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Abstract

This is a sketch of the content of my four lectures during therk&hop on Modular Forms
and Related Topics, 6 — 10 February 2012, in Beirut. Thankss@vih and Kamal for the nice
organisation!

Note that the title does not really reflect the content oféHestures.

Some words of motivation

All speakers at this workshop are interested in Fourier coefficients ditanforms. Why? For their
number theoretic significance!

e The Fourier coefficients of the Eisenstein serigs (see Kohnen’s lecture) am@,_1(n) =
2 din d*~1; the functions;,_; has an obvious number theoretic significance!

e The Fourier coefficients of (certain) theta-series are representatiohers of quadratic forms.
The nicest example is maybe the following: the number of times, a given pasit@égern can
be represented as a sum of four squarespi.es 2?2 + 23 + 23 + 3, is the coefficient of a
modular form. This allows one to write down a formula for this number (see &okrecture).

e In Kohnen’s next lectures an analypcoperty of the coefficients will be studied: their growth.
In my lectures, however, | will focus on algebragimoperties: we will prove, for instance, that
the Fourier coefficients of normalised Hecke eigenforms (to be definkedvpare algebraic
integers. This will be a consequence of the existence of an integrallstuby which we start
the lectures. The very deep connection that will be stated towards thef ¢imel third or the
fourth lecture is that are actually related to Galois representations in a regig@ way; this is
an essential ingredient, for instance, for the proof of Fermat’s LasbiEm.

I should maybe add a word about ‘integral structures’. The first aithexe lectures, and maybe
a good example to explain the concept, is the following: Zhmodule (i.e. abelian group) consisting
of those modular forms, all of whose Fourier coefficients (exceptiplgsthe 0-th one) are integers



(we will denote this byM(V)(Z)) forms an integral structure in tlé-vector space of all modular
forms. We formalise the statement like this: The natural map (multiplying together)

C @z Mp(N)(Z) = My(N)

is an isomorphism of-vector spaces.

To illustrate this notion now in an elementary way, we give some simple exanfplesC is an
integral structure, as Br C C, butZ[i]| = Z + iZ C Cis not (because the left hand side is a ffee
module of rank so thatC ® (Z + Z[i]) = C & C and notC!). In dimensiore, Z&Z € Ca C = C?
is an integral structure, as#® iZ C C?, butZ @ (Z + iZ) C C?is not.

1 Hecke algebras and;-expansions

We start by fixing notation. By (N) we denote thé&-vector space of modular forms dh (V)
and weightt. The cuspidal subspace will be referred toSasV).

Hecke algebras play an essential role in most of the lectures. We will Butand define two
sorts of Hecke algebras, one over the complex numbers, the other evetdbers. In the first lecture
we will see how they are related.

Let . (NN) be theC-subalgebra oEnd¢ (M (N)) generated by all Hecke operatdtsfor n € N.
By Tx(N) we deonote theZ-subalgebra (i.e. subring) dindc(My(N)) generated by all Hecke
operatorsT;, for n € N. Of course,Ty(N) C Hi(N) € Endc(My(N)). Both are calledHecke
algebra of weightt on T'; (V). If we choose &C-basis of M (N), then theT,, are matrices with
complex entries. The algebt#, (V) consists of allC-linear combinations of those, afitl (V) of all
integral linear combinations, both inside the complex matrix ring.

Let me point out that we could have made the same definitions SyittV) instead of My (N)
(or, any other modular forms space that is stable under the Hecke adtidater talks, we shall start
using the Hecke algebras for cusp forms.

Aim: Our first objective is to show that there is a basis\gf(N) such that alll;, have integral
matrix entries.

We start with some facts, which are easy to prove.

Fact 1.1. (a) The Hecke algebral;(N) andTy(N) are commutative.

(b) There ared # f € My(N)and\, € C (in fact, anotheim is to show that the,,, are algebraic
integers) such thaf, f = \,f forall n € N, i.e. f is an eigenform for all Hecke operators.
We call f a (Hecke) eigenform If, moreover,a;(f) = 1, then we callf normalised Here,
and everywhere laten,,(f) is then-th Fourier coefficient of the Fourier series gfat oo, i.e.

f(z) = 30l an(f)e*mm2.

The following assertions are very simple to prove (which we will partly dalj, are astonishingly
powerful.



Lemma 1.2(Key Lemma) Let f = Y °°  a,(f)e*™* € My (N). Then for alln € N one has

al(Tnf) = an(f)

Proof. This follows immediately from the formula describifig on the Fourier expansion gt See
any introductory course to modular forms, or, Kohnen'’s lecture. Ol

We assume from now on that the weight satiskies 1 (later, we will impose: > 2 and come
back tok = 1 in the last lecture).

Corollary 1.3 (Key Corollary) Thecomplexg-pairing
Hi(N) x M(N) = C, (T,f)— a1(Tf)
is non-degenerate and, hence by linear algebra, gives rise to the iphisor ofC-vector spaces
® : My(N) — Home(Hy(N),C), f = (Tn > ar(Tnf) = an(f))-

The inversel of @ is given byp — ag + >~ ¢(T)q", whereqy is a uniquely defined complex
number.

Proof. This follows from the Key Lemma_11.2 like this. If for all we have0 = a; (7, f) = an(f),
then f = 0 (this is immediately clear for cusp forms; for general modular forms at thepfaise we
can only conclude thaf is a constant, but sinde > 1, non-zero constants are not modular forms).
Conversely, ifa; (T'f) = 0 for all f, thena;(T(T,,f)) = a1(T,, Tf) = an(T'f) = 0 for all f and all
n, whencel'f = 0 for all f. As the Hecke algebra is defined as a subring in the endomorphism of
My(N), we findT = 0, proving the non-degeneracy.

Let$ € Homg(Hi(N),C). Itis obvious thaW (¢) is a modular formf such that,,(f) = ¢(T,,)
for all n > 1. Note that the coefficients,(f) for n > 1 uniquely determine,(f), as the difference
of two forms having the same, (f) for n > 1 would be a constant modular form of the same weight
and so is th@-function by the assumptiok > 0. However, | do not know a general formula how to
write downag(f) (but, it can be computed in all cases). O

The perfectness of thgpairing is also called thexistence of g-expansion principle

]The Hecke algebra is the linear dual of the space of modular f¢rms.

So, from the knowledge of the Hecke algebra we can recover the modutas fvia theirg-
expansions as th€-linear mapsH(N) — C. It is this point of view that will generalise well (in
view of our aim of studying mog modular forms)!

But, more is true: We can identify normalised eigenforms asGkelgebra homomorphisms
among theH(N) — C:

Corollary 1.4. Let f in My (N) be a normalised eigenform.



(@) Tnf = an(f)f forall n € N.
(b) ®(f)is aring homomorphism= f is a normalised eigenform.

Proof. (a) Let\,, be the eigenvalue d@f,, on a hormalised eigenforgi Then:

Gn(f) = al(Tnf) = al(/\nf) = )\nal(f) = An,

proving (a).
(b) ‘<" We have:

()N TnTm) = ax(TnTinf) = a1(Tnam(f)f) = am(flan(f) = @(f)(Tn)2(f)(Tm),

as well as (using thaf; is the identity ofH(NV)):

Q(f)(T1) = ar(f) = 1.

This proves tha®( f) is a ring homomorphism (note that it suffices to check the multiplicativity on a
set of generators — given the additivity).
‘=" If ®(f) is a ring homomorphism, then

an(Tf) = ®(Tf)(Tn) = ar(TTof) = (/) (TTh) = @(f)(T)2(/)(Tn) = 2(f)(T)an(f)

for all n > 1 showing thatl'f = A\f with A = ®(f)(T) (note that we again have to worry about the
0-th coefficient, but, as before, it suffices that the other coefficiemtseag conclude that tHeth one
does as well). O

2 Integral structures in Hecke algebras

Theaim of this section is to prove that, (/V) is an integral structure il (V). For N = 1thereis an
elementary proof requiring ony Eisenstein series and Ramanujafusction. For computations, this
is also very handy, since it uses the Victor-Miller basis. See William Steiro& bad the appendix to
this section.

Let R be any commutative ring and > 0. We denote byR| X, Y], the R-module consisting of
the homogeneous polynomials of degreia the two variablesY, Y. It carries a lefSLy(Z)-action:

((25).P)(X,Y)=P((X,Y)(2})) = P(aX + cY,bX +dY).

This part actually requires the knowledge of some group cohomology. \Neist give an ad hoc
definition of H'.

Definition 2.1. LetG be a group and\/ an R[G]-module. Define th&-module ofl-cocyclesas

ZYG, M) == {f : G — M map| f(gh) = g.f(h) + f(9)}



and theR-module ofl-coboundariegas
BYG, M) :={f:G— M map|3Im c M st f(g) = (g—1).mforall g € G}.

One checks immediately that' (G, M) is an R-submodule ofZ! (G, M). Thefirst group cohomo-
logy of G and M is defined as th&-module

HY (G, M) = Z"(G,M)/B (G, M).

We will now assumé: > 2 and obtain the required integral structure from the following theorem
of Eichler and Shimura. In order to be able to state it, we need a fact (sexeBPein’s lectures?):

Fact 2.2. Letk > 2. We have that{}(T'1(N), C[X, Y];_2) is a finite dimensionaC-vector space,
which is equipped with Hecke operatdfs for n € N (coming from the correspondences on modular
curves that can also be used to define Hecke operators on modulas)form

Theorem 2.3(Eichler-Shimura) Letk > 2 and fixzy € H, the upper half plane. Then the map
My(N) ® Sp(N) = H'(T1(N),C[X, Y]t—2)

given by
Y20

raye o [y [ vyas)

20 20

is an isomorphism df-vector spaces, which is compatible with the Hecke operaipfor n € N.

By Sk (IN) we denote the space of anti-holomorphic cusp forms, i.e. the complexjategof the
usual cusp forms.

Corollary 2.4. The Hecke algebrad{;(/N) (and Tx(N)) coincide with theC-subalgebra (theZ-
subalgebra) ofindc (H* (T (N), C[X, Y]x_2)) generated by th&), for n € N.

Proof. This follows immediately from the compatibility of the isomorphism of Theokem 2.3Her
Hecke action. O

Since we are at some point going to switch frdm,(N) to S,(/N) we mention that there is a
naturalC-subspacéi ,(I'1(N), C[X,Y]_2) of H'('1(N), C[X, Y]i_») such that the isomorphism
from Eichler-Shimura restricts to an isomorphism

Sk(N) ® Sp(N) — HpaT1(N), C[X, Y]j_2).

This allows us to obtain the same results, which we will show below, for thespesges, too.
We need one more (rather easy) fact.



Fact 2.5. We have
Hl(rl(N)7 Z[Xa Y]k—2)/tor5ion ®z C = HI(FI (N)a (C[X> Y}k—Q)

and the Hecke operatofB, for n € N can already be defined on the left hand side,
In fact, for N > 4, there is no torsion. The torsion elements have order only divisibiednd/or
3 and come from non-trivial stabilisers for the actionIaf(/V) on the upper half plane.

Corollary 2.6. The C-vector spaced!(T'1(N),C[X,Y];_2) has a basis with respect to which all
Hecke operatorg’, for n € N have integral matrix entries.

Proof. Any Z-basis of H'(I'1(N), Z[X, Y]x_2)/torsion is automatically a&C-basis of theC-vector
spaceH ! (T'1(N), C[X, Y],_2) and, of course, the matrix entries for this basis are integral. [

Now consider the following injection:
Hi(N) < Endc(H'(T1(N),C[X, Y]k—2)) = Mat,mxm(C),

where we make the last identification with respect to the above basis, teeiranthat the Hecke
operatord;,, have integral matrix entries. Under this injecti@i,( V) is hence sent intdlat,, ., (Z),
i.e. we have the injection

Ti(N) < Mat,xm(Z).

Now we draw our conclusions:

Corollary 2.7. The natural majC @z T, (N) — Hi(N) is an isomorphism. In particulaff, (V) is
free asZ-module (i.e. abelian group) of rank equal to tBedimension of{ ().
Hence, T (V) is an integral structure in; (N ).

Proof. We have seen that (1) lies in Mat,,, ., (Z), which we write more formally as a (ring) injec-
tion
t: Tp(N) <= Maty,xm(Z).

Recall thatC is a flatZ-module, hence, tensoring with overZ preserves injections, yielding
id®t: C®z Ti(N) — C®z Maty,xm(Z) = Maty,xm(C),

where the last isomorphism can be seefas;, (Z®ZdZ D Z) = (C®z7Z)® (CrzZ)® (C®yz
2)®(Coz2)=2CaCaCaC. Theimage ofd ® ¢ lies inH(N) and contains all’,,, whence
the image isH;(IV), proving the isomorphisi® @z Ty, = Hi(N).
It follows immediately thafl', (V) is a freeZ-module of rank equal to the dimension&, (V).
O



Appendix: Proof in level 1 using Eisenstein series

The input to this proof are the following standard facts from modular formsses:

Lemma 2.8. (a) The Eisenstein serids, € My (1) and Es € Mg(1) have a Fourier expansion with
integral coefficients an@-th coefficient equal td. Ramanujan’sA € M;5(1) is a cusp form with
integral Fourier expansion and-st coeffient equal to.

(b) Letf € My(N) be a modular form with an integral Fourier expansion. THgyt f) also has an
integral Fourier expansion.

(c) For anyk, we haveMy 1o = A - My & CEgEg, wherea, 8 € Ny are any elements such that
k+12 = 4a+ 6 (which always exist sindeis even — otherwise we're dealing with thespace).

This can be used to construct a Victor-Miller basis\éf (1) (say, its dimension ig), that is any
basis of theC-vector spacé/; (1) consisting of modular formgy, fo, ..., f,—1 With integral Fourier
coefficients such that

ai(f;) = 0ij
forall0 <i,j <n-—1.

How to construct such a basis? We do it inductively. kot 4,6,8, 10, 14 the existence is
obvious, since the spadd(1) is 1-dimensional and the Eisenstein series does the jobk Forl 2,
we start withE2 = 1 — 1008¢ + ... andA = ¢ + ..., so that we can tak¢ = E2 + 1008A and
fi=A.

Suppose now that we have a Victor-Miller bagis. . ., f,—1 of My(N). Fori =0,...,n—1, let
gi+1 = Af;andgg := Eng. This is not a Victor-Miller basis, in general, but can be made into one.
Note first thata;(g;) = 1 forall0 < i < n and thata;(g;) = 0forall0 <i <nandall0 < j <.
Graphically, it looks like this:

go = 1+ o+ o>+ ... oot oV 1+ og"
g1 = -+ o’ +... + " '+ "
go = P+ .. ot o+ "
n—-1= qnil—i— "
gn = qn

| think that it is now obvious how to make this basis into a Victor-Miller one.

Proposition 2.9. Let { fo, ..., fn—1} be a Victor-Miller basis ofM;(1). Then the Hecke operators
T, Written as matrices with respect to the Victor-Miller basis, have integraliestr



Proof. In order to write down the matrix, we must determifig f; forall 0 < ¢ < n — 1 in terms of
the basis. But, this is trivial: If

1

Tonfi = aio+ aing + aing® + -+ ain 1" ...,

thenT,, f; = Z?;OI a; ; fj, o thea; ; are just the entries of the matrix. They are integrall’ag; has
integral Fourier coefficients (using here that all ifa&lo). O

3 Integral structures on modular forms

In this section we are going to use the statements derived from the Key @Cyprolldeduce from the
integral structure on the Hecke algebras the promised integral structumedular forms.
We first recall the important isomorphism

®: Mp(N) = Home(Hi(N),C), [ (Tn = ar(Tuf) = an(f))-
Its inverse is the following
¥ : Home(Hg(N),C) = My(N), ¢ aole) + Y @(Tn)e" .
n=1
Here,ao(¢p) is uniquely determined, but, | do not know of a simple way to write down whatitadly
is (except forNV = 1).

Corollary 3.1. (a) Tx(N) is a Z-algebra that is finite and free as A-module ofZ-rank equal to
dimg My (N).

(b) We have isomorphisms @fvector spaces (we will also call )
Y
HomZ(Tk(N), C) = HOm(c(/Hk;(N), (C) = Mk(N)

(c) Under the isomorphism from (b), the ring homomorphiSinsV) — C correspond bijectively to
the normalised Hecke eigenforms.

Proof. All three statements become immediately clear if one chooses some identificatip(/0§
with Z", wherer is the Z-rank of T;(IN), which by the integral structure and the duality between
Hecke algebras and modular forms is equal toG@hdimension ofM(N). O

Very explicitly, we now have th€-linear isomorphism
Homgz(Tx(N),C) = Myp(N), [ (Tn = ar(Tnf) = an(f)).
Definition 3.2. Let R be any ring. We let
My(N)(R) := Homy(Ty(N), R)

and call this themodular forms of weighk and level NV with coefficients inR.
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In particular, My (N)(Z) is the subset of\/;(N) consisting of sucty such that alla,,(f) are
integers for all, > 1. Note, however, thaty(f) may nevertheless not be an integer (see, for instance,
the slightly differently normalised Eisenstein serigsi, = 25 + 5°° | o—1(n)e*™ (it actually
is a normalised eigenform in the sense that we defined above).

Lemma 3.3. Let R — S be a ring homomorphism. Then we have
S @r My(N)(R) = M(N)(S).
Proof. S ®g Mi(N)(R) = S ®@g Homz(Tx(N), R) = Homg(Tx(N),S) = M(N)(S). O
In particular, we have
C®z Mp(N)(Z) = My(N)(C) = My(N),

where the final isomorphism comes from the above corollary.

4 Coefficients of normalised Hecke eigenforms
Let us recall from the previous section that we have the isomorphism
P . Mk(N) — Mk(N)(C) = HomZ(Tk(N),(C),

given by sending’ to the map defined by, — a1(T}.f) = a,(f). Recall further that we showed in
Corollary[1.4 that under this isomorphism normalised Hecke eigenformasspmnd bijectively to the
ring homomorphisms iflomc (Hx (), C) = Homc(C ®z Tk(N), C) = Homgz(Tx(N), C).
Let now f € M, (V) be a normalised Hecke eigenform and considet ®(f), which is thus a
ring homomorphism
¢ :T(N) — C.

Its kernelker(y) is a prime ideal ofT; (V) (since factoring it out yields a subring @f and thus an
integral domain). The image aof is the smallest subring df containing allp(T,,) = a,(f), i.e.
im(¢) = Zlan(f) | n € N] =: Z;. lts field of fractions is denoted b ; and called theoefficient
field of f. Itis explicitly given asQ(a,(f) | n € N).

Now we use thafl';, (V) is of finite Z-rank. Then, of course, so B, (V)/ ker(¢) = Zy. Con-
sequently, als@; is of finite Q-dimension. That means th@l, is a number field and.; is an
order in it. This is a highly non-trivial result! Recall th@t; is generated ove by infinitely many
numbers, namely, the, (f); nevertheless, all of them are contained in a finite extensions! This is a
consequence of the existence of the integral structure (on Heckaadg€boy Ty (N) = Hi(N),
which we derived from the Eichler-Shimura isomorphism).

Moreover, asZy is of finite Z-rank, every element af; is integral overZ, i.e. analgebraic
integer By definition an element € C is an algebraic integer if there is a nonzero monic (leading
coefficient equal td — if we leave out this assumption, then we only finite algebraic numbers and not
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algebraic integers) polynomial € Z[X] such thay(x) = 0. For later use, we denote the set of all
algebraic integers b and the set of all algebraic numbers@ywhich is also the algebraic closure
of Q insideC).

Let us summarise:

Corollary 4.1. Let f € M () be anormalised Hecke eigenform. Then its Fourier coefficients)
for n € N are algebraic integers. Moreovét,, is an order in the number fiel@;.

5 Background on Galois theory

Let L/ K be a field extension, that i, is a field andK is a subfield ofL. By restricting the multi-
plication mapL x L — Lto K x L — L, we obtain aK-scalar multiplication orL., makingL into
a K-vector space. Thdegreeof the field extensior./ K is the K-dimension ofL, notation:

[L: K]:=dimg L.

A field extension is callefinite if its degree is finite.
Let us look at some examples:

(@) C/Ris afield extension of degreéeand anR-basis ofC is given byl andi.
(b) F,» /F), is afield extension of degree

(c) C/Qis afield extension of infinite (even uncountable) degree.

(d) F,/F, is an infinite field extension.

Here | take a shortcut and deviate from the standard definition of Galt@es&ns, by giving the
following equivalent one: We denote Byutx (L) the group of field automorphisms: L — L such
that their restriction td< is the identity (note that any field homomorphism is automatically injective).

Let us first assume thak : K] < co. Then one can show that one always has:

# Autg (L) <[L: K].

(This is not so difficult to show: One can always write= K[X]/(f), wheref is an irreducible
polynomial of degreeéL : K]. Let us fix one root (in K) of f. Then every field automorphism
L — L is uniquely determined by the image @f But, this image must be another root fafhence,
there are at most : K| different choices, proving the claim.)

A finite field extension./ K is calledGaloisif we actually have equality, i.e.

# Auty (L) = [L: K].

In that case we writ€al(L/K) := Autx (L) and call this theGalois group ofL / K.
We again look at some examples:
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(a) C/Ris Galois and its Galois group has ordeand consists of the identity and complex conjuga-
tion.

(b) F,n/F,: Since we are in characterisfictheFrobeniusmapFrob,, : x — 2" is a field automorph-
ism of F,,» (the point is that it is additive! That clearly fails ov€}, for instance). Using th&f;n
is a cyclic group of ordep™ — 1, one immediately gets tha?" = xz in F,n. This shows that
(Frob,)™ is the identity. But, it also shows that thererig F,» such tha{Frob,)!(z) = a? 4
foralli =1,...,n — 1. This shows thaFrob, has ordern. Consequently, we have foundield
automorphisms, namely, the powerstobb,. Thus,F,. /I, is a Galois extension and its Galois
group is cyclic of order, generated b¥rob,,.

(c) Let( be a primitive/"-th root of unity insideQ (where/ is a prime number). Explicitly, we can
take¢ = e2™/!" . We consider the field extensidd(¢)/Q. HereQ(¢) is the smallest subfield
of C containingQ and(. It is not so difficult to show that one has

[QC) : @ =p(e") = (¢ = 1)
Leto € Autg(Q(()). Then we have
L=0(1) =0a(¢") = (a(O)",

showing thatr(¢) is another’”-th root of 1. As ¢ is invertible,o(¢) must also be primitive (i.e.
have order™). This means that there is an elemgpt(c) € (Z/(¢"))* such thatr(¢) = ¢Xen (@)
(the complicated notation becomes clear below). Let us write this as a map:

Xen : Autg(Q(C)) — (Z/(£7)) .

Note that this map is surjective (for amye (Z/(¢™))* define a field automorphism uniquely by
sending¢ to ¢%). Thus,Q(¢)/Q is also a Galois extension. In fact, it is trivially checked that
X¢n 1S @ group homomorphism. Thug,. is a group isomorphism between the Galois group of

Q(¢)/Qand(Z/(£))*.

We still have to mention the case of infinife/ K. Also, here | take a shortcut and give a non-
standard but equivalent definition. A (possibly infinite degree) fieldresite L/ K is Galoisif L is
the union of all finite Galois subextensiohs/ K, i.e.

L= U M.
KCMCL, M/K finite Galois
In that case, we also writ@al(L/K) := Autg(L). In fact, one has
Gal(L/K) = Jim Gal(M/K).
KCMCL, M/K finite Galois

Then,Gal(L/K) is in fact a topological group, more precisely, it is a profinite group. A kogioal
group is calledorofinite if it is compact, Hausdorff and totally disconnected (that is, the connected
component containing someis equal to{z}). We must always keep this topology in mind!
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As an example we now look &, /FF,,. We clearly have

E}ZZ LJ Fpn,
neN
since any element if, is contained in some finite extensibp.. Hence, this is a Galois extension (in
fact, for any fieldF the extension”’/F, whereF is an algebraic closure df, is a Galois extension,
by the properties of an algebraic closure). We thus have

Gal(F,/F,) = lim Gal(Fyn/F,) = lim Z/(n) =: Z = (Froby)iop. gp:
neN neN
This means that the Galois group is a pro-cyclic group (by definition, this iprbjective limit of
cyclic groups), and, equivalently, that it is topologically generated bingles element, namely the
Frobenius.

6 Background on the/-adic numbers

Recall from your Analysis class thitis the completion of) with respect to the usual absolute value:
it can be defined as the quotient of all Cauchy sequences modulo tltpgmnses that tend @ In
this way, one ‘adds’ td) all the ‘limits’ of all Cauchy sequences.

There is nothing that prevents one to make the same construction for anbtwdute value. It
may seem astonishing that there are other (signifiacantly different) &bsalues than the usual one:
Let ¢ be a prime number. Far € Z, write a = ¢"a’ with ged(d/, ¢) = 1, let

lale :==£7";
and fory € Q, let

|Fle = lale

b r

One easily checks that this definition satisfies all properties of an absalut eanQ.
The completion of with respect tg - |, is called the field of-adic numbersand denoted ag,.
For us, the following subring is important:

Zy=A{z € Q| |z <1}

There are more explicit ways of seeifig andZ,, for instance, in terms dgfadic expansions. | am
not going into that here (see, for instance, the wikipedia page). Butnt twanention the following
abstract alternative:

Zy = lim 7).
neN
ThenQy is the field of fractions o¥,.
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7 Background on Galois representations
Let K be a (topological) field andé’/Q a number field. A continous group homomorphism
p: Gal(Q/Q) — GLy(K)
is called am-dimensional Galois representatioNore precisely, if
e K = C, thenp is called arArtin representation
e K/Qy, thenpis called ar/-adic Galois representatign

e K/F,, thenp is called a(residual) mod¢ Galois representationin this case K is equipped
with the discrete topology.

Proposition 7.1. (a) Any Artin and any mod-Galois representation has a finite image.

(b) LetK/Q, be a finite extension. Any: Gal(F/F) — GL,(K) is equivalent (i.e. conjugate) to
a representation of the for@al(F/F) — GL, (O ), whereO is the valuation ring oK’ (i.e.
the integral closure 0%, in K, sometimes also called the ring of integerstof. Consequently,
by composing witlD - — Ok /(7x) = Fpa, Wherern g is a uniformiser o0 (for somed € N),
we obtain a mod Galois representation

p: Gal(F/F) — GLy(F),
called theresidual representation pf

Proof. (a) The image of the compact groGl(F/F) under the continuous mapis compact. As
it is also discrete (that's trivial for moéirepresentations, for Artin representations one has to work a
bit), it is finite.

(b) For short, we write) := Ok andG := Gal(F'/F). Define

U:={g€G|p(g)O" CO"}.

It is clearly a subgroup afr. We want to show that it is open.

Fori = 1,...,n consider the map; : G — K" given byg — p(g)e;, wheree; is thei-th
standard basis vector. By the continuity mfthe ; are continuous maps. Note tk@fl(on) is
the set ofg € G such that the-th column ofp(g) has entries lying irO (instead of only inK).
Consequently, we find

n
U=[)a;" (0",
=1
which is clearly open as the intersection of finitely many open sets.
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SinceU < @G is an open subgroup an@ is compact, the index di/ in G is finite. LetG =
LI, ;U be a coset decomposition. Thén:= ", p(g;)O™ C K" is a finitely generated-
submodule such that it& -span is all ofK™ (in other words /L is anO-lattice in K). The point about
L is that it is stable under th@-action, i.e.p factors as

p:G— Autp(L) C Autg(K") = GL,(K).
Choosing anyD-basis ofL, we identify Autp (L) with GL,,(O), finishing the proof. O

The residual representation defined in (b) above depends on thee abfoiattice! But, if we
take the semi-simplification of the residual representation, then the BrasiitNtheorem implies
that there is no such dependence (Reason: The Brauer-Nesbittrhatates that a semi-simple
representation is uniquely (up to isomorphism) determined by its characieh isljust the modr g
reduction of the character pf).

From now on we takd™” = Q for simplicity. We now give a very important example in dimen-
sion1: the/-adic cyclotomic characterRecall from above that we found the group isomorphism:

Xen + Gal(Q(¢)/Q) = Autg(Q(()) — (Z/(€")) .
Let us rewrite this, using the group surjectidnl(Q/Q) — Gal(Q(¢)/Q):
Xen + Gal(Q/Q) — GL1(Z/(¢)).
We can now take the projective limit to obtain thadic cyclotomic character
xe : Gal(Q/Q) — Z,) = GL1(Zy).

Recall that the construction @), was very analogous to the constructionfof This leads us to
consider the Galois extensioigR and@p/Qp in as analogous a way as possible. We start with the
first one, which is easier.

Recall thatGal(C/R) is a group of orde2 consisting of the identity and complex conjugaction,
denoted bye. By restricting these elements @ (note that the complex conjugate of an algebraic
number is another algebraic number), we obtain an injection

Gal(C/R) — Gal(Q/Q).

We will still denote the image of complex conjugationGial(Q/Q) by c.
A 2-dimensional Galois representation

p: Gal(@/Q) = GLy(K)

is calledoddif det(p(c)) = —1.
I should point out that there is actually a choice that we made: wé&)dasideC in the ‘natural
way’. But, there are infinitely many other embedding€oihto C and we could have restricted @
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via these embeddings. This would have led to a conjugate embeddiagl@®/R) — Gal(Q/Q).
But, as the determinant is independent of conjugation, the notion of celdoes not depend on any
choice!

Now we proceed analogously with,/Q,. We choose an embeddifiy— Q,. Restricting field
automorphisms t@ via this embedding we obtain as above an embedding

Gal(Q,/Qp) < Gal(Q/Q).

Another embedding of into @p would have led to a conjugate embedding of the Galois group. We
must always keep this in mind!

WhereasGal(C/R) is a very simple group (orde), the groupGal(Q,/Q,) is much more com-
plicated (it is uncountable). It turns out to be very useful to identify gag@normal subgroup in it, the
inertia group, which we define now. It is not so difficult to show that carelet any € Gal(Q,/Q,)
act onF, (sinceo respect¥,, that is, the elements that are integral o¥gr we can letr act onF,,
by reduction modul, by which | mean the image of a fixed ring surjectiép — F,), and that the
resulting group homomorphistial(Q,/Q,) — Gal(F,/F,) is surjective. We lef,, be the kernel of
this homomorphism; this is thaertia group atp.

We say that a Galois representatjon Gal(Q/Q) — GL,,(K) is unramified atp if I, is in its
kernel.

Recall thatGal(F,/F,) is topologically generated by the Frobeniti®b,. Let m)p be any
preimage offrob, in Gal(Q,/Q,). If p is unramified ap, thenp(b/“}?)}/ap) does not depend on the
choice of preimage and we simple writgkrob,) (note that this expression does not make sense at
allif p is not unramified ap).

Now recall further that the embedding @&1(Q,/Q,) into Gal(Q/Q) is only well-defined up to
conjugation. Hence, one must be very careful when speaking &bahyf as an element @kal(Q/Q).

It would be much better to only speak of its conjugacy class. However, therieny role is actually
played by the characteristic polynomial pfFrob,), which by linear algebra only depends on the
conjugacy class. Hence, and this is the conclusion to remember from thisslise, one can without
any ambiguity speak of the characteristic polynomialp@frob,) for any primep at which p is
unramified.

8 The Galois representation attached to a modular form

In this section, | only state the main theorem about Galois representatiortseattacnodular forms
and try to illustrate its significance in a toy example. For every prinve fix an embeddin@ — Q,.

Theorem 8.1 (Eichler, Shimura, lgusa, Deligne, Serrd)et f € Si(/N) be a normalised Hecke
eigenform g > 1). Then for every prime numbéithere is an irreducible Galois representation

Pfe - Gal(@/@) — GLQ(@@)

such that
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e pr¢is unramified at all primeg 1 N/ and

e the characteristic polynomial gf; ,(Frob,) for anyp { N/ is equal to
X% —ap())X + " € QX],
wherea,(f) € Q is considered insid@, via the fixed embedding.

The content of the theorem is the deep arithmetic meaning of the Fouriercez@siof a Hecke
eigenform which was alluded to in the beginning of this lecture series. Téféaenta, knows about
the Frobenius gt! This may sound very abstract and it might not at all be evident why thigrigoer
theory. So, | just want to give a very brief sketch of a toy example.

Question: Let @ € Z[X] be a polynomial. How does this polynomial factor modpo

Let us first look atQ(X) = X2 + 1. Of course, it quickly turn out thad has two distinct factors
modulop if and only if p = 1 (mod 4). If p = 3 (mod 4), the polynomial remains irreducible
modulop, andp = 2 plays a special role (a double factor? + 1 = (X + 1)? (mod 2)).

Now, take a more complicated example (still a toy onet)(X) = X% — 6X* + 9X2 + 23.
Compute factorisations modujofor some smallp with the computer and try to find a pattern! It
won't be easy at all (I'd be astonished if you found one without regdim)! But, there is one: There
is a unique Hecke eigenfortfiin S1(23)(F7) (this is with a certain quadratic Dirichlet character);
you can also see it in weigfitor in weight2 for level 7 - 23. The pattern is the following. Letbe a
prime. Then (with finitely many exceptions):

e () has 2 factors modulp < a,(f) = 6.
e () has 3 factors modulp < a,(f) = 0.
e () has 6 factors modulp < a,(f) = 2.

This comes from the attached Galois representatiofizal(Q/Q) — GLo(F7). There are only
the following matrices in the image of

(69, @9, G2, (o) (G5, (35).

The first one has orddrand trace2, the second and third have ordkand traces, and the final ones
have orde and trace.

The polynomial( is Galois overQ. For a givenp, p(Frob,) must be one of these matrices. If
the trace i2, thenp(Frob,) must be the identity and thus have orderThat means thaf) factors
completely modulop (there’s a small issue with primes dividing the index of the equation order
generated by in the maximal order — these primes are next and23 the finitely many exceptions
mentioned above). If the trace(sthen the order has to 2¢leading to a factorisation @ into three
fractors modul@. In the remaining case the tracesisind the order i8, so that() has three factors
modulop.
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9 Galois representations and Hecke algebras of weight one

The last part of my lecture was devoted to my prepfmt Galois Representations of Weight Qne
which can be found on arXiv. There is no need to reproduce it here.
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