subspace.



8 1 RECALLS: VECTOR SPACES, BASES, DIMENSION, HOMOMORPHISMS

Proof. Since〈E〉 is non-empty (sinceE is non-empty), it suffizes to check the definition of subspace.
Let thereforew1, w2 ∈ 〈E〉 anda ∈ K. We can write

w1 =
m∑

i=1

aiei etw2 =
m∑

i=1

biei

for ai, bi ∈ K andei ∈ E for all i = 1, . . . ,m. Thus we have

a · w1 + w2 =
m∑

i=1

(aai + bi)ei,

which is indeed an element of〈E〉.

Example 1.9. The set
{
a ·
(

1
1
2

)
+ b ·

(
0
0
7

)
| a, b ∈ R

}
is a subspace ofR3.

Sometimes it is useful to characterize the subspace generated by a set in a more theoretical way. To
do so, we need the following lemma.

Lemma 1.10. Let V be aK-vector space andWi ≤ V subspaces fori ∈ I 6= ∅. Then,W :=⋂
i∈IWi is a vector subspace ofV .

Proof. Exercise.

In contrast,
⋃
i∈IWi is not a subspace in general (as you see it in an exercise)!

Example 1.11.How to compute the intersection of two subspaces?

(a) The easiest case is when the two subspaces are given as the solutionsof two systems of linear
equations, for example:

• V is the subset of

( x1
x2
...
xn

)
∈ Kn such that

∑n
i=1 ai,jxi = 0 for j = 1, . . . , ℓ, et

• W is the subset of

( x1
x2
...
xn

)
∈ Kn such that

∑n
i=1 bi,kxi = 0 pourk = 1, . . . ,m.

In this case, the subspaceV ∩W is given as the set of common solutions for all the equalities.

(b) Suppose now that the subspaces are given as subspaces ofKn generated by finite sets of vectors:
LetV = 〈E〉 andW = 〈F 〉 où

E =








e1,1
e2,1
...

en,1


 , . . . ,




e1,m
e2,m

...
en,m





 ⊆ Kn andF =








f1,1
f2,1
...

fn,1


 , . . . ,




f1,p
f2,p
...

fn,p





 ⊆ Kn.

Then

V ∩W =
{ m∑

i=1

ai




e1,i
e2,i
...

en,i


 ∣∣

∃ b1, . . . , bp ∈ K : a1




e1,1
e2,1
...

en,1


+ · · ·+ am




e1,m
e2,m

...
en,m


− b1




f1,1
f2,1
...

fn,1


− · · · − bp




f1,p
f2,p
...

fn,p


 = 0

}
.
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Here is a concrete example:E =
{(

1
1
2

)
,
(

0
1
0

)}
⊆ Kn andF =

{(
1
0
1

)
,
(

2
0
1

)}
⊆ Kn. We have

to solve the system (
1 0 −1 −2
1 1 0 0
2 0 −1 −1

)( x1
x2
y1
y2

)
= 0.

With operations on the rows, we obtain

ker(
(

1 0 −1 −2
1 1 0 0
2 0 −1 −1

)
) = ker(

(
1 0 −1 −2
0 1 1 2
0 0 1 3

)
) = ker(

(
1 0 0 1
0 1 0 −1
0 0 1 3

)
),

thus we obtain as solution subspace the line generated by

(−1
1
−3
1

)
, so the intersection is given by

the line
〈−1 ·

(
1
1
2

)
+ 1 ·

(
0
1
0

)
〉 = 〈−3 ·

(
1
0
1

)
+ 1 ·

(
2
0
1

)
〉 = 〈

(
1
0
2

)
〉.

Here is the alternative characterization of the subspace generated by a set

Lemma 1.12. LetV be aK-vector space andE ⊆ V a non-empty subset. Then we have the equality

〈E〉 =
⋂

W≤V subspace s.t.E⊆W
W

where the right hand side is the intersection of all the subspacesW of V containingE.

Proof. To prove the equality of two sets, we have to prove the two inclusions.
’ ⊆ ’: Any subspaceW containingE, also contains all the linear combinations of elements ofE,
henceW contains〈E〉. Consequently,〈E〉 in the intersection on the right.
’ ⊇ ’: Since〈E〉 belongs to the subspaces in the intersection on the right, it is clear that this intersection
is contained in〈E〉.

Definition 1.13. LetV be aK-vector space andE ⊆ V a subset. We say thatV is generated byE
(as vector subspace)if V = 〈E〉.
Put another way, this means that any element ofV is written as linear combination of vectors inE.

Definition 1.14. LetV be aK-vector space andWi ≤ V subspaces ofV for i ∈ I 6= ∅. We set
∑

i∈I
Wi := 〈

⋃

i∈I
Wi〉,

the subspace ofV generated by all the elements of all theWi’s. We call itthe sum of theWi’s, i ∈ I.
If I = {1, 2, . . . , n}, we can write

∑n
i=1Wi explicitly as

n∑

i=1

Wi = {
n∑

i=1

wi | w1 ∈W1, . . . wn ∈Wn}.

For a generalI, this generalizes as:
∑

i∈I
Wi = {

∑

i∈I
wi |

(
∀ i ∈ I : wi ∈Wi

)
andwi 6= 0 for only finitely manyi ∈ I}.

We use the notation
∑′

i∈I wi to indicatewi 6= 0 for only finitely manyi ∈ I.
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Example 1.15.How to compte/obtain the sum of two subspaces?

The answer is very easy if the two subspaces are given by generators:If U = 〈E〉 andV = 〈F 〉 are
subspaces of aK-vector spaceV , thenU + V = 〈E ∪ F 〉.
(The question of giving a basis for the sum is different... see later.)

When are thewi ∈Wi in the writingw =
∑′

i∈I wi unique?

Definition 1.16. LetV be aK-vector space andWi ≤ V the subspace ofV for i ∈ I 6= ∅.

We say that the sumW =
∑

i∈IWi is direct if for all i ∈ I we have

Wi ∩
∑

j∈I\{i}
Wj = 0.

Notation for direct sums:
⊕

i∈IWi.

If I = {1, . . . , n}, we sometimes write the elements of a direct sum
⊕n

i=1Wi asw1 ⊕w2 ⊕ · · · ⊕wn
(wherewi ∈Wi for i ∈ I, of course).

Example 1.17. In Example 1.11 (b), the sumV +W is not direct since the intersectionV ∩W is a
line and thus non-zero.

Proposition 1.18. Let V be aK-vector space,Wi ≤ V subspaces ofV for i ∈ I 6= ∅ andW =∑
i∈IWi. Then the following assertions are equivalent:

(i) W =
⊕

i∈IWi ;

(ii) for all w ∈W and all i ∈ I there exists a uniquewi ∈Wi such thatw =
∑′

i∈I wi.

Proof. “(i) ⇒ (ii)”: The existence of suchwi ∈Wi is clear. Let us thus show the uniqueness

w =
∑

i∈I

′
wi =

∑

i∈I

′
w′
i

with wi, w′
i ∈ Wi for all i ∈ I (remember that the notation

∑′ indicates that only finitely manywi,
w′
i are non-zero). This implies fori ∈ I:

wi − w′
i =

∑

j∈I\{i}

′
(w′

j − wj) ∈Wi ∩
∑

j∈I\{i}
Wj = 0.

Thus,wi − w′
i = 0, sowi = w′

i for all i ∈ I, showing uniqueness.

“(ii) ⇒ (i)”: Let i ∈ I andwi ∈ Wi ∩
∑

j∈I\{i}Wj . Then,wi =
∑′

j∈I\{i}wj with wj ∈ Wj for all
j ∈ I. We can now write0 in two ways

0 =
∑

i∈I

′
0 = −wi +

∑

j∈I\{i}

′
wj .

Hence, the uniqueness imples−wi = 0. Therefore, we have shownWi ∩
∑

j∈I\{i}Wj = 0.



11

Bases

Definition 1.19. LetV be aK-vector space andE ⊆ V a subspace.

We say thatE isK-linearly independentif

∀n ∈ N ∀ a1, . . . , an ∈ K ∀ e1, . . . , en ∈ E :
( n∑

i=1

aiei = 0 ∈ V ⇒ a1 = a2 = · · · = an = 0
)

(i.e., the onlyK-linear combination of elements ofE representing0 ∈ V is the one in which all the
coefficients are0). On the other hand, we say thatE isK-linearly dependent.

We callE aK-basis ofV if E generatesV andE isK-linearly independent.

Example 1.20. How to compute whether two vectors are linearly independent? (Same answer than
almost always:) Solve a system of linear equations.

Let the subspace 






e1,1
e2,1
...

en,1


 , . . . ,




e1,m
e2,m

...
en,m







ofKn be given. These vectors are linearly independent if and only if the only solution of the system
of linear equations 


e1,1 e1,2 ... e1,m
e2,1 e2,2 ... e2,m
...

...
...

...
en,1 en,2 ... en,m



( x1

x2
...
xm

)
= 0

is zero.

Example 1.21.Letd ∈ N>0. Sete1 =




1
0
0
...
0


 , e2 =




0
1
0
...
0


 , . . . , ed =




0
0
0
...
1


 etE = {e1, e2, . . . , ed}.

Then:

• E generatesKd:

Any vectorv =




a1
a2
a3
...
ad


 is written asK-linear combination:v =

∑d
i=1 aiei.

• E isK-linearly independent:

If we have aK-linear combination0 =
∑d

i=1 aiei, then clearlya1 = · · · = ad = 0.

• E is thus aK-basis ofKd, sinceE generatesKd and isK-linearly independent. We call it the
canonical basisofKd.

The following theorem characterizes bases.

Theorem 1.22.LetV be aK-vector space andE = {e1, e2, . . . , en} ⊆ V be a finite subset. Then,
the following assertions are equivalent:

(i) E is aK-basis.
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(ii) E is a minimal set of generators ofV , i.e.: E generatesV , but for all e ∈ E, the setE \ {e}
does not generateV .

(iii) E is a maximalK-linearly independent set, i.e.:E is K-linearly independent, but for alle ∈
V \ E, the setE ∪ {e} isK-linearly dependent.

(iv) Anyv ∈ V is written asv =
∑n

i=1 aiei with uniquea1, . . . , an ∈ K.

Corollary 1.23. Let V be aK-vector space andE ⊆ V a finite set generatingV . Then,V has
K-basis contained inE.

In the appendix of this section, we will show using Zorn’s Lemma that any vector space has a basis.

Example 1.24. (a) LetV =
{(

a
a
b

)
| a, b ∈ R

}
. A basis ofV is

{(
1
1
0

)
,
(

0
0
1

)}
.

(b) LetV = 〈
(

1
2
3

)
,
(

2
3
4

)
,
(

3
5
7

)
〉 ⊆ Q3.

The setE =
{(

1
2
3

)
,
(

2
3
4

)}
is aQ-basis ofV . Reason:

• The system of linear equations

a1 ·
(

1
2
3

)
+ a2 ·

(
2
3
4

)
+ a3 ·

(
3
5
7

)
=
(

0
0
0

)

has a non-zero solution (for instancea1 = 1, a2 = 1, a3 = −1). This imples thatE
generatesV since we can express the third generator by the two first.

• The system of linear equations

a1 ·
(

1
2
3

)
+ a2 ·

(
2
3
4

)
=
(

0
0
0

)

only hasa1 = a2 = 0 as solution. ThusE isQ-linearly independent.

(c) TheR-vectore space

V = {f : N → R | ∃S ⊆ N finite ∀n ∈ N \ S : f(n) = 0}

has{en | n ∈ N} avecen(m) = δn,m (Kronecker delta:δn,m =

{
1 si n = m,

0 if n 6= m.
) asR-basis.

This is thus a basis with infinitely many elements.

(d) Similarly to the previous example, theR-vector space

V = {f : R → R | ∃S ⊆ R finite ∀x ∈ R \ S : f(x) = 0}

has{ex | x ∈ R} with ex(y) = δx,y asR-basis. This is thus a basis which is not countable.

Example 1.25.How to compute a basis for a vector space generated by a finite set of vectors? (Same
answer than almost always:) Solve a system of linear equations.
Let V be aK-vector space generated by{e1, e2, . . . , em} (assumed all non-zero). We proceed as
follows:
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• Adde1 to the basis.

• If e2 is linearly independent frome1 (i.e. e2 is not a scalar multiple ofe1), adde2 to the basis
and in this casee1, e2 are linearly independent (otherwise, do nothing).

• If e3 is linearly independent from the vectors chosen for the basis, adde3 to the basis and in
this case the elements chosen for the basis are linarly independent (otherwise, do nothing).

• If e4 is linearly independent from the vectors already chosen for the basis, adde4 to the basis
and in this case all the chosen elements for the basis are linearly independent (otherwise, do
nothing).

• etc. until the last vector.

Here is a concrete example inR4:

e1 =

(
1
1
0
2

)
, e2 =

(
1
0
1
0

)
, e3 =

(
4
1
3
2

)
, e4 =

(
0
1
0
1

)
.

• Adde1 to the basis.

• Adde2 to the basis sincee2 is clearly not a multiple ofe1 (see, for example, the second coeffi-
cient), thuse1 ete2 are linearly independent.

• Are e1, e2, e3 linearly independent?We consider the system of linear equations given by the
matrix (

1 1 4
1 0 1
0 1 3
2 0 2

)
.

By transformations on the rows, we obtain the matrix

(
1 0 1
0 1 3
0 0 0
0 0 0

)
.

We obtain the solution
(

1
3
−1

)
. So, we do not adde3 to the basis sincee3 is linearly dependent

frome1, e2.

• Are e1, e2, e4 linearly independent? We consider the system of linear equations given by the
matrix (

1 1 0
1 0 1
0 1 0
2 0 1

)
.

By transformations on the rows, we obtain the matrix

(
1 0 0
0 1 0
0 0 1
0 0 0

)
.

The corresponding system has no non-zero solution. Therforee1, e2, e4 are linearly indepen-
dent. This is the basis that we looked for.
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Dimension

Corollary 1.26. Let K be a field andV a K-vector space having a finiteK-basis. Then, all the
K-bases ofV are finite and have the same cardinality.

This corollary allows us to make a very important definition, that of the dimensionof a vector space.
The dimension measures the ’size’ or the ’number of degrees of freedom’of a vector space.

Definition 1.27. LetK be a field andV aK-vector space. IfV has a finiteK-basis of cardinalityn,
we say thatV is ofdimensionn. If V has no finiteK-basis, we say thatV is of infinite dimension.
Notation:dimK(V ).

Example 1.28. (a) The dimension of the standardK-vector spaceKn is equal ton.

(b) The zeroK-vector space({0},+, ·, 0) is of de dimension0 (and it is the only one).

(c) TheR-vector spaceF(N,R) is of infinite dimension.

Lemma 1.29. LetK be a field,V aK-vector space of dimensionn andW ≤ V a subspace.

(a) dimK(W ) ≤ dimK(V ).

(b) If dimK(W ) = dimK(V ), thenW = V .

The content of the following proposition is that anyK-linearly independent set can be completed to
become aK-basis.

Proposition 1.30(Basisergänzungssatz). LetV be aK-vector space of dimensionn, E ⊆ V a finite
set such thatE generatesV and{e1, . . . , er} ⊂ V a subset that isK-linearly independent.
Thenr ≤ n and there exister+1, er+2, . . . , en ∈ E such that{e1, . . . , en} is aK-basis ofV .

The proposition 1.30 can be shown in an abstract manner or in a constructive manner. Assume that
we have elementse1, . . . , er that areK-linearly independent. Ifr = n, these elements are aK-basis
by Lemma 1.29 (b) and we are done. Assume therefore thatr < n. We now run through the elements
of E until we find e ∈ E such thate1, . . . , er, e areK-linearly independent. Such an elemente

has to exist, otherwise the setE would be contained in the subspace generated bye1, . . . , er, an
could therefore not generateV . We call e =: er+1 and we have aK-linearly independent set of
cardinalityr + 1. It now suffices to continue this process until we arrive at aK-linearly independent
set withn elements, which is automatically aK-basis.

Corollary 1.31. LetV be aK-vector space of finite dimensionn and letW ≤ V be a vector subspace.
Then there exists a vector subspaceU ≤ V such thatV = U ⊕ V . Moreover, we have the equality
dim(V ) = dim(W ) + dim(U).
We callU a complementofW in V . Note that this complement is not unique in general.

Proof. We choose aK-basisw1, . . . , wr of W and we use the proposition 1.30 to obtain vectors
u1, . . . , us ∈ V such thatw1, . . . , wr, u1, . . . , us form aK-basis ofV . PutU = 〈u1, . . . , us〉. Clearly,
we haveV = U +W and alsoU ∩W = 0, soV = U ⊕W . The assertion concerning dimensions
follows.
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Proposition 1.32. Let V be aK-vector space of finite dimensionn. Let B ⊂ V be a subset of
cardinalityn. Then, the following assertions are equivalent.

(i) B is aK-basis.

(ii) B isK-linearly independent.

(iii) B generatesV .

Proof. For the equivalence between (i) and (ii) it suffices to observe that aK-linearly independent
set of cardinalityn is necessarily maximal (thus aK-basis by Theorem 1.22), since if it was not
maximal, there would be a maximalK-linearly independent set of cardinality strictly larger thann,
thus aK-basis of cardinality different fromn which is not possible by Corollary 1.26.
Similarly, for the equivalence between (i) and (iii) it suffices to observe that a set of cardinalityn that
generatesV is necessarily minimal (thus aK-basis by Theorem 1.22), since if it was not minimal,
there would be a minimal set of cardinality strictly smaller thann that generatesV , thus aK-basis of
cardinality different fromn.

Linear maps: homomorphisms of vector spaces

We start with the main idea :
The (homo-)morphisms are maps that respect all the structures.

Definition 1.33. LetV,W beK-vector spaces. A map

ϕ : V →W

is calledK-linearor (homo-)morphism ofK-vector spacesif

∀ v1, v2 ∈ V : ϕ(v1 +V v2) = ϕ(v1) +W ϕ(v2)

and

∀ v ∈ V, ∀a ∈ K : ϕ(a ·V v) = a ·W ϕ(v).

A bijective homomorphism ofK-vector spaces is called anisomorphism. We often denote the iso-
morphisms by a tilda:ϕ : V

∼−→ W . If there exists an isomorphismV → W , we often simply write
V ∼=W .

Example 1.34. (a) We start by the most important example. Letn ∈ N.

LetM =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




be a matrix withn columns,m rows and with coefficients

in K (we denote the set of these matrices byMatm×n(K); this is also aK-vector space). It
defines theK-linear map

ϕM : Kn → Km, v 7→Mv
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whereMv is the usual product for matrices. Explicitely,

ϕM (v) =Mv =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

.. .
...

am,1 am,2 · · · am,n







v1
v2
...
vn




=




∑n
i=1 a1,ivi∑n
i=1 a2,ivi

...∑n
i=1 am,ivi



.

TheK-linearity reads as

∀ a ∈ K ∀ v, w ∈ V :M ◦ (a · v + w) = a · (M ◦ v) +M ◦ w.

This equality is very easy to verify (you should have seen it in your Linear Algebra 1 course).

(b) Leta ∈ R. Then,ϕ : R → R, x 7→ ax isR-linear (this is the special casen = m = 1 of (a) if we
look at the scalara as a matrix(a)). On the other hand, if0 6= b ∈ R, thenR → R, x 7→ ax+ b

is notR-linear!

(c) Letn ∈ N. Then, the mapϕ : F(N,R) → R, f 7→ f(n) isK-linear.

Definition 1.35. LetV,W beK-vector spaces andϕ : V → W aK-linear map. Thekernel ofϕ is
defined as

ker(ϕ) = {v ∈ V | ϕ(v) = 0}.

Proposition 1.36. LetV,W beK-vector spaces andϕ : V →W aK-linear map.

(a) Im(ϕ) is a vector subspace ofW .

(b) ker(ϕ) is a vector subspace ofV .

(c) ϕ is surjective if and only ifIm(ϕ) =W .

(d) ϕ is injective if and only ifker(ϕ) = 0.

(e) Ifϕ is an isomorphism, its inverse is one too (in particular, its inverse is alsoK-linear).

Definition 1.37. LetM ∈ Matm×n(K) be a matrix. We callrank of columnsofM the dimension of
the vector subspace ofKm generates by the columns ofM . We use the notationrk(M).

Similarly, we define therank of rowsofM the dimension of the vector subspace ofKn generated by
the rows ofM . More formally, it is the rank ofM tr, the transpose matrix.

We will see towards the end of the course that for any matrix, the rank of columns is equal to the rank
of rows. This explains why we did not mention the word “ columns” in the notationof the rank.

If ϕM : Kn → Km is theK-linear map associated toM , then

rk(M) = dim(Im(ϕM ))

since the image ofϕM is precisely the vector space generated by the columns ofM .
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Corollary 1.38. (a) Letϕ : V → X be aK-linear map between twoK-vector spaces. We assume
thatV has finite dimension. Then,

dim(V ) = dim(ker(ϕ)) + dim(Im(ϕ)).

(b) LetM ∈ Matm×n(K) be a matrix. Then, we have

n = dim(ker(M)) + rk(M).

Proof. (a) LetW = ker(ϕ). We choose a complementU ≤ V such thatV = U ⊕W by Corol-
lary 1.31. AsU ∩W = 0, the mapϕ|U : U → X is injective. Moreover,ϕ(V ) = ϕ(U+W ) = ϕ(U)

shows thatIm(ϕ) is equal toϕ(U). Consequently,dim(Im(ϕ)) = dim(ϕ(U)) = dim(U), thus the
desired equality.
(b) follows directly from (a) by the above considerations.

Part (b) is very useful for computing the kernel of a matrix: if we know therank ofM , we deduce the
dimension of the kernel by the formula

dim(ker(M)) = n− rk(M).

Gauß’ algorithm in terms of matrices

We consider three types of matrices:

Definition 1.39. For 0 6= λ ∈ K and 1 ≤ i, j ≤ n, i 6= j, we define the following matrices in
Matn×n(K), calledelementary matrices:

• Pi,j is equal to the identityidn except that thei-th and thej-th rows are exchanged (or, equiv-

alently, thei-th and thej-th column are exchanged):Pi,j =




1
...

1
0 1
1
1

1 0
1

...
1




.

• Si(λ) is equal to the identityidn except that the coefficient(i, i) on the diagonal isλ (instead

of 1): Si(λ) =




1
...

1
λ

1
...

1




.

• Qi,j(λ) is equal to the identityidn except that the coefficient(i, j) isλ (instead of0): Qi,j(λ) =


1
...

... λ
...

1


.
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The elementary matrices have a signification for the operations of matrices.

Lemma 1.40. Letλ ∈ K, i, j, n,m ∈ N>0, i 6= j andM ∈ Matn×m(K).

(a) Pi,jM is the matrix obtained fromM by exchanging thei-th and thej-th row.
MPi,j is the matrix obtained fromM by exchanging thei-th and thej-th coulumn.

(b) Si(λ)M is the matrix obtained fromM by multiplying thei-th row byλ.
MSi(λ) is the matrix obtained fromM by multiplying thei-th column byλ.

(c) Qi,j(λ)M is the matrix obtained fromM by addingλ times thej-th row to thei-th row.
MQi,j(λ) is the matrix obtained fromM by addingλ times thei-th column to thej-th column.

Proof. Easy computations.

Proposition 1.41. Let M ∈ Matn×m(K) be a matrix and letN ∈ Matn×m(K) be the matrix
obtained fromM by making operations on the rows (as in Gauß’ algorithm).

(a) Then there exist matricesC1, . . . , Cr (for somer ∈ N) chosen among the matrices of Defini-
tion 1.39 such that(C1 · · ·Cr) ·M = N .

(b) ker(M) = ker(N) and thus Gauß’ row reduction algorithm can be used in order to compute the
kernel of a matrix.

Proof. (a) By Lemma 1.40 any operation on the rows can be done by left multiplication byone of the
matrices of Definition 1.39.

(b) All the matrices of Definition 1.39 are invertible, thus do not change the kernel.

Similarly to (b), any operation on the columns corresponds to right multiplication by one of the ma-
trices of Definition 1.39. Thus, ifN is a matrix obtained from a matrixM by doing operations on
the columns, there exist matricesC1, . . . , Cr (for somer ∈ N) chosen among the matrices of Defini-
tion 1.39 such thatM · (C1 · · ·Cr) = N . Since the matricesCi are invertible, we also have

im(M) = im(N),

and in particular the rank ofM is equal to the rank ofN .

Often we are interested in knowing a matrixC such thatCM = N whereN is obtained fromM by
operations on the rows.

In order to obtain this, it suffices to observe thatC · id = C, hence applyingC is equivalent to doing
operations on the corresponding rows of the matrixid. In the following example, we see how this is
done in practice.

Example 1.42.LetM =



1 2 3

4 5 6

7 8 9


. We write the augmented matrix and do the operations on the
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rows as always, but on the whole matrix.



1 0 0 1 2 3

0 1 0 4 5 6

0 0 1 7 8 9


 7→




1 0 0 1 2 3

−4 1 0 0 −3 −6

−7 0 1 0 −6 −12


 7→




1 0 0 1 2 3

−4 1 0 0 −3 −6

1 −2 1 0 0 0




7→




1 0 0 1 2 3

4/3 −1/3 0 0 1 2

1 −2 1 0 0 0


 7→



−5/3 2/3 0 1 0 −1

4/3 −1/3 0 0 1 2

1 −2 1 0 0 0




The left half of the final matrix is the matrixC looked for:C =



−5/3 2/3 0

4/3 −1/3 0

1 −2 1


. The right half

is the matrix obtained by the operations on the rows.
We know that we have the following equality (to convince ourselves, we can verify it by a small
computation):

CM =



−5/3 2/3 0

4/3 −1/3 0

1 −2 1






1 2 3

4 5 6

7 8 9


 =



1 0 −1

0 1 2

0 0 0


 .

As application of the Gauß’s algorithm written in terms of matrices, we obtain that any invertible
square matrixM can be written as product of the matrices of Definition 1.39. Indeed, that wecan
transformM into identity by operations on the rows.

Matrices and representation of linear maps

In Example 1.34 (a) we have seen that matrices give rise toK-linear maps. It is very important and
sometimes calledmain theorem of linear algebrathat the inverse assertion is also true:
after choice of basisanyK-linear map is given by a matrix.

Notation 1.43. Let V be aK-vector space andS = {v1, . . . , vn} a K-basis ofV . We recall that
v =

∑n
i=1 bivi with uniqueb1, . . . , bn ∈ K; these are the coordinates ofv for the basisS. We use the

following notation:

vS =




b1
b2
...
bn


 ∈ Kn.

Example 1.44. (a) Letn ∈ N ande1 =




1
0
0
...
0


 , e2 =




0
1
0
...
0


 , . . . , en =




0
0
0
...
1


.

ThusE = {e1, e2, . . . , en} is a canonicalK-basis ofKn. Then, for allv =




a1
a2
a3
...
an


 ∈ Kn we

havevE =




a1
a2
a3
...
an


.
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(b) LetV = R2 andS = {( 11 ) ,
(

1
−1

)
}. It is a R-basis ofV (since the dimension is2 and the two

vectors areR-linearly independent). Letv = ( 42 ) ∈ V . Then,v = 3 · ( 11 ) +
(

1
−1

)
, sovS = ( 31 ).

The following proposition says that anyK-vector space of dimensionn is isomorphic toKn.

Proposition 1.45. LetV be aK-vector space of finite dimensionn withK-basisS = {v1, . . . , vn}.

Then, the mapϕ = ()S : V → Kn given byv 7→ vS is aK-isomorphism.

Proof. Let v, w ∈ V anda ∈ K. We writev andw in coordinates for the basisS: v =
∑n

i=1 bivi and
w =

∑n
i=1 civi. Thus, we haveav + w =

∑n
i=1(abi + ci)vi. Written as vectors we thus find:

vS =




b1
b2
...
bn


 , wS =

( c1
c2
...
cn

)
et (av + w)S =




ab1+c1
ab2+c2

...
abn+cn


 ,

thus the equality(a · v +w)S = a · vS +wS . This shows that the mapϕ isK-linear. We show that it
is bijective.

Injectivity: Letv ∈ V be such thatvS =

( 0
0
...
0

)
, i.e.v ∈ ker(ϕ). This means thatv =

∑n
i=1 0·vi = 0.

The kernel ofϕ therefore only contains0, so,ϕ is injective.

Surjectivity: Let

( a1
a2
...
an

)
∈ Kn. We setv :=

∑n
i=1 ai · vi. We haveϕ(v) =

( a1
a2
...
an

)
and the

surjectivity is proven.

Theorem 1.46. Let V,W be twoK-vector spaces of finite dimensionn andm andϕ : V → W a
K-linear map. LetS = {v1, . . . , vn} be aK-basis ofV andT = {w1, . . . , wm} a K-basis ofW .
For all 1 ≤ i ≤ n, the vectorϕ(vi) belongs toW . We can thus express it as aK-linear combination
of the vectors in the basisT , so:

ϕ(vi) =
m∑

j=1

aj,iwj .

We ’gather’ the coefficientsaj,i in a matrix:

MT,S(ϕ) :=




a1,1 a1,2 ··· a1,n
a2,1 a2,2 ··· a2,n
...

...
...

...
am,1 am,2 ··· am,n


 ∈ Matm×n(K).

Then, for allv ∈ V we have

(ϕ(v))T =MT,S(ϕ) ◦ vS .

This means that the matrix productMT,S(ϕ) ◦ vS gives the coordinates in basisT of the imageϕ(v).
Then, the matrixMT,S(ϕ) describes theK-linear mapϕ in coordinates.

Observe that it is easy to write the matrixMT,S(ϕ): thei-th column ofMT,S(ϕ) is (ϕ(vi))T .
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Proof. We do a very simple matrix computation:

MT,S(ϕ) ◦ (vi)S =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




◦




0
...
0
1
0
...
0




=




a1,i
a2,i

...
am,i




= (ϕ(vi))T ,

where the1 is in thei-th row of the vector. We have thus obtained the result for the vectorsvi in the
basisS.

The general assertion follows by linearity: Letv =
∑n

i=1 bivi. Then we obtain

MT,S(ϕ) ◦ (
n∑

i=1

bivi)S =
n∑

i=1

bi ·
(
MT,S(ϕ) ◦ (vi)S

)

=
n∑

i=1

bi · (ϕ(vi))T = (
n∑

i=1

bi · ϕ(vi))T = (ϕ(
n∑

i=1

bi · vi))T = (ϕ(v))T .

This shows the theorem.

Example 1.47.C has aR-basisB = {1, i}. Letz = x+ iy ∈ C with x, y ∈ R, thuszB = ( xy ). Let
a = r + is with r, s ∈ R. The map

ϕ : C → C, z 7→ a · z

is R-linear. We describeMB,B(ϕ). The first column is(a · 1)B = (r + is)B = ( rs ), and the second
column is(a · i)B = (−s+ ir)B = (−sr ), thenMB(ϕ) = ( r −s

s r ).

Definition 1.48. Let us denote byHomK(V,W ) the set of all mapsϕ : V →W which ateK-linear.

In the special caseW = V , aK-linear mapϕ : V → V is also called anendomorphismof V and
we write

EndK(V ) := HomK(V, V ).

Corollary 1.49. Let K be a field,V,W two K-vector spaces of finite dimensionn andm. Let
S = {v1, . . . , vn} be aK-basis ofV etT = {w1, . . . , wm} aK-basis ofW .

Then, the map

HomK(V,W ) → Matm×n(K), ϕ 7→MT,S(ϕ)

is a bijection.

It is important to stress that the bases in the corollary are fixed! The same matrix can express
different linear maps if we change the bases.

Proof. Injectivity: Suppose thatMT,S(ϕ) = MT,S(ψ) for ϕ, ψ ∈ HomK(V,W ). Then for all
v ∈ V , we have(ϕ(v))T = MT,S(ϕ) ◦ vS = MT,S(ψ) ◦ vS = (ψ(v))T . Since the writing in
coordinates is unique, we findϕ(v) = ψ(v) for all v ∈ V , doncϕ = ψ.
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Surjectivity: LetM ∈ Matm×n(K) be a matrix. We defineϕ ∈ HomK(V,W ) by

(ϕ(v))T =M ◦ vS
for v ∈ V . It is clear thatϕ isK-linear. Moreover, we have

MT,S(ϕ) ◦ vS = (ϕ(v))T =M ◦ vS
for all v ∈ V . Takingv = vi such that(vi)S is the vector of which thei-th coordinate is1 and
the rest is0, we obtain that thei-th columns ofMT,S(ϕ) andM are the same. This shows that
M =MT,S(ϕ).

Definition-Lemma 1.50. LetV be aK-vector space of finite dimensionn. LetS1, S2 be twoK-bases
of V . We set

CS2,S1 :=MS2,S1(idV )

and we call it thebasis change matrix.

(a) CS2,S1 is a matrix withn columns andn rows.

(b) For all v ∈ V :
vS2 = CS2,S1 ◦ vS1 .

In words: the multiplication of the basis change matrices by the vectorv expressed in coordinates
for the basisS1, gives the vectorv expressed in coordinates for the basisS2.

(c) CS2,S1 is invertible with inverseCS1,S2 .

It is easy to write the matrixCS2,S1 : its j-th column consists of the coordinates in basisS2 of thej-th
vector of basisS1.

Proof. (a) This is clear.
(b)CS2,S1 ◦ vS1 =MS2,S1(idV ) ◦ vS1 = (idV (v))S2 = vS2 .
(c) CS1,S2 ◦ CS2,S1 ◦ vS1 = CS1,S2 ◦ vS2 = vS1 for all v ∈ V . This shows thatCS1,S2 ◦ CS2,S1 is
identity. The same reasonning holds with the roles ofS1 andS2 inverted.

Proposition 1.51. LetV,W beK-vector spaces of finite dimension, letS1, S2 be twoK-bases ofV ,
let T1, T2 be twoK-bases ofW , and letϕ ∈ HomK(V,W ). Then,

MT2,S2(ϕ) = CT2,T1 ◦MT1,S1(ϕ) ◦ CS1,S2 .

Proof. CT2,T1 ◦MT1,S1(ϕ)◦CS1,S2 ◦vS2 = CT2,T1 ◦MT1,S1(ϕ)vS1 = CT2,T1 ◦ (ϕ(v))T1 = (ϕ(v))T2 .

Proposition 1.52. LetV,W,Z beK-vector spaces of finite dimension, letS be aK-basis ofV , T a
K-basis ofW andU aK-basis ofZ. Letϕ ∈ HomK(V,W ) andψ ∈ HomK(W,Z). Then,

MU,T (ψ) ◦MT,S(ϕ) =MU,S(ψ ◦ ϕ).

In words: the matrix product corresponds to the composition of maps.

Proof. MU,T (ψ) ◦MT,S(ϕ) ◦ vS =MU,T (ψ) ◦ (ϕ(v))T = (ψ(φ(v)))U =MU,T (ψ ◦ ϕ) ◦ vS .
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Appendix: existence of bases

For lack of time, this section will neither be taught, neither be examined.
In the lecture course “Structures mathématiques” we have introduced the sets from an intuitive and
non-rigurous point of view. A strict treatment can only take place in a logic course at a more advanced
stage (such a course is not offered at the UL for the moment – you can consult books for more details).
In set theory, there is an important axiom: the ’axiom of choix’.1 In set theory one shows ’Zorn’s
Lemma’ which says that the axiom of choice is equivalent to the following assertion.

Axiom 1.53 (Zorn’s Lemma). Let S be a non-empty set and≤ a partial order onS.2 We make the
following hypothesis: Any subsetT ⊆ S which is totally ordered3 has an upper bound.4

Then,S has a maximal element.5

To show how to apply Zorn’s Lemma, we prove that ant vector space has abasis. If you have seen
this assertion in your Linear Algebra 1 lecture course, then it was for finite-dimensional vector spaces
because the general case is in fact equivalent to the axiom of choice (an thus to Zorn’s Lemma).

Proposition 1.54. LetK be a field andV 6= {0} aK-vector space. Then,V has aK-basis.

Proof. We recall some notions of linear algebra. A finite subsetG ⊆ V is calledK-linearly indepen-
dentif the only linear combination0 =

∑
g∈G agg with ag ∈ K is that whereag = 0 for all g ∈ G.

More generally, a non-necessarily finite subsetG ⊆ V is calledK-linearly independentif any finite
subsetH ⊆ G is K-linearly independent. A subsetG ⊆ V is called aK-basisif it is K-linearly
independet and generatesV .6

We want to use Zorn’s Lemma 1.53. Let

S := {G ⊆ V subset| G isK-linearly independent}.

The setS is non-empty sinceG = {v} isK-linearly independent for all0 6= v ∈ V . The inclusion of
sets ’⊆’ defines an order relation onS (it is obvious – see Algebra 1).
We verify that the hypothesis of Zorn’s Lemma is satisfied: LetT ⊆ S be a totally ordered subset. We
have to produce an upper boundE ∈ S for T . We setE :=

⋃
G∈T G. It is clear thatG ⊆ E for all

G ∈ T . One has to show thatE ∈ S, thus thatE isK-linearly independent. LetH ⊆ E be a subset
of cardinalityn. We show by induction onn that there existsG ∈ T such thatH ⊆ G. The assertion
is clear forn = 1. Assume it proven forn − 1 and writeH = H ′ ⊔ {h}. The existG′, G ∈ T such

1Axiom of choice: LetX be a set of which the elements are non-empty sets. Then there exists a function f defined
onX which to anyM ∈ X associates an element ofM . Such a function is called “function of choice”.

2e recall that by definition the three following points are satisfied:

• s ≤ s for all s ∈ S.

• If s ≤ t andt ≤ s for s, t ∈ S, thens = t.

• If s ≤ t andt ≤ u for s, t, u ∈ S, thens ≤ u.

3T is totally ordered ifT is ordered and for all pairs, t ∈ T we haves ≤ t or t ≤ s.
4g ∈ S is an upper bound forT if t ≤ g for all t ∈ T .
5m ∈ S is maximal if for alls ∈ S such thatm ≤ s we havem = s.
6i.e.: any elementv ∈ V writes asv =

∑n

i=1 aigi with n ∈ N, a1, . . . , an ∈ K etg1, . . . , gn ∈ G.
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thatH ′ ⊆ G′ (by induction hypothesis because the cardinality ofH ′ is n− 1) andh ∈ G (by the case
n = 1). By the fact thatT is totally ordered, we haveG ⊆ G′ or G′ ⊆ G. In both cases we obtain
thatH is a subset ofG or ofG′. SinceH is a finite subset of a set which isK-linearly independent,
H is too. Thus,E isK-linearly independent.
Zorn’s Lemma gives us a maximal elementB ∈ S. We show thatB is aK-basis ofV . As element
of S, B is K-linearly independent. One has to show thatB generatesV . Suppose that this is not
the case and let us takev ∈ V which cannot be written as aK-linear combination of the elements
in B. Then the setG := B ∪ {v} is alsoK-linearly independent, since anyK-linear combination
0 = av+

∑n
i=1 aibi with n ∈ N, a, a1, . . . , an ∈ K andb1, . . . , bn ∈ B with a 6= 0 would lead to the

contradictionv =
∑n

i=1
−ai
a bi (note thata = 0 corresponds to aK-linear combination inB which is

K-linearly independent). But,B ( G ∈ S contradicts maximality ofB.

2 Recalls: Determinants

Goals:

• Master the definition and the fundamental properties of the determinants;

• be able to compute determinants;

• know examples and be able to prove simple properties.

Définition et premières propriétés

The determinants have been introduced the previous semester. Here we recall them form another
viewpoint: we start from the computation rules. Actually, our first proposition can be used as a
definition; it is Weierstraß’ axiomatic (see the book of Fischer).
In this section we allow thatK is a commutative ring (but you can still takeK = R orK = C without
loss of information).

If M =




m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

...
...

mn,1 mn,2 ··· mn,n


 is a matrix, we denote bymi = (mi,1 mi,2 ··· mi,n ) its i-th row, i.e.

M =

( m1
m2

...
mn

)
.

Proposition 2.1. Letn ∈ N>0. Thedeterminantis a map

det : Matn×n(K) → K, M 7→ det(M)

such that

D1 det is K-linear in each row, that is, for all1 ≤ i ≤ n, if mi = r + λs with λ ∈ K, r =

( r1 r2 ··· rn ) ands = ( s1 s2 ··· sn ), then

det




m1

...
mi−1
mi
mi+1

...
mn




= det




m1

...
mi−1

r+λs
mi+1

...
mn




= det




m1

...
mi−1
r

mi+1

...
mn




+ λ · det




m1

...
mi−1
s

mi+1

...
mn



.
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D2 det is alternating, that is, if two of the rows ofM are equal, thendet(M) = 0.

D3 det is normalized, that is,det(idn) = 1 whereidn is the identity.

Proof. This has been proven in the course of linear algebra in the previous semester.

We often use the notation
∣∣∣∣∣∣

m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

...
...

mn,1 mn,2 ··· mn,n

∣∣∣∣∣∣
:= det




m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

...
...

mn,1 mn,2 ··· mn,n


 .

Proposition 2.2. The following properties are satisfied.

D4 For all λ ∈ K, we havedet(λ ·M) = λn det(M).

D5 If a row is equal to0, thendet(M) = 0.

D6 If M̃ is obtained fromM by swapping two rows, thendet(M) = − det(M̃).

D7 Letλ ∈ A andi 6= j. If M̃ is obtained fromM by addingλ times thej-th row to thei-th row,
thendet(M) = det(M̃).

Proof. D4 This follows from the linearity (D1).
D5 This follows from the linearity (D1).

D6 Let us say that thei-th and thej-the row are swapped. ThusM =




m1

...
mi

...
mj

...
mn




andM̃ =




m1

...
mj

...
mi

...
mn




.

det(M) + det(M̃) = det




m1

...
mi

...
mj

...
mn




+ det




m1

...
mj

...
mi

...
mn




D2
= det




m1

...
mj

...
mj

...
mn




+ det




m1

...
mi

...
mj

...
mn




+ det




m1

...
mj

...
mi

...
mn




+ det




m1

...
mi

...
mi

...
mn




D1
= det




m1

...
mi+mj

...
mj

...
mn




+ det




m1

...
mi+mj

...
mi

...
mn




= det




m1

...
mi+mj

...
mi+mj

...
mn




D2
= 0.
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D7 We have

det(M̃) = det




m1

...
mi+λmj

...
mj

...
mn




D1
= det




m1

...
mi

...
mj

...
mn




+ λ · det




m1

...
mj

...
mj

...
mn




D2
= det(M) + λ · 0 = det(M).

Proposition 2.3. The following properties are satisfied.

D8 If M is of (upper) triangular form



λ1 m1,2 m1,3 ··· m1,n

0 λ2 m2,3 ··· m2,n

0 0 λ3 ··· m3,n

...
...

... ...
...

0 0 0 ··· λn


 ,

thendet(M) =
∏n
i=1 λi.

D9 If M is a bloc matrix
(
A B
0 C

)
with square matricesA andC, thendet(M) = det(A) · det(C).

Proof. Left to the reader.

Leibniz’ Formula

Lemma 2.4. For 1 ≤ i ≤ n, let ei := ( 0 ··· 0 1 0 ··· 0 ) where the1 is at thei-th position. Let

σ : {1, . . . , n} → {1, . . . , n} be a map. LetM =




eσ(1)
eσ(2)

...
eσ(n)


. Then

det(M) =

{
0 if σ is not bijective,

sgn(σ) if σ is bijective (σ ∈ Sn).

Proof. If σ is not bijective, then the matrix has twice the same row, thus the determinant is0. If σ is
bijective, thenσ is a product of transpositionsσ = τr ◦· · ·◦τ1 (see Algebra 1). Thussgn(σ) = (−1)r.
Let us start byσ = id. In this case the determinant is1 and thus equal tosgn(σ). We continue by
induction and we suppose thus (induction hypothesis) that the result is truefor r − 1 transpositions
(with r ≥ 1). Let M ′ be the matrix that corresponds toσ′ = τr−1 ◦ · · · ◦ τ1; its determinant is
(−1)r−1 = sgn(σ′) by induction hypothesis. The matrixM is obtained fromM ′ by swapping two
rows, thusdet(M) = − det(M ′) = −(−1)r−1 = (−1)r.

Proposition 2.5(Leibniz’ Formula). LetM =




m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

...
...

mn,1 mn,2 ··· mn,n


 ∈ Matn×n(K). Then,

det(M) =
∑

σ∈Sn

sgn(σ) ·m1,σ(1) ·m2,σ(2) · . . . ·mn,σ(n).
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Proof. The linearity of rows (D1) gives us

det(M) =
n∑

i1=1

m1,i1

∣∣∣∣∣∣

ei1
m2
m3

...
mn

∣∣∣∣∣∣
=

n∑

i1=1

n∑

i2=1

m1,i1m2,i2

∣∣∣∣∣∣∣

ei1
ei2
m3

...
mn

∣∣∣∣∣∣∣

= · · · =
n∑

i1=1

n∑

i2=1

· · ·
n∑

in=1

m1,i1m2,i2 · · ·mn,in

∣∣∣∣∣∣∣

ei1
ei2
ei3
...
ein

∣∣∣∣∣∣∣

=
∑

σ∈Sn

m1,σ(1)m2,σ(2) · · ·mn,σ(n) · sgn(σ),

where the last equality results from Lemma 2.4. Note that the determinant of the matrix




ei1
ei2
ei3
...
ein


 is

non-zero only if theij ’s are all different; this allows us to identify it with the permutationσ(j) = ij .
That the determinant is unique is clear because it is a function of the coefficients of the matrix.

Corollary 2.6. LetM ∈ Matn×n(K). We denote byM tr the transposed matrix. Then,det(M) =

det(M tr).

Proof. We use Leibniz’ Formula 2.5. Note first thatsgn(σ) = sgn(σ−1) for all σ in Sn sincesgn is a
homomorphism of groups,1−1 = 1 et (−1)−1 = −1. Write now

m1,σ(1)m2,σ(2) · · ·mn,σ(n) = mσ−1(σ(1)),σ(1)mσ−1(σ(2)),σ(2) · · ·mσ−1(σ(n)),σ(n)

= mσ−1(1),1mσ−1(2),2 · · ·mσ−1(n),n,

where for the last equality we have only written the product in another order since the elements
σ(1), σ(2), . . . , σ(n) run through1, 2, . . . , n (only in another order).
We thus have

det(M) =
∑

σ∈Sn

sgn(σ)m1,σ(1)m2,σ(2) · · ·mn,σ(n)

=
∑

σ∈Sn

sgn(σ−1)mσ−1(1),1mσ−1(2),2 · · ·mσ−1(n),n

=
∑

σ∈Sn

sgn(σ−1)mtr
1,σ−1(1)m

tr
2,σ−1(2) · · ·mtr

n,σ−1(n)

=
∑

σ∈Sn

sgn(σ)mtr
1,σ(1)m

tr
2,σ(2) · · ·mtr

n,σ(n)

= det(M tr),

where we have used the bijectionSn → Sn given byσ 7→ σ−1; it is thus makes no change if the sum
runs throughσ ∈ Sn or through the inverses.

Corollary 2.7. The rulesD1 to D9 are also true for the columns instead of the rows.

Proof. By taking the transpose of a matrix, the rows become columns, but by Corollary 2.6, the
determinant does not change.
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Laplace expansion

Definition 2.8. Letn ∈ N>0 andM =




m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

...
...

mn,1 mn,2 ··· mn,n


 ∈ Matn×n(K). For 1 ≤ i, j ≤ n we

define the matrices

Mi,j =




m1,1 ··· m1,j−1 0 m1,j+1 ··· m1,n

...
...

...
...

...
...

...
mi−1,1 ··· mi−1,j−1 0 mi−1,j+1 ··· mi−1,n

0 ··· 0 1 0 ··· 0
mi+1,1 ··· mi+1,j−1 0 mi+1,j+1 ··· mi+1,n

...
...

...
...

...
...

...
mn,1 ··· mn,j−1 0 mn,j+1 ··· mn,n




∈ Matn×n(A)

and

M ′
i,j =




m1,1 ··· m1,j−1 m1,j+1 ··· m1,n

...
...

...
...

...
...

mi−1,1 ··· mi−1,j−1 mi−1,j+1 ··· mi−1,n
mi+1,1 ··· mi+1,j−1 mi+1,j+1 ··· mi+1,n

...
...

...
...

...
...

mn,1 ··· mn,j−1 mn,j+1 ··· mn,n




∈ Matn−1×n−1(A).

Moreover, letM̃i,j be the matrix obtained fromM by replacing thej-th column by




0
...
0
1
0
...
0




, where the

1 is at thei-th position.
The determinantsdet(M ′

i,j) are called theminorsofM .

Lemma 2.9. Letn ∈ N>0 andM ∈ Matn×n(K). For all 1 ≤ i, j ≤ n, we have

(a) det(Mi,j) = (−1)i+j · det(M ′
i,j),

(b) det(M̃i,j) = det(Mi,j).

Proof. (a) By swappingi rows, the row with the zeros is the first one. By swappingj columns, we
obtain the matrix




1 0 ··· 0 0 ··· 0
0 m1,1 ··· m1,j−1 m1,j+1 ··· m1,n

...
...

...
...

...
...

...
0 mi−1,1 ··· mi−1,j−1 mi−1,j+1 ··· mi−1,n

0 mi+1,1 ··· mi+1,j−1 mi+1,j+1 ··· mi+1,n

...
...

...
...

...
...

...
0 mn,1 ··· mn,j−1 mn,j+1 ··· mn,n




∈ Matn×n(A)

of which the determinant isdet(M ′
i,j) (because ofD9), which proves the result.

(b) Adding−mi,k times thej-th column to thek-th column ofM̃i,j makes the coefficient(i, k) equal
to 0 for k 6= i without changing the determinant (Corollary 2.7).

Proposition 2.10(Laplace expansion for the rows). Let n ∈ N>0. For all 1 ≤ i ≤ n, we have the
equality

det(M) =
n∑

j=1

(−1)i+jmi,j det(M
′
i,j)
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Proof. By the axiomD2 (linearity in the rows), we have

det(M) =

n∑

j=1

mi,j

∣∣∣∣∣∣∣∣∣∣

m1

...
mi−1
ei

mi+1

...
mn

∣∣∣∣∣∣∣∣∣∣

=

n∑

j=1

mi,j det(Mi,j) =

n∑

j=1

(−1)i+jmi,j det(M
′
i,j).

Corollary 2.11 (Laplace expansion for the columns). For all n ∈ N>0 and all 1 ≤ j ≤ n, we have
the formula

det(M) :=
n∑

i=1

(−1)i+jmi,j det(M
′
i,j).

Proof. It suffices to apply Proposition 2.10 to the transposed matrix and to remember (Corollary 2.6)
that the determinant of the transposed matrix is the same.

Note that the formulas of Laplace can be written as

det(M) =

n∑

j=1

mi,j det(Mi,j) =

n∑

i=1

mi,j det(Mi,j).

Adjoint matrices

Definition 2.12. Theadjoint matrixadj(M) = M# = (m#
i,j) of the matrixM ∈ Matn×n(A) is

defined bym#
i,j := det(Mj,i) = (−1)i+j det(M ′

j,i).

Proposition 2.13. For all matrixM ∈ Matn×n(K), we have the equality

M# ·M =M ·M# = det(M) · idn.

Proof. LetN = (ni,j) :=M ·M#. We computeni,j :

ni,j =

n∑

k=1

m#
i,kmk,j =

n∑

k=1

det(Mk,i)mk,j .

If i = j, we findni,i = det(M) by Laplace’s formula. But we don’t need to use this formula and we
continue in generality by usingdet(Mk,i) = det(M̃k,i) by Lemma 2.9 (b). The linearity in thei-th
column shows that

∑n
k=1 det(M̃k,i)mk,j is the determinant of the matrix of which thei-th column is

replaced by thej-th column. Ifi = j, this matrix isM , somi,i = det(M). If i 6= j, this determinant
(and thusni,j) is 0 because two of the columns are equal.
The proof forM# ·M is similar.

Corollary 2.14. LetM ∈ Matn×n(K).

(a) If det(M) is invertible inK (for K a field this meansdet(M) 6= 0), thenM is invertible and the
inverse matrixM−1 is equal to 1

det(M)M
#.
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(b) If M is invertible, thenM−1 det(M) =M#.

Proof. Proposition 2.13.

We finish this recall by the following fundamental result.

Proposition 2.15. LetM,N ∈ Matn×n(K).

(a) det(M ·N) = det(M) · det(N).

(b) The following statements are equivalent:

(i) M is invertible;

(ii) det(M) is invertible.

In this case:det(M−1) = 1
det(M) .

Proof. (a) was proved in the lecture Linear Algebra 1.
(b) is obvious because of Proposition 2.13.

3 Eigenvalues

Goals:

• Master the definition and fundamental properties of eigenvalues and eigenvectors;

• be able to compute eigenspaces;

• know examples and be able to prove simple properties.

Example 3.1. (a) ConsiderM = ( 3 0
0 2 ) ∈ Mat2×2(R). We have:

• ( 3 0
0 2 ) (

1
0 ) = 3 · ( 10 ) and

• ( 3 0
0 2 ) (

0
1 ) = 2 · ( 01 ).

(b) ConsiderM = ( 3 1
0 2 ) ∈ Mat2×2(R). We have:

• ( 3 1
0 2 ) (

a
0 ) = 3 · ( a0 ) for all a ∈ R.

• ( 3 1
0 2 ) (

a
b ) =

(
3a+b
2b

)
= 2 · ( ab ) ⇔ a = −b. Thus for alla ∈ R, we have

( 3 1
0 2 ) (

a
−a ) = 2 · ( a

−a ).

(c) ConsiderM =
(

5 1
−4 10

)
∈ Mat2×2(R). We have:

•
(

5 1
−4 10

)
( 14 ) = 9 ( 14 ) and

•
(

5 1
−4 10

)
( 11 ) = 6 ( 11 ).

(d) ConsiderM = ( 2 1
0 2 ) ∈ Mat2×2(R). We have:

• ( 2 1
0 2 ) (

a
0 ) = 2 · ( a0 ) for all a ∈ R.
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• Letλ ∈ R. We look at( 2 1
0 2 ) (

a
b ) =

(
2a+b
2b

)
= λ · ( ab ) ⇔ (2a+ b = λa ∧ 2b = λb) ⇔ (b =

0 ∧ (λ = 2 ∨ a = 0)) ∨ (λ = 2 ∧ b = 0) ⇔ b = 0 ∧ (λ = 2 ∨ a = 0).

Thus, the only solutions ofM ( ab ) = λ · ( ab ) with a vector( ab ) 6= ( 00 ) are of the form
M ( a0 ) = 2 · ( a0 ) with a ∈ R.

• ConsiderM =
(

0 1
−1 0

)
∈ Mat2×2(R). We look at

(
0 1
−1 0

)
( ab ) =

(
b
−a
)
. This vector is equal

to λ · ( ab ) if and only ifb = λ · a anda = −λ · b. This givesa = −λ2 · a. Thus there is no
λ ∈ R with this property if( ab ) 6= ( 00 ).

We will study these phenomena in general. LetK be a commutative (as always) field andV aK-
vector space. We recall that aK-linear applicationϕ : V → V is also calledendomorphismand that
we denoteEndK(V ) := HomK(V, V ).

Definition 3.2. LetV be aK-vector space of finite dimensionn andϕ ∈ EndK(V ).

• λ ∈ K is calledeigenvalueofϕ if there exists0 6= v ∈ V such thatϕ(v) = λv (or equivalently
: ker(ϕ− λ · idV ) 6= 0).

• We setEϕ(λ) := ker(ϕ − λ · idV ). Being the kernel of aK-linear application,Eϕ(λ) is a
K-subspace ofV . If λ is an eigenvalue ofϕ, we callEϕ(λ) the eigenspace forλ.

• Any0 6= v ∈ Eϕ(λ) is calledeigenvector for the eigenvalueλ.

• We denoteSpec(ϕ) = {λ ∈ K | λ est valeur propre deϕ}.

• LetM ∈ Matn×n(K). We know that the application

ϕM : Kn → Kn,

( a1
...
an

)
7→M

( a1
...
an

)

is K-linear, thusϕM ∈ EndK(Kn). In this case, we often speak of eigenvalue/eigenvector
ofM (in stead ofϕM ).

Proposition 3.3. The eigenspacesEϕ(λ) andEM (λ) are vector subspaces.

Proof. This clear since the eigenspaces are defined as kernels of a matrix/linear endomorphism, and
we know that kernels are vector subspaces.

We reconsider the previous example.

Example 3.4.

(a) LetM = ( 3 0
0 2 ) ∈ Mat2×2(R).

• Spec(M) = {2, 3};

• EM (2) = 〈( 01 )〉;
• EM (3) = 〈( 10 )〉.
• The matrixM is diagonal and the canonical basis( 10 ) , (

0
1 ) consists in eigenvectors ofM .
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(b) LetM = ( 3 1
0 2 ) ∈ Mat2×2(R).

• Spec(M) = {2, 3};

• EM (2) = 〈
(

1
−1

)
〉;

• EM (3) = 〈( 10 )〉.
• The matrixM is not diagonale, butK2 has basis( 10 ) ,

(
1
−1

)
whose elements are eigenvec-

tors ofM .

• Let us define the matrix whose columns are the above base vectorsC :=
(
1 1
0 −1

)
. This

matrix is invertible (since the columns form a basis) and we have

C−1MC = ( 3 0
0 2 ) ,

a diagonal matrix with eigenvalues on the diagonal! Note that we do not needto compute
with matrices, the product of matrices is just a reformulation of the statementsseen before.

(c) LetM =
(

5 1
−4 10

)
∈ Mat2×2(R).

• Spec(M) = {6, 9};

• EM (6) = 〈( 11 )〉;
• EM (9) = 〈( 14 )〉;
• The eigenvectors( 11 ) , (

1
4 ) form a basis ofK2 and thus the matrixC := ( 1 1

1 4 ) whose
columns are these base vectors is invertible and

C−1MC = ( 6 0
0 9 ) ,

again a diagonal matrix with the eigenvalues on the diagonal!

(d) LetM = ( 2 1
0 2 ) ∈ Mat2×2(R).

• Spec(M) = {2};

• EM (2) = 〈( 10 )〉;
• K2 has no basis consisting of eigenvectors ofM , thus we cannot adapt the procedure of the

previous examples in this case.

(e) LetM =
(

0 1
−1 0

)
∈ Mat2×2(R).

• Spec(M) = ∅;

• The matrixM has no eigenvalues inR.

Example 3.5. LetK = R andV = C∞(R) be theR-vector space of smooth functionsf : R → R.
Let D : V → V be the derivationf 7→ Df = df

dx = f ′. It is an R-linear application, whence
D ∈ EndR(V ).
Let us considerf(x) = exp(rx) with r ∈ R. From Analysis, we know thatD(f) = r ·exp(rx) = r ·f .
Thus(x 7→ exp(rx)) ∈ EndR(V ) is an eigenvector for the eigenvaluer.
We thus findSpec(D) = R.
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In some examples we have met matricesM such that there is an invertible matrixC with the property
thatC−1MC is a diagonal matrix. But we have also seen examples where we could not find such a
matrixC.

Definition 3.6. (a) A matrixM is said to bediagonalizableif there exists an invertible matrixC such
thatC−1MC is diagonal.

(b) LetV be aK-vector space of finite dimensionn andϕ ∈ EndK(V ). We say thatϕ is diagonal-
izableif V admits aK-basis consisting of eigenvectors ofϕ.

This definition precisely expresses the idea of diagonalization mentioned before, as the following
lemma tells us. Its proof indicates how to find the matrixC (which is not unique, in general).

Lemma 3.7. Letϕ ∈ EndK(V ) andSpec(ϕ) = {λ1, . . . , λr}. The following statements are equiva-
lent:

(i) ϕ is diagonalizable.

(ii) There is a basisS of V such that

MS,S(ϕ) =




λ1 0 0 0 0 0 0 0 0 0

0
... 0 0 0 0 0 0 0 0 0

0 0 λ1 0 0 0 0 0 0 0 0
0 0 0 λ2 0 0 0 0 0 0 0

0 0 0 0
... 0 0 0 0 0 0

0 0 0 0 0 λ2 0 0 0 0 0

0 0 0 0 0 0
... 0 0 0 0

0 0 0 0 0 0 0
... 0 0 0

0 0 0 0 0 0 0 0 λr 0 0

0 0 0 0 0 0 0 0 0
... 0

0 0 0 0 0 0 0 0 0 0 λr




.

Proof. “(i) ⇒ (ii)”: By definition, there exists aK-basis ofV consisting of eigenvectors. We sort
them according to the eigenvalues:

S = {v1,1, . . . , v1,e1 , v2,1, . . . , v2,e2 , . . . , . . . , . . . , vr,1, . . . , vr,er}

where for all1 ≤ i ≤ r the vectorsvi,1, . . . , vi,ei are eigenvectors for the eigenvalueλi. The form of
the matrixMS,S(ϕ) is clear.
“(ii) ⇒ (i)”: The basisS consists of eigenvectors, henceϕ is diagonalizable by definition.

Proposition 3.8. LetM ∈ Matn×n(K) andϕM be theK-linear applicationKn → Kn given by( a1
...
an

)
7→M

( a1
...
an

)
. The following statements are equivalent.

(i) ϕM is diagonalizable.

(ii) There existsC ∈ Matn×n(K) invertible such thatC−1MC is a diagonal matrix; thusM is
diagonalizable.
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Proof. “(i) ⇒ (ii)”: Let S be theK-basis ofKn which exists in view of diagonalizability ofϕM . It
suffices to takeC to be the matrix whose columns are the elements of basisS.
“(ii) ⇒ (i)”: Let ei be thei-th standard vector. It is an eigenvector for the matrixC−1MC, say with
eigenvalueλi. The equalityC−1MCei = λi ·ei givesMCei = λi ·Cei, i.e.Cei is an eigenvector for
the matrixM of same eigenvalue. But,Cei is nothing but thei-th column ofC. Thus, the columns
of C form a basis ofKn consisting of eigenvectors.

The question that we are now interested in, is the following: how can we decide whetherϕ (orM ) is
diagonalizable and, if this is the case, how can we find the matrixC? In fact, it is useful to consider
two “sub-questions” individually:

• How can we computeSpec(ϕ)?

• Forλ ∈ Spec(ϕ), how can we compute the eigenspaceEϕ(λ)?

We will answer the first question in the following section. For the moment, we consider the second
question. Let us start byEM (λ). This isEM (λ) = ker(M −λ · idn). This computation is done using
Gauss’ reduction.

Example 3.9. (a) For the matrixM =
(

5 1
−4 10

)
∈ Mat2×2(R) and the eigenvalue9 we have to

compute the kernel of
(

5 1
−4 10

)
− 9 · ( 1 0

0 1 ) =
(−4 1
−4 1

)
. Recall that in order to compute the kernel

of a matrix, one is only allowed to do operations on the rows (and not on the columns since these
mix the variables). We thus have

ker(
(−4 1
−4 1

)
) = ker(

(−4 1
0 0

)
) = 〈( 14 )〉.

For the eigenvalue6 we do a similar computation:

ker(
(

5 1
−4 10

)
− 6 · ( 1 0

0 1 )) = ker(
(−1 1
−4 4

)
) = ker(

(−1 1
0 0

)
) = 〈( 11 )〉.

(b) The matrixM =
(

2 1 1
3 2 3
−3 −1 −2

)
∈ Mat3×3(R) has eigenvalues−1, 1, 2.

For the eigenvalue1, we compute the kernel

ker
( ( 2 1 1

3 2 3
−3 −1 −2

)
− 1 ·

(
1 0 0
0 1 0
0 0 1

) )
= ker

( ( 1 1 1
3 1 3
−3 −1 −3

) )

= ker
( ( 1 1 1

0 −2 0
0 0 0

) )
= ker

( ( 1 0 1
0 1 0
0 0 0

) )
= 〈
(

1
0
−1

)
〉

For the eigenvalue−1, we compute the kernel

ker
( ( 2 1 1

3 2 3
−3 −1 −2

)
+ 1 ·

(
1 0 0
0 1 0
0 0 1

) )
= ker

( ( 3 1 1
3 3 3
−3 −1 −1

) )

= ker
( ( 3 1 1

0 2 2
0 0 0

) )
= ker

( ( 1 0 0
0 1 1
0 0 0

) )
= 〈
(

0
1
−1

)
〉

For the eigenvalue2, we compute the kernel

ker
( ( 2 1 1

3 2 3
−3 −1 −2

)
− 2 ·

(
1 0 0
0 1 0
0 0 1

) )
= ker

( ( 0 1 1
3 0 3
−3 −1 −4

) )
= ker

( ( 1 0 1
0 1 1
0 0 0

) )
= 〈

(
1
1
−1

)
〉
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We write these vectors in the matrixC =
(

1 0 1
0 1 1
−1 −1 −1

)
in order to have

C−1 ·M · C =
(

1 0 0
0 −1 0
0 0 2

)
.

This explains how to find the eigenspaces in examples. If one wishes to compute the eigenspace
Eϕ(λ) = ker(ϕ− λ · idV ) in a more abstract way, one has to choose aK-basisS of V and represent
ϕ by the matrixM = MS,S(ϕ). In the basisS, Eϕ(λ) is the kernelker(M − λ · idn), and we have
already seen how to compute this one.

Let us finally give a more abstract, but useful reformulation of the diagonalizablility. We first need a
preliminary.

Lemma 3.10. Let ϕ ∈ EndK(V ) and λ1, . . . , λr be two by two distinct. Then,
∑r

i=1Eϕ(λi) =⊕r
i=1Eϕ(λi).

Proof. We proceed by induction onr ≥ 1. The caser = 1 is trivial. We assume the result true
for r − 1 ≥ 1 and we show it forr. We have to show that for all1 ≤ i ≤ r we have

0 = Eϕ(λi) ∩
r∑

j=1,j 6=i
Eϕ(λj) = Eϕ(λi) ∩

r⊕

j=1,j 6=i
Eϕ(λj),

where the second equality follows from the induction hypothese (the sum has r − 1 factors). Let
v ∈ Eϕ(λi) ∩

⊕r
j=1,j 6=iEϕ(λj). Then,v =

∑r
j=1,j 6=i vj avecvj ∈ Eϕ(λj). We have

ϕ(v) = λi · v =
r∑

j=1,j 6=i
λi · vj = ϕ(

r∑

j=1,j 6=i
vj) =

r∑

j=1,j 6=i
ϕ(vj) =

r∑

j=1,j 6=i
λj · vj ,

thus

0 =
r∑

j=1,j 6=i
(λj − λi) · vj .

Since the sum is direct andλj − λi 6= 0 for all i 6= j, we conclude thatvj = 0 for all 1 ≤ j ≤ r,
j 6= i, so thatv = 0.

Proposition 3.11. Letϕ ∈ EndK(V ). The following statements are equivalent:

(i) ϕ is diagonalizable.

(ii) V =
⊕

λ∈Spec(ϕ)Eϕ(λ).

Proof. “(i) ⇒ (ii)”: We have the inclusion
∑

λ∈Spec(ϕ)Eϕ(λ) ⊆ V . By Lemma 3.10, the sum is
direct, therefore we have the inclusion

⊕
λ∈Spec(ϕ)Eϕ(λ) ⊆ V . Sinceϕ is diagonalizable, there

exists aK-basis ofV consisting of eigenvectors forϕ. Thus, any element of this basis already belongs
to
⊕

λ∈Spec(ϕ)Eϕ(λ), whence the equality
⊕

λ∈Spec(ϕ)Eϕ(λ) = V .
“(ii) ⇒ (i)”: For all λ ∈ Spec(ϕ) let Sλ be aK-basis of the eigenspaceEϕ(λ). ThusS =⋃
λ∈Spec(ϕ) Sλ is aK-basis ofV consisting of eigenvectors, showing thatϕ is diagonalizable.
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4 Excursion: euclidean division and gcd of polynomials

Goals:

• Master the euclidean division and Euclide’s algorithm;

• be able to compute the euclidean division, the gcd and a Bezout identity using Euclide’s algo-
rithm.

We assume that notions of polynomials are known from highschool or otherlecture courses. We
denote byK[X] the set of all polynomials with coefficients inK, whereX denotes the variable. A
polynomial can hence be written as finite sum

∑d
i=0 aiX

i with a0, . . . , ad ∈ K. We can of course
choose any other symbol for the variable, e.g.x, T , ✷; in this case, we write

∑d
i=0 aix

i,
∑d

i=0 aiT
i,∑d

i=0 ai✷
i,K[x],K[T ],K[✷], etc.

The degree of a polynomialf will be denoteddeg(f) with the conventiondeg(0) = −∞. Recall that
for anyf, g ∈ K[X] we havedeg(fg) = deg(f)+deg(g) anddeg(f + g) ≤ max{deg(f), deg(g)}.

Definition 4.1. A polynomialf =
∑d

i=0 aiX
i of degreed is calledunitary if ad = 1.

A polynomialf ∈ K[X] of degree≥ 1 is calledirreducibleif it cannot be written as productf = gh

with g, h ∈ K[X] of degree≥ 1.

It is a fact that the only irreducible polynomials inC[X] are the polynomials of degree1. (One
says thatC is algebraically closed.) Any irreducible polynomial inR[X] is either of degree1 (and
trivially, any polynomial of degree1 is irreducible), or of degree2 (there exist irreducible polynomials
of degree2, such asX2 + 1, but also reducible polynomials, such asX2 − 1 = (X − 1)(X + 1);
more precisely, a polynomial of degree2 is irreducible if and only if its discriminant is negative).

Definition 4.2. A polynomialf ∈ K[X] is calleddivisor of a polynomialg ∈ K[X] if there exists
q ∈ K[X] such thatg = qf . We use the notation notationf | g.

If f dividesg, we clearly havedeg(f) ≤ deg(g).
For everything that will be done on polynomials in this lecture course, the euclidean division plays a
central role. We now prove its existence.

Theorem 4.3(Euclidean division). Letg =
∑d

i=0 biX
i ∈ K[X] be a polynomial of degreed ≥ 0.

Then, for any polynomialf ∈ K[X] there exist unique polynomialsq, r ∈ K[X] such that

f = qg + r and deg(r) < d.

We callr therestof the division.

Proof. Let f(X) =
∑n

i=0 aiX
i ∈ K[X] of degreen.

Existence:We prove the existence by induction onn. If n < d, we setq = 0 andr = f and we are
done. Let us therefore assumen ≥ d and that the existence is already known for all polynomials of
degree strictly smaller thann. We set

f1(X) := f(X)− an · b−1
d Xn−dg(X).
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This is a polynomial of degree at mostn−1 since we annihilated the coefficient in front ofXn. Then,
by induction hypothesis, there areq1, r1 ∈ K[X] such thatf1 = q1g + r1 anddeg(r1) < d. Thus

f(X) = f1(X) + anb
−1
d g(X)Xn−d = q(X)g(X) + r1(X)

whereq(X) := q1(X) + anb
−1
d Xn−d and we have shown the existence.

Uniqueness:Assume thatf = qg + r = q1g + r1 with q, q1, r, r1 ∈ K[X] anddeg(r), deg(r1) < d.
Theng(q − q1) = r1 − r. If q = q1, thenr = r1 and we are done. Ifq 6= q1, thendeg(q − q1) ≥ 0

and we finddeg(r1− r) = deg(g(q− q1)) ≥ deg(g) = d. This is a contradiction, thusq 6= q1 cannot
appear.

In the exercises, you will do euclidean divisions.

Corollary 4.4. Let f ∈ K[X] be a polynomial of degreedeg(f) ≥ 1 and leta ∈ K. Then, the
following statements are equivalent:

(i) f(a) = 0

(ii) (X − a) | f

Proof. (i) ⇒ (ii): Assume thatf(a) = 0 and compute the euclidean division off(X) byX − a:

f(X) = q(X)(X − a) + r

for r ∈ K (a polynomial of degree< 1). Evaluating this equality ina, gives0 = f(a) = q(a)(a −
a) + r = r, and thus the rest is zero.
(ii) ⇒ (i): Assume thatX − a dividesf(X). Then we havef(X) = q(X) · (X − a) for some
polynomialq ∈ K[X]. Evaluating this ina givesf(a) = q(a) · (a− a) = 0.

Proposition 4.5. Let f, g ∈ K[X] be two polynomials such thatf 6= 0. Then there exists a unique
unitary polynomiald ∈ K[X], calledgreatest common divisorpgcd(f, g), such that

• d | f andd | g (common divisor) and

• for all e ∈ K[X] we have((e | f ande | g) ⇒ e | d) (greatestin the sense that any other
common divisor dividesd).

Moreover, there exist polynomialsa, b ∈ K[X] such that we have aBezout relation

d = af + bg.

Proof. We show that Euclide’s algorithm gives the result.

• Preparation:We set {
f0 = f, f1 = g if deg(f) ≥ deg(g),

f0 = g, f1 = f otherwise.

We also setB0 = ( 1 0
0 1 ).
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• If f1 = 0, westopand setd := f0.
If f1 6= 0, we do the euclidean division

f0 = f1q1 + f2 whereq1, f2 ∈ A such that(f2 = 0 or deg(f2) < deg(f1)).

We setA1 :=
(−q1 1

1 0

)
,B1 := A1B0.

We have
(
f2
f1

)
= A1

(
f1
f0

)
= B1

(
f1
f0

)
.

• If f2 = 0, westopand we setd := f1.
If f2 6= 0, we do the euclidean division

f1 = f2q2 + f3 whereq2, f3 ∈ A such that(f3 = 0 or deg(f3) < deg(f2)).

We setA2 :=
(−q2 1

1 0

)
,B2 := A2B1.

We have
(
f3
f2

)
= A2

(
f2
f1

)
= B2

(
f1
f0

)
.

• If f3 = 0, westopand setd := f2.
If f3 6= 0, we do the euclidean division

f2 = f3q3 + f4 whereq3, f4 ∈ A such that(f4 = 0 or deg(f4) < deg(f3)).

We setA3 :=
(−q3 1

1 0

)
,B3 := A3B2.

We have
(
f4
f3

)
= A3

(
f3
f2

)
= B3

(
f1
f0

)
.

• · · ·

• If fn = 0, westopand setd := fn−1.
If fn 6= 0, we do the euclidean division

fn−1 = fnqn + fn+1 whereqn, fn+1 ∈ A such that(fn+1 = 0 or deg(fn+1) < deg(fn)).

We setAn :=
(−qn 1

1 0

)
,Bn := AnBn−1.

We have
(
fn+1

fn

)
= An

(
fn
fn−1

)
= Bn

(
f1
f0

)
.

• · · ·

It is clear that the above algorithm (it is Euclide’s algorithm!) stops since

deg(fn) < deg(fn−1) < · · · < deg(f2) < deg(f1)

are natural numbers or−∞.
Let us assume that the algorithm stops withfn = 0. Then,d = fn−1. By construction we have:

(
fn
fn−1

)
=
(
0
d

)
= Bn−1

(
f1
f0

)
= ( α β

r s )
(
f1
f0

)
=
(
αf1+βf0
rf1+sf0

)
,
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showing
d = rf1 + sf0. (4.1)

Note that the determinant ofAi is −1 for all i, hencedet(Bn−1) = (−1)n−1. Thus the matrix
C := (−1)n−1

(
s −β
−r α

)
is the inverse ofBn−1. Therefore

(
f1
f0

)
= CBn−1

(
f1
f0

)
= C

(
0
d

)
=
(

d(−1)nβ

d(−1)n−1α

)
,

showingd | f1 andd | f0. This shows thatd is a common divisor off0 andf1. If e is any common
divisor of f0 andf1, then by Equation (4.1)e divisdesd. Finally, one dividesd, r, s by the leading
coefficient ofd to maked unitary.
If we haved1, d2 unitary gcds, thend1 dividesd2 andd2 dividesd1. As both are unitary, it follows
thatd1 = d2,proving the uniqueness.

In the exercises, you will train to compute the gcd of two polynomials. We do notrequire to use
matrices in order to find Bezout’s relation; it will simply suffice to “ go up” through the equalities in
order to get it.

5 Characteristic polynmial

Goals:

• Master the definition of characteristic polynomial;

• know its meaning for the computation of eigenvalues;

• be able to compute characteristic polynomials;

• know examples and be able to prove simple properties.

In Section 3 we have seen how to compute the eigenspace for a given eigenvalue. Here we will answer
the question:How to find the eigenvalues?
Let us start with the main idea. Letλ ∈ K andM a square matrix. Recall

EM (λ) = ker(λ · id−M).

We have the following equivalences:

(i) λ is an eigenvalue forM .

(ii) EM (λ) 6= 0.

(iii) The matrixλ · id−M is not invertible.

(iv) det(λ · id−M) = 0.

The main idea is to considerλ as a variableX. Then the determinant ofX · id − M becomes a
polynomial inK[X]. It is the characteristic polynomial. By the above equivalences, its roots are
precisely the eigenvalues ofM .
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Definition 5.1. • Let M ∈ Matn×n(K) be a matrix. Thecharacteristic polynomial ofM is
defined by

charpolyM (X) := det
(
X · idn −M

)
∈ K[X].

• LetV be aK-vector space of finite dimension andϕ ∈ EndK(V ) andS aK-basis ofV . The
characteristic polynomial ofϕ is defined by

charpolyφ(X) := charpolyMS,S(ϕ)(X).

Remark 5.2. Information for ‘experts’: Note that the definition of characteristic polynomials uses
the determinants in the ringK[X]. That is the reason why we presented the determinants in a more
general way in the recall. Alternatively, one can also work in the field of rational functions overK,
i.e. the field whose elements are fractions of polynomials with coefficients inK.

Lemma 5.3. LetM ∈ Matn×n(K).

(a) charpolyM (X) is a unitary polynomial of degreen.

(b) charpolyM (X) is conjugation invariant, i.e., for allN ∈ GLn(K) we have the equality

charpolyM (X) = charpolyM N−1MN(X).

Proof. (a) This is proved by induction onn. The casen = 1 is clear because the matrix is(X−m1,1),
hence its determinant isX −m1,1.
For the induction step, recall the notationM ′

i,j for the matrix obtained byM when deleting thei-th
row and thej-th column. Assume the result is proved forn− 1. By Laplace expansion, we have

charpolyM (X) = (X −m1,1) charpolyM ′

1,1
(X)−

n∑

i=2

(−1)imi,1 · det
(
X · id−M

)′
i,1
.

By hypothesis induction,charpolyM1,1
(X) is a unitary polynomial of degreen − 1, hence(X −

m1,1) charpolyM1,1
(X) is unitary of degreen. In the matrix

(
X · id−M

)′
i,1

with i 6= 1, the variable
X only appearsn− 2 times. Thus in the characteristic polynomial, it can only appear to then− 2-th
power at most. Consequently,charpolyM (X) is unitary.
(b) We use the multiplicativity of the determinant for the ringK[X] (Proposition 2.15).

charpolyN−1MN (X) = det(X · idn −N−1MN) = det(N−1(X · idn −M)N)

= det(N)−1 det(X · idn −M) det(N) = det(X · idn −M) = charpolyM (X).

Corollary 5.4. LetV be aK-vector space of finite dimensionn.

(a) charpolyϕ(X) is a unitary polynomial of degreen.

(b) charpolyϕ(X) is independent from the choice of the basis ofV which appears in its definition.
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Proof. (a) Lemma 5.3 (a).
(b) Let S andT be two basis ofV . The statement follows from Lemma 5.3 (b) and the equality
MT,T (ϕ) = C−1

S,T ◦MS,S(ϕ) ◦ CS,T .

We reconsider the examples of Section 3.

Example 5.5. (a) LetM =

(
3 0

0 2

)
∈ Mat2×2(R). We find

charpolyM (X) = (X − 3)(X − 2).

(It is important to know the factorization in irreducible polynomials of the characteristic polyno-
mial. Thus it is useless to write it asX2 − 5X + 6.)

(b) LetM =

(
3 1

0 2

)
∈ Mat2×2(R). We find once again

charpolyM (X) = (X − 3)(X − 2).

(c) LetM =

(
5 1

−4 10

)
∈ Mat2×2(R). We find

charpolyM (X) = (X − 5)(X − 10) + 4 = (X − 6)(X − 9).

Note that in order to simplify the computation, Lemma 5.3 (b) allows us to use the conjugate

matrix

(
1 1

1 4

)−1(
5 1

−4 10

)(
1 1

1 4

)
=

(
6 0

0 9

)
for the computation of the characteristic

polynomial, thus one can immediately write the factorization in linear factors (in general, this
will not be possible).

(d) LetM =

(
2 1

0 2

)
∈ Mat2×2(R). We find

charpolyM (X) = (X − 2)2,

a polynomial with a double root.

(e) LetM =

(
0 1

−1 0

)
∈ Mat2×2(R). We find

charpolyM (X) = X2 + 1,

a polynomial that does not factor in linear factors inR[X].

(f) LetM =
(

2 1 1
3 2 3
−3 −1 −2

)
∈ Mat3×3(R). For the characteristic polynomial, we compute the deter-

minant∣∣∣∣
X−2 −1 −1
−3 X−2 −3
3 1 X+2

∣∣∣∣ = (X − 2) ·
∣∣X−2 −3

1 X+2

∣∣+ 3 ·
∣∣−1 −1

1 X+2

∣∣+ 3 ·
∣∣ −1 −1
X−2 −3

∣∣

= (X − 2)
(
(X − 2)(X + 2) + 3

)
+ 3 ·

(
− (X + 2) + 1

)
+ 3 ·

(
3 + (X − 2)

)

= (X − 2)(X2 − 1) = (X − 2)(X − 1)(X + 1)
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Proposition 5.6. (a) ForM ∈ Matn×n(K) we have

Spec(M) = {a ∈ K | charpolyM (a) = 0} = {a ∈ K | (X − a) | charpolyM (X)}.

(b) Forϕ ∈ EndK(V ) with aK-vector spaceV of finite dimension, we have

Spec(ϕ) = {a ∈ K | charpolyϕ(a) = 0} = {a ∈ K | (X − a) | charpolyϕ(X)}.

Proof. It suffices to prove (a). The first equality follows from (witha ∈ K):

a ∈ Spec(M) ⇔ ker(a · idn −M) 6= 0 ⇔ det(a · idn −M)︸ ︷︷ ︸
=charpolyM (a)

= 0 ⇔ charpolyM (a) = 0.

The second equality is just the fact thata ∈ K is a root of a polynomialf if and only if (X − a)|f
(Corollary 4.4).

We have thus identified the eigenvalues with the roots of the characteristic polynomial. This answers
our question in the beginning:In order to compute the eigenvalues of a matrix, compute its char-
acteristic polynomial and find its roots.
But the characteristic polynomial has another important property that was discovered by Cayley and
Hamilton. We first need to introduce some terminology.

Definition 5.7. (a) LetM ∈ Matn×n(K) be a matrix. Iff(X) =
∑d

i=0 aiX
i ∈ K[X] is a polyno-

mial, then we setf(M) :=
∑d

i=0 aiM
i ∈ Matn×n(K). Note:M0 = idn.

(b) Letϕ ∈ EndK(V ) be an endomorphism of aK-vector spaceV . If f(X) =
∑d

i=0 aiX
i ∈ K[X]

is a polynomial, then we setf(ϕ) :=
∑d

i=0 aiϕ
i, which is still an endomorphism inEndK(V ).

Be careful:ϕi = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
i times

etϕ0 = idV .

Definition-Lemma 5.8 (For mathematicians only). (a) The application “evaluation”

evM : K[X] → Matn×n(K), f(X) 7→ f(M)

is a ring homomorphism (even a homomorphism ofK-algebras).

(b) The application “evaluation”

evϕ : K[X] → EndK(V ), f(X) 7→ f(ϕ)

is a ring homomorphism (even a homomorphism ofK-algebras).

Proof. Easy computations.

Theorem 5.9(Cayley-Hamilton). LetM ∈ Matn×n(K). Then,

charpolyM (M) = 0n ∈ Matn×n(K).
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Proof. The trick is to use adjoint matrices. InMatn×n(K[X]) we have

(X · idn −M)# · (X · idn −M) = det(X · idn −M) · idn déf
= charpolyM (X) · idn. (5.2)

The idea of the proof is very simple: if one replacesX byM in (5.2), one obtains0, since on the left
hand side we have the factor(M ·idn−M) =M−M = 0. The problem is that inMatn×n(K[X]),X
appears in the coefficients of the matrices, and we are certainly not allowedto replace a coefficient of a
matrix by a matrix. What we do is to write a matrix whose coefficients are polynomialsas polynomial
whose coefficients are matrices:




∑d
k=0 a1,1,kX

k · · · ∑d
k=0 a1,n,kX

k

...
. . .

...∑d
k=0 an,1,kX

k · · · ∑d
k=0 an,n,kX

k


 =

d∑

k=0



a1,1,k · · · a1,n,k

...
. . .

...
an,1,k · · · an,n,k


 ·Xk · idn.

Having done this, one would have to show that the evaluation of this polynomialwith matrix coeffi-
cients in a matrix gives rise to a ring homomorphism. Unfortunately, the matrix ring isnot commuta-
tive, hence the developed theory does not apply. The proof that we give avoids this problem by doing
a comparison of the coefficients instead of an evaluation, but is based on the same idea.
The definition of adjoint matrix shows that the largest power ofX that can appear in a coefficient of
the matrix(X · idn−M)# isn−1. As indicated above, we can hence write this matrix as polynomial
of degreen− 1 with coefficients inMatn×n(K):

(X · idn −M)# =
n−1∑

i=0

BiX
i with Bi ∈ Matn×n(K).

We writecharpolyM (X) =
∑n

i=0 aiX
i (oùan = 1) and consider Equation (5.2) inMatn×n(K):

charpolyM (X) · idn =
n∑

i=0

ai · idn ·Xi =
( n−1∑

i=0

BiX
i
)
(X · idn −M)

=
n−1∑

i=0

(BiX
i+1 −BiMXi) = −B0M +

n−1∑

i=1

(Bi−1 −BiM)Xi +Bn−1X
n.

We compare the coefficients (still matrices!) to obtain

a0 · idn = −B0M, ai · idn = Bi−1 −BiM for 1 ≤ i ≤ n− 1 and Bn−1 = idn.

This comparision of coefficients allows us to continue with our calculations inMatn×n(K) in order
to obtaincharpolyM (M) = 0n as follows:

charpolyM (M) · idn =
n∑

i=0

ai ·M i = −B0M +
n−1∑

i=1

(Bi−1 −BiM)M i +Bn−1M
n

= −B0M +B0M −B1M
2 +B1M

2 −B2M
3 +B2M

3 − · · · −Bn−1M
n +Bn−1M

n = 0n.
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The theorem of Cayley-Hamilton is still true if one replaces the matrixM by an endomorphismϕ ∈
EndK(V ).

Theorem 5.10(Cayley-Hamilton for endomorphisms). LetV be aK-vector space of finite dimension
andϕ ∈ EndK(ϕ). Then,charpolyϕ(ϕ) = 0 ∈ EndK(V ).

Proof. By definition we have,charpolyϕ(X) = charpolyMS,S(ϕ)(X) and by Theorem 5.9

0 = charpolyMS,S(ϕ)(MS,S(ϕ)) =MS,S(charpolyMS,S(ϕ)(ϕ)) =MS,S(charpolyϕ(ϕ)),

thuscharpolyϕ(ϕ) = 0. This computation is based onMS,S(ϕ
i) =

(
MS,S(ϕ)

)i
(see exercises)

6 Minimal polynomial

Goals:

• Master the definition of minimal polynomial;

• know its meaning for the computation of eigenvalues;

• know how to compute minimal polynomials;

• know examples and be able to prove simple properties.

Beside the characteristic polynomial, we will also introduce theminimal polynomial.

Definition-Lemma 6.1. LetM ∈ Matn×n(K) be a matrix.

(a) There exists a unique unitary polynomialmipoM (X) ∈ K[X] of minimal degree with the prop-
ertymipoM (M) = 0n. This polynomial is called theminimal polynomial ofM .

(b) Any polynomialf ∈ K[X] with the propertyf(M) = 0n is a multiple ofmipoM (X).

(c) For any invertible matrixN ∈ Matn×n(K), we havemipoN−1MN (X) = mipoM (X).

(d) Letϕ ∈ EndK(V ) for aK-vector spaceV of finite dimension withK-basisS. We set

mipoϕ(X) := mipoMS,S(ϕ)(X)

and call it minimal polynomial ofϕ. This polynomial is independent from the choice of the
basisS.

Proof. (a,b) By Theorem of Cayley-Hamilton 5.9 there exists a polynomial0 6= f ∈ K[X] that
annihilatesM . Let us now consider the set of such polynomials

E = {f ∈ K[X] | f 6= 0 andf(M) = 0}.

We choose unitaryg ∈ E of minimal degree among the elements ofE.



45

We will use the euclidean division to show the uniqueness and (b). Letf ∈ E. We thus have
q, r ∈ K[X] such thatr = 0 or deg(r) < deg(g) and

f = qg + r,

which implies

0 = f(M) = q(M)g(M) + r(M) = q(M) · 0 + r(M) = r(M).

Consequently, letr = 0, let r ∈ E. This last possibility is excluded as the degree ofr is strictly
smaller that the degree ofg which is minimal. The fact thatr = 0 meansf = qg, thus any other
polynomial ofE is a multiple ofg. This also implies the uniqueness: iff has the same degree thang
and is also unitary, thenf = g.
(c) It suffices to note(N−1MN)i = N−1M iN , hence for allf ∈ K[X]

f(N−1MN) = N−1f(M)N = 0n ⇔ f(M) = 0n.

(d) The independence of the basis choice is a consequence of (c) andthe equalityMT,T (ϕ) = C−1
S,T ◦

MS,S(ϕ) ◦ CS,T for any other basisT .

Proposition 6.2. LetV be aK-vector space of finite dimension andϕ ∈ EndK(V ). Then,Spec(ϕ) =
{a ∈ K | (X − a) | mipoϕ(X)} = {a ∈ K | mipoϕ(a) = 0}.

Clearly, the same statement holds for matricesM ∈ Matn×n(K). Compare this proposition to Propo-
sition 5.6.

Proof. The second equality is clear (same argument as in the proof of Proposition 5.6). To see the
first equality, first assume that(X − a) ∤ mipoϕ(X). From this we deduce that the gcd of(X − a)

andmipoϕ(X) is 1, which allows us (by Euclide/Bézout algorithm) to findb, c ∈ K[X] such that
1 = b(X)(X − a) + c(X)mipoϕ(X). Let nowv ∈ V t.q.ϕ(v) = av. We have

v = idV v = b(ϕ)(ϕ(v)− av) + c(ϕ)mipoϕ(ϕ)v = 0 + 0 = 0,

hencea 6∈ Spec(ϕ).
Assume now that(X − a) | mipoϕ(X) which allows us to writemipoϕ(X) = (X − a)g(X) for
someg ∈ K[X]. Since the degree ofg is strictly smaller than the degree ofmipoϕ(X), there has to
be av ∈ V such thatw := g(ϕ)v 6= 0 (otherwise, the minimal polynomialmipoϕ(X) would be a
divisor ofg(X) which is impossible). We thus have

(ϕ− a)w = mipoϕ(ϕ)v = 0,

hencea ∈ Spec(ϕ).

It is useful to observe that Propositions 5.6 and 6.2 state thatcharpolyϕ(X) andmipoϕ(X) have the
same factors of degree1. Moreover, the characteristic polynomialcharpolyϕ(X) is always a multiple
of the minimal polynomialmipoϕ(X), by the theorem of Cayley-Hamilton, as we will now see.
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Corollary 6.3. LetM ∈ Matn×n(K). Then, the minimal polynomialmipoM (X) is a divisor of the
characteristic polynomialcharpolyM (X). We also have the same statement forϕ ∈ EndK(V ).

Proof. By the Theorem of Cayley-Hamilton 5.9charpolyM (M) = 0n, and hencemipoM (X) divides
charpolyM (X) by Lemma 6.1.

Example 6.4.Here are key examples to understand the difference between minimal andcharacteristic
polynomial:

• The following three matrices have the same characteristic polynomial,(X − 1)2:

M1 := ( 1 0
0 1 ) , M2 := ( 1 1

0 1 ) , M3 := ( 1 691
0 1 ) .

The minimal polynomial ofM1 isX − 1. SinceM2 − 1 · id2 = ( 0 1
0 0 ) 6= 02 andM3 − 1 · id2 =

( 0 691
0 0 ) 6= 02, the minimal polynomial is(X−1)2 in both cases. Note that we used the fact that

the only non-constant normalized divisors of(X − 1)2 areX − 1 and(X − 1)2, therefore the
minimal polynomial has to be one of them.

• The same arguments give the minimal polynomials of the following matrices (but, note that
there is one more possibility ):

M4 :=
(

1 0 0
0 1 0
0 0 1

)
,M5 :=

(
1 1 0
0 1 0
0 0 1

)
,M6 :=

(
1 1 0
0 1 1
0 0 1

)
.

Example 6.5. Let us treat a more complicated example. Let

M =

( 4 3 −3 7
7 0 −3 7
6 −1 −2 6
−1 −4 4 −4

)
.

There are (at least) two ways to proceed:

(I) Compute the characteristic polynomial and deduce the minimal polynomial .

A computation shows:

charpolyM (X) = X4 + 2X3 − 11X2 − 12X + 36 = (X + 3)2 · (X − 2)2.

We know that the linear factors in the minimal polynomial are the same as in the characteristic
one. We thus know that

mipoM (X) = (X + 3)a · (X − 2)b

for 1 ≤ a, b ≤ 2.

We compute the minima polynomial trying out the possibilities.

• We start with the possibility of the lowest degree:

M−3 :=M + 3 · id =

( 7 3 −3 7
7 3 −3 7
6 −1 1 6
−1 −4 4 −1

)
, M2 :=M − 2 · id =

( 2 3 −3 7
7 −2 −3 7
6 −1 −4 6
−1 −4 4 −6

)

and we compute

M−3 ·M2 =

( 10 −10 10 10
10 −10 10 10
5 −5 5 5
−5 5 −5 −5

)
6= 0.

Thus(X − 3)(X + 2) is not the minimal polynomial.
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• We increase the powers, one by one

We compute

M2
−3 ·M2 =

( 50 −50 50 50
50 −50 50 50
25 −25 25 25
−25 25 −25 −25

)
6= 0.

Thus the minimal polynomial is not(X − 3)2(X + 2).

We continue and compute

M−3 ·M2
2 =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
.

We thus finished and found that

mipoM (X) = (X + 3) · (X − 2)2 = X3 −X2 − 8X + 12.

(II) If one does not know the characteristic polynomial and if one doesnot want to compute it,
one can proceed differently. This will lead us to the standard answer:In order to compute the
minimal polynomial, we have to solve systems of linear equations.

We proceed by induction on the (potentiel) degreed of the minimal polynomial.

d = 1 If the degree is1, the matrix would be diagonal. This is obviously not the case.

d = 2 We compute

M2 =

( 12 −13 13 3
3 −4 13 3
−1 −4 13 −1
−4 9 −9 5

)
.

Now, we have to consider the system of linear equations:

0 = a2M
2 + a1M + a0 =

a2 ·
( 12 −13 13 3

3 −4 13 3
−1 −4 13 −1
−4 9 −9 5

)
+ a1 ·

( 4 3 −3 7
7 0 −3 7
6 −1 −2 6
−1 −4 4 −4

)
+ a0 ·

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
.

These are 16 linear equations. In practice, one can write the coefficientsin a big matrix.
The first row contains the coefficients(1, 1) of the three matrices, the second row contains
the coefficients(1, 2), etc., until row 16 which contains the coefficients(4, 4):




12 4 1
−13 3 0
13 −3 0
3 7 0
3 7 0
−4 0 1
13 −3 0
3 7 0
−1 6 0
−4 −1 0
13 −2 1
−1 6 0
−4 −1 0
9 −4 0
−9 4 0
5 −4 1




.

We find that this system does not have a non-zero solution since the rank of the matrix is3.

d = 3 We compute

M3 =

( 32 11 −11 59
59 −16 −11 59
47 −12 −15 47
−12 −23 23 −39

)
.
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Now, we have to consider the system of linear equations:

0 = a3M
3 + a2M

2 + a1M + a0 =

a3 ·
( 32 11 −11 59

59 −16 −11 59
47 −12 −15 47
−12 −23 23 −39

)
+a2 ·

( 12 −13 13 3
3 −4 13 3
−1 −4 13 −1
−4 9 −9 5

)
+a1 ·

( 4 3 −3 7
7 0 −3 7
6 −1 −2 6
−1 −4 4 −4

)
+a0 ·

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
.

These are 16 equations. We write the matrix with the coefficients (note that it suffices
to add the first column). We also provide a generator of the kernel (obtained by Gauß’
algorithm (in general)):




32 12 4 1
11 −13 3 0
−11 13 −3 0
59 3 7 0
59 3 7 0
−16 −4 0 1
−11 13 −3 0
59 3 7 0
47 −1 6 0
−12 −4 −1 0
−15 13 −2 1
47 −1 6 0
−12 −4 −1 0
−23 9 −4 0
23 −9 4 0
−39 5 −4 1




·
(

1
−1
−8
12

)
=




0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




.

We see that the result is the polynomialX3 −X2 − 8X + 12, the same as in (I).

7 Diagonalization and spectral decompostion

Goals:

• Know and master the spectral decomposition;

• be able to decide whether a matrix/endomorphism is diagonalizable; if so, be able to compute
the diagonal form and a matrix of basis change;

• be able to compute the spectral decompostion of a matrix/endomorphism;

• know examples and be able to prove simple properties.

A diagonal form is certainly the simplest form that one can wish a matrix to have. But we already saw
that matrices do not have this form in general. Thespectral decompostionand theJordan formare
simple forms that one can always obtain. In the most advantageous cases,these forms are diagonal.
Let V be aK-vector space (of dimensionn) andϕ ∈ EndK(V ) be an endomorphism. We first do a
fundamental, but simple, observation concerning block matrices.

Lemma 7.1. (a) LetW ≤ V be a subspace such thatϕ(W ) ⊆ (W ). LetS1 be a basis ofW that we
extend to a basisS of V . Then,

MS,S(ϕ) =

(
M1 ???

0 ???

)

withM1 =MS1,S1(ϕ|W ).
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(b) LetV =W1⊕W2 be such thatϕ(Wi) ⊆Wi for i = 1, 2. LetSi be aK-basis ofWi for i = 1, 2;
hence,S = S1 ∪ S2 is aK-basis ofV . Then,

MS,S(ϕ) =

(
M1 0

0 M2

)

withM1 =MS1,S1(ϕ|W1) andM2 =MS2,S2(ϕ|W2).

Proof. It suffices to apply the rules to write the matrixMS,S(ϕ).

We will continue by a lemma.

Lemma 7.2. Letϕ ∈ EndK(V ).

(a) Letf ∈ K[X] andW := ker(f(ϕ)). Then,W is a subspace ofV that is stable underϕ, i.e. for
all w ∈ W we haveϕ(w) ∈ W . This allows us to restrictϕ àW ; we will denote the restricted
map byϕ|W :W →W .

(b) Letf, g ∈ K[X] be two coprime polynomials, i.e.:pgcd(f(X), g(X)) = 1. Then,

ker(f(ϕ) · g(ϕ))︸ ︷︷ ︸
=:W

= ker(f(ϕ))︸ ︷︷ ︸
=:W1

⊕ ker(g(ϕ))︸ ︷︷ ︸
=:W2

.

Before the proof, a brief word about the notation:f(ϕ) is aK-linear applicationV → V , then one
can apply it to a vectorv ∈ V . Our notation for this is:f(ϕ)(v) or f(ϕ)v. Note the different roles
of the two pairs of parenthesis in the first expression. One could also write(f(ϕ))(v), but I find this
notation a bit cumbersome.

Proof. (a) The kernel of anyK-linear application is a subspace. Writef(X) =
∑d

i=0 aiX
i. Let then

w ∈W , i.e.f(ϕ)w =
∑d

i=0 aiϕ
i(w) = 0. We compute

f(ϕ)(ϕ(w)) =
d∑

i=0

aiϕ
i(ϕ(w)) =

d∑

i=0

aiϕ
i+1(w) = ϕ

( d∑

i=0

aiϕ
i(w)

)
= ϕ(0) = 0.

(b) It is clear thatW1 ⊆W andW2 ⊆W , whenceW1 +W2 ⊆W . We have to prove that

• W1 ∩W2 = 0 (the zeroK-vector space) and

• W1 +W2 =W .

SinceK[X] is a euclidean ring, we can use Euclide’s algorithm (Bézout) to obtain two other polyno-
mialsa, b ∈ K[X] such that1 = a(X)f(X) + b(X)g(X). First considerw ∈W1 ∩W2. Then

w = idV (w) = a(ϕ)f(ϕ)w + b(ϕ)g(ϕ)w = 0 + 0 = 0,

which proves the first point. For the second, letw ∈W . The equation that we used reads

w = w2 + w1 with w2 := a(ϕ)f(ϕ)w andw1 := b(ϕ)g(ϕ)w.
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But, we have
f(ϕ)(w1) = b(ϕ)f(ϕ)g(ϕ)w = b(ϕ)0 = 0 ⇒ w1 ∈W1

and
g(ϕ)(w2) = a(ϕ)f(ϕ)g(ϕ)w = a(ϕ)0 = 0 ⇒ w2 ∈W2,

which concludes the proof.

Theorem 7.3(Spectral decomposition). Letϕ ∈ EndK(V ) be an endomorphism with minimal poly-
nomialmipoϕ(X) = fe11 (X) · fe22 (X) · . . . · ferr (X) where the polynomialsfi(X) are irreducible
(they are therefore prime elements in the principal ringK[X]) and coprime, i.e.pgcd(fi, fj) = 1 for
all 1 ≤ i < j ≤ n (if one chooses thefi’s monic, then the condition is equivalent to saying that the
polynomials are all distinct). SetWi := ker(feii (ϕ)). Then the following statements hold.

(a) V =
⊕r

i=1Wi.

(b) If one chooses a basisSi of the subspaceWi for 1 ≤ i ≤ r, thenS = S1 ∪ S2 ∪ · · · ∪ Sr is a
basis ofW for which we have:

MS,S(ϕ) =




M1 0 0 . . . 0

0 M2 0 . . . 0
...

. . . . ..
...

0 . . . 0 Mr−1 0

0 . . . 0 0 Mr




withMi :=MSi,Si
(ϕ|Wi

) for 1 ≤ i ≤ r.

Proof. (a) follows from Lemma 7.2 (b) by induction.
(b) is clear: Write the matrix with these rules in order to obtain this form. Note that the blocks outside
the diagonal are zero sinceϕ(Wi) ⊆Wi.

The most important case is whenfi(X) = X − ai with ai 6= aj for i 6= j (which implies that the
fi are irreducible and distinct). The spectral decomposition is in fact only a (decisive!) step towards
Jordan reduction. In the next proposition we will also see its importance fordiagonalization. For the
moment we illustrate the effect of the spectral decomposition by an example. Before this, it can be
useful to recall how one applies the results for linear applicationsϕ to matrices.

Remark 7.4. LetM ∈ Matn×n(K). One can apply the spectral decompostion toM as follwos. For

the canonical basisB := (




1
0
0
...
0
0


 ,




0
1
0
...
0
0


 , . . . ,




0
0
0
...
0
1


) the matrixM describes aK-linear applica-

tionϕ = ϕM and one hasM =MB,B(ϕ).
The spectral decomposition gives us a basisS. LetC := MB,S(id) be the matrix of basis change
betweenS and the canonical basis. Then, we have

MS,S(ϕ) = C−1MC.
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To be still concreter, let us recall how to write the matrixC. If S = (v1, . . . , vn) and the vecorsvi are
given in coordinates for the standard basis, then thei-th column ofC is just the vectorvi.

Then, the spectral decomposition can be used to compute a similar matrix (by definition, two matrices
A,B are similar if one is the conjugate of the other: there exists an invertible matrixC such that
B = C−1AC) àM having the nice form of the theorem.

Example 7.5. (a) LetM :=



1 2 3

0 1 4

0 0 5


 with coefficients inR. The characteristic polynomial is

(X − 1)2(X − 5). It is clear thatker(M − 5 · id3) is of dimension1; i.e. 5 is an eigenvalue of
multiplicity 1 (by definition: its eigenspace is of dimension1). Without computation, it is clear
thatdimker((M − id3)

2) = 3− 1 = 2.

Theorem 7.3 implies the existence of a matrixC such that

C−1 ·M · C =



1 x 0

0 1 0

0 0 5




for somex ∈ R that needs to be determined.

In fact, one easily sees thatx 6= 0, since in this case, the minimal polynomial would be(X −
1)(X − 5) which is false (also see Proposition 7.7).

Let us compute such a matrixC. For this, we have to compute a basis of the kernel of the matrix

(M − id3)
2 =



0 2 3

0 0 4

0 0 4






0 2 3

0 0 4

0 0 4


 =



0 0 20

0 0 16

0 0 16


 .

We can thus simply take



1

0

0


 ,



0

1

0


.

We also have to compute the kernel of the matrix

M − 5 · id3 =



−4 2 3

0 −4 4

0 0 0


 .

To compute this kernel, we add12 times the second row to the first and obtain



−4 0 5

0 −4 4

0 0 0


.

The kernel is thus generated by the vector



5

4

4


.
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The desired matrixC is therefore



1 0 5

0 1 4

0 0 4


. To convince ourselves of the exactness of the

computation, we verify it

C−1MC =



1 0 −5/4

0 1 −1

0 0 1/4






1 2 3

0 1 4

0 0 5






1 0 5

0 1 4

0 0 4


 =



1 2 0

0 1 0

0 0 5


 .

The theorem on Jordan reduction will tell us (later) that we can choose another matrixC such
that the2 appearing in the matrix is replaced by a1.

(b) LetM :=




2 −1 3

−2 1 −4

1 1 0


 with coefficients inR. Firstly we compute its characteristic polyno-

mial:

charpolyM (X) = det(



X − 2 1 −3

2 X − 1 4

−1 −1 X


)

= (X−2)(X−1)X−4+6−3(X−1)+4(X−2)−2X = X3−3X2+X−3 = (X−3)(X2+1).

For this computation we used Sarrus’ rule. To obtain the factorization, we can try small integers
to find a zero (here3). The other factorX2 + 1 comes from the division ofX3 − 3X2 +X − 3

by (X − 3). Note thatX2 + 1 is irreducible inR[X] (but not inC[X]).

Let us start with the computation of

EM (3) = ker(M − 3 · idn) = ker(



−1 −1 3

−2 −2 −4

1 1 −3


).

Now one would have to do operations on the rows to obtain the echelon form ofthe matrix in order

to deduce the kernel. But we are lucky, we can just ‘see’ a vector in the kernel, namely




1

−1

0


.

This vector then generatesEM (3) (the dimension cannot be2 since in this case(X − 3)2 would
be a divisor of the characteristic polynomial).

Let us now compute

ker(M2 +M0) = ker(




10 0 10

−10 −0 −10

0 0 0


).

This kernel is clearly of dimension2 generated by




1

0

−1


 ,



0

1

0


.
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Thus we can write the desired matrix:C =




1 1 0

−1 0 1

0 −1 0


.

We verify our computation:

C−1MC =



1 0 1

0 0 −1

1 1 1







2 −1 3

−2 1 −4

1 1 0







1 1 0

−1 0 1

0 −1 0


 =



3 0 0

0 −1 −1

0 2 1


 .

Before giving another characterization of the diagonalizability we recall easy properties of diagonal
matrices in a lemma.

Lemma 7.6. LetD ∈ Matn×n(K) be a diagonal matrix withλ1, λ2, . . . , λn on the diagonal.

(a) Spec(D) = {λi | i = 1, . . . , n}.

Note that#Spec(D) < n if and only if there exist1 ≤ i < j ≤ n such thatλi = λj .

(b) mipoD(X) =
∏
λ∈Spec(D)(X − λ).

Proof. These statements are clear.

The form of the minimal polynomial in the lemma, allows us to give another characterization of the
diagonalizability:

Proposition 7.7. Let V beK-vector space of finite dimension andϕ ∈ EndK(V ). The following
statements are equivalent:

(i) ϕ is diagonalizable.

(ii) mipoϕ(X) =
∏
a∈Spec(ϕ)(X − a).

The same statements are also true for matricesM ∈ Matn×n(K).

Proof. We writeSpec(ϕ) = {a1, . . . , ar}.
“(i) ⇒ (ii)”: We choose a basisS such thatM :=MS,S(ϕ) is diagonal (see Proposition 3.11). A very
easy computation shows that

∏r
i=1(M − ai) = 0n. Then,mipoϕ(X) is a divisor of

∏r
i=1(X − ai).

But Proposition 6.2 shows that for alli one has(X − ai) | mipoϕ(X). Therefore,mipoϕ(X) =∏r
i=1(X − ai) (the two polynomials are unitary).

“(ii) ⇒ (i)”: We apply the spectral decomposition 7.3 and it suffices to note that the matricesMi are
diagonal sinceWi = Eϕ(ai) is the eigenspace for the eigenvalueai.

Example 7.8. Consider the matrixM :=



1 0 2

0 1 3

0 0 4


 with coefficients inR. Its minimal polynomial

is (X − 1)(X − 4), thus, it is diagonalizable.
(To obtain the minimal polynomial it suffices to see that the eigenspace for the eigenvalue1 is of
dimension2.)
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8 Jordan reduction

Goals:

• Know and master the Jordan reduction;

• be able to decide on different possibilities for the Jordan reduction knowing the minimal and
characteristic polynomial;

• be able to compute Jordan’s reduction of a matrix/endomorphism as well as ofa basis change
if the characteristic polynomial factorizes into linear factors;

• know examples and be able to prove simple properties.

In Proposition 3.11 we have seen that diagonalizable matrices are similar to diagonal matrices. The
advantage of a diagonal matrix for computations is evident. Unfortunately, not all matrices are diago-
nalizable. NOur goal is now to choose a basisS of V in such a way thatMS,S(ϕ) has a “simple, nice
and elegant” form and is close to be diagonal.
We also saw that the spectral decomposition 7.3 gives us a diagonal form “in blocks”. Our goal for
Jordan’s reduction will be to make these blocks have the simplest possible form.
We presentJordan’s reduction(the Jordan normal form) from an algorithmic point of view. The
proofs can be shortened a bit if one works without coordinates, but in this case, the computation of
the reduction is not clear.
For the sequel, letV be aK-vector space of dimensionn andϕ ∈ EndK(V ) an endomorphism.

Definition 8.1. Letv ∈ V . We set

〈v〉ϕ := 〈ϕi(v) | i ∈ N〉,

the subspace ofV generated byv, ϕ(v), ϕ2(v), . . . .

Remark 8.2. The following statements are clear and will be used without being mentioned explicitely.

(a) 〈v〉ϕ is stable underϕ, i.e.,ϕ(〈v〉ϕ) ⊆ 〈v〉ϕ.

(b) If W ⊆ V is a vector subspace that is stable underϕ and ifv ∈W , then〈v〉ϕ ⊆W .

Lemma 8.3. The minimal polynomial of the matrix inMatn×n(K)




a 1 0 0 . . . 0

0 a 1 0 . . . 0

0 0
. .. .. . . . .

...
...

...
. .. .. . 1 0

0 0 . . . 0 a 1

0 0 . . . 0 0 a




is equal to(X − a)n.
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Proof. Exercise.

This matrix appears very naturally, as we will now see.

Lemma 8.4. Leta ∈ K, e ∈ N>0 andv ∈ V such that

(ϕ− a · id)e(v) = 0 and (ϕ− a · id)e−1(v) 6= 0.

We set:

ve := v,

ve−1 := (ϕ− a · id)(v),
. . .

v2 := (ϕ− a · id)e−2(v),

v1 := (ϕ− a · id)e−1(v).

(a) We have:

ϕ(v1) = av1,

ϕ(v2) = v1 + av2,

ϕ(v3) = v2 + av3,

. . . ,

ϕ(ve) = ve−1 + ave.

(b) 〈v〉ϕ = 〈v1, . . . , ve〉, the subspace ofV generated byv1, . . . , ve.

(c) The minimal polynomial ofϕ acting on〈v〉ϕ is equal to(X − a)e.

(d) The vectorsv1, . . . , ve areK-linearly independent and consequently form a basisS of 〈v〉ϕ.

(e) MS,S(ϕ|〈v〉ϕ) =




a 1 0 0 . . . 0

0 a 1 0 . . . 0

0 0
. . . .. . . . .

...
...

...
. . . .. . 1 0

0 0 . . . 0 a 1

0 0 . . . 0 0 a




.

Proof. (a) This is a very easy computation:

(ϕ− a · id)v1 = (ϕ− a · id)ev = 0 ⇒ϕ(v1) = av1.

(ϕ− a · id)v2 = v1 ⇒ϕ(v2) = v1 + av2.

. . .

(ϕ− a · id)ve = ve−1 ⇒ϕ(ve) = ve−1 + ave.
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(b) The equations in (a) show that〈v1, . . . , ve〉 is stable underϕ. As v = ve ∈ 〈v〉ϕ, we obtain the
inclusion〈v〉ϕ ⊆ 〈v1, . . . , ve〉. The inverse inclusion can be seen by definition:

ve−i = (ϕ− a · id)i(v) =
i∑

k=0

(
i
k

)
ai−kϕk(v). (8.3)

(c) The polynomial(X − a)e annihilatesv and thus〈v〉ϕ. As (X − a)e−1 does not annihilatev, the
minimal polynomial ofϕ|〈v〉ϕ is (X − a)e.
(d) Assume that we have a non-trivial linear combination of the form

0 =

j∑

i=0

αive−i

for αj 6= 0 and0 ≤ j ≤ e− 1. By Equation (8.3), we obtain

0 =

j∑

i=0

αi

i∑

k=0

(
i
k

)
ai−kϕk(v) =

j−1∑

k=0

( j∑

i=k

αi
(
i
k

)
ai−k

)
ϕk(v) + αjϕ

j(v).

We thus have a non-zero polynomial of degreej ≤ e − 1 that annihilatesv and thus〈v〉ϕ. This is a
contradiction with (c).
(e) Part (a) precisely gives the information to write the matrix.

We will now specify what we mean by “the Jordan form”.

Definition 8.5. A matrixM ∈ Matn×n(K) is said to have “the Jordan form” ifM is diagonal in
blocks and each block has the form of Lemma 8.4(e).
More precisely,M has the Jordan form if

M =




M1 0 0 . . . 0

0 M2 0 . . . 0
...

. .. . . .
...

0 . . . 0 Mr−1 0

0 . . . 0 0 Mr




(diagonal matrix in blocks), where, for all1 ≤ i ≤ r,

Mi =




ai 1 0 0 . . . 0

0 ai 1 0 . . . 0

0 0
. . . . .. .. .

...
...

...
. . . . .. 1 0

0 0 . . . 0 ai 1

0 0 . . . 0 0 ai




.

(We do not ask that theai’s are two-by-two distinct here. But we can bring together the blocks having
the sameai; this will be the case in Theorem 8.8.)
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The procedure to find an invertible matrixC such thatC−1MC has the Jordan form is calledJordan
reduction. We also callJordan reductionthe procedure (to present) to find a basisS such thatMS,S(ϕ)

has the Jordan form (for an endomorphismϕ). It may also happen that we call the obtained matrix
Jordan reduction ofM or ofϕ.

Example 8.6. We reconsider the matrices of Example 6.4.

• The matricesM1 := ( 1 0
0 1 ), M2 := ( 1 1

0 1 ) have the Jordan form, but notM3 := ( 1 691
0 1 ) (its

Jordan reduction isM2).

• The matrices

M4 :=



1 0 0

0 1 0

0 0 1


 ,M5 :=



1 1 0

0 1 0

0 0 1


 ,M6 :=



1 1 0

0 1 1

0 0 1




also have the Jordan form.

• The/one Jordan reduction of the matrix



1 2 0

0 1 0

0 0 5


 obtained in Example 7.5(a) by the spectral

decomposition is



1 1 0

0 1 0

0 0 5


 (explained later).

Be careful: with our definitions, there exist matrices that do not have a Jordan reduction (except if one
works overC, but not overR); we can weaken the requirements to have a Jordan reduction for any
matrix; we will not continue this in this lecture course for time reasons. In the exercises, you will see
some steps to the general case.

We now present the algorithm of Jordan’s reduction. For this we set:

• ϕa := ϕ− a · id,

• Vi = ker(ϕia)

For the moment, we make the hypothesis

mipoϕ(X) = (X − a)e.

From this we obtain

V = Ve ⊃ Ve−1 ⊃ Ve−2 ⊃ · · · ⊃ V1 = Eϕ(a) ⊃ V0 = 0.
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We can imagine the vector spaceV as being in a rectangular box:

Ve \ Ve−1 � �

Ve−1 \ Ve−2 � � �

Ve−2 \ Ve−3 � � � �

...
V2 \ V1 � � � � �

V1 � � � � � � � �

Each black block represents a non-zero vector, and the set of all the vectors in the diagram is linearly
independent. In the algorithm, we want to order the rectangular box. For the moment, we put the
black blocks in an arbitrary way to indicate that we do not yet have many information about its
vectors (there is no deep meaning in the image). The fact that there are two blocks in the first row
means thatdimVe − dimVe−1 = 2, etc. We can observe that the number of blocks does not decrease
when moving from the top to the bottom.

(1.) We choose a vectorx1 ∈ Ve \ Ve−1. Then we have the non-zero vectorsϕa(x1) ∈ Ve−1,
ϕ2
a(x1) ∈ Ve−2, and more generally,ϕia(x1) ∈ Ve−i pour i = 0, . . . , e − 1. We modify the

image:

Ve \ Ve−1 x1 �

Ve−1 \ Ve−2 ϕa(x1) � �

Ve−2 \ Ve−3 ϕ2
a(x1) � � �

...
V2 \ V1 ϕe−2

a (x1) � � � �

V1 ϕe−1
a (x1) � � � � � � �

The first column hence contains a basis of〈x1〉ϕ.

If 〈x1〉ϕ = V (if no black block remains), we are done. Otherwise, we continue.

(2.) Now we compute the integerk such that〈x1〉ϕ + Vk = V , but 〈x1〉ϕ + Vk−1 6= V . In our
example,k = e.

We choose a vectorx2 in Vk \ (〈x1〉ϕ+Vk−1). We thus have the non-zero vectorsϕia(x2) ∈ Vk−i
for i = 0, . . . , k − 1. We change the image:

Ve \ Ve−1 x1 x2
Ve−1 \ Ve−2 ϕa(x1) ϕa(x2) �

Ve−2 \ Ve−3 ϕ2
a(x1) ϕ2

a(x2) � �

...
V2 \ V1 ϕe−2

a (x1) ϕe−2
a (x2) � � �

V1 ϕe−1
a (x1) ϕe−1

a (x2) � � � � � �

The second column hence contains a basis of〈x2〉ϕ. Lemma 8.7 tells us that the sum〈x1〉ϕ +

〈x2〉ϕ is direct.

If 〈x1〉ϕ ⊕ 〈x2〉ϕ = V (if no black block relains), we are done. Otherwise, we continue.
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(3.) Now we compute the integerk such that〈x1〉ϕ⊕〈x2〉ϕ+Vk = V , but〈x1〉ϕ⊕〈x2〉ϕ+Vk−1 6= V .
In our example,k = e− 1.

We choose a vectorx3 in Vk \ (〈x1〉ϕ ⊕ 〈x2〉ϕ + Vk−1). We thus have the non-zero vectors
ϕia(x3) ∈ Vk−i for i = 0, . . . , k − 1. We change the image:

Ve \ Ve−1 x1 x2
Ve−1 \ Ve−2 ϕa(x1) ϕa(x2) x3
Ve−2 \ Ve−3 ϕ2

a(x1) ϕ2
a(x2) ϕa(x3) �

...
V2 \ V1 ϕe−2

a (x1) ϕe−2
a (x2) ϕe−3

a (x3) � �

V1 ϕe−1
a (x1) ϕe−1

a (x2) ϕe−2
a (x3) � � � � �

The third column thus contains a basis of〈x3〉ϕ. Lemma 8.7 tells us that the sum〈x1〉ϕ⊕〈x2〉ϕ+
〈x3〉ϕ is direct.

If 〈x1〉ϕ ⊕ 〈x2〉ϕ ⊕ 〈x3〉ϕ = V (if no black block relains), we are done. Otherwise, we continue.

(...) We continue like this until no black block remains. In our example, we obtain the image:

Ve \ Ve−1 x1 x2
Ve−1 \ Ve−2 ϕa(x1) ϕa(x2) x3
Ve−2 \ Ve−3 ϕ2

a(x1) ϕ2
a(x2) ϕa(x3) x4

...
V2 \ V1 ϕe−2

a (x1) ϕe−2
a (x2) ϕe−3

a (x3) ϕe−4
a (x4) x5

V1 ϕe−1
a (x1) ϕe−1

a (x2) ϕe−2
a (x3) ϕe−3

a (x4) ϕa(x5) x6 x7 x8

Each column contains a basis of〈xi〉ϕ and corresponds to a block. More precisely, we put the vectors
that are contained in a box into a basisS, beginning in the left-bottom corner, then we go up through
the first colums, then we start at the bottom of the second column and goes up, then the third column
from bottom to top, etc. Then,MS,S(ϕ) will be a block matrix. Each block hasa on the main diagonal
and 1 on the diagonal above the main diagonal. Each column corresponds toa block, and the size of
the block is given by the height of the column. In our example, we thus have8 blocks, two of sizee,
one of sizee− 1, one of sizee− 2, one of size2 and three of size1.

In order to justify the algorithm, we still need to prove the following lemma.

Lemma 8.7. Let L = 〈x1〉ϕ ⊕ 〈x2〉ϕ ⊕ · · · ⊕ 〈xi〉ϕ constructed in the previous algorithm. By the
algorithm, we have in particular

dimK〈x1〉ϕ ≥ dimK〈x2〉ϕ ≥ · · · ≥ dimK〈xi〉ϕ.

(The dimension is here equal to the height of the corresponding column.)

Letk be the integer such thatL+ Vk = V andL+ Vk−1 6= V . We haveVk 6⊆ L+ Vk−1.

By the algorithm, we also havek ≤ dimK〈xi〉ϕ.

If y ∈ Vk \ (L+ Vk−1) is any vector, then the sumL+ 〈y〉ϕ is direct.
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Proof. If Vk ⊆ L+ Vk−1, thenVk + L = Vk−1 + L (asVk−1 ⊆ Vk). This implies the first statement:
Vk 6⊆ L+ Vk−1.
Let us now show that the sumL+ 〈y〉ϕ is direct, i.e.,L ∩ 〈y〉ϕ = 0. Letw ∈ L ∩ 〈y〉ϕ. We suppose
w 6= 0. Let j be the maximum such thatw ∈ Vk−j . We have0 ≤ j ≤ k − 1. Consequently, we can
writew =

∑k−1−j
q=0 cqϕ

q+j
a (y) for cq ∈ K with c0 6= 0. Hence

w = ϕja
(
c0y +

k−j−1∑

q=1

cqϕ
q
a(y)

)
.

By construction ofL, we can write
w = ϕja(ℓ)

for ℓ ∈ L. This is the case sinceL ∩ Vk−j is generated byϕema (xm) for 1 ≤ m ≤ i andj ≤ em =

dimK〈xm〉ϕ − (k − j).
Thus we obtain

0 = ϕja
(
c0y − ℓ+

k−j−1∑

q=1

cqϕ
q
a(y)

)
.

This implies

z := c0y − ℓ+

k−j−1∑

q=1

cqϕ
q
a(y) ∈ Vj ⊆ Vk−1.

Using that
∑k−j−1

q=1 cqϕ
q
a(y) ∈ Vk−1, we finally obtain

y =
1

c0
ℓ+

1

c0
z +

1

c0

k−j−1∑

q=1

cqϕ
q
a(y) ∈ L+ Vk−1,

a contradiction. Thereforew = 0.

Combining the spectral decomposition with the algorithm above, we finally obtain the theorem about
Jordan’s reduction.

Theorem 8.8(Jordan’s reduction). Assume that the minimal polynomial ofϕ is equal to

mipoϕ(X) =
r∏

i=1

(X − ai)
ei

with differentai ∈ K andei > 0 (this is always the case ifK is “algebraically closed” (see Alge-
bra 3), e.g.K = C).

Then,ϕ has a Jordan reduction.

We can precisely describe the Jordan reduction, as follows. ComputingVi := ker
(
(ϕ − ai · id)ei

)
,

we obtain thespectral decomposition(see Theorem 7.3), i.e.:

V =
r⊕

i=1

Vi and ϕ(Vi) ⊆ Vi for all 1 ≤ i ≤ r.
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For all 1 ≤ i ≤ r, we apply the above algorithm to constructxi,1, . . . , xi,si ∈ Vi such that

Vi = 〈xi,1〉ϕ ⊕ · · · ⊕ 〈xi,si〉ϕ et ϕ(〈xi,j〉ϕ) ⊆ 〈xi,j〉ϕ.

Let ei,j the minimal positive integer such that(ϕ − ai · id)ei,j (xi,j) = 0 for all 1 ≤ i ≤ r and
1 ≤ j ≤ si.

For each space〈xi,j〉ϕ we choose the basisSi,j as in Lemma 8.4. We put

S := S1,1 ∪ S1,2 ∪ · · · ∪ S1,s1 ∪ S2,1 ∪ S2,2 ∪ · · · ∪ S2,s2 ∪ . . . . . . · · · ∪ Sr,sr .

Then,S is aK-basis ofV such that

MS,S(ϕ) =




M1 0 0 . . . 0

0 M2 0 . . . 0
...

.. . . . .
...

0 . . . 0 Mr−1 0

0 . . . 0 0 Mr




(diagonal block matrix), where, for all1 ≤ i ≤ r,

Mi =




Ni,1 0 0 . . . 0

0 Ni,2 0 . . . 0

...
.. . . . .

...

0 . . . 0 Ni,si−1 0

0 . . . 0 0 Ni,si




(diagonal block matrix), where, for all1 ≤ j ≤ si,

Ni,j =




ai 1 0 0 . . . 0

0 ai 1 0 . . . 0

0 0
. .. . . . . ..

...
...

...
. .. . . . 1 0

0 0 . . . 0 ai 1

0 0 . . . 0 0 ai




,

which is of sizeei,j . TheNi,j ’s are called theJordan blocks(for the eigenvalueai).
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Remark 8.9. Explicitely, the basisS is the following:

(ϕ− a1 · id)e1,1−1(x1,1), (ϕ− a1 · id)e1,1−2(x1,1), . . . (ϕ− a1 · id)(x1,1), x1,1,

(ϕ− a1 · id)e1,2−1(x1,2), (ϕ− a1 · id)e1,2−2(x1,2), . . . (ϕ− a1 · id)(x1,2), x1,2,
...

...
...

...
...

(ϕ− a1 · id)e1,s1−1(x1,s1), (ϕ− a1 · id)e1,s1−2(x1,s1), . . . (ϕ− a1 · id)(x1,s1), x1,s1 ,

(ϕ− a2 · id)e2,1−1(x2,1), (ϕ− a2 · id)e2,1−2(x2,1), . . . (ϕ− a2 · id)(x2,1), x2,1,

(ϕ− a2 · id)e2,2−1(x2,2), (ϕ− a2 · id)e2,2−2(x2,2), . . . (ϕ− a2 · id)(x2,2), x2,2,
...

...
...

...
...

(ϕ− a2 · id)e2,s2−1(x2,s2), (ϕ− a2 · id)e2,s2−2(x2,s2), . . . (ϕ− a2 · id)(x2,s2), x2,s2 ,

(ϕ− a3 · id)e3,1−1(x3,1), (ϕ− a3 · id)e3,1−2(x3,1), . . . (ϕ− a3 · id)(x3,1), x3,1,
...

...
...

...
...

...
...

...
...

...
(ϕ− ar · id)er,sr−1(xr,sr), (ϕ− ar · id)er,sr−2(xr,sr), . . . (ϕ− ar · id)(xr,sr), xr,sr

.

Note that theJordan reduction is not unique in general (we can for instance permute the blocks).
Thus, to be precise, we would rather speak of aJordan reduction, which we will sometimes do. IfS
is a basis such thatMS,S(ϕ) has the form of the theorem, we will say thatMS,S(ϕ) is the/a Jordan
reductionor that it hasthe/a Jordan form.

To apply Theorem 8.8 to matrices, take a look (once again) at Remark 7.4.

Example 8.10. (a) The/a Jordan reduction of the matrix



1 2 0

0 1 0

0 0 5


 obtained by the spectral de-

composition in Example 7.5(a) is



1 1 0

0 1 0

0 0 5


 for the following reason.

The matrix satisfies the hypothesis of Theorem 8.8, thus it has a Jordan reduction. As it is not diag-
onalizable, there can only be one block with1 on the diagonal, but the characteristic polynomial
shows that1 has to appear twice on the diagonal. Therefore, there is no other possibility.

(b) Consider the matrixM :=




1 1 0

−1 3 0

−1 1 2


 with coefficients inR.

A computation shows thatcharpolyM (X) = (X − 2)3. Then,r = 1 in the notations of Theo-
rem 8.8 and, hence, the Jordan reduction has to be among the following three matrices:



2 0 0

0 2 0

0 0 2


 ,



2 1 0

0 2 0

0 0 2


 ,



2 1 0

0 2 1

0 0 2


 .
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We easily find thatmipoM (X) = (X − 2)2. From this we can already deduce that the Jordan

reduction is



2 1 0

0 2 0

0 0 2


.

The question becomes unpleasant if one asks to compute a matrixC such thatC−1MC =

2 1 0

0 2 0

0 0 2


. But this is not so hard. We follow the algorithm on Jordan’s reduction:

• We haveM − 2id3 =



−1 1 0

−1 1 0

−1 1 0


.

• Then,ker(M − 2id3) = 〈



0

0

1


 ,



1

1

0


〉.

• We have thatmipoM (X) = (X − 2)2 (which is easily verified:(M − 2 · id3)2 = 03).
According to the algorithm, we choose

x1 ∈ ker((M − 2id3)
2) \ ker(M − 2id3) = R3 \ 〈



0

0

1


 ,



1

1

0


〉,

for instancex1 =



1

0

0


.

• We start writing our basisS. The first vector of the basis is, according to the algorithm,

v1 := (M − 2id3)x1 =



−1 1 0

−1 1 0

−1 1 0






1

0

0


 =



−1

−1

−1




and the second one is justv2 := x1.

• In the second step, we have to choose a vector

y ∈ ker(M − 2id3) \ 〈v1, v2〉 = 〈



0

0

1


 ,



1

1

0


〉 \ 〈



−1

−1

−1


 ,



1

0

0


〉.

We choosey =



0

0

1


 and we immediately setv3 = y.

• It suffices to write the vectorsv1, v2, v3 as columns of a matrix:

C :=



−1 1 0

−1 0 0

−1 0 1


 .
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Theorem 8.8 tells us that

C−1MC =



0 −1 0

1 −1 0

0 −1 1







1 1 0

−1 3 0

−1 1 2






−1 1 0

−1 0 0

−1 0 1


 =



2 1 0

0 2 0

0 0 2


 ,

which can be verified.

Remark 8.11. In some examples and exercises you saw/see that the knowledge of the minimal poly-
nomial already gives us many information about the Jordan reduction.
More precisely, ifa is an eigenvalue ofϕ and (X − a)e is the biggest power ofX − a dividing the
minimal polynomialmipoϕ(X), then the size of the largest Jordan block witha on the diagonal ise.
In general, we do not obtain the entire Jordan reduction following this method; if, for instance,(X −
a)e+2 is the biggest power ofX−a dividingcharpolyϕ(X), then, we have two possibilities: (1) there
are two Jordan blocks for the eigenvaluea of sizee and2; or (2) there are three Jordan blocks fora
of sizee, 1 and1.

Example 8.12.We do an example. Let

M =




−2 −1 −5 −3 6 −4

−1 2 −1 −1 1 0

2 1 4 2 −2 1

4 2 4 6 −5 2

0 1 −1 1 3 −1

1 −1 1 0 −1 5




.

Its characteristic polynomial is

charpolyM (X) = X6 − 18X5 + 135X4 − 540X3 + 1215X2 − 1458X + 729 = (X − 3)6.

Let us first compute

M3 :=M + 3id =




−5 −1 −5 −3 6 −4

−1 −1 −1 −1 1 0

2 1 1 2 −2 1

4 2 4 3 −5 2

0 1 −1 1 0 −1

1 −1 1 0 −1 2




,

then

M2
3 =




0 5 −1 3 −2 −5

0 0 0 0 0 0

0 −1 1 −1 0 1

0 −3 1 −2 1 3

0 1 1 0 −1 −1

0 −2 0 −1 1 2




, M3
3 =




0 3 3 0 −3 −3

0 0 0 0 0 0

0 −1 −1 0 1 1

0 −2 −2 0 2 2

0 0 0 0 0 0

0 −1 −1 0 1 1




, M4
3 = 0.
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We thus have

mipoM (X) = (X − 3)4

and

V4 = ker(M4
3 ) = R6 ) V3 ) V2 ) V1 = EM (3) ) 0.

We first compute

V3 = ker(M3
3 ) = ker




0 1 1 0 −1 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




= 〈




1

0

0

0

0

0




,




0

0

0

1

0

0




,




0

1

−1

0

0

0




,




0

0

0

0

1

−1




,




0

1

0

0

1

0




〉.

In fact, it is not necessary for the algorithm to give an entire basis ofV3, it suffices to find a vector

that does not belong to the kernel. It is very easy. We will takex1 =




0
1
0
0
0
0


 and we compute

x1 =




0
1
0
0
0
0


 ,M3x1 =




−1
−1
1
2
1
−1


 ,M2

3x1 =




5
0
−1
−3
1
−2


 ,M3

3x1 =




3
0
−1
−2
0
−1


 .

We thus already have a Jordan block of size4. Thus there is either a block of size2, or two blocks of
size1. We now compute

V2 = ker(M2

3
) = ker




0 1 1 0 −1 −1

0 0 −6 3 3 0

0 0 2 −1 −1 0

0 0 4 −2 −2 0

0 0 2 −1 −1 0

0 0 0 0 0 0




= ker




0 1 1 0 −1 −1

0 0 1 −1/2 −1/2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




= ker




0 1 0 1/2 −1/2 −1

0 0 1 −1/2 −1/2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




= 〈




1

0

0

0

0

0




,




0

1

0

0

0

1




,




0

1/2

1/2

0

1

0




,




0

−1/2

1/2

1

0

0




〉.
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Finally, we compute the eigenspace for the eigenvalue3:

V1 = ker(M3) = ker




−5 −1 −5 −3 6 −4

−1 −1 −1 −1 1 0

2 1 1 2 −2 1

4 2 4 3 −5 2

0 1 −1 1 0 −1

1 −1 1 0 −1 2




= ker




1 −1 1 0 −1 2

0 1 −1 1 0 −1

0 −6 0 −3 1 6

0 −2 0 −1 0 2

0 3 −1 2 0 −3

0 6 0 3 −1 −6




= ker




1 0 0 1 −1 1

0 1 −1 1 0 −1

0 0 −6 3 1 0

0 0 −2 1 0 0

0 0 2 −1 0 0

0 0 6 −3 −1 0




= ker




1 0 0 1 −1 1

0 1 −1 1 0 −1

0 0 1 −1/2 0 0

0 0 −6 3 1 0

0 0 2 −1 0 0

0 0 0 0 0 0




= ker




1 0 0 1 −1 1

0 1 0 1/2 0 −1

0 0 1 −1/2 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0




= ker




1 0 0 1 0 1

0 1 0 1/2 0 −1

0 0 1 −1/2 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0




= 〈




−1

1

0

0

0

1




,




−1

−1/2

1/2

1

0

0




〉.

Thus there are2 eigenvectors, hence two blocks in total. Thus the second block is of size2. We have
to find a vector inV2 which is not inV1 + 〈x1,M3x1,M

2
3x1,M

3
3x1〉, thus an element of

〈




1

0

0

0

0

0




,




0

1

0

0

0

1




,




0

1/2

1/2

0

1

0




,




0

−1/2

1/2

1

0

0




〉 \ 〈




−1

1

0

0

0

1




,




−1

−1/2

1/2

1

0

0




,




0

1

0

0

0

0




,




−1

−1

1

2

1

−1




,




5

0

−1

−3

1

−2




,




3

0

−1

−2

0

−1




〉.

To find such an element, we test if the vectors (one by one) of the basis ofV2 are linearly independent

form the space on the right. We are lucky that it already works out forx2 :=




1
0
0
0
0
0


 (as one can see

from a standard computation). We thus calculate

x2 =




1

0

0

0

0

0




, M3x2 =




−5

−1

2

4

0

1




.
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We can now write the matrix

C :=




3 5 −1 0 −5 1

0 0 −1 1 −1 0

−1 −1 1 0 2 0

−2 −3 2 0 4 0

0 1 1 0 0 0

−1 −2 −1 0 1 0




and a computation verifies

C−1MC =




3 1 0 0 0 0

0 3 1 0 0 0

0 0 3 1 0 0

0 0 0 3 0 0

0 0 0 0 3 1

0 0 0 0 0 3




.

Remark 8.13. Here are some remarks that are easy to prove and can sometimes be useful for com-
putations. SupposemipoM (X) = (X − a)e.

(a) The size of the largest Jordan block ise.

(b) Each Jordan block contains an eigenspace of dimension1 for the eigenvaluea.

(c) The number of Jordan blocks is equal to the dimension of the eigenspace for the eigenvaluea.

9 Hermitian spaces

Goals:

• Know the definitions of euclidian and hermitian spaces;

• know fundamental properties of euclidian and hermitian spaces;

• be able to compute orthonormal basis using the method of Gram-Schmidt;

• know examples and be able to prove simple properties.

We will start by a motivation of some of the topics that will follow.

LetM ∈ Matn×n(K) be a matrix. Consider the application:

〈 , 〉M : Kn ×Kn → K, 〈
( a1
a2
...
an

)
,




b1
b2
...
bn


〉M := (a1 a2 · · · an)M




b1
b2
...
bn


 .

We thus have the equality

〈x, y〉M = xtrMy.
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If M is the identity, then

〈
( a1
a2
...
an

)
,




b1
b2
...
bn


〉 = (a1 a2 · · · an)




b1
b2
...
bn


 =

n∑

i=1

aibi.

This is the well-known canonical scalar product. This gives moreover (ifK = R)

〈
( a1
a2
...
an

)
,

( a1
a2
...
an

)
〉 = a21 + a22 + · · ·+ a2n > 0

for all

( a1
a2
...
an

)
6= 0.

Let us treat another example:M = ( 1 2
3 4 ). Then

〈( a1a2 ) ,
(
b1
b2

)
〉 = (a1 a2) ( 1 2

3 4 )
(
b1
b2

)
= a1b1 + 2a1b2 + 3a2b1 + 4a2b2.

In general, we immediately observe the following properties:

(a) Linearity in the first variable:For ally ∈ Kn, the application

〈·, y〉M : Kn → K, x 7→ 〈x, y〉M

isK-linear, i.e., for allx1, x2 ∈ Kn and alla ∈ K, we have

〈x1 + ax2, y〉M = 〈x1, y〉M + a〈x2, y〉M .

(b) Linéarité dans la deuxière variable:For allx ∈ Kn, the application

〈x, ·〉M : Kn → K, y 7→ 〈x, y〉M

isK-linear, i.e. for ally1, y2 ∈ Kn and alla ∈ K, we have

〈x, y1 + ay2〉M = 〈x, y1〉M + a〈x, y2〉M .

Question: When do we have that〈 , 〉M is symmetric, i.e.,〈x, y〉M = 〈y, x〉M for all x, y ∈ Kn?
To see the answer to this question, choosex = ei as thei-th canonical vector andy = ej . Then

〈ei, ej〉M = etri Mej = ei(j-th column ofM) = i-th coeff. of (j-th column ofM ) = mi,j .

Hence,〈ei, ej〉M = 〈ej , ei〉M impliesmi,j = mj,i for all 1 ≤ i, j ≤ n, in other words,M is
symmetricM =M tr.
Conversely, let us start from a symmetric matrixM =M tr. We do a small, but elegant computation:

〈x, y〉M = xtrMy = (xtrMy)tr = ytrM tr(xtr)tr = ytrMx = 〈y, x〉M ,

where we used thatxtrMy is a matrix of size1, hence equal to its transpose, as well as the following
lemma:
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Lemma 9.1. LetM ∈ Matn,m(K) andN ∈ Matm,ℓ(K) be matrices. Then

(M ·N)tr = N tr ·M tr.

Proof. Exercise.

We thus obtained the equivalence:

〈 , 〉M is symmetric⇐⇒M is symmetric:M =M tr.

Question: ForK = R, when do we have〈x, x〉M ≥ 0 for all x ∈ Rn?
We have seen that it is the case ifM is the identity and〈 , 〉 is hence the canonical scalar product. We
will come back to this question later.
For the moment, let us move toK = C. We denotez = x− iy the complex conjugatez = x+ iy ∈ C
with x = Re(z) andy = Im(z).
For complex numbers, it is not true that

∑n
i=1 z

2
i is greater than or equal to0, in fact, this is even not a

question that one may ask sincez2i is in general not a real number, hence asking if it is greater than zero
is meaningless. On the other hand, the absolute valuezizi = |zi|2 is always real and non-negative.
Thus it is useful to change the definition in the caseK = C:

〈 , 〉M : Cn × Cn → C, 〈x, y〉M := xtrMy

wherey is the vector obtained when applying complex conjugation on all coefficients.Note that the
definition is the same as the one given before ifK = R since complex conjugation does not have an
effect on real numbers.
With M being the identity, this gives

〈
( a1
a2
...
an

)
,




b1
b2
...
bn


〉 = (a1 a2 · · · an)




b1
b2
...
bn


 =

n∑

i=1

aibi.

This is once more the well-known canonical scalar product. Moreover, we obtain

〈
( a1
a2
...
an

)
,

( a1
a2
...
an

)
〉 = |a1|2 + |a2|2 + · · ·+ |an|2 > 0

for all

( a1
a2
...
an

)
6= 0.

Let us look the following properties:

(a) Linearity in the first variable:Unchanged!

(b) Sesqui-linearity in the second variable:For allx ∈ Cn, the application

〈x, ·〉M : Kn → K, y 7→ 〈x, y〉M

is sesqui-linear, i.e., for ally1, y2 ∈ Kn and alla ∈ K, we have

〈x, y1 + ay2〉M = 〈x, y1〉M + a〈x, y2〉M .



70 9 HERMITIAN SPACES

By the same computations as above, we obtain the equivalence:

〈x, y〉M = 〈y, x〉M for all x, y ∈ Cn ⇐⇒M =M tr.

A matrixM such thatM =M tr is calledhermitian.
For the sequel of this section we setK = R or K = C.

Definition 9.2. LetV be aK-vector space. An application

〈·, ·〉 : V × V → K, (v, w) 7→ 〈v, w〉

is calledherlitian formif for all v, v1, v2, w, w1, w2 ∈ V and for alla, b ∈ K we have

• 〈av1 + v2, w〉 = a〈v1, w〉+ 〈v2, w〉 (linearity in the first variable),

• 〈v, bw1 + w2〉 = b〈v, w1〉+ 〈v, w2〉 (sesqui-linearityin the second variable) and

• 〈v, w〉 = 〈w, v〉.

A hermitian form〈·, ·〉 is said to bepositiveif

• ∀ v ∈ V : 〈v, v〉 ≥ 0. (Note that〈v, v〉 = 〈v, v〉, whence〈v, v〉 ∈ R.)

It is said to bepositive definiteif

• ∀ 0 6= v ∈ V : 〈v, v〉 > 0.

A hermitian positive definite form is also called ascalar product.
We callhermitian spaceany tuple(V, 〈·, ·〉) where〈·, ·〉 is a positive definite hermitian form.

Remark 9.3. Note that forK = R the last two conditions of the definition of a hermitian form read

• 〈v, bw1 + w2〉 = b〈v, w1〉+ 〈v, w2〉 (linearity in the second variable) and

• ∀ v ∈ V ∀w ∈W : 〈v, w〉 = 〈w, v〉.

We refer this to as a bilinearsymmetricform.
In the literature, ifK = R, one rather uses the nameeuclidian spacein stead of hermitian space
(which is often reserved forK = C). Here, to simplify the terminology, we will always speak of
hermitian spaces, even ifK = R.

We have already seen the canonical scalar products forRn andCn. Similar definitions can also be
made in spaces of functions (of finite dimension):

Example 9.4. (a) The canonical scalar product〈 , 〉M for M the identity is indeed a scalar product
if K = R or K = C.

(b) LetC = {f : [0, 1] → R | f is continuoud} be the set of all continuous functions from[0, 1] toR.
It is anR-vector space for+ and· defined pointwise. The application

〈·, ·〉 : C × C → R, 〈f, g〉 =
∫ 1

0
f(x)g(x)dx

is a hermitian positive definite form.



71

(c) LetC = {f : [0, 1] → C | f is continuous} be the set of all continuous functions from[0, 1] toC.
It is a C-vector space for+ and· defined pointwise. The application

〈·, ·〉 : C × C → C, 〈f, g〉 =
∫ 1

0
f(x)g(x)dx

is a hermitian positive definite form.

Definition 9.5. Let (V, 〈·, ·〉) be a hermitianK-space.

We say thatv, w ∈ V areorthogonalv ⊥ w if 〈v, w〉 = 0. Note:v ⊥ w ⇔ w ⊥ v.

LetW ≤ V be a subspace. We say thatv ∈ V andW areorthogonalv ⊥W if v ⊥ w for all w ∈W .
Note:v ⊥W ⇔W ⊥ v (with evident defintions).

Let U ≤ V be another subspace. We say thatU andW are orthogonalU ⊥ W if U ⊥ w for all
w ∈W . Note:U ⊥W ⇔W ⊥ U .

Theorthogonal complement ofW is defined as

W⊥ = {v ∈ V | v ⊥W}.

Thenorm (“length”) of v ∈ V is defined as|v| :=
√
〈v, v〉 and |v − w| is said to be thedistance

betweenv andw.

Proposition 9.6. Let (V, 〈·, ·〉) be a hermitianK-space.

(a) For all v ∈ V we have|v| ≥ 0 and|v| = 0 ⇔ v = 0.

(b) For all v ∈ V and alla ∈ K we have:|a · v|︸ ︷︷ ︸
|·| in V

= |a|︸︷︷︸
|·| in K

· |v|︸︷︷︸
|·| in V

.

(c) For all v, w ∈ V we have|〈v, w〉|︸ ︷︷ ︸
|·| in K

≤ |v|︸︷︷︸
|·| in V

· |w|︸︷︷︸
|·| in V

(Cauchy-Schwarz inequality).

(d) For all v, w ∈ V we have|v + w|︸ ︷︷ ︸
|·| in V

≤ |v|︸︷︷︸
|·| in V

+ |w|︸︷︷︸
|·| in V

(triangular inequality).

Proof. (a) Defintion.

(b) |a · v|2 = 〈a · v, a · v〉 = a · a · 〈v, v〉 = |a|2 · |v|2.
(c) 1st case:w = 0. Then,〈v, w〉 = 〈v, 0 · w〉 = 0〈v, w〉 = 0, whence|〈v, w〉| = 0 = |v| · |w|.
2nd case:w 6= 0. Let c := 〈v,w〉

|w|2 . Then

0 ≤ |w|2 · 〈v − c · w, v − c · w〉
= |w|2 · 〈v, v〉 − |w|2 · c · 〈w, v〉 − |w|2 · c · 〈v, w〉+ |w|2 · c · c · 〈w,w〉
= |w|2 · |v|2 − 〈v, w〉 · 〈w, v〉︸ ︷︷ ︸

=|〈v,w〉|

−〈v, w〉 · 〈v, w〉+ 〈v, w〉 · 〈v, w〉︸ ︷︷ ︸
=0

.
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(d)

|v + w|2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= |v|2 + |w|2 + 〈v, w〉+ 〈v, w〉
= |v|2 + |w|2 + 2 · Re(〈v, w〉)
≤ |v|2 + |w|2 + 2 · |〈v, w〉|
≤ |v|2 + |w|2 + 2 · |v| · |w|
= (|v|+ |w|)2.

Proposition 9.7(Pythagoras). If v ⊥ w, then|v + w|2 = |v|2 + |w|2.

Proof. |v + w|2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈w,w〉 = |v|2 + |w|2.

Note that any hermitian positive definite form is non-degenerate: if〈v, w〉 = 0 for all w ∈W , then in
particular〈v, v〉 = |v|2 = 0, whencev = 0. The same argument also shows thatw = 0 si 〈v, w〉 = 0

for all v ∈ V .

Definition 9.8. Let (V, 〈·, ·〉) be a hermitianK-space andS = {si | i ∈ I} (with I a set, e.g.,
S = {s1, . . . , sn} if I = {1, 2, . . . , n}).
We say thatS is anorthogonal systemif

• 〈si, si〉 > 0 for all i ∈ I and

• 〈si, sj〉 = 0 for all i, j ∈ I, i 6= j.

We say thatS is anorthonormal systemif 〈si, sj〉 = δi,j pour touti, j ∈ I.
If S is a basis ofV which is an orthogonal/orthonormal system, we speak of anorthogonal/ortho-
normal basis.

Example 9.9. The canonical basis ofRn (or ofCn) is an orthonormal basis for the canonical scalar
product of Example 9.4.

Proposition 9.10 (Gram-Schmidt Orthonormalization). Let (V, 〈·, ·〉) be a hermitianK-space and
s1, s2, . . . , sn ∈ V K-linearly independent vectors.
Themethod of Gram-Schmidt(see proof) computes the vectorst1, t2, . . . , tn ∈ V such that

• 〈ti, tj〉 = δi,j for all 1 ≤ i, j ≤ n and

• 〈s1, s2, . . . , sr〉 = 〈t1, t2, . . . , tr〉 for all 1 ≤ r ≤ n (in words: the subspaces ofV generated
bys1, s2, . . . , sr and byt1, t2, . . . , tr are equal for all1 ≤ r ≤ n).

Proof. We present the method of Gram-Schmidt.
It is an induction onr = 1, 2, . . . , n; hence there aren steps.
r = 1. t1 :=

s1
|s1| .
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r ⇒ r + 1. By induction hypothesis we already havet1, . . . , tr such that〈ti, tj〉 = δi,j for all 1 ≤
i, j ≤ r and〈s1, s2, . . . , sr〉 = 〈t1, t2, . . . , tr〉.
We have to findtr+1. First we define

wr+1 := sr+1 −
r∑

i=1

〈sr+1, ti〉ti.

This vector satisfies for all1 ≤ j ≤ r

〈wr+1, tj〉 = 〈sr+1 −
r∑

i=1

〈sr+1, ti〉ti, tj〉

= 〈sr+1, tj〉 −
r∑

i=1

〈〈sr+1, ti〉ti, tj〉

= 〈sr+1, tj〉 − 〈〈sr+1, tj〉tj , tj〉
= 〈sr+1, tj〉 − 〈sr+1, tj〉 · 〈tj , tj〉
= 0

Since〈s1, s2, . . . , sr〉 = 〈t1, t2, . . . , tr〉, we havewr+1 6∈ 〈t1, t2, . . . , tr〉, hence, in particular,wr+1 6=
0. This allows us to define

tr+1 :=
wr+1

|wr+1|
.

This vector clearly satisfies〈tr+1, ti〉 = δr+1,i for all 1 ≤ i ≤ r + 1 and〈s1, s2, . . . , sr, sr+1〉 =

〈t1, t2, . . . , tr, tr+1〉.

Example 9.11.We apply the method of Gram-Schmidt to the following vectors:

s1 =




1
1
0
1
0
1


 , s2 =




1
3
−2
3
−2
5


 , s3 =




−1
5
2
−3
−6
3




surR6 avec le produit scalaire canonique.

(1) Let us compute the length ofs1:

|s1| =
√
4 = 2.

Thus

t1 =
1

2
s1 =




1/2
1/2
0

1/2
0

1/2


 .

(2) Let us now compute

〈s2, t1〉 = 〈




1
3
−2
3
−2
5


 ,




1/2
1/2
0

1/2
0

1/2


〉 = 6.
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Thus

w2 := s2 − 〈s2, t1〉t1 =




1
3
−2
3
−2
5


− 6




1/2
1/2
0

1/2
0

1/2


 =




−2
0
−2
0
−2
2


 .

The length ofw2 is
|w2| =

√
16 = 4.

Donc

t2 =
1

4
w2 =




−1/2
0

−1/2
0

−1/2
1/2


 .

(3) Now compute

〈s3, t1〉 = 〈




−1
5
2
−3
−6
3


 ,




1/2
1/2
0

1/2
0

1/2


〉 = 2

and

〈s3, t2〉 = 〈




−1
5
2
−3
−6
3


 ,




−1/2
0

−1/2
0

−1/2
1/2


〉 = 4.

Thus

w3 := s3 − 〈s3, t1〉t1 − 〈s3, t2〉t2 =




−1
5
2
−3
−6
3


− 2




1/2
1/2
0

1/2
0

1/2


− 4




−1/2
0

−1/2
0

−1/2
1/2


 =




0
4
4
−4
−4
0


 .

The length ofw3 is
|w3| =

√
64 = 8.

Thus

t3 =
1

8
w3 =




0
1/2
1/2
−1/2
−1/2
0


 .

Corollary 9.12. Let (V, 〈·, ·〉) be a hermitianK-space of finite dimension (or even countable). Then,
V has an orthonormalK-basis.

Proof. Direct consequence of Gram-Schmidt 9.10.

Corollary 9.13. Let(V, 〈·, ·〉) be a hermitianK-space andW ≤ V be a subspace of finite dimension.
Let s1, . . . , sn ∈ W be an orthonormalK-basis ofW (which exists in view of Corollary 9.12). We
define

πW : V →W, v 7→
n∑

i=1

〈v, si〉si.

This application is calledthe orthogonal projection onW .
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(a) πW isK-linear and satisfiesπW ◦ πW = πW .

(b) V =W ⊕W⊥.

(c) For all v ∈ V , we have

|πW (v)|2 =
n∑

i=1

|〈v, si〉|2 ≤ |v|2.

This isBessel’s inequality.

(d) For all v ∈ V , πW (v) can be characterized as the uniquew ∈ W such that|v − w| is minimal.
The applicationπW is therefore independent from the choice of the basis.

Proof. (a) Simple computations.
(b) Letv ∈ V . We writev = πW (v) + (v − πW (v)). We clearly haveπW (v) ∈W . Let us show that
v − πW (v) ∈W⊥; for this it suffices to prove that〈v − πW (v), sj〉 = 0 for all 1 ≤ j ≤ n:

〈v−πW (v), sj〉 = 〈v, sj〉−〈
n∑

i=1

〈v, si〉si, sj〉 = 〈v, sj〉−
n∑

i=1

〈v, si〉 · 〈si, sj〉 = 〈v, sj〉−〈v, sj〉 = 0.

This gives usV = W +W⊥, thus it suffices to show that the sum is direct. Letw ∈ W ∩W⊥. In
particular,w ⊥ w, i.e.,〈w,w〉 = |w|2 = 0, whencew = 0.
(c) We have just seen thatπW (v) ⊥ (v − πW (v)), hence by Pythagoras 9.7 we have

|v|2 = |πW (v)|2 + |v − πW (v)|2,

whence|πW (v)|2 ≤ |v|2. This already proves the inequality. Let us now prove the equality:

|πW (v)|2 = 〈πW (v), πW (v)〉 =
n∑

j=1

n∑

k=1

〈v, sj〉〈v, sk〉〈sj , sk〉 =
n∑

j=1

|〈v, sj〉|2.

(d) We use again Pythagoras 9.7 to obtain forw ∈W

|v − w|2 = | (v − πW (v))︸ ︷︷ ︸
∈W⊥

+(πW (v)− w)︸ ︷︷ ︸
∈W

|2 = |v − πW (v)|2︸ ︷︷ ︸
indépendant dew

+|πW (v)− w|2.

Thus|v − w| is minimal if and only if|πW (v)− w| = 0, i.e. if and only ifw = πW (v).

10 Normal, adjoint, self-adjoint operators and isometries

Goals:

• Master the concepts of normal, adjoint and self-adjoint operators;

• master the notion of isometry and the notions of unitary and orthogonal matrix;

• know the fundamental properties of normal and self-adjoint operators and of isometries;
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• be able to decide whether these notions are satisfied;

• know examples and be able to prove simple properties.

We continue withK ∈ {R,C}. In this section, we are interested in the question when in a hermitian
space, a linear application is “ compatible” with the scalar product; more precisely, we would like to
compare

〈Mv,w〉, 〈Mv,Mw〉, 〈v,Mw〉, and〈v, w〉

whereM is a matrix andv, w are vectors.
This will lead us to symmetric, hermitian, orthogonal, unitary matrices and isometries. We will prove
later that any symmetric matrix with real coefficients is diagonalizable, and generalizations of this.
We make/recall the following definitions:

Definition 10.1. (a) We callsymmetric matrixor self-adjoint matrixany matrixM ∈ Matn×n(R)
such thatM tr =M .

(b) We callhermitian matrixor self-adjoint matrixany matrixM ∈ Matn×n(C) such thatM tr =M .

Note that a symmetric matrix is nothing but a hermitian matrix with real coefficients.

(c) We callorthogonal matrixor isometryany matrixM ∈ Matn×n(R) such thatM trM = id.

(d) We callunitary matrixor isometryany matrixM ∈ Matn×n(C) such thatM trM = id.

Note that an orthogonal matrix is nothing but a unitary matrix with real coefficients.

Definition 10.2. We define the following matrix groups where the multiplication law is the composi-
tion of matrices:

(a) GLn(K) = {M ∈ Matn×n(K) | det(M) 6= 0}, thegeneral linear groupoverK,

(b) SLn(K) = {M ∈ Matn×n(K) | det(M) = 1}, thespecial linear groupoverK,

(c) On = {M ∈ GLn(R) |M trM = id}, theorthogonal group;

(d) SOn = {M ∈ SLn(R) |M trM = id}, thespecial orthogonal group,

(e) Un = {M ∈ GLn(C) |M trM = id}, theunitary group,

(f) SUn = {M ∈ SLn(C) |M trM = id}, thespecial unitary group.

Lemma 10.3. LetM ∈ Matn×n(K) be a square matrix.

(a) The following statements are equivalent:

(i) M is self-adjoint.

(ii) For all v, w ∈ Kn we have:vtrM trw = vtrMw.

Note that in terms of scalar product, this statement can be rewritten as follows:
〈Mv,w〉 = 〈v,Mw〉.
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(b) The following statements are equivalent:

(i) M is an isometry.

(ii) For all v, w ∈ Kn we have:vtrM trMw = vtrw.

Note that in terms of scalar product, this statement can be rewritten as follows:
〈Mv,Mw〉 = 〈v, w〉.

Proof. We have proved part (a) in the beginning of section 9. The proof of part (b) is obtained using
exactly the same arguments. More precisely, it is immediate in view of the formulaetri Mej = mi,j

for any square matrixM = (mi,j).

It is very easy to provide examples of symmetric or hermitian matrices (choose arbitrary real coeffi-
cients on the diagonal, write arbitrary real coefficients (or complew, depending on the situation) in the
part below the main diagonal, fill the part above the main diagonal with the corresponding values).

Lemma 10.4. LetM ∈ Matn×n(K) be a square matrix. The following statements are equivalent:

(i) M is an isometry (i.e. unitary or orthogonal);

(ii) the columns ofM form an orthonormal basis ofKn (for the canonical scalar product);

(iii) the rows ofM form an orthonormal basis ofKn (for the canonical scalar product).

Proof. By the definition of the multiplication of two matrices, statement (ii) is precisely the equality
M trM = id, hence (i). Statement (iii) is statement (ii) fot the matrixM tr. Thus the equivalence
between (iii) and (i) is the same as the equivalence

M trM = id ⇔MM tr = id.

Since in groups inverses are unique, the equality on the left hand side is equivalent toMM tr = id,
and it suffices to apply complex conjugation to obtain the equality in the right hand side.

Lemma 10.5. We have

O2 = {
(

cos(α) − sin(α)
sin(α) cos(α)

)
∈ GL2(R) | 0 ≤ α < 2π} ∪ {

(
cos(α) sin(α)
sin(α) − cos(α)

)
∈ GL2(R) | 0 ≤ α < 2π}.

Proof. First note that theM =
(

cos(α) − sin(α)
sin(α) cos(α)

)
is orthogonal:

M trM =
(

cos(α) sin(α)
− sin(α) cos(α)

)(
cos(α) − sin(α)
sin(α) cos(α)

)
=
(

cos2(α)+sin2(α) 0

0 cos2(α)+sin2(α)

)
= ( 1 0

0 1 ) .

The computation for the matrix
(

cos(α) sin(α)
sin(α) − cos(α)

)
is similar.

Let nowM =
(
a b
c d

)
be an orthogonal matrix, i.e.

M trM = ( a cb d )
(
a b
c d

)
=
(
a2+c2 ab+cd
ab+cd b2+d2

)
= ( 1 0

0 1 ) .

From the equalitiesa2 + c2 = 1 andb2 + d2 = 1, we obtain0 ≤ α, β < 2π such that

a = cos(α), c = sin(α), d = cos(β), b = sin(β).
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The equalityab+ cd = 0 hence gives

0 = cos(α) sin(β) + sin(α) cos(β) = sin(α+ β).

From this we conclude
α+ β = mπ

for somem ∈ Z. If m is even, we find:

cos(β) = cos(m− α) = cos(m) cos(α) + sin(m) sin(α) = cos(α)

and
sin(β) = sin(m− α) = sin(m) cos(α)− cos(m) sin(α) = − sin(α)

which gives (
a b
c d

)
=
(

cos(α) − sin(α)
sin(α) cos(α)

)
.

If m is odd, we find:

cos(β) = cos(m− α) = cos(m) cos(α) + sin(m) sin(α) = − cos(α)

and
sin(β) = sin(m− α) = sin(m) cos(α)− cos(m) sin(α) = + sin(α)

which gives (
a b
c d

)
=
(

cos(α) sin(α)
sin(α) − cos(α)

)
,

as desired.

We now change the view point: in stead of matrices, we consider linear applications between hermitian
spaces.

Proposition 10.6. LetV andW be two hermitianK-spaces of dimensionsn andm and letϕ : V →
W be aK-linear application.

(a) There exists a uniqueK-linear applicationϕad :W → V such that for allv ∈ V and allw ∈W

〈ϕ(v), w〉 = 〈v, ϕad(w)〉.

Note that the scalar product on the left is the one fromW , and the scalar product on the right is
the one fromV .

The applicationϕad is calledthe adjoint ofϕ.

(b) LetS be an orthonormalK-basis ofV andT be an orthonormalK-basis ofW . Then

MS,T (ϕ
ad) =MT,S(ϕ)tr

(the matrix obtained from the transpose by complex conjugation).

If M is a matrix, we denoteMad the matrixM
tr

= M tr and call it theadjoint matrix. Thus
MS,T (ϕ

ad) is the adjoint matrix ofMT,S(ϕ).
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Proof. Let S = s1, . . . , sn andT = t1, . . . , tm be the two orthonormal basis. Let

MT,S(ϕ) = (ai,j)1≤i≤m,1≤j≤n,

i.e. ϕ(si) =
∑m

k=1 ak,itk. We will take (b) as definition ofϕad: it is theK-linear application
represented byMT,S(ϕ)tr. Concertely, we haveϕad(tj) =

∑n
k=1 aj,ksk.

We first verify:

〈ϕ(si), tj〉 = 〈
m∑

k=1

ak,itk, tj〉 =
m∑

k=1

ak,i〈tk, tj〉 = aj,i

〈si, ϕad(tj)〉 = 〈si,
m∑

k=1

aj,ksk〉 =
m∑

k=1

aj,k〈si, sk〉 = aj,i

We can now obtain (a) by linearity: letv =
∑n

i=1 bisi andw =
∑m

j=1 cjtj ; we have

〈ϕ(v), w〉 = 〈ϕ(
n∑

i=1

bisi),
m∑

j=1

cjtj〉

= 〈
n∑

i=1

biϕ(si),
m∑

j=1

cjtj〉

=
n∑

i=1

bi

m∑

j=1

cj〈ϕ(si), tj〉

=
n∑

i=1

bi

m∑

j=1

cj〈si, ϕad(tj)〉

= 〈
n∑

i=1

bisi,
m∑

j=1

cjϕ
ad(tj)〉

= 〈
n∑

i=1

bisi, ϕ
ad(

m∑

j=1

cjtj)〉

= 〈v, ϕad(w)〉.

For the uniqueness ofϕad, writeϕad(tj) =
∑n

k=1 dk,jsk, and compute

aj,i = 〈ϕ(si), tj〉 = 〈si, ϕad(tj)〉 = 〈si,
n∑

k=1

dk,jsk〉 =
n∑

k=1

dk,j〈si, sk〉 = di,j .

We thus obtaindi,j = aj,i, the uniqueness.

Note that ifK = R, the adjoint of a matirxM is the transpose.

Proposition 10.7. LetU, V,W be hermitianK-spcaes of finite dimensions andU
ϕ,ψ−−→ V

η−→ W be
K-linear applications. Then:

(a) idadV = idV ,
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(b) (ϕ+ ψ)ad = ϕad + ψad,

(c) ∀x ∈ K : (xϕ)ad = xϕad,

(d) (η ◦ ϕ)ad = ϕad ◦ ηad and

(e) (ϕad)ad = ϕ.

The same statements hold for matrices.

Proof. The statements for matrices are easily verified. The only point where one needs to be careful
is (M ◦N)tr = N tr ◦M tr, it is Lemma 9.1.

Definition 10.8. Let V be a hermitianK-space of finite dimension and letϕ : V → V be aK-
endomorphism.
We say thatϕ is self-adjointif ϕ = ϕad.

In view of Proposition 10.6, we thus have

ϕ is self-adjoint⇔MS,S(ϕ) is self-adjoint,

for an orthonormal basisS of V .
For the proof of the next proposition, we need a small lemma.

Lemma 10.9. Let (V, 〈, 〉) be a hermitian space. Then, ifv ⊥ V for v ∈ V , thenv = 0.

Proof. If v ⊥ V , we have in particular,v ⊥ v, whence0 = 〈v, v〉 = |v|2 which impliesv = 0.

Proposition 10.10. Let V be a hermitianK-space of finite dimension and letϕ : V → V be a
K-endomorphism.

(a) The following statements are equivalent.

(i) ϕ is self-adjoint (ϕ = ϕad).

(ii) 〈v, w〉ϕ := 〈ϕ(v), w〉 for v ∈ V andw ∈ V is a hermitian form.

(b) If ϕ is self-adjoint then:ϕ = 0 ⇔ ∀ v ∈ V : 〈v, v〉ϕ = 0.

Proof. (a) It is always true (even ifϕ is not self-adjoint) that〈·, ·〉ϕ is linear in the first variable and
sesquilinear in the second. One therefore has to check the third propertyin the definition of hermitian
forms 9.2. Letv, w ∈ V . First we do the computation

〈v, w〉ϕ = 〈ϕ(v), w〉 = 〈v, ϕad(w)〉 = 〈ϕad(w), v〉 = 〈w, v〉ϕad .

We thus have

∀ v, w ∈ V : 〈v, w〉ϕ = 〈w, v〉ϕ
⇔∀ v, w ∈ V : 〈ϕad(w), v〉 = 〈ϕ(w), v〉
⇔∀ v, w ∈ V : 〈(ϕad − ϕ)(w), v〉 = 0

⇔∀w ∈ V : (ϕad − ϕ)(w) ⊥ V = 0

⇔∀w ∈ V : (ϕad − ϕ)(w) = 0

⇔ϕad = ϕ
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by Lemma 10.9.
(b) If ϕ = 0, it follows trivially that

〈v, v〉ϕ = 〈ϕ(v), v〉 = 〈0, v〉 = 0.

Suppose now that〈v, v〉ϕ = 0 for all v ∈ V . Let v, w ∈ V anda ∈ K. We compute

0 = 〈v + aw, v + aw〉ϕ
= 〈ϕ(v + aw), v + aw〉
= 〈ϕ(v), v〉︸ ︷︷ ︸

=0

+〈ϕ(v), aw〉+ 〈ϕ(aw), v〉+ 〈ϕ(aw), aw〉︸ ︷︷ ︸
=0

= a〈ϕ(v), w〉+ a〈ϕ(w), v〉
= a〈ϕ(v), w〉+ a〈w,ϕ(v)〉
= a〈ϕ(v), w〉+ a〈ϕ(v), w〉
= 2 · Re(a〈ϕ(v), w〉).

With a = 1, we obtain0 = Re(〈ϕ(v), w〉), and witha = iwe find0 = Im(〈ϕ(v), w〉). Consequently,
we have for allv, w ∈ V

0 = 〈ϕ(v), w〉.

For allv ∈ V , we thus findϕ(v) ⊥ V , whence the desired resultϕ(v) = 0 by Lemma 10.9.

If one applies the previous proposition withϕM for a square matrixM , we find back the result of the
discussion in the beginning if section 9. Then:

(a) M =Mad ⇔M is self-adjoint⇔ (v, w) 7→ vtrAw is a hermitian form.

(b) If M is self-adjoint, then:M = 0 ⇔ ∀ v ∈ Kn : vtrMv = 0.

We now introduce the applications that preserve lengths: the “ isometries”.

Definition 10.11. LetV be a hermitian space. We callisometryanyϕ ∈ EndK(V ) such that for all
v ∈ V

|ϕ(v)| = |v|.

Lemma 10.12. Let V be a hermitian space and letϕ ∈ EndK(V ). The following statements are
equivalent:

(i) ϕ is an isometry.

(ii) ϕad ◦ ϕ = idV (in particular,ϕ is an isomorphism).

(iii) For all v, w ∈W : 〈ϕ(v), ϕ(w)〉 = 〈v, w〉.

Proof. “(i) ⇒ (ii)”: We have for allv ∈ V :

〈v, v〉 = 〈ϕ(v), ϕ(v)〉 = 〈v, ϕad(ϕ(v))〉,
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hence
〈v, (ϕad ◦ ϕ− idV )(v)〉 = 0 et, alors,〈(ϕad ◦ ϕ− idV )(v), v〉 = 0.

Note thatϕad ◦ ϕ − idV is self-adjoint, thus Proposition 10.10(b) implies thatϕad ◦ ϕ − idV = 0,
whenceϕad ◦ ϕ− idV .
“(ii) ⇒ (iii)”: Let v, w ∈ V , then

〈ϕ(v), ϕ(w)〉 = 〈v, ϕad(ϕ(w))〉 = 〈v, w〉.

“(iii) ⇒ (i)”: Let v ∈ V . Then,

|ϕ(v)|2 = 〈ϕ(v), ϕ(v)〉 = 〈v, v〉 = |v|2.

By this lemma, we have

ϕ is an isometry⇔MS,S(ϕ) is an isometry (i.e. orthogonal or unitary)

for an orthonormal basisS of V .
Until now we always considered two types of endomorphisms/matrices: self-adjoint and isometries.
We would like to treat some of their properties in parallel. We thus look for a common generalization.
Normal operators are such a generalization. We first give the definition ina “ metric”way

Definition 10.13. LetV be a hermitian space. We callnormal operatoranyϕ ∈ EndK(V ) such that
for all v ∈ V

|ϕ(v)| = |ϕad(v)|.

Example 10.14. • If ϕ is self-adjoint, we haveϕad = ϕ, whence,ϕ is normal.

• If ϕ is an isometry, we have thatϕ is an isometry andϕad = ϕ−1. As |ϕ(v)| = |v| we find
|ϕad(v)| = |ϕ−1(v)| = |v|, whence,ϕ is normal.

Proposition 10.15.LetV be a hermitian space and letϕ ∈ EndK(V ). The following statements are
equivalent:

(i) ϕ is normal.

(ii) ϕad ◦ ϕ = ϕ ◦ ϕad.

Proof. First we compute

|ϕ(v)|2 − |ϕad(v)|2 = 〈ϕ(v), ϕ(v)〉 − 〈ϕad(v), ϕad(v)〉
= 〈ϕ(v), (ϕad)ad(v)〉 − 〈ϕad(v), ϕad(v)〉
= 〈ϕad ◦ ϕ(v), v〉 − 〈ϕ ◦ ϕad(v), v〉
= 〈(ϕad ◦ ϕ− ϕ ◦ ϕad)(v), v〉.

Note thatϕ ◦ ϕad − ϕad ◦ ϕ is self-adjoint. Consequently, (Propositon 10.10(b)) we have
(
∀ v ∈ V : |ϕ(v)|2 = |ϕad(v)|2

)
⇔ ϕad ◦ ϕ = ϕ ◦ ϕad.
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In terms of matrices, we thus have:

ϕ is normal ⇐⇒M
tr
M =MM

tr définition⇐⇒ M is normal

whereM =MS,S(ϕ) for an orthonormal basisS of V .

Lemma 10.16. Let V be a hermitian space and letϕ ∈ EndK(V ) be normal. Leta ∈ Spec(ϕ) be
an eigenvalue ofϕ.

(a) Eϕ(a) = Eϕad(a).

(b) If ϕ is self-adjoint, thena ∈ R.

(c) If ϕ is an isometry, then|a| = 1

Proof. (a) We first prove thatker(ϕ) = ker(ϕad) for any normal operator. Letv ∈ V , then,

v ∈ ker(ϕ) ⇔ ϕ(v) = 0 ⇔ |ϕ(v)| = 0
déf. normalité⇔ |ϕad(v)| = 0 ⇔ ϕad(v) = 0 ⇔ v ∈ ker(ϕad).

Now putψ := ϕ− a · idV . This is also a normal operator:

ψ◦ψad = (ϕ−a·idV )◦(ϕ−a·idV )ad = (ϕ−a·idV )◦(ϕad−a·idV ) = ϕ◦ϕad−a·ϕad−a·ϕ+a·a·idV
= ϕad ◦ ϕ− a · ϕad − a · ϕ+ a · a · idV = (ϕ− a · idV )ad ◦ (ϕ− a · idV ) = ψad ◦ ψ.

The previous computation gives us

Eϕ(a) = ker(ϕ− a · idV ) = ker(ψ) = ker(ψad) = ker(ϕad − a · idV ) = Eϕad(a).

(b) For allv ∈ Eϕ(a) we havev ∈ Eϕ(a), hencea · v = ϕ(v) = ϕad(v) = a · v, that is,a = a and
consequentlya ∈ R.
(c) For allv ∈ Eϕ(a) we havev = ϕ−1(ϕ(v)) = ϕ−1(a · v) = a · ϕ−1(v) = a · a · v = |a|2 · v,
whence|a|2 = 1.

Example 10.17.This example gives us an idea of the spectral theorem.

(a) Firstly we continue the analysis ofO2 of Lemma 10.5.

(1) LetM =
(

cos(α) − sin(α)
sin(α) cos(α)

)
. Its characteristic polynomial is

(X − cos(α))2 + sin2(α) = X2 − 2 cos(α)X + 1

whose discriminant is4 cos2(α)−4 ≤ 0 with equality if and only if| cos(α)| = 1, if and only
if α ∈ πZ.

Consequently, ifα 6∈ πZ, thenM has no eigenvalue and is therefore not diagonalizable. This
is also geometrically clear sinceM represents the rotation by angleα that does not fix any
vector unless the angle is a multiple ofπ.

If α is an even multiple ofπ, thenM = id. If α is an odd multiple ofπ, thenM = −id.
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(2) LetM =
(

cos(α) sin(α)
sin(α) − cos(α)

)
. Its characteristic polynomial is

X2 − cos2(α)− sin2(α) = X2 − 1 = (X − 1)(X + 1).

The matirxM is thus diagonalizable with eigenvalues−1 and1.

Geometrically, it is a reflexion by one axis (eigenvector for eigenvalue1).

(b) LetM ∈ Mat3×3(R) be an orthogonal matrix. Its characteristic polynomial is monic of degree3

and has therefore a real rootλ1. By Lemma 10.16, this root is either1 or −1. There is thus an
eigenvectorv1 for the eigenvalueλ1. We can normalize it such that|v1| = 1.

By Gram-Schmidt, we can find vectorsv2, v3 such thatv1, v2, v3 form an orthonormal basis ofR3.
Moreover, sinceM is an isometry, fori = 1, 2, we have

0 = 〈vi, v1〉 = 〈Mvi,Mv1〉 = λ1〈Mvi, v1〉.

This means thatM sends the subspaceW ≤ R3 generated byv2, v3 into itself.

If one writes the vectorsv1, v2, v3 as columns in a matrixC (which is orthogonal!), we thus obtain

CtrMC =



λ1 0 0

0 a b

0 c d


 .

The matrixA :=
(
a b
c d

)
is orthogonal and belongs toO2.

If det(A) = det(M)/λ1 = 1, we have thatA =
(

cos(α) − sin(α)
sin(α) cos(α)

)
for some0 ≤ α < 2π. If

det(A) = −1, we can find a basisw2, w3 ofW consisting of normalized eigenvectors:|wi| = 1

for i = 2, 3 for the eigenvalues1,−1. Consequently,v1, w2, w3 is an orthonormal basis ofR3. If
D is the (orthogonal!) matrix whose columns are these vectors, we finally have

DtrMD =



λ1 0 0

0 1 0

0 0 −1




for λ2 ∈ {1,−1}.

11 Spectral Theorem

Goals:

• Know the spectral theorems;

• be able to compute the diagonalization of normal complex matrices, adjoint matrices;

• be able to compute the normal form of orthonormal matrices;

• know examples and be able to prove simple properties.
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Let V be a hermitian space and letU,W ≤ V be two vector subspaces. We writeU ⊥©W for U +W

if the sum is direct (U ⊕W ) and the two subspaces are orthogonal (U ⊥W ).

Lemma 11.1. Let V be a hermitian space andϕ ∈ EndK(V ) normal. Then, for all distinct
a1, . . . , an ∈ Spec(ϕ), we have

Eϕ(a1) + Eϕ(a2) + · · ·+ Eϕ(an) = Eϕ(a1) ⊥©Eϕ(a2) ⊥©· · · ⊥©Eϕ(an).

Proof. In Lemma 3.10 wa have already seen that the sum of eigenspaces is direct. Let0 6= v ∈ Eϕ(ai)

and0 6= w ∈ Eϕ(aj) with i 6= j (i.e.w ∈ Eϕad(aj) by Lemma 10.16). We have

〈ϕ(v), w〉 = 〈aiv, w〉 = ai〈v, w〉,

but also
〈ϕ(v), w〉 = 〈v, ϕad(w)〉 = 〈v, ajw〉 = aj〈v, w〉,

whence〈v, w〉 = 0.

We first prove the spectral theorem for normal operators with complex coefficients. The reason for
this is that in this case we have the following theorem.

Theorem 11.2(Fundamental Theorem of Algebra). Any polynomialf ∈ C[X] of degree≥ 1 has a
zero.

Proof. Analysis Course.

Theorem 11.3(Spectral Theorem for normal operators). Let V be a hermitianC-space of finite di-
mension andϕ ∈ EndK(V ). The following statements are equivalent:

(i) ϕ is normal.

(ii) V =⊥©a∈Spec(ϕ)Eϕ(a) (in particular,ϕ is diagonalizable).

(iii) V has an orthonormal basis consisting of eigenvectors forϕ.

Proof. “(i) ⇒ (ii)”: We have already seen thatW :=
⊕

a∈Spec(ϕ)Eϕ(a) is a subspace ofV and
we know that the sum is orthogonal by Lemma 11.1. Corollary 9.13(b) yields the existence of on
orthogonal complementV =W ⊕W⊥. The aim is to showW⊥ = 0.
Lemma 10.16 implies thatW =

⊕
a∈Spec(ϕ)Eϕad(a), whenceϕad(W ) ⊆ W . Let nowv ∈ W⊥.

Then for allw ∈W ,
〈ϕ(v), w〉 = 〈v, ϕad(w)〉 = 0,

showing thatϕ(v) ∈ W⊥. Hence we can restrictϕ to W⊥. Let f = charpolyϕ|
W⊥

∈ C[X]

be a characteristic polynomial. Assume thatW⊥ 6= 0, so thatdeg(f) ≥ 1. By the Fundamental
Theorem of Algebra 11.2, this polynomial has a zeroz ∈ C. Sincecharpolyϕ|

W⊥
| charpolyϕ, we

find z ∈ Spec(ϕ), whenceW⊥ ∩W 6= 0, leading to a contradiction. Therefore,W⊥ = 0, as desired.
“(ii) ⇒ (iii)”: It suffices to choose an orthonormal basis of eachEϕ(a) and take the union; we will
then automatically have an orthonormal basis ofV because the eigenspaces are orthogonal.
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“(iii) ⇒ (i)”: Let S = s1, . . . , sn be an orthonormal basis ofV consisting of eigenvectors. Letai be
the eigenvalue associated tosi (we do not require that theai’s are two by two distinct). Thus we have
ϕ(si) = ai · si. Let 1 ≤ j ≤ n. We have

〈sj , ϕad(si)− aisi〉 = 〈sj , ϕad(si)〉 − 〈sj , aisi〉 = 〈ϕ(sj), si〉 − ai〈sj , si〉 = (aj − ai)〈sj , si〉 = 0.

Therefore(ϕad(si)− aisi) ⊥ V , whenceϕad(si) = ai · si. The computation

ϕ(ϕad(si)) = ϕ(ai · si) = ai · ϕ(si) = ai · ai · si
ϕad(ϕ(si)) = ϕad(ai · si) = ai · ϕad(si) = ai · ai · si,

impliesϕ ◦ ϕad = ϕad ◦ ϕ, the normality ofϕ.

Let us now provide the translation in terms of matrices of the spectral theorem11.3.

Corollary 11.4. LetM ∈ Matn×n(C) be a matrix. Then the following statements are equivalent:

(i) M is normal, i.e.M
tr ·M =M ·M tr

.

(ii) There exists aunitarymatrixC ∈ Matn×n(C) such thatC
tr ·M · C is a diagonal matrix.

Proof. “(i) ⇒ (ii)”: Let ϕ = ϕM be the endomorphism ofCn such thatMS,S(ϕ) =M whereS is the
canonical basis (which is orthonormal for the canonical scalar product!). By Proposition 10.6 we have
M

tr
=MS,S(ϕ

ad). Therefore the hypothesis thatM is normal translates the fact thatϕ is normal. We
use Theorem 11.3 to obtain an orthonormal basisT of eigenvectors. ThusC−1

S,T ·MS,S(ϕ) · CS,T =

MT,T (ϕ) is a diagonal matrix. Recall now that the columns ofC := CS,T are the vectors of basisT .
SinceT is orthonormal for the canonical scalar product, we haveC · Ctr

= idn and the statement is
proven.
“(ii) ⇒ (i)”: Let C

tr ·M · C = diag(a1, . . . , an), be the diagonal matrix havinga1, . . . , an on the
diagonal. First notice that

(C
tr ·MC)

tr

= C
tr ·M tr · C = diag(a1, . . . , an).

Since diagonal matrices commute, we find

(C
tr ·MC)

tr

· (Ctr ·MC) = C
tr ·M tr · C · Ctr ·MC = C

tr ·M tr ·MC

= (C
tr ·MC) · (Ctr ·MC)

tr

= C
tr ·M · C · Ctr

M
tr · C = C

tr ·M ·M tr · C,

thusM
tr ·M =M ·M tr

.

Lemma 11.5. LetM ∈ Matn×n(R) be a matrix which we consider onC.

(a) For all µ ∈ C and allv ∈ Cn we have the equivalence:v ∈ EM (µ) ⇐⇒ v ∈ EM (µ).

(b) For µ ∈ C we have the equivalence:µ ∈ Spec(M) ⇐⇒ µ ∈ Spec(M).

(c) For µ ∈ R, the eigenspaceEM (µ) ⊆ Cn has a basis inRn.
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(d) Letµ ∈ Spec(M) such thatµ ∈ C \ R and letv ∈ EM (µ) such that|v| = 1.
Setx := 1√

2
(v + v), y := 1

i
√
2
(v − v) ∈ EM (µ)⊕ EM (µ).

Then|x| = 1, |y| = 1, x ⊥ y,Mx = Re(µ) · x− Im(µ) · y andMy = Re(µ) · y + Im(µ) · x.

Proof. (a) We observe:Mv = µ · v ⇐⇒ Mv = Mv = µ · v = µ · v which implies the result. (b) is
a direct consequence of (a).

(c) It suffices to show thatEM (µ) admits a system of generators inRn. Let v1, . . . , vr ∈ Cn be a
C-basis ofEM (µ). Setxj = Re(vj) andyj = Im(vj) for j = 1, . . . , r. These vectors belong to
EM (µ) since so doesvj for all j. Sincevj = xj + iyj , the vectorsx1, . . . , xr, y1, . . . , yr generate
EM (µ).

(d) First observe thatv ⊥ v sinceEM (µ) ⊥ EM (µ) asµ 6= µ. We have

|x|2 = 〈x, x〉 = (
1√
2
)2〈v + v, v + v〉 = 1

2

(
〈v, v〉+ 〈v, v〉+ 〈v, v〉+ 〈v, v〉

)
= 1.

The calculation of|y| is similar:

|y|2 = 〈y, y〉 = (
1√
2
)2〈v − v, v − v〉 = 1

2

(
〈v, v〉+ 〈v, v〉 − 〈v, v〉 − 〈v, v〉

)
= 1.

We also have:

〈x, y〉 = i

2
〈v + v, v − v〉 = i

2

(
〈v, v〉 − 〈v, v〉+ 〈v, v〉 − 〈v, v〉

)
= 0.

Let us now compute the action ofM :

Mx =
1√
2
(Mv +Mv) =

1√
2
(µv + µv) =

1

2
√
2

(
(µ+ µ)(v + v) + (µ− µ)(v − v)

)

=
1

2
(µ+ µ)x− 1

2i
(µ− µ)y = Re(µ) · x− Im(µ) · y

My =
1

i
√
2
(Mv −Mv) =

1√
2i
(µv − µv) =

1

2i
√
2

(
(µ+ µ)(v − v) + (µ− µ)(v + v)

)

=
1

2
(µ+ µ)y +

1

2i
(µ− µ)x = Re(µ) · y + Im(µ) · x.

Corollary 11.6. LetM ∈ Matn×n(R) be a normal matrix, i.e.M tr ·M =M ·M tr.
Letλ1, . . . , λr, µ1, . . . ,
µs, µ1, . . . , µs for n = r+2s andλ1, . . . , λr ∈ R andµ1, . . . , µs ∈ C\R be the diagonal coefficients
of the matrix of Corollary 11.4. We setαi = Re(µi) andβi = Im(µi) for 1 ≤ i ≤ s.
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Then, there exists anorthogonalmatrixC ∈ Matn×n(R) such that

Ctr ·M · C =




λ1 0 0 0 0 0 0 0 0 0

0 λ2 0 0 0 0 0 0 0 0
...

. . . . . . . .. .. . . . . . . . . . . . . .
...

0 . . . 0 λr 0 0 0 0 0 0

0 . . . . . . 0 α1 β1 0 0 0 0

0 . . . . . . 0 −β1 α1 0 0 0 0

0 . . . . . . 0 0 0
. . . . . . 0 0

0 . . . . . . 0 0 0
. . . . . . 0 0

0 . . . . . . 0 0 0 0 0 αs βs
0 . . . . . . 0 0 0 0 0 −βs αs




.

Proof. In view of Corollary 11.4 and Lemma 11.5, we have an orthonormal basis

w1, w2, . . . , wr, v1, v1, v2, v2, . . . vs, vs

of Cn consisting of eigenvectors for the eigenvalues

λ1, λ2, . . . , λr, µ1, µ1, µ2, µ2, . . . , µs, µs

wheren = r + 2s and the propertywi ∈ Rn for 1 ≤ i ≤ r is satisfied. As in the lemma, set
xj =

1√
2
(vj + vj) etyj = 1

i
√
2
(vj − vj).

Then,w1, w2, . . . , wr, x1, y1, x2, y2, . . . , xs, ys form an orthonormal basis ofRn. If this orthonormal
basis is written in the columns ofC (which is then orthogonal), thenC−1MC has the desired form.
This follows from the computations in Lemma 11.5.

Remark 11.7. LetM ∈ Matn×n(K) for K ∈ {R,C}. To compute the matrixC of corollaries 11.4
and 11.6, we can use the techniques that we already studied. We proceedas follows:

(1) Compute the characteristic polynomial.

(2) Compute the eigenvalues inC (as roots of the characteristic polynomial).

(3) If M ∈ Matn×n(C), for all a ∈ Spec(M), compute aC-basis ofEM (a).

(4) If M ∈ Matn×n(R), for all a ∈ Spec(M) real, compute anR-basis ofEM (a), and for all
a ∈ Spec(M) not real, compute aC-basis ofEM (a).

(5) Using Gram-Schmidt, compute an orthonormal basis ofEM (a) (onR if the original basis is on
R) for all a ∈ Spec(M).

Note that ifa ∈ C \ R andM ∈ Matn×n(R), then we obtain an orthonormal basis ofEM (a) by
applying complex conjugation to the orthonormal basis ofEM (a).

(6) If M ∈ Matn×n(C), write the vectors of the orthonormal bases as columns of the matrixC.
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(7) If M ∈ Matn×n(R), arrange the eigenvalues ofM (seen as matrix with complex coefficients) as
follows: first the real eigenvaluesλ1, . . . , λr, thenµ1, . . . , µs, µ1, . . . , µs ∈ C \ R.

For each vectorv of the orthonormal basis of a proper spaceEM (µi) for all i = 1, . . . , s, compute
the vectorsx, y as in Corollary 11.6 and obtain an orthonormal basis with real coefficientsof
EM (µi)⊕ EM (µi).

Write the vectors of the real orthonormal basis ofEM (λi) for i = 1, . . . , r and ofEM (µi) ⊕
EM (µi) as columns of the matrixC.

Example 11.8.Let us treat a concrete example for a symmetric matrix. Let

M =




14 38 −40

38 71 20

−40 20 5


 .

Its characteristic polynomial is(X + 45)(X − 45)(X − 90).
Let us compute the eigenspaces:

EM (−45) = ker




59 38 −40

38 116 20

−40 20 50


 = 〈




2

−1

2


〉,

EM (45) = ker



−31 38 −40

38 26 20

−40 20 −40


 = 〈




4

−2

−5


〉

and

EM (90) = ker



−76 38 −40

38 −19 20

−40 20 −85


 = 〈



1

2

0


〉.

These vectors are already orthogonal by Lemma 11.1. One can easily verify it. Thus, it suffices to
normalize them and to write them as columns of a matrix:

C =




2
3

4
3
√
5

1√
5

−1
3

−2
3
√
5

2√
5

2
3

−
√
5

3 0


 .

By construction,C is orthogonal, which can also be checked by a direct computation. We obtain by
construction (to check by computation):

CtrMC =



−45 0 0

0 45 0

0 0 90


 .

We can now state a stronger result ifϕ is self-adjoint.

Corollary 11.9. LetK ∈ {R,C}. LetM ∈ Matn×n(K) be a matrix. Then the following statements
are equivalent:
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(i) M is self-adjoint (symmetric/hermitian).

(ii) There exists an isometry (unitary/orthogonal matrix)C ∈ Matn×n(K) such thatC
tr ·M ·C =

diag(a1, . . . , an) with a1, . . . , an ∈ R.

Proof. “(i) ⇒ (ii)”: SinceM is self-adjoint, it is normal. We can thus apply Corollary 11.6. Moreover,
we obtainr = n ands = 0 in the notation of the corollary, sinceSpec(M) ⊂ R by Lemma 10.16.
“(ii) ⇒ (i)”: Let C

tr ·M · C = diag(a1, . . . , an), the diagonal matrix witha1, . . . , an ∈ R on the
diagonal. Taking the adjoint on both sides, we haveC

tr ·M · C = C
tr ·M tr · C since the diagonal

matrix is invariant. Therefore,M =M
tr

.

Corollary 11.10. Let K ∈ {R,C}. Let V be a hermitianK-space of finite dimension andϕ ∈
EndK(V ). Then the following statements are equivalent:

(i) ϕ is self-adjoint.

(ii) V =⊥©a∈Spec(ϕ)Eϕ(a) (in particular,ϕ is diagonalizable) andSpec(ϕ) ⊂ R.

(iii) V has an orthonormal basis consisting of eigenvectors for the real eigenvalues ofϕ.

Proof. We will deduce this theorem from Corollary 11.9. For this, letS be an orthonormal basis ofV .
Then,ϕ is normal/self-adjoint if and only ifM := MS,S(ϕ) is normal/self-adjoint (this comes from
Proposition 10.6).
“(i) ⇒ (ii)”: It suffices to apply Corollary 11.9 to the matrixM .
“(ii) ⇒ (iii)”: It suffices once again to choose an orthonormal basis in each eigenspace.
“(iii) ⇒ (i)”: Let T be the orthonormal basis in the hypothesis. LetC be the matrix whose columns
are the vectors of the basisT . Then,C

tr · MS,S(ϕ) · C is diagonal with real coefficients, hence
Corollary 11.9 tells us thatMS,S(ϕ) is self-adjoint, thenϕ l’est aussi.

Corollary 11.11. (a) LetM ∈ Matn×n(C) be an isometry. Then there exists aunitarymatrixC ∈
Matn×n(C) such thatC

tr
MC is diagonal and all the coefficients on the diagonal have absolute

value1.

(b) LetM ∈ Matn×n(R) be an isometry. Then there exists anorthogonalmatrixC ∈ Matn×n(R)
such that

Ctr ·M · C =




λ1 0 0 0 0 0 0 0 0 0

0 λ2 0 0 0 0 0 0 0 0
...

. .. . .. .. . .. . . . . . . . . . . .. .
...

0 . . . 0 λr 0 0 0 0 0 0

0 . . . . . . 0 cos(α1) sin(α1) 0 0 0 0

0 . . . . . . 0 − sin(α1) cos(α1) 0 0 0 0

0 . . . . . . 0 0 0
. . . . . . 0 0

0 . . . . . . 0 0 0
. . . . . . 0 0

0 . . . . . . 0 0 0 0 0 cos(αs) sin(αs)

0 . . . . . . 0 0 0 0 0 − sin(αs) cos(αs)




whereλ1, . . . , λr ∈ {−1, 1}.
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Proof. (a) This is an immediate consequence of Corollary 11.4 and of Lemma 10.16.

(b) This follows from Corollary 11.6 and from Lemma 10.16 since forz ∈ C with absolute value1
we haveRe(z) = cos(α) andIm(z) = sin(α) if one writesz = exp(iα).

Part (b) is a generalization of Example 10.17.

Corollary 11.12. LetK ∈ {R,C}. LetV be a hermitianK-space of finite dimension and letϕ ∈
EndK(V ) be an isometry.

(i) If K = C, then there exists an orthonormalC-basisS of V such thatMS,S(ϕ) is diagonal and
all the coefficients on the diagonal have absolute value1.

(ii) If K = R, then there exists an orthonormalC-basisS of V such thatMS,S(ϕ) is as in part (b)
of Corollary 11.11.

Proof. Its the translation of Corollary 11.11 in the case of endomorphisms.

Definition 11.13. (a) LetV be a hermitianK-space of finite dimension and letϕ ∈ EndK(V ) au-
toadjoint. One says thatϕ is positive (positive definite)if the hermitian form〈, 〉ϕ of Proposi-
tion 10.10 is positive (positive definite).

(b) LetM ∈ Matn×n(K) be an autoadjoint (symmetric (ifK = R) or hermitian (ifK = C)) matrix.
One says thatM is positive (positive definite)if the hermitian form〈v, w〉M := vtrMw is positive
(positive definite).

Lemma 11.14. Let V be a hermitianK-space of finite dimension with orthonormal basisS and let
ϕ ∈ EndK(V ) be self-adjoint. Then:

(a) ϕ is positive (positive definite)⇐⇒MS,S(ϕ) is positive (positive definite).

(b) ϕ is positive⇐⇒ Spec(ϕ) ⊆ R≥0.

(c) ϕ is positive definite⇐⇒ Spec(ϕ) ⊆ R>0.

Proof. Exercise.

Lemma 11.15.LetM ∈ Matn×n(K) be a positive and self-adjoint matrix (symmetric (ifK = R) or
hermitian (ifK = C)). Then there exists a positive matrixN ∈ Matn×n(K) such thatN2 = M and
NM =MN . Moreover,M is positive definite if and only ifN is.

Proof. Exercise.

Theorem 11.16(Décomposition polaire). LetV be a hermitianK-space of finite dimension and let
ϕ ∈ EndK(V ) be an isomorphism (i.e. an invertible endomorphism).

Then there exists a unique autoadjoint and positiveψ ∈ EndK(V ) and a unique isomertyχ ∈
EndK(V ) such thatϕ = χ ◦ ψ.



92 12 QUADRICS

Proof. Existence:By one of the exercises,ϕad is also an isomorphism. Define the isomorphism
θ := ϕad ◦ ϕ. It is self-adjoint:

θad = (ϕad ◦ ϕ)ad = ϕad ◦ (ϕad)ad = ϕad ◦ ϕ = θ,

henceSpec(θ) ⊆ R by Lemma 10.16. Let us now show that it is positive definite:

〈v, v〉θ = 〈θ(v), v〉 = 〈ϕad(ϕ(v)), v〉 = 〈ϕ(v), ϕ(v)〉 = |ϕ(v)|2 > 0

for all 0 6= v ∈ V . Therefore, by Lemma 11.15 there exists positive definiteψ ∈ EndK(V ) such that
ψ2 = θ. Putχ := ϕ ◦ ψ−1. To finish the proof of existence it suffices to prove thatχ is an isomerty:

χ−1 = ψ ◦ ϕ−1 = ψ−1 ◦ ψ2 ◦ ϕ−1 = ψ−1 ◦ θ ◦ ϕ−1

= ψ−1 ◦ ϕad ◦ ϕ ◦ ϕ−1 = ψ−1 ◦ ϕad = (ϕ ◦ ψ−1)ad = χad

where we used(ψ−1)ad = (ψad)−1 = ψ−1 asψ is self-adjoint.

Uniqueness:Assume thatϕ = χ1 ◦ ψ1 = χ2 ◦ ψ2 for isometriesχ1, χ2 and self-adjoint positive
definite isomorphismsψ1, ψ2. We obtain

χ−1
2 ◦ χ1 = ψ2 ◦ ψ−1

1 =: β.

On the left hand side we have an isometry and on the right hand side a self-adjoint positive definite
endomorphism. Thus there exists an orthonormal basisS such thatMS,S(β) is diagonal, and the
coefficients on the diagonal are positive reals (sinceβ is positive self-adjoint) and of absolute value1
(sinceβ is an isometry). It is therefore the identity,β = id, whenceχ1 = χ2 etψ1 = ψ2.

12 Quadrics

Goals:

• Be able to do simultaneous operations on rows and columns;

• know the link with elementary matrices;

• be able to compute a diagonal matrix using simultaneous operations on rows andcolumns;

• know the definition of quadrics;

• know the definition of equivalence of quadrics;

• know the classification of quadrics;

• be able to compute the type in the classification for a given quadric;

• know examples and be able to prove simple properties.
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Simultanoeus operations on rows and columns

We go back to the study of elementary operations (Gauß algorithm) on rows and columns (see Defini-
tion 1.39 and the following), except that we now do simultaneous operations on the rows and columns,
i.e. any operation that is done on the rows has to be done on the columns too. For instance, if we add
the third row to the fifth, then we also have to add the third column to the fifth column.The advan-
tage is that a symmetric matrix will stay symmetric. Along with Lemma 1.40, we have the following
lemma.

Lemma 12.1. Letλ ∈ K, i, j, n ∈ N>0, i 6= j andM ∈ Matn×n(K).

(a) P tr
i,jMPi,j is the matrix that is obtained fromM by interchanging thei-th row withj-th row and

thei-th column with thej-th column.

(b) Si(λ)trMSi(λ) is the matrix that is obtained fromM by multiplying thei-th row and thei-th
column byλ. In particular, the coefficient at(i, i) is multiplied byλ2.

(c) Qi,j(λ)trMQi,j(λ) is the matrix that is obtained fromM by addingλ times thei-th row to the
j-th row, andλ times thei-th column to thej-th column.

Proof. Il suffices to use Lemma 1.40.

Example 12.2.LetM =



1 2 3

2 4 5

3 5 6


. It is a symmetric matrix. We write the augmented matrix and

we do the operations on the rows and columns (only on the right half). We need the left half only
if we want a real matrixC such thatCMCtr (Be careful: in the above considerations, we had the
transpose at the left, here it is at the right) coincides with the matrix obtained by transforming the
rows and columns simultaneously.



1 0 0 1 2 3

0 1 0 2 4 5

0 0 1 3 5 6


 7→




1 0 0 1 2 3

−2 1 0 0 0 −1

0 0 1 3 5 6


 7→




1 0 0 1 0 3

−2 1 0 0 0 −1

0 0 1 3 −1 6




7→




1 0 0 1 0 3

−2 1 0 0 0 −1

−3 0 1 0 −1 −3


 7→




1 0 0 1 0 0

−2 1 0 0 0 −1

−3 0 1 0 −1 −3




7→




1 0 0 1 0 0

−3 0 1 0 −1 −3

−2 1 0 0 0 −1


 7→




1 0 0 1 0 0

−3 0 1 0 −3 −1

−2 1 0 0 −1 0




7→




1 0 0 1 0 0

−3 0 1 0 −3 −1

−1 1 −1/3 0 0 1/3


 7→




1 0 0 1 0 0

−3 0 1 0 −3 0

−1 1 −1/3 0 0 1/3




7→




1 0 0 1 0 0

−
√
3 0 1/

√
3 0 −

√
3 0

−
√
3

√
3 −1/

√
3 0 0 1/

√
3


 7→




1 0 0 1 0 0

−
√
3 0 1/

√
3 0 −1 0

−
√
3

√
3 −1/

√
3 0 0 1



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Note that the−1 in the middle of the right half cannot be transformed into1 since one can only mul-

tiply/divide by squares. LetC be the left half of the final matrix:C =




1 0 0

−
√
3 0 1/

√
3

−
√
3

√
3 −1/

√
3


. The

right half is the matrix obtained by simultaneous operations on the rows and columns. By Lemma 12.1,
we have the following equality (to convince yourself, you can verify it by a short computaion):

CMCtr =



1 0 0

0 −1 0

0 0 1


 .

WritingD = Ctr, we have the transpose at the left:DtrMD =



1 0 0

0 −1 0

0 0 1


.

We will now generalize what we have seen in the example.

Proposition 12.3. LetK be a field such that1 + 1 6= 0 and letM ∈ Matn×n(K) be a symmetric
matrix. Then there is a matrixC ∈ GLn(K) such thatCtrMC is a diagonal matrix.

Proof. The proof is done by induction onn. The casen = 1 is trivial (there is nothing to do). Assume
the proposition is proven for matrices of sizen− 1.

Let M =




m1,1 m1,2 . . . m1,n

m2,1 m2,2 . . . m2,n
...

...
. ..

...
mn,1 mn,2 . . . mn,n




. If M is the zero matrix, there is nothing to do. Let us

therefore suppose thatM is non-zero. We will use simultaneous operations on the rows and columns.
We proceed in two steps.

(1) Transform the matrix so thatm1,1 6= 0.

Case 1: there existsi such thatmi,i 6= 0: In this case, we interchange thei-th and the first row and
thei-th and the first column.

Case 2:mi,i = 0 for all i = 1, . . . , n: SinceM is not the zero matrix, there isi 6= j such that
mi,j 6= 0. We add thei-th to thej-th row and thei-th to thej-th column. This givesmi,j+mj,i =

2mi,j at position(j, j) and we are thus back to Case 1.

(2) By (1), we havem1,1 6= 0. For alli = 2, . . . , n, we add−m1,i/m1,1 times the first row to thei-th
row and−m1,i/m1,1 times the first column to thei-th column.

We obtain a matrix of the form




m1,1 0 . . . 0

0 m2,2 . . . m2,n
...

...
. . .

...
0 mn,2 . . . mn,n




.

The induction hypothesis applied to the remaining block of sizen− 1 finishes the proof.
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Corollary 12.4. The rank of a matrix is invariant under simultaneous operations on the rows and
columns.

Proof. Assume thatN is obtained fromM by simultaneous operations on the rows and columns. By
Proposition 12.3 we haveCtrMC = N for an invertible matrixC. SinceCtr is also invertible (for
instance, since0 6= det(C) = det(Ctr)), we haverk(N) = rk(CtrMC) = dim(im(CtrMC)) =

dim(im(CtrM)) = dim(Ctr(im(M)) = dim(im(M)) = rk(M).

Quadrics

In the whole section, letK be a field such that1 + 1 6= 0, for instanceK = R or K = C. First
recall thatK[X1, X2, . . . , Xn] denotes the ring of polynomials in variablesX1, X2, . . . , Xn with
coefficients inK. An element ofK[X1, X2, . . . , Xn] is of the form

d1∑

i1=0

d2∑

i2=0

. . .

dn∑

in=0

ai1,i2,...,inX
i1
1 X

i2
2 . . . Xin

n .

In the sequel, we will only consider quadratic polynomials.

Definition 12.5. We callquadratic polynomial (inn variables and with coefficients inK) any element
ofK[X1, X2, . . . , Xn] of the form

q(X1, X2, . . . , Xn) =
∑

1≤i≤j≤n
ai,jXiXj +

n∑

i=1

a0,iXi + a0,0.

Example 12.6. (a) Letn = 1. LetX be the variable. Any quadratic polynomial is of the form

a1,1X
2 + a0,1X + a0,0 = a2X

2 + a1X + a0

where we relabelled the coefficients in a standard way.

(b) Letn = 2. LetX,Y be the variables. Any quadratic polynomial is of the form

a1,1X
2 + a1,2XY + a2,2Y

2 + a0,1X + a0,2Y + a0,0.

In particular, we have the following example:

(1) X2

a2
+ Y 2

b2
− 1

(2) X2

a2
− Y 2

b2
− 1

(3) X2

a2
− Y

Lemma 12.7.Letn ∈ N and letA ∈ Mat(n+1)×(n+1)(K) be a symmetricmatrix. Its coefficients will
be calledai,j for 0 ≤ i, j ≤ n (note that the numeration starts at0!). Let X̃ be the vector containing
the variables preceded by1:

A =




a0,0 a0,1 . . . a0,n
a0,1 a1,1 . . . a1,n

...
...

. . .
...

a0,n a1,n . . . an,n



, X̃ =




1

X1
...
Xn



.
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Then the polynomial

qA(X1, . . . , Xn) = X̃trAX̃ = 2
∑

1≤i<j≤n
ai,jXiXj +

n∑

i=1

ai,iX
2
i + 2

n∑

i=1

a0,iXi + a0,0

is quadratic and any quadratic polynomial arises from a unique symmetric matrix A by this formula.

Proof. Clear.

As in the preceding lemma, forx =

( x1
...
xn

)
∈ Kn, we denotẽx =




1
x1
...
xn


, the vectorx preceded

by 1.

Definition 12.8. We callquadric (in dimensionn) any set

QA := QA(K) := {x ∈ Kn | x̃trAx̃ = 0}

whereA is a symmetric matrixMat(n+1)×(n+1)(K).

Example 12.9.Considern = 2.

(1) LetA =



−1 0 0

0 1
a2

0

0 0 1
b2


. We haveQA = {x ∈ R2 | X2

a2
+ Y 2

b2
− 1 = 0}. Geometrically, it

defines an ellipse.

(2) LetA =



−1 0 0

0 1
a2

0

0 0 −1
b2


. We haveQA = {x ∈ R2 | X2

a2
− Y 2

b2
− 1 = 0}. Geometrically, it

defines a hyperbola.

(3) LetA =




0 0 −1
2

0 1
a2

0
−1
2 0 0


. We haveQA = {x ∈ R2 | X2

a2
− Y = 0}. Geometrically, it defines a

parabola.

We also define an augmented matrix: letC = (ci,j) ∈ Matn×n(K) be a matrix andy ∈ Kn a vector.
We set:

C̃y =




1 0 . . . 0

y1 c1,1 . . . c1,n
...

...
. . .

...
yn cn,1 . . . cn,n



.

Lemma 12.10.LetA ∈ Mat(n+1)×(n+1)(K) be a symmetric matrix andQA the associated quadric.
Letϕ : Kn → Kn be anaffinity, i.e. an application of the form

ϕ(v) = Bv +By
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whereB ∈ GLn(K) andy ∈ Kn. Let C̃ := ˜(B−1)−y =




1 0 . . . 0

−y1 c1,1 . . . c1,n
...

...
. ..

...
−yn cn,1 . . . cn,n




.

Thenϕ(QA) = QC̃trAC̃ . The image of a quadric by an affinity is therefore also a quadric.

Proof. The claim follows from the equality

C̃ϕ̃(x) = C̃ ˜(Bx+By) = ˜(−y + x+ y) = x̃.

We therefore obtain the equality

x̃trAx̃ = (C̃ϕ̃(x))trA(C̃ϕ̃(x)) = ϕ̃(x)
tr(
C̃trAC̃

)
ϕ̃(x),

which proves the result.

Definition 12.11. Let q1(X1, . . . , Xn) et q2(X1, . . . , Xn) be quadratic polynomials arising from the
symmetric matricesA,B ∈ Mat(n+1)×(n+1)(K), i.e. q1 = qA, q2 = qB.

We say thatq1(X1, . . . , Xn) et q2(X1, . . . , Xn) are equivalentif there existsC ∈ GLn(K), y ∈ Kn

and0 6= x ∈ K such that̃Cy
tr
AC̃y = xB.

Thus, by Lemma 12.10 we have thatqA(X1, . . . , Xn) andqB(X1, . . . , Xn) are equivalent if and only
if there exists an affinityϕ : Kn → Kn such thatϕ(QA) = QB.

Our next goal is to characterize the quadrics up to equivalence. For this, we need the following
definition.

Definition 12.12. We callsystem of representatives ofK× modulo squaresany setR ∈ K \ {0}
verifying that for allx ∈ K× there is a uniquer ∈ R andy ∈ K such thatx = r · y2.

Example 12.13.(a) If K = C, thenR = {1} is a system of representatives ofC× modulo squares.
Indeed, any element ofC is a square.

(b) If K = R, thenR = {−1, 1} is a system of representatives ofR× modulo squares. Indeed, any
positive element ofR is a square, and any negative element is minus a square.

(c) We callsquarefreeany integerm ∈ Z that is not divisible by any square of a prime number. Let
R = {m ∈ Z | m is squarefree}.

If K = Q, thenR is a system of representativesQ× modulo squares. Indeed, one can write

a

b
= ab

1

b2
= m

(q
b

)2

whereab = mq2 for squarefreem ∈ Z. Moreover, ifm = m′ ( r
s

)2
andm,m′ are squarefree,

thenm′ | m; similarly,m | m′; sincem andm′ have the same sign, we obtainm = m′, proving
uniqueness.
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In the theorem of the classification of quadrics, we will use the following notations: Forn ∈ N, the
coefficients of the symmetric matricesA ∈ Mat(n+1)×(n+1)(K) will be labelled as follows:

A =




a0,0 a0,1 . . . a0,n
a0,1 a1,1 . . . a1,n

...
...

.. .
...

a0,n a1,n . . . an,n



.

LetAn denote the block of sizen× n of A in the bottom-right corner:

An =



a1,1 . . . a1,n

...
. ..

...
a1,n . . . an,n


 .

Lemma 12.14.LetA ∈ Mat(n+1)×(n+1)(K) be symmetric,C ∈ GLn(K) andy ∈ Kn. Then

(
C̃y

tr
AC̃y

)
n
= CtrAnC.

In particular, the rank ofAn is equal to the rank of
(
C̃y

tr
AC̃y

)
n
. Thus, the rank ofAn is invariant

under equivalence of quadratic polynomials.

Proof. The facts that the first column of̃Cy
tr

is the vector

( 1
0
...
0

)
and that the first row of̃Cy is the

vector( 1 0 ... 0 ) show the result.

Theorem 12.15(Classification of quadrics). Let R be a system of representatives ofK× modulo
squares. LetqA(X1, . . . , Xn) be the quadratic polynomial associated to the symmetric matrixA ∈
Mat(n+1)×(n+1)(K). Letr be the rank of the matrixAn.

We have the three following cases:

(I) If rk(A) = r, then there exista2, a3, . . . , ar ∈ R such thatqA(X1, . . . , Xn) is equivalent to
X2

1 + a2X
2
2 + a3X

2
3 + · · ·+ arX

2
r .

(II) If rk(A) = r + 1, then there exista1, a2, . . . , ar ∈ R such thatqA(X1, . . . , Xn) is equivalent
to a1X2

1 + a2X
2
2 + · · ·+ arX

2
r + 1.

(III) If rk(A) = r+ 2, thenr ≤ n− 1 and there exista1, a2, . . . , ar ∈ R such thatqA(X1, . . . , Xn)

is equivalent toa1X2
1 + a2X

2
2 + · · ·+ arX

2
r + 2Xr+1.

Proof. In order to obtain these special forms, we are allowed to only use these simultaneous operations
on the rows and columns that correspond to the matricesC̃y with C being one of the matrices of
Definition 1.39 andy ∈ Kn any vector.

We proceed in more steps:
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(1) In view of Lemma 12.14, Proposition 12.3 shows that using matricesC̃0, the matrixA can be
transformed into

B =




b0,0 b0,1 . . . b0,r b0,r+1 . . . b0,n
b0,1 b1,1 0 0 0 . . . 0

... 0
. . . 0 0

. .. 0

b0,r 0 . . . br,r 0 . . . 0

b0,r+1 0 . . . 0 0 . . . 0
...

...
...

...
. ..

...
b0,n 0 . . . 0 0 . . . 0




for bi,i 6= 0 for 1 ≤ i ≤ r in such a way thatqA andqB are equivalent.

(2) Note that adding thei-the row (fori > 1) to the first corresponds to the matrix̃idei
tr

whereei−1

is thei-th canonical vector. We can thus transform our matrix to obtain

B =




b0,0 0 . . . 0 b0,r+1 . . . b0,n
0 b1,1 0 0 0 . . . 0
... 0

. .. 0 0
.. . 0

0 0 . . . br,r 0 . . . 0

b0,r+1 0 . . . 0 0 . . . 0
...

...
...

...
.. .

...
b0,n 0 . . . 0 0 . . . 0




.

(3) It is here where case distinctions have to be made.

(I) Assumeb0,0 = b0,r+1 = b0,r+2 = · · · = b0,n = 0. In this case the rank ofB (which is
equal to the rank ofA) is equal tor. We could furthermore divide byb1,1 (because of the
element0 6= x ∈ K in the definition of equivalence) to obtain

B =




0 0 . . . . . . 0 0 . . . 0

0 1 0 . . . 0 0 . . . 0
... 0 b2,2

. . .
... 0

.. . 0

0 0 0
. . . 0 0 . . . 0

0 0 . . . 0 br,r 0 . . . 0

0 0 . . . . . . 0 0 . . . 0
...

...
.. . . . .

...
...

.. .
...

0 0 . . . 0 0 0 . . . 0




.

Finally, multiplying thei-th column and thei-th row for2 ≤ i ≤ r by a suitable elementa
in K (that is, multiplyingbi,i by a2) we can choosebi,i in R. Now, qB is precisely of the
form (I) in the statement.
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(II) Assumeb0,r+1 = b0,r+2 = · · · = b0,n = 0, butb0,0 6= 0. In this case, the rank ofB (which
is equal to the rank ofA) is equal tor + 1. After division byb0,0, we obtain

B =




1 0 . . . . . . 0 0 . . . 0

0 b1,1 0 . . . 0 0 . . . 0
... 0 b2,2

. . .
... 0

.. . 0

0 0 0
. . . 0 0 . . . 0

0 0 . . . 0 br,r 0 . . . 0

0 0 . . . . . . 0 0 . . . 0
...

...
. . . . . .

...
...

.. .
...

0 0 . . . 0 0 0 . . . 0




.

As in (I), we can achievebi,i ∈ R for 1 ≤ i ≤ r. Now, qB is precisely of the form (II) in
the statement.

(III) Assume there existsr + 1 ≤ i ≤ n such thatb0,i 6= 0. Interchanging simultaneously rows
and columns, we can first obtainb0,r+1 6= 0. Dividing the matrix byb0,r+1, we can thus put
this coefficient to be1. Adding−b0,j times the(r+1)-th row to thej-th for r+2 ≤ j ≤ n

(which corresponds to the matrix̃(Qr,j−1)0
tr

) we manage to annihilateb0,j for thosej. We
thus have the matrix

B =




0 0 . . . 0 0 1 0 . . . 0

0 b1,1 0 0 0 0 . . . . . . 0
... 0 b2,2 0 . . . 0

. .. . . . 0

0 0 0
. .. 0 0 0 . . . 0

0 0 0 0 br,r 0 0 . . . 0

1 0 0 . . . 0 0 0 . . . 0

0 0 . . . . . . 0 0 0 . . . 0
...

...
. .. . ..

...
... 0

. . .
...

0 0 . . . . . . 0 0 0 . . . 0




.

We see that the rank ofB is equal tor + 2. As in (I) and (II), we can achievebi,i ∈ R for
1 ≤ i ≤ r. Now, qB est precisely of the form (III) in the statement.

This finishes the proof.

Corollary 12.16. LetK = C. Letq(X1, . . . , Xn) ∈ C[X1, . . . , Xn] be a non-zero quadratic polyno-
mial. Then it is equivalent to a unique polynomial among the3n− 1 polynomials listed below:

(I) X2
1 + · · ·+X2

r for 1 ≤ r ≤ n;

(II) X2
1 + · · ·+X2

r + 1 for 1 ≤ r ≤ n;

(III) X2
1 + · · ·+X2

r + 2Xr+1 for 1 ≤ r ≤ n− 1.
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Proof. We know thatR = {1} is a system of representatives ofC× modulo squares. Hence The-
orem 12.15 implies thatq is equivalent to one of the listed polynomials. The uniqueness follows
from the fact that in this case, the rank together with the type ((I), (II), (III)) is enough to uniquely
characterize the polynomial.

Our next goal is an explicit classification of real quadrics. For this, we have to show the following
theorem of Sylvester. First, we need a lemma.

Lemma 12.17.LetA ∈ Matn×n(R) be a symmetric matrix and let〈v, w〉A := 〈Av,w〉 the symmetric
form defined byA onRn.

(a) There exist subspacesV+, V−, V0 ≤ Rn such that

• Rn = V+ ⊥©V− ⊥©V0,

• for all 0 6= v ∈ V+, we have〈v, v〉A > 0,

• for all 0 6= v ∈ V−, we have〈v, v〉A < 0 et

• for all 0 6= v ∈ V0, we have〈v, v〉A = 0.

(b) If V+, V−, V0 are subspaces having the properties in (a), then

• dimV+ is the number of positive eigenvalues ofA,

• dimV− is the number of negative eigenvalues ofA et

• dimV0 is the number of0 eigenvalues ofA.

We have to count the eigenvalues with multiplicity, i.e. the number of times the eigenvalue appears
on the diagonal after diagonalization.

Proof. By the spectral theorem, we have an orthonormal basis

v1, . . . , vs, vs+1, . . . , vr, vr+1, . . . , vn

of Rn such thatvi for 1 ≤ i ≤ s are eigenvectors for a positive eigenvalue,vi for s + 1 ≤ i ≤ r are
eigenvectors for a negative eigenvalue andvi for s+ 1 ≤ i ≤ r are eigenvectors for the0 eigenvalue.
We takeV+ to be the subspace generated byv1, . . . , vs andVi the subspace generated byvs+1, . . . , vr
andV0 the subspace generated byvr+1, . . . , vn. It is clear that all the properties of (a) and (b) are
satisfied for these spaces.
Let nowV ′

+, V ′
−, V ′

0 be other spaces having the properties of (a). We show thatV+ ∩ (V ′
− ⊕ V ′

0) = 0:
if 0 6= v = w− + w0 for w− ∈ V ′

− andw0 ∈ V ′
0 were a vector in the intersection, we would have

〈v, v〉A > 0 on one side and〈w− + w0, w− + w0〉A = 〈w−, w−〉A + 〈w0, w0〉A ≤ 0 on the other
side. This shows thatV+ ⊕ V ′

− ⊕ V ′
0 is a subspace ofRn, hencedimV+ ≤ dimV ′

+. By symmetry,
we also havedimV ′

+ ≤ dimV+, and thus equality. The arguments for the two other equalities are
similar.

Theorem 12.18(Sylvester). LetA ∈ Matn×n(R) be a symmetric matrix and letC ∈ GLn(R). Then,
A andCtrAC have the same number of positive eigenvalues. The same statement holdsfor negative
eigenvalues.
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Proof. We use the notation of Lemma 12.17 for the bilinear form〈, 〉A. ConsiderC−1V+. If 0 6= v ∈
C−1V+ (henceCv ∈ V+), then

0 < 〈Cv,Cv〉A = 〈ACv,Cv〉 = 〈CtrACv, v〉 = 〈v, v〉CtrAC .

Moreover, ifw ∈ C−1V−, then

0 = 〈Cv,Cw〉A = 〈ACv,Cw〉 = 〈CtrACv,w〉 = 〈v, w〉CtrAC ,

and thusC−1V+ ⊥©C−1V−. By similar arguments, we obtain thatC−1V+, C−1V−, C−1V0 are
subspaces that satisfy the properties in (a) of Lemma 12.17 for the bilinear form 〈, 〉CtrAC . Hence the
dimension ofV+ (which is the number of positive eigenvalues ofA) is equal to the number of positive
eigenvalues ofCtrAC. The argument for negative eigenvalues is the same.

Corollary 12.19. LetK = C. Letq(X1, . . . , Xn) ∈ C[X1, . . . , Xn] be a non-zero quadratic polyno-
mial. Then it is equivalent to a unique polynomial among the3n2+5n

2 − 1 polynomials listed below:

(I) X2
1 + · · ·+X2

s −X2
s+1 − · · · −X2

r for 1 ≤ s ≤ r ≤ n;

(II) X2
1 + · · ·+X2

s −X2
s+1 − · · · −X2

r + 1 for 0 ≤ s ≤ r ≤ n, 1 ≤ r;

(III) X2
1 + · · ·+X2

s −X2
s+1 − · · · −X2

r + 2Xr+1 for 0 ≤ s ≤ r ≤ n− 1, 1 ≤ r.

Proof. We know thatR = {−1, 1} is a system of representatives ofR× modulo squares. Therefore
Theorem 12.15 implies thatq is equivalent to one of the listed polynomials.. The uniqueness follows
from the fact that the difference between the big matrix and the rank of the block of sizen in the
bottom-right corner determines the type ((I), (II), (III)). Thus it suffices to know the number of positive
eigenvalues (and negative ones) in view of Sylvester’s Theorem 12.18.
The number of polynomials of type (I) of rankr is equal tor (the sign in front ofX1 is always+),
hence there exist1 + 2 + · · · + n = n(n+1)

2 polynomials of type (I). The number of polynomials
of type (II) of rankr is equal tor + 1 (the sign in front ofX1 can be1 or −1), hence there exist
2+3+ · · ·+(n+1) = (n+1)(n+2)

2 −1 polynomials of type (II). Similarly, the number of polynomials
of type (III) of rankr is equal tor+1, butr is bounded byn− 1, hence there exist2+3+ · · ·+n =
n(n+1)

2 − 1 polynomials of type (III). We thus obtain

n(n+ 1)

2
+

(n+ 1)(n+ 2)

2
− 1 +

n(n+ 1)

2
− 1 =

3n2 + 5n

2
− 1,

the desired number.

13 Duality

Goals:

• Master the concepts of dual space and dual application;

• know the relation to transpose matrices;
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• know the definition and fundamental properties of bilinear forms;

• know the relation to the rank of rows and columns of matrices;

• know examples and be able to prove simple properties.

In this section, we introduce a theory of duality, that is valid for any fieldK (not only forR andC).
The main results of this section are

• the interpretation of transpose matrices as matrices representing “dual” applications;

• the rank of the columns of a matrix is equal to the rank of the rows; this is sometimesuseful for
computations.

We start with the interpretation of transpose matrices as matrices representingdual applications. For
this, we first introduce the dual vector spacelV ∗ of a vector spaceV .

Lemma 13.1. LetV,W be twoK-vector spaces.

(a) The set ofK-linear applications

HomK(V,W ) := {f : V →W | f isK-linear}

is aK-vector space for the addition

(f + g)(v) := f(v) + g(v) for f, g ∈ HomK(V,W ) andv ∈ V

and the scalar multiplication

(x.f)(v) := x.(f(v)) = f(x.v) for f ∈ HomK(V,W ), x ∈ K andv ∈ V.

(b) Let S be aK-basis ofV and f : S → W be an application. Then, there exists a unique
F ∈ HomK(V,W ) such thatF |S = f , namelyF (

∑
s∈S ass) =

∑
s∈S asf(s).

Proof. Simple computations.

Definition 13.2. LetV be aK-vector space. TheK-vector space (see Lemma 13.1(a))

V ∗ := HomK(V,K)

is called thedual space ofV .

Proposition 13.3. LetV be aK-vector space of finite dimensionn.

(a) LetS = {s1, . . . , sn} be aK-basis ofV . For all 1 ≤ i ≤ n, let s∗i be the unique (by Lemma

13.1(b)) element inV ∗ such that for all1 ≤ j ≤ n we haves∗i (sj) = δi,j =

{
1 if i = j,

0 if i 6= j.

Then,S∗ := {s∗1, . . . , s∗n} is aK-basis ofV ∗, called thedual basis.

(b) If V has finiteK-dimension, thendimK(V
∗) = dimK(V ).
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Proof. (a) Linear independence:Let 0 =
∑n

i=1 ais
∗
i with a1, . . . , an ∈ K. Then, for all1 ≤ j ≤ n

we have

0 =
n∑

i=1

ais
∗
i (sj) =

n∑

i=1

aiδi,j = aj .

Generating:Let f ∈ V ∗. For1 ≤ j ≤ n, setaj := f(sj) andg :=
∑n

i=1 ais
∗
i ∈ V ∗. We have

g(sj) =

n∑

i=1

ais
∗
i (sj) = aj = f(sj)

for all 1 ≤ j ≤ n, thusf = g.
(b) The dimension ofV is the cardinality of any basis ofV . By (a), the dual basis has the same
cardinality as any basis ofV , thus the dimension ofV ∗ equals the dimension ofV .

Definition-Lemma 13.4. LetV,W be twoK-vector spaces andϕ : V →W be aK-linear applica-
tion. Then, the application

ϕ∗ :W ∗ → V ∗, f 7→ ϕ∗(f) = f ◦ ϕ

isK-linear. It is called thedual application ofϕ.

Proof. Firstly we note thatϕ◦f isK-linear; but, this follows from the fact that the composition of two
linear applications is linear. Letf, g ∈W ∗ andx ∈ K. We conclude the proof by the computation

ϕ∗(x · f + g)(v) = ((x · f + g) ◦ ϕ)(v) = (x · f + g)(ϕ(v))

= xf(ϕ(v)) + g(ϕ(v)) = (xϕ∗(f) + ϕ∗(g))(v).

for anyv ∈ V , whenceϕ∗(x · f + g) = xϕ∗(f) + ϕ∗(g).

Proposition 13.5. LetV,W be twoK-vector spaces andϕ : V →W be aK-linear application. Let
moreoverS = {s1, . . . , sn} be aK-basis ofV andT = {t1, . . . , tm} aK-basis ofW . Then,

(
MT,S(ϕ)

)tr
=MS∗,T ∗(ϕ∗).

Thus, the matrix representingϕ∗ for the dual bases is the transpose of the matrix representingϕ.

Proof. We write

MT,S(ϕ) =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




andMS∗,T ∗(ϕ∗) =




b1,1 b1,2 · · · b1,m
b2,1 b2,2 · · · b2,m

...
...

. . .
...

bn,1 bn,2 · · · bn,m



.

This means

ϕ(sj) =
m∑

i=1

ai,jti andϕ∗(t∗k) =
n∑

i=1

bi,ks
∗
i
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for all 1 ≤ j ≤ n and1 ≤ k ≤ m. Thus, on the one hand

(ϕ∗(t∗k))(sj) = t∗k(ϕ(sj)) = t∗k(
m∑

i=1

ai,jti) =
m∑

i=1

ai,jt
∗
k(ti) = ak,j

and on the other hand

(ϕ∗(t∗k))(sj) =
n∑

i=1

bi,ks
∗
i (sj) = bj,k,

whenceak,j = bj,k, as desired.

The dual space gives rise to a natural bilinear form, as we will see in Example 13.8(b); first we make
the necessary definitions.

Definition 13.6. LetV,W be twoK-vector spaces. One callsbilinear formany application

〈·, ·〉 : V ×W → K

such that

• ∀ a ∈ K ∀ v1, v2 ∈ V ∀w ∈ W : 〈av1 + v2, w〉 = a〈v1, w〉 + 〈v2, w〉 (linearity in the first
variable) and

• ∀ b ∈ K ∀ v ∈ V ∀w1, w2 ∈ W : 〈v, bw1 + w2〉 = b〈v, w1〉+ 〈v, w2〉 (linearity in the second
variable).

Let 〈·, ·〉 : V ×W → K be a bilinear form. For a subspaceV1 ≤ V , we call

V ⊥
1 := {w ∈W | ∀v ∈ V1 : 〈v, w〉 = 0} ≤W

theorthogonal complement ofV1 in W .
For a subspaceW1 ≤W , we call

W⊥
1 := {v ∈ V | ∀w ∈W1 : 〈v, w〉 = 0} ≤ V

theorthogonal complement ofW1 in V .
We say that the bilinear formis non-degenerateif

• ∀ 0 6= v ∈ V ∃w ∈W : 〈v, w〉 6= 0 and

• ∀ 0 6= w ∈W ∃ v ∈ V : 〈v, w〉 6= 0.

In the sequel, we will write〈v,W1〉 = 0 for ∀w ∈W1 : 〈v, w〉 = 0 (and vice-versa).

Lemma 13.7. LetV,W be twoK-vector spaces and〈·, ·〉 : V ×W → K be a bilinear form.

(a) For any subspaceV1 ≤ V , the orthogonal complement ofV1 in W is a subspace ofW and for
any subspaceW1 ≤W , the orthogonal complement ofW1 in V is a subspace ofV .

(b) LetW1 ≤W2 ≤W be two subspaces. Then,W⊥
2 ≤W⊥

1 .

Also: V ⊥
2 ≤ V ⊥

1 for any subspacesV1 ≤ V2 ≤ V .
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(c) The bilinear form is non-degenerate if and only ifW⊥ = 0 andV ⊥ = 0.

Proof. (a) LetV1 ≤ V be a subspace. Letw1, w2 ∈ V ⊥
1 , i.e.,〈v, wi〉 = 0 for i = 1, 2 and allv ∈ V1.

Thus, for alla ∈ K we have the equality

〈v, aw1 + w2〉 = a〈v, w1〉+ 〈v, w2〉 = 0,

whenceaw1 + w2 ∈ V ⊥
1 . The argument forW⊥

1 is the same.
(b) Let v ∈ W⊥

2 . By definition 〈v,W2〉 = 0, hence in particular〈v,W1〉 = 0, i.e. v ∈ W⊥
1 . The

second statement follows by the same argument.
(c) This is another way of writing the definition.

Example 13.8. (a) The application

〈·, ·〉 : Kn ×Kn → K, 〈




a1
a2
...
an



,




b1
b2
...
bn



〉 =

(
a1 a2 . . . an

)




b1
b2
...
bn




=
n∑

i=1

aibi

is bilinear and non-degenerate.

(b) LetV be aK-vector space of finite dimension. The application

〈·, ·〉 : V ∗ × V → K, 〈f, v〉 := f(v)

is bilinear and non-degenerate.

LetS = {s1, . . . , sn} be aK-basis ofV andS∗ the dual basis. Letf =
∑n

i=1 ais
∗
i ∈ V ∗ and

v =
∑n

i=1 bisi ∈ V . Then

〈f, v〉 = 〈
n∑

i=1

ais
∗
i ,

n∑

j=1

bjsj〉 =
n∑

i=1

n∑

j=1

aibj〈s∗i , sj〉 =
n∑

i=1

n∑

j=1

aibjs
∗
i (sj)

=
n∑

i=1

aibi =
(
a1 a2 . . . an

)




b1
b2
...
bn



.

We have found the bilinearity of (a).

Proposition 13.9. LetV,W be twoK-vector spaces of finite dimensions and〈·, ·〉 : V ×W → K be
a non-degenerate bilinear form.

(a) The applications

ϕ : V →W ∗, v 7→ ϕ(v) =: ϕv with ϕv(w) := 〈v, w〉,

and
ψ :W → V ∗, w 7→ ψ(w) =: ψw with ψw(v) := 〈v, w〉

areK-linear isomorphisms.
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(b) dimK(V ) = dimK(W ).

Proof. TheK-linearity ofϕ andψ is clear. We show the injectivity ofϕ. For this, letv ∈ ker(ϕ),
i.e.,ϕv(w) = 〈v, w〉 = 0 for all w ∈W . The non-degeneracy of the bilinear form implies thatv = 0,
which proves the injectivity. From this we deducedimK(V ) ≤ dimK(W ∗) = dimK(W ).
The same arguments applies toψ give thatψ is injective and thusdimK(W ) ≤ dimK(V

∗) =

dimK(V ), d’où dimK(V ) = dimK(W ). Consequently,ϕ andψ are isomorphisms (because the
dimension of the image is equal to the dimension of the target space which are thus equal).

Corollary 13.10. LetV,W be twoK-vector spaces of finite dimensions.

(a) Then, the application

ψ : V → (V ∗)∗, v 7→ ψv = evv : V
∗ → K whereψv(f) = evv(f) = f(v) for f ∈ V ∗

is aK-linear isomorphism.

(b) Letα : V →W be aK-linear application. Then, the diagram

V
α

//

ψ1

��

W

ψ2

��

(V ∗)∗
(α∗)∗

// (W ∗)∗.

is commutative, whereψ1 andψ2 are the isomorphisms from (a), i.e.ψ2 ◦ α = (α∗)∗ ◦ ψ1.

(c) Lett1, . . . , tn be aK-basis ofV ∗. Then, there exists aK-basiss1, . . . , sn ofV such thatti(sj) =
δi,j for all 1 ≤ i, j ≤ n.

Proof. (a) The bilinear formV ∗ × V → K, given by〈f, v〉 7→ f(v) from Example 13.8(b) is non-
degenerate. The applicationψ is theψ of Proposition 13.9.
(b) Let v ∈ V . On the one hand, we have(α∗)∗(ψ1(v)) = (α∗)∗(evv) = evv ◦ α∗ and on the other
handψ2(α(v)) = evα(v) with notations from (a). To see that both are equal, letf ∈W ∗. We have

evv(α
∗(f)) = evv(f ◦ α) = f(α(v)) andevα(v)(f) = f(α(v)),

thus the desired equality.
(c) Let t∗1, . . . , t

∗
n ∈ (V ∗)∗ be the dual basis, i.e.t∗j (ti) = δi,j for all 1 ≤ i, j ≤ n. Sinceψ from (a)

is an isomorphism, there exists1, . . . , sn (automatically aK-basis ofV because it is the image of
a basis by an isomorphism) such thatψ(sj) = evsj = t∗j , thust∗j (f) = f(sj) for all f ∈ V ∗. In
particular, we havet∗j (ti) = ti(sj) = δi,j .

Proposition 13.11.LetV,W be twoK-vector spaces of finite dimensions and〈·, ·〉 : V ×W → K a
non-degenerate bilinear form.

(a) LetS = {s1, . . . , sn} be aK-basis ofV . Then, there exists aK-basisT = {t1, . . . , tn} of W
such that〈si, tj〉 = δi,j for all 1 ≤ i, j ≤ n.
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(b) For any subspaceV1 ≤ V we have(V ⊥
1 )⊥ = V1.

Also: for any subspaceW1 ≤W we have(W⊥
1 )⊥ =W1.

(c) For any subspaceV1 ≤ V we havedimK(V ⊥
1 ) = dimK(V )− dimK(V1).

Also: for any subspaceW1 ≤W we havedimK(W
⊥
1 ) = dimK(W )− dimK(W1).

Proof. (a) We consider theK-isomorphismϕ : V → W ∗ of Proposition 13.9 and we setfi :=

ϕ(si) = ϕsi for all 1 ≤ i ≤ n. Corollary 13.10 allows us to choose aK-basist1, . . . , tn of W such
thatfi(tj) = δi,j for all 1 ≤ i, j ≤ n. Finally, we have〈si, tj〉 = ϕsi(tj) = fi(tj) = δi,j , as desired.
(b,c) We choose aK-basiss1, . . . , sd of V1 that we extend to aK-basis

s1, . . . , sd, sd+1, . . . , sn

of V by Proposition 1.30. Using (a), we obtain aK-basist1, . . . , tn of W such that〈si, tj〉 = δi,j for
all 1 ≤ i, j ≤ n.
We first show thatV ⊥

1 = 〈td+1, . . . , tn〉. The inclusion “⊇” is clear. Let thereforew =
∑n

i=1 aiti ∈
V ⊥
1 , i.e. 〈V1, w〉 = 0, thus for all1 ≤ j ≤ d we have

0 = 〈sj , w〉 = 〈sj ,
n∑

i=1

aiti〉 =
n∑

i=1

ai〈sj , ti〉 = aj ,

and thereforew ∈ 〈td+1, . . . , tn〉. Consequently,dimK(V ⊥
1 ) = n− d = dimK(V )− dimK(V1).

The same argument used forV ⊥
1 shows that〈s1, . . . , sd〉 is aK-basis of(V ⊥

1 )⊥ which is therefore
equal toV1.

Corollary 13.12. LetV,W be twoK-vector subspaces andϕ : V →W aK-linear application. We
have the equalites

(1) im(ϕ)⊥ = ker(ϕ∗) (where⊥ comes from the natural bilinear formW ∗ ×W → K),

(2) ker(ϕ)⊥ = im(ϕ∗) (where⊥ comes from the natural bilinear formV ∗ × V → K),

(3) dimK(im(ϕ)) = dimK(im(ϕ∗)) and

(4) dimK(ker(ϕ)) = dimK(ker(ϕ∗)).

Proof. We firstly show (1). Letf ∈W ∗. Then

f ∈ im(ϕ)⊥ ⇔ ∀ v ∈ V : 0 = 〈f, ϕ(v)〉 = f(ϕ(v)) ⇔ f ◦ ϕ = 0 ⇔ f ∈ ker(ϕ∗),

whence (1).
We slightly adapt the arguments in order to obtain (2) as follows. Letv ∈ V . Then

v ∈ im(ϕ∗)⊥ ⇔ ∀ f ∈W ∗ : 0 = 〈ϕ∗(f), v〉 = 〈f ◦ ϕ, v〉 = f(ϕ(v)) = 〈f, ϕ(v)〉
⇔ ϕ(v) ∈W⊥ ⇔ ϕ(v) = 0 ⇔ v ∈ ker(ϕ),

whenceim(ϕ∗)⊥ = ker(ϕ). Applying Proposition 13.11 we obtainim(ϕ∗) = ker(ϕ)⊥; this is (2).
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By Corollary 1.38, we havedimK(V ) = dimK(im(ϕ))+dimK(ker(ϕ)). Proposition 13.11 gives us

dimK(im(ϕ)) = dimK(V )− dimK(ker(ϕ)) = dimK(ker(ϕ)
⊥) = dimK(im(ϕ∗)),

whence (3). The argument to obtain (4) is similar:

dimK(ker(ϕ)) = dimK(V )− dimK(im(ϕ)) = dimK(im(ϕ)⊥) = dimK(ker(ϕ
∗)),

which achieves the proof.

Definition 13.13. LetM ∈ Matm×n(K) be a matrix.
Therank of columnsofM is defined as the dimension of the subspace ofKm generated by the columns
ofM (seen as elements ofKm).
Therank of rowsofM is defined as the dimension of the subspace ofKn generated by the rows ofM
(seen as elements ofKn).

Corollary 13.14. LetM ∈ Matm×n(K). Then, the rank of columns ofM is equal to the rank of
rows ofM . We simply talk of therankdeM .

Proof. The rank ofM is the dimension of the image ofϕM , theK-linear applicationKn → Km

associated toM (which sendsv ∈ Kn toMv ∈ Km). The matrix representingϕ∗
M for the dual basis

is M tr. Thus the corollary immediately follows from Corollary 13.12 since the rank ofcolumns of
M tr is equal to the rank of rows ofM .

Example 13.15.Consider the matrix



3 5 1

1 2 3

4 7 4


. We are interested in its rank (of columns). It is

obvious that the third row is the sum of the two first rows (which are linearly independent). Thus the
rank ofM is 2. It seems more difficult to “see” a non-trivial combination of the columns, but we know
that there is one.

We finish this section with useful properties.

Proposition 13.16.LetV,W be twoK-vector subspaces of finite dimensions and〈·, ·〉 : V ×W → K

be a non-degenerate bilinear form. LetW1 ≤W andW2 ≤W be subspaces. Then, we have

(a) (W1 ∩W2)
⊥ =W⊥

1 +W⊥
2 and

(b) (W1 +W2)
⊥ =W⊥

1 ∩W⊥
2 .

Also withV in stead ofW .

Proof. (a) “⊇”: SinceW1 ∩W2 ≤ Wi is a subspace fori = 1, 2, we haveW⊥
i ≤ (W1 ∩W2)

⊥, thus
W⊥

1 +W⊥
2 ≤ (W1 ∩W2)

⊥ because(W1 ∩W2)
⊥ is a subspace.

(b) “⊆”: For i = 1, 2 we haveWi ≤ W1 +W2, thus we obtain(W1 +W2)
⊥ ≤ W⊥

i which implies
(W1 +W2)

⊥ ≤W⊥
1 ∩W⊥

2 .
(a) “⊆”: Combining the proven inclusions, we have

W1 ∩W2 = ((W1 ∩W2)
⊥)⊥ ≤ (W⊥

1 +W⊥
2 )⊥ ≤ (W⊥

1 )⊥ ∩ (W⊥
2 )⊥ =W1 ∩W2,

thus we have equality everywhere and, in particular,(W1 ∩W2)
⊥ =W⊥

1 +W⊥
2 .

(b) It suffices to use (a) withW⊥
1 andW⊥

2 in stead ofW1 andW2 to obtain(W⊥
1 ∩ W⊥

2 )⊥ =

(W⊥
1 )⊥ + (W⊥

2 )⊥ and thusW⊥
1 ∩W⊥

2 = (W1 +W2)
⊥.



110 14 QUOTIENTS

14 Quotients

Goals:

• Know and master the definition of quotient of vector spaces;

• know the isomorphism theorems and other important results;

• be able to compute in quotients of vector spaces;

• know examples and be able to prove simple properties.

Definition 14.1. LetV be aK-vector space andW ≤ V a subspace.
Any set of the form

v +W = {v + w | w ∈W}
with v ∈ V is calledaffine subspace.
Two subspacesv1 +W andv2 +W are calledparallel. They are thus both parallel toW .

In order to understand the sequel, it is useful to recall the definition of congruences modulon, i.e. the
setZ/nZ (for n ∈ N≥1), learned in the lecture courseStructures mathématiques. To underline the
analogy, we can writeV = Z andW = nZ = {nm | m ∈ Z}.
We recall that the set

a+ nZ = {a+mn | m ∈ Z} = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . .}

is the equivalence class ofa ∈ Z for the equivalence relation defined onZ by

a ∼nZ a
′ ⇔ a ≡ a′ mod n ⇔ n | (a− a′) ⇔ a− a′ ∈ nZ ⇔ a+ nZ = a′ + nZ.

We will essentially do the same definition in the case of vector spaces.

Definition 14.2. LetV be aK-vector space andW ⊆ V a vector subspace. The binary relation on
V given by

v1 ∼W v2
definition⇐⇒ v1 − v2 ∈W

for v1, v2 ∈ V defines an equivalence relation.
The equivalence classes are the affine subspaces of the form

v +W = {v + w | w ∈W}.

The set of these classes is denotedV/W and calledthe set of classes followingW . It is the set of all
the affine subspace that are parallel toW .

Let us also recall the ’modular’ addition, that is the addition ofZ/nZ. The sum ofa+nZ andb+nZ
is defined as

(a+ nZ) + (b+ nZ) := (a+ b) + nZ.

To see that this sum is well-defined, we make thefundamental observation: let a, a′, b, b′ ∈ Z such
that

a ≡ a′ mod n and b ≡ b′ mod n,
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i.e.,
a+ nZ = a′ + nZ and b+ nZ = b′ + nZ

then,
a+ b ≡ a′ + b′ mod n,

i.e.,
(a+ b) + nZ = (a′ + b′) + nZ.

The proof is very easy: sincen | (a′ − a) andn | (b′ − b), there existc, d ∈ Z such thata′ = a+ cn

andb′ = b+ dn; thus

a′ + b′ = (a+ cn) + (b+ dn) = (a+ b) + n(c+ d)

so that,n divides(a′ + b′)− (a+ b), whence(a′ + b′) + nZ = (a+ b) + nZ. A small example:

(3 ≡ 13 mod 10 et 6 ≡ −24 mod 10) ⇒ 9 ≡ −11 mod 10.

Here comes the generalization to vector spaces. Note that it does not suffice to define an addition only,
but one also needs to define a scalar multiplication.

Proposition 14.3. LetK be a field,V aK-vector space,W ≤ V aK-vector subspace andV/W the
set of classes followingW .

(a) For all v1, v2 ∈ V the class(v1 + v2) +W only depends on the classesv1 +W andv2 +W .

Thus, we can define the application, calledaddition,

+ : V/W × V/W → V/W, (v1 +W, v2 +W ) 7→ (v1 +W ) + (v2 +W ) := (v1 + v2) +W.

(b) For all a ∈ K and allv ∈ V , the classa.v +W only depends on the classv +W . Thus, we can
define the application, calledscalar multiplication,

. : K × V/W → V/W, (a, v +W ) 7→ a.(v +W ) := a.v +W.

(c) (V/W,+, ., 0 +W ) is aK-vector space, calledquotient ofV byW .

(d) The application
π : V → V/W, v 7→ v +W

isK-linear and surjective with kernelker(π) =W ; it is callednatural projection.

Proof. (a) Assumev1 + W = v′1 + W andv2 + W = v′2 + W . Therefore there existw1, w2 ∈
W such thatv1 = v′1 + w1 andv2 = v′2 + w2. Thenv1 + v2 = v′1 + v′2 + (w1 + w2) whence
(v1 + v2)− (v′1 − v′2) ∈W and thus(v1 + v2) +W = (v′1 + v′2) +W .
(b) Assumev + W = v′ + W . Therefore there existsw ∈ W such thatv = v′ + w. Then
av = a(v′ + w) = av′ + aw whenceav − av′ = aw ∈W and thusav +W = av′ +W .
(c) Standard verfication of the axioms defining a vector space (see Definition 1.1).
(d) Linearity: Letv1, v2 ∈ V anda ∈ K, thenπ(av1 + v2) = (av1 + v2) +W = a(v1 +W ) + (v2 +

W ) = aπ(v1) + π(v2).
Surjectivity: The classv +W is the image ofv underπ.
Computation of the kernel: Letv ∈ V . Thenv ∈ ker(π) if and only if v +W = 0 +W = W and
this is the case if and only ifv ∈W .
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Theorem 14.4(1st isomorphism theorem/Homomorphiesatz). LetK be a field andϕ : V → Y a
K-linear application. LetW := ker(ϕ) be its kernel.

(a) For v ∈ V , the imageϕ(v) only depends on the classv +W .

(b) Part (a) allows us to defineϕ(v +W ) := ϕ(v) for v ∈ V . This defines an application

ϕ : V/W → Y, v +W 7→ ϕ(v +W ) := ϕ(v)

which isK-linear and injective. It gives rise to aK-linear isomorphism

ϕ : V/W → im(ϕ).

Proof. (a) Letv, v′ ∈ V such thatv +W = v′ +W . Then there existsw ∈W such thatv = v′ +w.
We haveϕ(v) = ϕ(v′ + w) = ϕ(v′) + ϕ(w) = ϕ(v′) becauseϕ(w) = 0 asw ∈W = ker(ϕ).

(b) Linearity: Letv1, v2 ∈ V anda ∈ K. We haveϕ(a(v1+W )+(v2+W )) = ϕ((av1+v2)+W ) =

ϕ(av1 + v2) = aϕ(v1) + ϕ(v2) = aϕ(v1) + ϕ(v2).

Injectivity: Let v +W ∈ ker(ϕ). Thenϕ(v +W ) = ϕ(v) = 0 whencev ∈ ker(ϕ) = W , thus
v +W = 0 +W . This showsker(ϕ) = {0 +W}, so thatϕ is injective.

The next proposition is important because it describes the vector subspaces of quotient vector spaces.

Proposition 14.5. LetK be a field,V aK-vector space,W ≤ V a vector subspace, andπ : V →
V/W the natural projection.

(a) The application

Φ : {vector subspaces ofV/W} −→ {vector subspaces ofV containingW},

given byX 7→ π−1(X) is bijective. The inverseΨ ofΦ is Y 7→ π(Y ).

(b) LetX1, X2 ≤ V/W be two vector subspaces. Then

X1 ⊆ X2 ⇔ Φ(X1) ⊆ Φ(X2).

Proof. (a)

• For a subspaceX ≤ V/W the preimageΦ(X) = π−1(X) is indeed a vector subspace: let
v1, v2 ∈ V such thatv1 ∈ π−1(X) and v2 ∈ π−1(X), thenπ(v1) = v1 + W ∈ X and
π(v2) = v2 +W ∈ X. Then fora ∈ K, we haveaπ(av1 + v2) = π(v1)+ π(v2) ∈ X, whence
av1 + v2 ∈ π−1(X).

Moreover,π−1(W ) ⊇ π−1({0}) = ker(π) =W .

• We know by Proposition 1.36 that the images of the linear applications between vector spaces
are vector subspaces, thusΨ(Y ) = π(Y ) is a vector subspace ofV/W .
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• Here is an auxiliary statement :

Let π : V → V ′ be aK-linear homomorphism between vector spaces andY ≤ V a vector
subspace containingker(π). Thenπ−1(π(Y )) = Y .

We verify this equality:
“⊆”: Let x ∈ π−1(π(Y )), thenπ(x) ∈ π(Y ), i.e. π(x) = π(y) for somey ∈ Y . Therefore
0 = π(x) − π(y) = π(x − y), thusx − y ∈ ker(π) ⊆ Y , thusx − y = y′ ∈ Y , thus
x = y + y′ ∈ Y .

“⊇”: Let y ∈ Y , thenπ(y) ∈ π(Y ), and thereforey ∈ π−1(π(Y )).

• Let Y ≤ V be a vector subspace such thatW ⊆ Y .

By the auxiliary statement we have:Φ(Ψ(Y )) = π−1(π(Y )) = Y .

• Here is another auxiliary statement:

Letπ : V → V ′ be a surjective application (not necessarily between vector spaces) andX ⊆ V ′

a vector subspace. ThenX = π(π−1(X)).

We verify this equality.
“⊆”: Let x ∈ X. Sinceπ is surjective, there existsv ∈ V such thatπ(v) = x. Therefore
v ∈ π−1(X) andx = π(v) ∈ π(π−1(X)).

“⊇”: Let v′ ∈ π(π−1(X)). Then, there existsv ∈ π−1(X) such thatv′ = π(v). But,v′ = π(v)

belongs toX sincev ∈ π−1(X).

• LetX ≤ V/W be a vector subspace.

By the auxiliary statement we have:Ψ(Φ(X)) = π(π−1(X)) = X.

(b) is clear.

Proposition 14.6(Second isomorphism theorem). LetK be a field,V aK-vector space andX,W ⊆
V vector subspaces. Then, theK-linear homomorphism

ϕ : X → (X +W )/W, x 7→ x+W,

“induces” (by the isomorphism theorem 14.4) theK-linear isomorphism

ϕ : X/(X ∩W ) → (X +W )/W, x+ (X ∩W ) 7→ x+W.

Proof. The homomorphismϕ is obviously surjective and its kernel consists of the elementsx ∈ X

such thatx +W = W , thusx ∈ X ∩W , showingker(ϕ) = X ∩W . The existence ofϕ hence
follows from a direct application of the isomorphism theorem 14.4.

Proposition 14.7(Third isomorphism theorem). LetK be a field,V aK-vector space andW1 ⊆W2

two vector subspaces ofV . Then, theK-linear homomorphism

ϕ : V/W1 → V/W2, v +W1 7→ v +W2

“induces” (by the isomorphism theorem 14.4) theK-linear isomorphism

ϕ : (V/W1)/(W2/W1) → V/W2, v +W1 + (W2/W1) 7→ v +W2.
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Proof. The homomorphismϕ is obviously surjective and its kernel consists of the elementsv+W1 ∈
V/W1 such thatv +W2 = W2 which is equivalent tov +W1 ∈ W2/W1. Thusker(ϕ) = W2/W1.
The existence ofϕ thus follows from a direct application of the isomorphism theorem 14.4.
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