
Modular Forms modp

and Galois Representations of Weight One

Gabor Wiese

9th February 2012

Abstract

This is a sketch of the content of my four lectures during the Workshop on Modular Forms

and Related Topics, 6 – 10 February 2012, in Beirut. Thanks Wissam and Kamal for the nice

organisation!

Note that the title does not really reflect the content of these lectures.

Some words of motivation

All speakers at this workshop are interested in Fourier coefficients of modular forms. Why? For their

number theoretic significance!

• The Fourier coefficients of the Eisenstein seriesEk (see Kohnen’s lecture) areσk−1(n) =
∑

d|n d
k−1; the functionσk−1 has an obvious number theoretic significance!

• The Fourier coefficients of (certain) theta-series are representation numbers of quadratic forms.

The nicest example is maybe the following: the number of times, a given positiveintegern can

be represented as a sum of four squares, i.e.n = x21 + x22 + x23 + x24, is the coefficient of a

modular form. This allows one to write down a formula for this number (see Kohnen’s lecture).

• In Kohnen’s next lectures an analyticproperty of the coefficients will be studied: their growth.

In my lectures, however, I will focus on algebraicproperties: we will prove, for instance, that

the Fourier coefficients of normalised Hecke eigenforms (to be defined below) are algebraic

integers. This will be a consequence of the existence of an integral structure, by which we start

the lectures. The very deep connection that will be stated towards the end of the third or the

fourth lecture is that are actually related to Galois representations in a very precise way; this is

an essential ingredient, for instance, for the proof of Fermat’s Last Theorem.

I should maybe add a word about ‘integral structures’. The first aim ofthese lectures, and maybe

a good example to explain the concept, is the following: TheZ-module (i.e. abelian group) consisting

of those modular forms, all of whose Fourier coefficients (except possibly the 0-th one) are integers
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(we will denote this byMk(N)(Z)) forms an integral structure in theC-vector space of all modular

forms. We formalise the statement like this: The natural map (multiplying together)

C⊗Z Mk(N)(Z)→Mk(N)

is an isomorphism ofC-vector spaces.

To illustrate this notion now in an elementary way, we give some simple examples:Z ⊂ C is an

integral structure, as isZπ ⊂ C, butZ[i] = Z+ iZ ⊂ C is not (because the left hand side is a freeZ-

module of rank2 so thatC⊗Z (Z+Z[i]) ∼= C⊕C and notC!). In dimension2, Z⊕Z ⊂ C⊕C = C2

is an integral structure, as isZ⊕ iZ ⊂ C2, butZ⊕ (Z+ iZ) ⊂ C2 is not.

1 Hecke algebras andq-expansions

We start by fixing notation. ByMk(N) we denote theC-vector space of modular forms onΓ1(N)

and weightk. The cuspidal subspace will be referred to asSk(N).

Hecke algebras play an essential role in most of the lectures. We will be careful and define two

sorts of Hecke algebras, one over the complex numbers, the other over the integers. In the first lecture

we will see how they are related.

LetHk(N) be theC-subalgebra ofEndC(Mk(N)) generated by all Hecke operatorsTn for n ∈ N.

By Tk(N) we deonote theZ-subalgebra (i.e. subring) ofEndC(Mk(N)) generated by all Hecke

operatorsTn for n ∈ N. Of course,Tk(N) ⊂ Hk(N) ⊆ EndC(Mk(N)). Both are calledHecke

algebra of weightk on Γ1(N). If we choose aC-basis ofMk(N), then theTn are matrices with

complex entries. The algebraHk(N) consists of allC-linear combinations of those, andTk(N) of all

integral linear combinations, both inside the complex matrix ring.

Let me point out that we could have made the same definitions withSk(N) instead ofMk(N)

(or, any other modular forms space that is stable under the Hecke action).In later talks, we shall start

using the Hecke algebras for cusp forms.

Aim: Our first objective is to show that there is a basis ofMk(N) such that allTn have integral

matrix entries.

We start with some facts, which are easy to prove.

Fact 1.1. (a) The Hecke algebrasHk(N) andTk(N) are commutative.

(b) There are0 6= f ∈Mk(N) andλn ∈ C (in fact, anotheraim is to show that theλn are algebraic

integers) such thatTnf = λnf for all n ∈ N, i.e. f is an eigenform for all Hecke operators.

We call f a (Hecke) eigenform. If, moreover,a1(f) = 1, then we callf normalised. Here,

and everywhere later,an(f) is then-th Fourier coefficient of the Fourier series off at∞, i.e.

f(z) =
∑∞

n=0 an(f)e
2πinz.

The following assertions are very simple to prove (which we will partly do!),but, are astonishingly

powerful.
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Lemma 1.2(Key Lemma). Letf =
∑∞

n=0 an(f)e
2πinz ∈Mk(N). Then for alln ∈ N one has

a1(Tnf) = an(f).

Proof. This follows immediately from the formula describingTn on the Fourier expansion off . See

any introductory course to modular forms, or, Kohnen’s lecture.

We assume from now on that the weight satisfiesk ≥ 1 (later, we will imposek ≥ 2 and come

back tok = 1 in the last lecture).

Corollary 1.3 (Key Corollary). Thecomplexq-pairing

Hk(N)×Mk(N)→ C, (T, f) 7→ a1(Tf)

is non-degenerate and, hence by linear algebra, gives rise to the isomorphism ofC-vector spaces

Φ : Mk(N)→ HomC(Hk(N),C), f 7→
(

Tn 7→ a1(Tnf) = an(f)
)

.

The inverseΨ of Φ is given byφ 7→ a0 +
∑∞

n=1 φ(Tn)q
n, wherea0 is a uniquely defined complex

number.

Proof. This follows from the Key Lemma 1.2 like this. If for alln we have0 = a1(Tnf) = an(f),

thenf = 0 (this is immediately clear for cusp forms; for general modular forms at the first place we

can only conclude thatf is a constant, but sincek ≥ 1, non-zero constants are not modular forms).

Conversely, ifa1(Tf) = 0 for all f , thena1(T (Tnf)) = a1(TnTf) = an(Tf) = 0 for all f and all

n, whenceTf = 0 for all f . As the Hecke algebra is defined as a subring in the endomorphism of

Mk(N), we findT = 0, proving the non-degeneracy.

Letφ ∈ HomC(Hk(N),C). It is obvious thatΨ(φ) is a modular formf such thatan(f) = φ(Tn)

for all n ≥ 1. Note that the coefficientsan(f) for n ≥ 1 uniquely determinea0(f), as the difference

of two forms having the samean(f) for n ≥ 1 would be a constant modular form of the same weight

and so is the0-function by the assumptionk > 0. However, I do not know a general formula how to

write downa0(f) (but, it can be computed in all cases).

The perfectness of theq-pairing is also called theexistence of aq-expansion principle.

The Hecke algebra is the linear dual of the space of modular forms.

So, from the knowledge of the Hecke algebra we can recover the modular forms via theirq-

expansions as theC-linear mapsHk(N) → C. It is this point of view that will generalise well (in

view of our aim of studying modp modular forms)!

But, more is true: We can identify normalised eigenforms as theC-algebra homomorphisms

among theHk(N)→ C:

Corollary 1.4. Letf in Mk(N) be a normalised eigenform.
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(a) Tnf = an(f)f for all n ∈ N.

(b) Φ(f) is a ring homomorphism⇔ f is a normalised eigenform.

Proof. (a) Letλn be the eigenvalue ofTn on a normalised eigenformf . Then:

an(f) = a1(Tnf) = a1(λnf) = λna1(f) = λn,

proving (a).

(b) ‘⇐’: We have:

Φ(f)(TnTm) = a1(TnTmf) = a1(Tnam(f)f) = am(f)an(f) = Φ(f)(Tn)Φ(f)(Tm),

as well as (using thatT1 is the identity ofHk(N)):

Φ(f)(T1) = a1(f) = 1.

This proves thatΦ(f) is a ring homomorphism (note that it suffices to check the multiplicativity on a

set of generators – given the additivity).

‘⇒’: If Φ(f) is a ring homomorphism, then

an(Tf) = Φ(Tf)(Tn) = a1(TTnf) = Φ(f)(TTn) = Φ(f)(T )Φ(f)(Tn) = Φ(f)(T )an(f)

for all n ≥ 1 showing thatTf = λf with λ = Φ(f)(T ) (note that we again have to worry about the

0-th coefficient, but, as before, it suffices that the other coefficients agree to conclude that the0-th one

does as well).

2 Integral structures in Hecke algebras

Theaim of this section is to prove thatTk(N) is an integral structure inHk(N). ForN = 1 there is an

elementary proof requiring ony Eisenstein series and Ramanujan’s∆-function. For computations, this

is also very handy, since it uses the Victor-Miller basis. See William Stein’s book and the appendix to

this section.

Let R be any commutative ring andn ≥ 0. We denote byR[X,Y ]n theR-module consisting of

the homogeneous polynomials of degreen in the two variablesX,Y . It carries a leftSL2(Z)-action:

(
(

a b
c d

)

.P )(X,Y ) = P ((X,Y )
(

a b
c d

)

) = P (aX + cY, bX + dY ).

This part actually requires the knowledge of some group cohomology. We will just give an ad hoc

definition ofH1.

Definition 2.1. LetG be a group andM anR[G]-module. Define theR-module of1-cocyclesas

Z1(G,M) := {f : G→M map| f(gh) = g.f(h) + f(g)}
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and theR-module of1-coboundariesas

B1(G,M) := {f : G→M map| ∃m ∈M s.t.f(g) = (g − 1).m for all g ∈ G}.

One checks immediately thatB1(G,M) is anR-submodule ofZ1(G,M). Thefirst group cohomo-

logy ofG andM is defined as theR-module

H1(G,M) := Z1(G,M)/B1(G,M).

We will now assumek ≥ 2 and obtain the required integral structure from the following theorem

of Eichler and Shimura. In order to be able to state it, we need a fact (see Peter Bruin’s lectures?):

Fact 2.2. Let k ≥ 2. We have thatH1(Γ1(N),C[X,Y ]k−2) is a finite dimensionalC-vector space,

which is equipped with Hecke operatorsTn for n ∈ N (coming from the correspondences on modular

curves that can also be used to define Hecke operators on modular forms).

Theorem 2.3(Eichler-Shimura). Letk ≥ 2 and fixz0 ∈ H, the upper half plane. Then the map

Mk(N)⊕ Sk(N)→ H1(Γ1(N),C[X,Y ]k−2)

given by

(f, g) 7→ (γ 7→

∫ γz0

z0

f(z)(Xz + Y )k−1dz +

∫ γz0

z0

g(z)(Xz + Y )k−1dz)

is an isomorphism ofC-vector spaces, which is compatible with the Hecke operatorsTn for n ∈ N.

BySk(N) we denote the space of anti-holomorphic cusp forms, i.e. the complex conjugates of the

usual cusp forms.

Corollary 2.4. The Hecke algebrasHk(N) (and Tk(N)) coincide with theC-subalgebra (theZ-

subalgebra) ofEndC(H1(Γ1(N),C[X,Y ]k−2)) generated by theTn for n ∈ N.

Proof. This follows immediately from the compatibility of the isomorphism of Theorem 2.3 forthe

Hecke action.

Since we are at some point going to switch fromMk(N) to Sk(N) we mention that there is a

naturalC-subspaceH1
par(Γ1(N),C[X,Y ]k−2) of H1(Γ1(N),C[X,Y ]k−2) such that the isomorphism

from Eichler-Shimura restricts to an isomorphism

Sk(N)⊕ Sk(N)→ H1
par(Γ1(N),C[X,Y ]k−2).

This allows us to obtain the same results, which we will show below, for the cuspspaces, too.

We need one more (rather easy) fact.
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Fact 2.5. We have

H1(Γ1(N),Z[X,Y ]k−2)/torsion⊗Z C ∼= H1(Γ1(N),C[X,Y ]k−2)

and the Hecke operatorsTn for n ∈ N can already be defined on the left hand side,

In fact, forN ≥ 4, there is no torsion. The torsion elements have order only divisible by2 and/or

3 and come from non-trivial stabilisers for the action ofΓ1(N) on the upper half plane.

Corollary 2.6. TheC-vector spaceH1(Γ1(N),C[X,Y ]k−2) has a basis with respect to which all

Hecke operatorsTn for n ∈ N have integral matrix entries.

Proof. Any Z-basis ofH1(Γ1(N),Z[X,Y ]k−2)/torsion is automatically aC-basis of theC-vector

spaceH1(Γ1(N),C[X,Y ]k−2) and, of course, the matrix entries for this basis are integral.

Now consider the following injection:

Hk(N) →֒ EndC(H
1(Γ1(N),C[X,Y ]k−2)) ∼= Matm×m(C),

where we make the last identification with respect to the above basis, guaranteeing that the Hecke

operatorsTn have integral matrix entries. Under this injection,Tk(N) is hence sent intoMatm×m(Z),

i.e. we have the injection

Tk(N) →֒ Matm×m(Z).

Now we draw our conclusions:

Corollary 2.7. The natural mapC⊗Z Tk(N)→ Hk(N) is an isomorphism. In particular,Tk(N) is

free asZ-module (i.e. abelian group) of rank equal to theC-dimension ofHk(N).

Hence,Tk(N) is an integral structure inHk(N).

Proof. We have seen thatTk(1) lies inMatm×m(Z), which we write more formally as a (ring) injec-

tion

ι : Tk(N) →֒ Matm×m(Z).

Recall thatC is a flatZ-module, hence, tensoring withC overZ preserves injections, yielding

id⊗ ι : C⊗Z Tk(N) →֒ C⊗Z Matm×m(Z) ∼= Matm×m(C),

where the last isomorphism can be seen asC⊗Z (Z⊕Z⊕Z⊕Z) ∼= (C⊗Z Z)⊕ (C⊗Z Z)⊕ (C⊗Z

Z)⊕ (C⊗Z Z) ∼= C⊕ C⊕ C⊕ C. The image ofid⊗ ι lies inHk(N) and contains allTm, whence

the image isHk(N), proving the isomorphismC⊗Z Tk ∼= Hk(N).

It follows immediately thatTk(N) is a freeZ-module of rank equal to the dimension ofHk(N).
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Appendix: Proof in level 1 using Eisenstein series

The input to this proof are the following standard facts from modular forms courses:

Lemma 2.8. (a) The Eisenstein seriesE4 ∈M4(1) andE6 ∈M6(1) have a Fourier expansion with

integral coefficients and0-th coefficient equal to1. Ramanujan’s∆ ∈M12(1) is a cusp form with

integral Fourier expansion and1-st coeffient equal to1.

(b) Letf ∈ Mk(N) be a modular form with an integral Fourier expansion. ThenTn(f) also has an

integral Fourier expansion.

(c) For anyk, we haveMk+12 = ∆ ·Mk ⊕ CEα
4E

β
6 , whereα, β ∈ N0 are any elements such that

k+12 = 4α+6β (which always exist sincek is even – otherwise we’re dealing with the0-space).

This can be used to construct a Victor-Miller basis ofMk(1) (say, its dimension isn), that is any

basis of theC-vector spaceMk(1) consisting of modular formsf0, f2, . . . , fn−1 with integral Fourier

coefficients such that

ai(fj) = δi,j

for all 0 ≤ i, j ≤ n− 1.

How to construct such a basis? We do it inductively. Fork = 4, 6, 8, 10, 14 the existence is

obvious, since the spaceMk(1) is 1-dimensional and the Eisenstein series does the job. Fork = 12,

we start withE2
6 = 1 − 1008q + . . . and∆ = q + . . . , so that we can takef0 = E2

6 + 1008∆ and

f1 = ∆.

Suppose now that we have a Victor-Miller basisf0, . . . , fn−1 of Mk(N). Fori = 0, . . . , n−1, let

gi+1 := ∆fi andg0 := Eα
4E

β
6 . This is not a Victor-Miller basis, in general, but can be made into one.

Note first thatai(gi) = 1 for all 0 ≤ i ≤ n and thataj(gi) = 0 for all 0 ≤ i ≤ n and all0 ≤ j < i.

Graphically, it looks like this:

g0 = 1+ •q+ •q2 + . . . . . .+ •qn−1+ •qn

g1 = q+ •q2 + . . . . . .+ •qn−1+ •qn

g2 = q2 + . . . . . .+ •qn−1+ •qn

...

gn−1 = qn−1+ •qn

gn = qn

I think that it is now obvious how to make this basis into a Victor-Miller one.

Proposition 2.9. Let {f0, . . . , fn−1} be a Victor-Miller basis ofMk(1). Then the Hecke operators

Tm, written as matrices with respect to the Victor-Miller basis, have integral entries.
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Proof. In order to write down the matrix, we must determineTmfi for all 0 ≤ i ≤ n− 1 in terms of

the basis. But, this is trivial: If

Tmfi = ai,0 + ai,1q + ai,2q
2 + · · ·+ ai,n−1q

n−1 + . . . ,

thenTmfi =
∑n−1

j=0 ai,jfj , so theai,j are just the entries of the matrix. They are integral, asTmfi has

integral Fourier coefficients (using here that all thefi do).

3 Integral structures on modular forms

In this section we are going to use the statements derived from the Key Corollary to deduce from the

integral structure on the Hecke algebras the promised integral structure on modular forms.

We first recall the important isomorphism

Φ : Mk(N)→ HomC(Hk(N),C), f 7→ (Tn 7→ a1(Tnf) = an(f)).

Its inverse is the following

Ψ : HomC(Hk(N),C)→Mk(N), ϕ 7→ a0(ϕ) +
∞
∑

n=1

ϕ(Tn)e
2πiz.

Here,a0(ϕ) is uniquely determined, but, I do not know of a simple way to write down what it actually

is (except forN = 1).

Corollary 3.1. (a) Tk(N) is a Z-algebra that is finite and free as aZ-module ofZ-rank equal to

dimCMk(N).

(b) We have isomorphisms ofC-vector spaces (we will also call itΨ)

HomZ(Tk(N),C) ∼= HomC(Hk(N),C)
ψ
∼= Mk(N).

(c) Under the isomorphism from (b), the ring homomorphismsTk(N)→ C correspond bijectively to

the normalised Hecke eigenforms.

Proof. All three statements become immediately clear if one chooses some identification ofTk(N)

with Zr, wherer is theZ-rank ofTk(N), which by the integral structure and the duality between

Hecke algebras and modular forms is equal to theC-dimension ofMk(N).

Very explicitly, we now have theC-linear isomorphism

HomZ(Tk(N),C)→Mk(N), f 7→ (Tn 7→ a1(Tnf) = an(f)).

Definition 3.2. LetR be any ring. We let

Mk(N)(R) := HomZ(Tk(N), R)

and call this themodular forms of weightk and levelN with coefficients inR.
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In particular,Mk(N)(Z) is the subset ofMk(N) consisting of suchf such that allan(f) are

integers for alln ≥ 1. Note, however, thata0(f) may nevertheless not be an integer (see, for instance,

the slightly differently normalised Eisenstein series2k
Bk

Ek = 2k
Bk

+
∑∞

n=1 σk−1(n)e
2πinz (it actually

is a normalised eigenform in the sense that we defined above).

Lemma 3.3. LetR→ S be a ring homomorphism. Then we have

S ⊗R Mk(N)(R) ∼= Mk(N)(S).

Proof. S ⊗R Mk(N)(R) = S ⊗R HomZ(Tk(N), R) ∼= HomZ(Tk(N), S) ∼= Mk(N)(S).

In particular, we have

C⊗Z Mk(N)(Z) = Mk(N)(C) ∼= Mk(N),

where the final isomorphism comes from the above corollary.

4 Coefficients of normalised Hecke eigenforms

Let us recall from the previous section that we have the isomorphism

Φ : Mk(N)→Mk(N)(C) = HomZ(Tk(N),C),

given by sendingf to the map defined byTn 7→ a1(Tnf) = an(f). Recall further that we showed in

Corollary 1.4 that under this isomorphism normalised Hecke eigenforms correspond bijectively to the

ring homomorphisms inHomC(Hk(N),C) ∼= HomC(C⊗Z Tk(N),C) ∼= HomZ(Tk(N),C).

Let nowf ∈ Mk(N) be a normalised Hecke eigenform and considerϕ := Φ(f), which is thus a

ring homomorphism

ϕ : Tk(N)→ C.

Its kernelker(ϕ) is a prime ideal ofTk(N) (since factoring it out yields a subring ofC and thus an

integral domain). The image ofϕ is the smallest subring ofC containing allϕ(Tn) = an(f), i.e.

im(ϕ) = Z[an(f) | n ∈ N] =: Zf . Its field of fractions is denoted byQf and called thecoefficient

field off . It is explicitly given asQ(an(f) | n ∈ N).

Now we use thatTk(N) is of finiteZ-rank. Then, of course, so isTk(N)/ ker(ϕ) ∼= Zf . Con-

sequently, alsoQf is of finite Q-dimension. That means thatQf is a number field andZf is an

order in it. This is a highly non-trivial result! Recall thatQf is generated overQ by infinitely many

numbers, namely, thean(f); nevertheless, all of them are contained in a finite extensions! This is a

consequence of the existence of the integral structure (on Hecke algebras:C ⊗Z Tk(N) ∼= Hk(N),

which we derived from the Eichler-Shimura isomorphism).

Moreover, asZf is of finite Z-rank, every element ofZf is integral overZ, i.e. analgebraic

integer. By definition an elementx ∈ C is an algebraic integer if there is a nonzero monic (leading

coefficient equal to1 – if we leave out this assumption, then we only finite algebraic numbers and not
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algebraic integers) polynomialq ∈ Z[X] such thatq(x) = 0. For later use, we denote the set of all

algebraic integers byZ and the set of all algebraic numbers byQ (which is also the algebraic closure

of Q insideC).

Let us summarise:

Corollary 4.1. Letf ∈Mk(N) be a normalised Hecke eigenform. Then its Fourier coefficientsan(f)

for n ∈ N are algebraic integers. Moreover,Zf is an order in the number fieldQf .

5 Background on Galois theory

Let L/K be a field extension, that is,L is a field andK is a subfield ofL. By restricting the multi-

plication mapL× L → L to K × L → L, we obtain aK-scalar multiplication onL, makingL into

aK-vector space. Thedegreeof the field extensionL/K is theK-dimension ofL, notation:

[L : K] := dimK L.

A field extension is calledfinite if its degree is finite.

Let us look at some examples:

(a) C/R is a field extension of degree2 and anR-basis ofC is given by1 andi.

(b) Fpn/Fp is a field extension of degreen.

(c) C/Q is a field extension of infinite (even uncountable) degree.

(d) Fp/Fp is an infinite field extension.

Here I take a shortcut and deviate from the standard definition of Galois extensions, by giving the

following equivalent one: We denote byAutK(L) the group of field automorphismsσ : L→ L such

that their restriction toK is the identity (note that any field homomorphism is automatically injective).

Let us first assume that[L : K] <∞. Then one can show that one always has:

#AutK(L) ≤ [L : K].

(This is not so difficult to show: One can always writeL = K[X]/(f), wheref is an irreducible

polynomial of degree[L : K]. Let us fix one rootα (in K) of f . Then every field automorphism

L → L is uniquely determined by the image ofα. But, this image must be another root off , hence,

there are at most[L : K] different choices, proving the claim.)

A finite field extensionL/K is calledGalois if we actually have equality, i.e.

#AutK(L) = [L : K].

In that case we writeGal(L/K) := AutK(L) and call this theGalois group ofL/K.

We again look at some examples:
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(a) C/R is Galois and its Galois group has order2 and consists of the identity and complex conjuga-

tion.

(b) Fpn/Fp: Since we are in characteristicp, theFrobeniusmapFrobp : x 7→ xp is a field automorph-

ism ofFpn (the point is that it is additive! That clearly fails overC, for instance). Using thatF×
pn

is a cyclic group of orderpn − 1, one immediately gets thatxp
n

= x in Fpn . This shows that

(Frobp)
n is the identity. But, it also shows that there isx ∈ Fpn such that(Frobp)i(x) = xp

i

6= x

for all i = 1, . . . , n− 1. This shows thatFrobp has ordern. Consequently, we have foundn field

automorphisms, namely, the powers ofFrobp. Thus,Fpn/Fp is a Galois extension and its Galois

group is cyclic of ordern generated byFrobp.

(c) Let ζ be a primitiveℓn-th root of unity insideQ (whereℓ is a prime number). Explicitly, we can

takeζ = e2πi/ℓ
n

. We consider the field extensionQ(ζ)/Q. HereQ(ζ) is the smallest subfield

of C containingQ andζ. It is not so difficult to show that one has

[Q(ζ) : Q] = ϕ(ℓn) = (ℓ− 1)ℓn−1.

Let σ ∈ AutQ(Q(ζ)). Then we have

1 = σ(1) = σ(ζℓ
n

) = (σ(ζ))ℓ
n

,

showing thatσ(ζ) is anotherℓn-th root of1. As σ is invertible,σ(ζ) must also be primitive (i.e.

have orderℓn). This means that there is an elementχℓn(σ) ∈ (Z/(ℓn))× such thatσ(ζ) = ζχℓn (σ)

(the complicated notation becomes clear below). Let us write this as a map:

χℓn : AutQ(Q(ζ))→ (Z/(ℓn))×.

Note that this map is surjective (for anyi ∈ (Z/(ℓn))× define a field automorphism uniquely by

sendingζ to ζi). Thus,Q(ζ)/Q is also a Galois extension. In fact, it is trivially checked that

χℓn is a group homomorphism. Thus,χℓn is a group isomorphism between the Galois group of

Q(ζ)/Q and(Z/(ℓn))×.

We still have to mention the case of infiniteL/K. Also, here I take a shortcut and give a non-

standard but equivalent definition. A (possibly infinite degree) field extensionL/K is Galois if L is

the union of all finite Galois subextensionsM/K, i.e.

L =
⋃

K⊆M⊆L, M/K finite Galois

M.

In that case, we also writeGal(L/K) := AutK(L). In fact, one has

Gal(L/K) = lim←−
K⊆M⊆L, M/K finite Galois

Gal(M/K).

Then,Gal(L/K) is in fact a topological group, more precisely, it is a profinite group. A topological

group is calledprofinite if it is compact, Hausdorff and totally disconnected (that is, the connected

component containing somex is equal to{x}). We must always keep this topology in mind!
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As an example we now look atFp/Fp. We clearly have

Fp =
⋃

n∈N

Fpn ,

since any element inFp is contained in some finite extensionFpn . Hence, this is a Galois extension (in

fact, for any fieldF the extensionF/F , whereF is an algebraic closure ofF , is a Galois extension,

by the properties of an algebraic closure). We thus have

Gal(Fp/Fp) = lim←−
n∈N

Gal(Fpn/Fp) ∼= lim←−
n∈N

Z/(n) =: Ẑ = 〈Frobp〉top. gp..

This means that the Galois group is a pro-cyclic group (by definition, this is theprojective limit of

cyclic groups), and, equivalently, that it is topologically generated by a single element, namely the

Frobenius.

6 Background on theℓ-adic numbers

Recall from your Analysis class thatR is the completion ofQ with respect to the usual absolute value:

it can be defined as the quotient of all Cauchy sequences modulo those sequences that tend to0. In

this way, one ‘adds’ toQ all the ‘limits’ of all Cauchy sequences.

There is nothing that prevents one to make the same construction for anotherabsolute value. It

may seem astonishing that there are other (signifiacantly different) absolute values than the usual one:

Let ℓ be a prime number. Fora ∈ Z, write a = ℓra′ with gcd(a′, ℓ) = 1, let

|a|ℓ := ℓ−r;

and for ab ∈ Q, let

|
a

b
|ℓ :=

|a|ℓ
|b|ℓ

.

One easily checks that this definition satisfies all properties of an absolute value onQ.

The completion ofQ with respect to| · |ℓ is called the field ofℓ-adic numbersand denoted asQℓ.

For us, the following subring is important:

Zℓ := {x ∈ Qℓ | |x|ℓ ≤ 1}.

There are more explicit ways of seeingQℓ andZℓ, for instance, in terms ofℓ-adic expansions. I am

not going into that here (see, for instance, the wikipedia page). But, I want to mention the following

abstract alternative:

Zℓ = lim←−
n∈N

Z/(ℓn).

ThenQℓ is the field of fractions ofZℓ.
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7 Background on Galois representations

LetK be a (topological) field andF/Q a number field. A continous group homomorphism

ρ : Gal(Q/Q)→ GLn(K)

is called ann-dimensional Galois representation. More precisely, if

• K = C, thenρ is called anArtin representation,

• K/Qℓ, thenρ is called anℓ-adic Galois representation,

• K/Fℓ, thenρ is called a(residual) modℓ Galois representation. In this case,K is equipped

with the discrete topology.

Proposition 7.1. (a) Any Artin and any mod-ℓ Galois representation has a finite image.

(b) LetK/Qℓ be a finite extension. Anyρ : Gal(F/F ) → GLn(K) is equivalent (i.e. conjugate) to

a representation of the formGal(F/F )→ GLn(OK), whereOK is the valuation ring ofK (i.e.

the integral closure ofZℓ in K, sometimes also called the ring of integers ofK). Consequently,

by composing withOK ։ OK/(πK) ∼= Fℓd , whereπK is a uniformiser ofOK (for somed ∈ N),

we obtain a modℓ Galois representation

ρ : Gal(F/F )→ GLn(Fℓd),

called theresidual representation ofρ.

Proof. (a) The image of the compact groupGal(F/F ) under the continuous mapρ is compact. As

it is also discrete (that’s trivial for modℓ representations, for Artin representations one has to work a

bit), it is finite.

(b) For short, we writeO := OK andG := Gal(F/F ). Define

U := {g ∈ G | ρ(g)On ⊆ On}.

It is clearly a subgroup ofG. We want to show that it is open.

For i = 1, . . . , n consider the mapαi : G → Kn given byg 7→ ρ(g)ei, whereei is the i-th

standard basis vector. By the continuity ofρ, theαi are continuous maps. Note thatα−1
i (On) is

the set ofg ∈ G such that thei-th column ofρ(g) has entries lying inO (instead of only inK).

Consequently, we find

U =
n
⋂

i=1

α−1
i (On),

which is clearly open as the intersection of finitely many open sets.
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SinceU ≤ G is an open subgroup andG is compact, the index ofU in G is finite. LetG =
⊔m
i=1 giU be a coset decomposition. ThenL :=

∑m
i=1 ρ(gi)O

n ⊂ Kn is a finitely generatedO-

submodule such that itsK-span is all ofKn (in other words,L is anO-lattice inK). The point about

L is that it is stable under theG-action, i.e.ρ factors as

ρ : G→ AutO(L) ⊂ AutK(Kn) ∼= GLn(K).

Choosing anyO-basis ofL, we identifyAutO(L) with GLn(O), finishing the proof.

The residual representation defined in (b) above depends on the choice of lattice! But, if we

take the semi-simplification of the residual representation, then the Brauer-Nesbitt theorem implies

that there is no such dependence (Reason: The Brauer-Nesbitt theorem states that a semi-simple

representation is uniquely (up to isomorphism) determined by its character, which is just the modπK
reduction of the character ofρ.).

From now on we takeF = Q for simplicity. We now give a very important example in dimen-

sion1: theℓ-adic cyclotomic character. Recall from above that we found the group isomorphism:

χℓn : Gal(Q(ζ)/Q) = AutQ(Q(ζ))→ (Z/(ℓn))×.

Let us rewrite this, using the group surjectionGal(Q/Q)→ Gal(Q(ζ)/Q):

χℓn : Gal(Q/Q)→ GL1(Z/(ℓ
n)).

We can now take the projective limit to obtain theℓ-adic cyclotomic character

χℓ : Gal(Q/Q)→ Z×
ℓ
∼= GL1(Zℓ).

Recall that the construction ofQℓ was very analogous to the construction ofR. This leads us to

consider the Galois extensionsC/R andQp/Qp in as analogous a way as possible. We start with the

first one, which is easier.

Recall thatGal(C/R) is a group of order2 consisting of the identity and complex conjugaction,

denoted byc. By restricting these elements toQ (note that the complex conjugate of an algebraic

number is another algebraic number), we obtain an injection

Gal(C/R) →֒ Gal(Q/Q).

We will still denote the image of complex conjugation inGal(Q/Q) by c.

A 2-dimensional Galois representation

ρ : Gal(Q/Q)→ GL2(K)

is calledodd if det(ρ(c)) = −1.

I should point out that there is actually a choice that we made: we seeQ insideC in the ‘natural

way’. But, there are infinitely many other embeddings ofQ into C and we could have restricted toQ
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via these embeddings. This would have led to a conjugate embedding ofGal(C/R) → Gal(Q/Q).

But, as the determinant is independent of conjugation, the notion of oddness does not depend on any

choice!

Now we proceed analogously withQp/Qp. We choose an embeddingQ →֒ Qp. Restricting field

automorphisms toQ via this embedding we obtain as above an embedding

Gal(Qp/Qp) →֒ Gal(Q/Q).

Another embedding ofQ into Qp would have led to a conjugate embedding of the Galois group. We

must always keep this in mind!

WhereasGal(C/R) is a very simple group (order2), the groupGal(Qp/Qp) is much more com-

plicated (it is uncountable). It turns out to be very useful to identify a certain normal subgroup in it, the

inertia group, which we define now. It is not so difficult to show that one can let anyσ ∈ Gal(Qp/Qp)

act onFp (sinceσ respectsZp, that is, the elements that are integral overZp, we can letσ act onFp
by reduction modulop, by which I mean the image of a fixed ring surjectionZp ։ Fp), and that the

resulting group homomorphismGal(Qp/Qp)→ Gal(Fp/Fp) is surjective. We letIp be the kernel of

this homomorphism; this is theinertia group atp.

We say that a Galois representationρ : Gal(Q/Q) → GLn(K) is unramified atp if Ip is in its

kernel.

Recall thatGal(Fp/Fp) is topologically generated by the FrobeniusFrobp. Let F̃robp be any

preimage ofFrobp in Gal(Qp/Qp). If ρ is unramified atp, thenρ(F̃robp) does not depend on the

choice of preimage and we simple writeρ(Frobp) (note that this expression does not make sense at

all if ρ is not unramified atp).

Now recall further that the embedding ofGal(Qp/Qp) into Gal(Q/Q) is only well-defined up to

conjugation. Hence, one must be very careful when speaking aboutFrobp as an element ofGal(Q/Q).

It would be much better to only speak of its conjugacy class. However, the important role is actually

played by the characteristic polynomial ofρ(Frobp), which by linear algebra only depends on the

conjugacy class. Hence, and this is the conclusion to remember from this discussion, one can without

any ambiguity speak of the characteristic polynomial ofρ(Frobp) for any primep at which ρ is

unramified.

8 The Galois representation attached to a modular form

In this section, I only state the main theorem about Galois representations attached to modular forms

and try to illustrate its significance in a toy example. For every primeℓ we fix an embeddingQ →֒ Qℓ.

Theorem 8.1 (Eichler, Shimura, Igusa, Deligne, Serre). Let f ∈ Sk(N) be a normalised Hecke

eigenform (k ≥ 1). Then for every prime numberℓ there is an irreducible Galois representation

ρf,ℓ : Gal(Q/Q)→ GL2(Qℓ)

such that
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• ρf,ℓ is unramified at all primesp ∤ Nℓ and

• the characteristic polynomial ofρf,ℓ(Frobp) for anyp ∤ Nℓ is equal to

X2 − ap(f)X + pk−1 ∈ Qℓ[X],

whereap(f) ∈ Q is considered insideQℓ via the fixed embedding.

The content of the theorem is the deep arithmetic meaning of the Fourier coefficients of a Hecke

eigenform which was alluded to in the beginning of this lecture series. The coefficientap knows about

the Frobenius atp! This may sound very abstract and it might not at all be evident why this is number

theory. So, I just want to give a very brief sketch of a toy example.

Question: LetQ ∈ Z[X] be a polynomial. How does this polynomial factor modulop?

Let us first look atQ(X) = X2 + 1. Of course, it quickly turn out thatQ has two distinct factors

modulop if and only if p ≡ 1 (mod 4). If p ≡ 3 (mod 4), the polynomial remains irreducible

modulop, andp = 2 plays a special role (a double factor:X2 + 1 ≡ (X + 1)2 (mod 2)).

Now, take a more complicated example (still a toy one!!):Q(X) = X6 − 6X4 + 9X2 + 23.

Compute factorisations modulop for some smallp with the computer and try to find a pattern! It

won’t be easy at all (I’d be astonished if you found one without reading on)! But, there is one: There

is a unique Hecke eigenformf in S1(23)(F7) (this is with a certain quadratic Dirichlet character);

you can also see it in weight7 or in weight2 for level7 · 23. The pattern is the following. Letp be a

prime. Then (with finitely many exceptions):

• Q has 2 factors modulop⇔ ap(f) = 6.

• Q has 3 factors modulop⇔ ap(f) = 0.

• Q has 6 factors modulop⇔ ap(f) = 2.

This comes from the attached Galois representationρ : Gal(Q/Q) → GL2(F7). There are only

the following matrices in the image ofρ:

( 1 0
0 1 ) , ( 2 0

0 4 ) , ( 4 0
0 2 ) , ( 0 1

1 0 ) , ( 0 2
4 0 ) , ( 0 4

2 0 ) .

The first one has order1 and trace2, the second and third have order3 and trace6, and the final ones

have order2 and trace0.

The polynomialQ is Galois overQ. For a givenp, ρ(Frobp) must be one of these matrices. If

the trace is2, thenρ(Frobp) must be the identity and thus have order1. That means thatQ factors

completely modulop (there’s a small issue with primes dividing the index of the equation order

generated byQ in the maximal order – these primes are next to7 and23 the finitely many exceptions

mentioned above). If the trace is0, then the order has to be2, leading to a factorisation ofQ into three

fractors modulop. In the remaining case the trace is6 and the order is3, so thatQ has three factors

modulop.
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9 Galois representations and Hecke algebras of weight one

The last part of my lecture was devoted to my preprintOn Galois Representations of Weight One,

which can be found on arXiv. There is no need to reproduce it here.
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