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Abstract

This is a sketch of the content of my three lectures during thePhD SchoolModular Galois

Representations Modulo Prime Powers, held in Copenhagen from 6/12/2011 until 9/12/2011,

organised by Ian Kiming. Thanks Ian!

1 Modular Forms Modulo Prime Powers

Modular forms, in their classical appearance (19th century! Eisenstein,Weierstraß, Jacobi, Poincaré,

etc.) and in the way one usually gets to know them during one’s studies, are objects of Complex

Analysis: holomorphic functions satisfying a certain transformation rule. Many have an evident num-

ber theoretic significance (they were studied because of this!), like then-th Fourier coefficient of the

Eisenstein seriesEk beingσk−1(n) =
∑

0<d|n d
k−1. But, it is a highly non-trivial step to ‘transport’

modular forms from Analysis to Algebra, i.e. to identify an algebraic structure, or, even stronger, an

integral structure, on the complex vector space of modular forms. This wasachieved by Hecke, Eich-

ler and Shimura. Without that we would not be able to do anything of what we are doing this week,

and it is probably fair to say that without that Fermat’s last theorem would not have been proved. So,

this first lecture is mainly concerned with integral structures on modular forms. Finally, it will be used

to introduce modular forms modulo prime powers, as an application.

A reference where most of the content of this lecture is worked out are mylecture notes [4].

1.1 Hecke algebras and generalq-expansions

Definition 1.1. LetMk(N) be theC-vector space of modular forms of weightk and levelN (either

Γ1(N) or Γ0(N) – doesn’t matter for us). BySk(N) we denote the cuspidal subspace.

LetHk(N) be theC-subalgebra ofEndC(Mk(N)) generated (asC-algebra) by the Hecke oper-

atorsTn for n ∈ N.

Let Tk(N) be the subring ofEndC(Mk(N)) generated (as a ring, i.e. as aZ-algebra) by the

Hecke operatorsTn for n ∈ N.

BothHk(N) andTk(N) are calledHecke algebra of weightk and levelN .
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It is well-known that the Hecke algebraHk(N) (and thus alsoTk(N)) is commutative. As it

is commutative, inMk(N) there are modular forms that are eigenvectors for all Hecke operators

Tn: These are called(Hecke) eigenforms. Let f =
∑∞

n=0 an(f)qn be such an eigenform (we write

q = q(z) = e2πiz). We say that it isnormalisedif a1(f) = 1.

One can compute directly that the level one Eisenstein seriesEk are Hecke eigenforms (for allk).

One also trivially gets an eigenform if the space of modular (cuspidal) formsis 1-dimensional. This

proves that the Ramanujan∆ ∈ S12(1) is a Hecke eigenform.

The following simple lemma, which is a direct consequence of the description ofHecke operators

on Fourier expansions of modular forms, turns out to be the key to everything that follows.

Lemma 1.2. Supposef =
∑∞

n=0 an(f)qn ∈ Mk(N) be a modular form of weightk and levelN .

Then for alln ≥ 1 we havea1(Tnf) = an(f).

We now define a bilinear pairing, which I call the(complex)q-pairing, as

Mk(N) ×Hk(N) → C, (f, T ) 7→ a1(Tf).

Proposition 1.3. Supposek ≥ 1. The complexq-pairing is non-degenerate. In particular, we have

the isomorphism

Φ : Mk(N) ∼= HomC(Hk(N),C), f 7→ Φ(f), whereΦ(f)(T ) = a1(Tf).

It is useful to point out thatΦ(f) mapsTn to a1(Tnf) = an(f).

The inverseΨ of Φ is given byφ 7→ a0 +
∑∞

n=1 φ(Tn)qn, wherea0 is a uniquely defined complex

number.

Proof. This follows from Lemma 1.2 like this. If for alln we have0 = a1(Tnf) = an(f), then

f = 0 (this is immediately clear for cusp forms; for general modular forms at the first place we

can only conclude thatf is a constant, but sincek ≥ 1, non-zero constants are not modular forms).

Conversely, ifa1(Tf) = 0 for all f , thena1(T (Tnf)) = a1(TnTf) = an(Tf) = 0 for all f and all

n, whenceTf = 0 for all f . As the Hecke algebra is defined as a subring in the endomorphism of

Mk(N), we findT = 0, proving the non-degeneracy.

Letφ ∈ HomC(Hk(N),C). It is obvious thatΨ(φ) is a modular formf such thatan(f) = φ(Tn)

for all n ≥ 1. Note that the coefficientsan(f) for n ≥ 1 uniquely determinea0(f), as the difference

of two forms having the samean(f) for n ≥ 1 would be a constant modular form of the same weight

and so is the0-function by the assumptionk > 0. However, I do not know a general formula how to

write downa0(f) (but, it can be computed in all cases).

The perfectness of theq-pairing is also called theexistence of aq-expansion principle.

The Hecke algebra is the linear dual of the space of modular forms.
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So, from the knowledge of the Hecke algebra we can recover the modular forms via theirq-

expansions as theC-linear mapsHk(N) → C. It is this point of view that will generalise well!

But, more is true: We can identify normalised eigenforms as theC-algebra homomorphisms

among theHk(N) → C:

Corollary 1.4. Letf in Mk(N) be a normalised eigenform. Then

Tnf = an(f)f for all n ∈ N.

Moreover,Φ from Proposition 1.3 gives a bijection

{Normalised eigenforms inMk(N)} ↔ HomC−alg(Hk(N),C).

Proof. Let λn be the eigenvalue ofTn on a normalised eigenformf . Then:

an(f) = a1(Tnf) = a1(λnf) = λna1(f) = λn,

proving the first statement. Furthermore:

Φ(f)(TnTm) = a1(TnTmf) = a1(Tnam(f)f) = am(f)an(f) = Φ(f)(Tn)Φ(f)(Tm),

as well as (using thatT1 is the identity ofHk(N)):

Φ(f)(T1) = a1(f) = 1.

This proves thatΦ(f) is a ring homomorphism (note that it suffices to check the multiplicativity on a

set of generators – given the additivity).

Conversely, ifΦ(f) is a ring homomorphism, then

an(Tf) = Φ(Tf)(Tn) = a1(TTnf) = Φ(f)(TTn) = Φ(f)(T )Φ(f)(Tn) = Φ(f)(T )an(f)

for all n ≥ 1 showing thatTf = λf with λ = Φ(f)(T ) (note that we again have to worry about the

0-th coefficient, but, as before, it suffices that the other coefficients agree to conclude that the0-th one

does as well).

1.2 Existence of integral structures on Hecke algebras

Note that by definitionTk(N) is a subring ofHk(N). The main point is to see thatTk(N) is an

integral structure ofHk(N). We first prove this in the level1 case, which requires least machinery.

Then, we prove it in general by citing the Eichler-Shimura theorem, as well as facts on modular

symbols.
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1.2.1 Proof in level1 using Eisenstein series

The input to this proof are the following standard facts from modular forms courses:

Lemma 1.5. (a) The Eisenstein seriesE4 ∈M4(1) andE6 ∈M6(1) have a Fourier expansion with

integral coefficients and0-th coefficient equal to1. Ramanujan’s∆ ∈M12(1) is a cusp form with

integral Fourier expansion and1-st coeffient equal to1.

(b) Letf ∈ Mk(N) be a modular form with an integral Fourier expansion. ThenTn(f) also has an

integral Fourier expansion.

(c) For anyk, we haveMk+12 = ∆ ·Mk ⊕ CEα
4E

β
6 , whereα, β ∈ N0 are any elements such that

k+12 = 4α+6β (which always exist sincek is even – otherwise we’re dealing with the0-space).

This can be used to construct a Victor-Miller basis ofMk(1) (say, its dimension isn), that is any

basis of theC-vector spaceMk(1) consisting of modular formsf0, f2, . . . , fn−1 with integral Fourier

coefficients such that

ai(fj) = δi,j

for all 0 ≤ i, j ≤ n− 1.

How to construct such a basis? We do it inductively. Fork = 4, 6, 8, 10, 14 the existence is

obvious, since the spaceMk(1) is 1-dimensional and the Eisenstein series does the job. Fork = 12,

we start withE2
6 = 1 − 1008q + . . . and∆ = q + . . . , so that we can takef0 = E2

6 + 1008∆ and

f1 = ∆.

Suppose now that we have a Victor-Miller basisf0, . . . , fn−1 ofMk(N). Fori = 0, . . . , n−1, let

gi+1 := ∆fi andg0 := Eα
4E

β
6 . This is not a Victor-Miller basis, in general, but can be made into one.

Note first thatai(gi) = 1 for all 0 ≤ i ≤ n and thataj(gi) = 0 for all 0 ≤ i ≤ n and all0 ≤ j < i.

Graphically, it looks like this:

g0 = 1+ •q+ •q2 + . . . . . .+ •qn−1+ •qn

g1 = q+ •q2 + . . . . . .+ •qn−1+ •qn

g2 = q2 + . . . . . .+ •qn−1+ •qn

...

gn−1 = qn−1+ •qn

gn = qn

I think that it is now obvious how to make this basis into a Victor-Miller one.

Proposition 1.6. Let {f0, . . . , fn−1} be a Victor-Miller basis ofMk(1). Then the Hecke operators

Tm, written as matrices with respect to the Victor-Miller basis, have integral entries.
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Proof. In order to write down the matrix, we must determineTmfi for all 0 ≤ i ≤ n− 1 in terms of

the basis. But, this is trivial: If

Tmfi = ai,0 + ai,1q + ai,2q
2 + · · · + ai,n−1q

n−1 + . . . ,

thenTmfi =
∑n−1

j=0 ai,jfj , so theai,j are just the entries of the matrix. They are integral, asTmfi has

integral Fourier coefficients (using here that all thefi do).

Now we draw our conclusions:

Corollary 1.7. The natural mapC ⊗Z Tk(1) → Hk(1) is an isomorphism. In particular,Tk(1) is

free asZ-module (i.e. abelian group) of rank equal to theC-dimension ofHk(1).

We say thatTk(1) is an integral structure inHk(1).

Proof. Let us identifyEndC(Mk(1)) with Matn(C) (with n the dimension ofMk(1)) by writing

down the Hecke operators with respect to a Victor-Miller basis.

By Proposition 1.6, we have thatTk(1) lies in Matn(Z). Let us write this more formally as a

(ring) injection

ι : Tk(1) →֒ Matn(Z).

Recall thatC is a flatZ-module, hence, tensoring withC overZ preserves injections, yielding

id ⊗ ι : C ⊗Z Tk →֒ C ⊗Z Matn(Z) ∼= Matn(C),

where the last isomorphism can be seen asC⊗Z (Z⊕Z⊕Z⊕Z) ∼= (C⊗Z Z)⊕ (C⊗Z Z)⊕ (C⊗Z

Z) ⊕ (C ⊗Z Z) ∼= C ⊕ C ⊕ C ⊕ C. The image ofid ⊗ ι lies inHk(1) and contains allTm, whence

the image isHk(1), proving the isomorphismC ⊗Z Tk
∼= Hk(1).

It follows immediately thatTk(1) is a freeZ-module of rank equal to the dimension ofHk(1).

What happened? The only non-trivial thing we used is that we could write down our Hecke

operators as matrices with integral entries. For higher levels this also works, but, I do not know of a

proof as easy as this one. We’ll derive it from the Eichler-Shimura isomorphism.

1.2.2 General proof using Eichler-Shimura

In the level1 situation we obtained Hecke operators with integral matrix entries by proving the exis-

tence of a ‘good basis’ consisting of modular forms with integral Fourier coefficients and exploiting

the fact that Hecke operators preserve the subset of modular forms withintegral Fourier coefficients.

In the general level case, it is easier to obtain an integral structure not inthe space of modular forms

directly, but, in an otherC-vector space, a certain group cohomology space (or, a modular symbols

space – see below).

We do not define group cohomology here. An account is given in my lecture notes [4].

The groupSL2(Z) acts on a polynomialf(X,Y ) (in two variables) from the left as follows:

( (
a b
c d

)
f
)
(X,Y ) := f

(
(X,Y )

(
a b
c d

) )
= f(aX + cY, bX + dY ).
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By R[X,Y ]k−2 we denote theR-module of polynomials in two variables which are homogeneous of

degreek − 2 (for k ≥ 2) with coefficients in any commutative ringR. It is possible to define Hecke

operatorsTn for n ∈ N on the group cohomology spaceH1(Γ1(N), R[X,Y ]k−2) (also forΓ0(N))

and on the parabolic subspaceH1
par(Γ1(N), R[X,Y ]k−2).

Theorem 1.8(Eichler-Shimura). Letk ≥ 2. Then there are natural isomorphisms

Mk(N) ⊕ Sk(N) ∼= H1(Γ,C[X,Y ]k−2)

and

Sk(N) ⊕ Sk(N) ∼= H1
par(Γ,C[X,Y ]k−2),

which are compatible with the Hecke operators, whereΓ is Γ1(N) or Γ0(N) (just as before).

The ‘natural isomorphism’ is actually given by integration (not so difficult!). The lecture notes [4]

contain a description and a proof (which is probably not the most elegant one).

Corollary 1.9. The Hecke algebraHk(N) (resp.Tk(N)) is isomorphic to theC-subalgebra (resp.

the subring) ofEndC(H1(Γ,C[X,Y ]k−2)) generated byTn for n ∈ N.

Proof. A Hecke operator onMk(N) ⊕ Sk(N) can be written as a block matrix(T, T ′) whereT ′ is

the restriction ofT toSk(N). Sending(T, T ′) to T defines a homomorphism from the Hecke algebra

onH1(Γ,C[X,Y ]k−2) to the one onMk(N), which is clearly surjective as all generators (theTn) are

hit. It is injective, because ifT is zero, then so isT ′.

From the standard resolution for definining group cohomology it is very easy to deduce that

H1(Γ,Z[X,Y ]k−2)free is an integral structure ofH1(Γ,C[X,Y ]k−2) in the sense that it is a subgroup

and

C ⊗Z H1(Γ,Z[X,Y ]k−2)free ∼= H1(Γ,C[X,Y ]k−2).

If M is any finitely generatedZ-module, then it is the direct sum of a freeZ-module and the torsion

submodule:M ∼= Mfree ⊕Mtorsion, whereMfree = M/Mtorsion. Note that the Hecke operators on

H1(Γ,Z[X,Y ]k−2) send torsion elements to torsion elements, and, thus give rise to Hecke operators

onH1(Γ,Z[X,Y ]k−2)free by modding out the torsion submodule.

Now, we can draw the same conclusion as in the level1 case: The Hecke operatorsTn can be

written as matrices with integral entries, hence,Tk(N) ≤ Matn(Z), wheren is theC-dimension of

H1(Γ,C[X,Y ]k−2), which is equal to theZ-rank ofH1(Γ,Z[X,Y ]k−2).

So, again by the flatness ofC asZ-module, we obtain, precisely as earlier:

Theorem 1.10(Shimura??). C ⊗Z Tk(N) ∼= Hk(N).

Note that our proof requiresk ≥ 2. For k = 1, I am not aware of a proof along the above

lines. However, it is known that the result of the theorem is true nevertheless. This one proves using

the algebraic geometric description of modular forms due to Katz, which is beyond the scope of this

lecture.
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1.2.3 General proof using modular symbols

Personally, I like group cohomology much better than modular symbols (at least, if one defines mod-

ular symbols in the way I am going to do in this section, namely, as an abstract formalism) because

working with group cohomology one has all the tools from that theory at one’s disposal.

However, modular symbols (the formalism) is precisely what is implemented in Magmaand Sage

(by William Stein, principally). Moreover, the definitions are so short that they easily fit into this

lecture (at least the typed version), whereas a good definition of groupcohomology doesn’t.

Recall that the projective line overQ can be seen asQ ∪ {∞} and that it carries the natural left

SL2(Z)-action by fractional linear combinations:
(

a b
c d

)
x
y = ax+by

cx+dy , where∞ is treated in the obvious

way, namely, as10 .

Definition 1.11. LetR be a commutative ring and writeΓ for Γ or Γ0(N), as well asV = R[X,Y ]k−2

for somek ≥ 2. We define theR-modules

MR := R[{α, β}|α, β ∈ P1(Q)]/〈{α, α}, {α, β} + {β, γ} + {γ, α}|α, β, γ ∈ P1(Q)〉

and

BR := R[P1(Q)].

We equip both with the natural leftΓ-action. Furthermore, we let

MR(V ) := MR ⊗R V and BR(V ) := BR ⊗R V

for the left diagonalΓ-action.

(a) We call theΓ-coinvariants

Mk(N ;R) := MR(V )Γ = MR(V )/〈(x− gx)|g ∈ Γ, x ∈ MR(V )〉

the space of modular symbols of levelN and weightk.

(b) We call theΓ-coinvariants

Bk(N ;R) := BR(V )Γ = BR(V )/〈(x− gx)|g ∈ Γ, x ∈ BR(V )〉

the space of boundary symbols of levelN and weightk.

(c) We define theboundary mapas the map

Mk(N ;R) → Bk(N ;R)

which is induced from the mapMR → BR sending{α, β} to {β} − {α}.

(d) The kernel of the boundary map is denoted byCMk(N ;R) and is calledthe space of cuspidal

modular symbols of levelN and weightk.
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We now give the definition of the Hecke operatorTℓ for a primeℓ on Γ0(N) (the definition on

Γ1(N) is slightly more involved). TheTn for compositen can be computed from those by the usual

formulae. A matrix
(

a b
c d

)
∈ Mat2(Z) with non-zero determinant acts onMk(N ;R) by the diagonal

action on the tensor product. Letx ∈ Mk(N ;R). We put

Tℓx =
∑

δ∈Rℓ

δ.x,

where

Rℓ := {
(

1 r
0 ℓ

)
|0 ≤ r ≤ ℓ− 1} ∪ {

(
ℓ 0
0 1

)
}, if ℓ ∤ N

Rℓ := {
(

1 r
0 ℓ

)
|0 ≤ r ≤ ℓ− 1}, if ℓ | N.

It is very easy to see thatMk(N ; Z)free = Mk(N ; Z)/Mk(N ; Z)torsion is an integral structure

in Mk(N ; C), so Hecke operators onMk(N ; C) can be written as matrices with integral entries.

Modular symbols (overC) describe the first homology ofΓ for the moduleC[X,Y ]k−2 (or the

first homology of the modular curveYΓ – this comes with a caveat because we must pay attention

whether we should not use compactly supported cohomology at some places; if we work withXΓ and

cuspidal modular symbols, everything is simpler). As homology and cohomology are dual to each

other (at least in good situations), we have:

Proposition 1.12. There is a non-degenerate pairing

H1(Γ,C[X,Y ]k−2) ×Mk(N ; C) → C.

It follows that the Hecke algebra onH1(Γ,C[X,Y ]k−2) is isomorphic to the one onMk(N ; C),

where the isomorphism is simply given by transposing the matrices (wrt. to a fixed basis, say, of

Mk(N ;R)) because the two spaces are dual to each other by the virtue of the pairing.

Consequently, we can again prove the isomorphismC ⊗Z Tk(N) ∼= Hk(N) by using the Hecke

operators onMk(N ; Z)free (which, of course, can be represented by matrices with integral entries),

again fork ≥ 2.

1.3 Exploiting integral structures on Hecke algebras

We are now exploiting consequences ofC ⊗Z Tk(N) ∼= Hk(N).

Corollary 1.13. (a) Tk(N) is a freeZ-module of rank equal to theC-dimension ofHk(N), which is

equal to theC-dimension ofMk(N) by Proposition 1.3.

(b) HomZ(Tk(N),C) ∼= HomC(Hk(N),C) ∼= Mk(N).

(c) TheZ-algebra homomorphisms inHomZ(Tk(N),C) correspond bijectively (under the mapping

of the previous item) to the normalised Hecke eigenforms ofMk(N).
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Proof. That the natural maps are isomorphisms is immediately clear if we writeTk(N) = Z ⊕ · · · ⊕

Z.

Now, we do not needHk(N) anymore. We will only work withTk(N).

The modular forms inMk(N) correspond to the group homomorphismsTk(N) → C.

The normalised eigenforms inMk(N) correspond to the ring homomorphismsTk(N) → C.

We include a short interlude on commutative algebra(s). Recall that a ring iscalled Artinian if

every descending ideal chain becomes stationary. This is the case forFp ⊗Z Tk(N) because it is a

finite dimensionalFp-vector space, so that ideals are subspaces, and, of course, chains of subspaces

thus have to become stationary for dimension reasons. For the same reason, alsoQ ⊗Z Tk(N) is

Artinian, butTk(N), of course, is not!

Proposition 1.14. LetR be an Artinian ring.

(a) Every prime ideal ofR is maximal.

(b) There are only finitely many maximal ideals inR.

(c) Letm be a maximal ideal ofR. It is the only maximal ideal containingm∞.

(d) Letm 6= n be two maximal ideals. For anyk ∈ N andk = ∞ the idealsmk andnk are coprime.

(e) The Jacobson radical
⋂

m∈Spec(R) m is equal to the nilradical and consists of the nilpotent ele-

ments.

(f) We have
⋂

m∈Spec(R) m∞ = (0).

(g) (Chinese Remainder Theorem) The natural map

R
a 7→(...,a+m∞,... )
−−−−−−−−−−−→

∏

m∈Spec(R)

R/m∞

is an isomorphism.

(h) For every maxmimal idealm, the ringR/m∞ is local with maximal idealm and is hence isomor-

phic toRm, the localisation ofR at m.

The Hecke algebraTk(N) satisfies the assumptions (and hence the conclusions) of the following

proposition.

Proposition 1.15. Let T be aZ-algebra which is free of finite rankr as aZ-module. LetTQ :=

Q ⊗Z T.

(a) Z ⊆ T is an integral ring extension.
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(b) T is equidimensional of Krull dimension1, meaning that every maximal idealm of T contains at

least one minimal prime idealp and there is no prime ideal strictly included betweenp andm.

(c) T/m is a finite field of degree at mostr over the prime field,T/p is an order in a number field of

degree at mostr overQ.

(d) TQ is an ArtinQ-algebra of dimensionr. As such it satisfies:TQ
∼=

∏
p�TQ prime(TQ)p (localisa-

tion atp).

(e) The embeddingι : T →֒ TQ induces a bijection (via preimages) between the (finitely many) prime

ideals ofTQ (which are all maximal) and the minimal prime ideals ofT. The inverse is given by

extension.

The proofs of the two propositions are not difficult. We will now exploit them for our purposes.

Let us writeTk(N)Q := Q ⊗Z Tk(N) (similarly to the use in the previous proposition).

We now consider ring homomorphismsf : Tk(N) → C in more detail.

Proposition 1.16. Letf : Tk(N) → C be a ring homomorphism and letpf be its kernel.

(a) pf is a minimal prime ideal ofTk(N).

(b) The image off is an orderZf (thecoefficient ring off ) in a number fieldQf (thecoefficient field

of f ), which can be explicitly described asZf = Z[f(Tn) | n ≥ 1] andQf = Q(f(Tn) | n ≥ 1).

Moreover,[Qf : Q] ≤ dimCMk(N).

(c) f : Tk(N) → C extends to aQ-linear mapTk(N)Q → C, whose kernel is the maximal

ideal which is the extension ofpf (in accordance to the correspondence in Proposition 1.15).

Conversely, everyf : Tk(N) → C arises by restriction from aQ-algebra homomorphism

Tk(N)Q → C.

(d) Letf : Tk(N)Q → C be a normalised Hecke eigenform andφ ∈ AutQ(C) be a field automor-

phism. Theng := φ ◦ f is another normalised Hecke eigenform, having the same kernel. In this

case, we say thatf andg areAutQ(C)-conjugated.

Conversely, suppose thatf, g : Tk(N)Q → C have the same kernel. Then they areAutQ(C)-

conjugated. Hence, theAutQ(C)-conjugacy classes are in bijection with the maximal ideals of

Tk(N)Q.

(e) The local factors inTk(N)Q
∼=

∏
p�Tk(N)Q prime(Tk(N)Q)p correspond to theAutQ(C)-conju-

gacy classes.

Proof. A rough sketch only. Nothing is difficult and everything can be done as anexercise! Of course,

the kernelp is an ideal. It is prime becauseTk(N)/pf is a subring ofC (hence, an integral domain),

which is equal to the image off . As Tk(N) is generated by theTn, the image is generated by the

valuesf(Tn), i.e. is equal toZf . By Proposition 1.15,Zf is an order in the integers of a number field,
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which is, of course, the fraction field ofZf , i.e.Qf . We can also seeQf as the image of the induced

homomorphism ofQ-algebras:Tk(N)Q → C, showing that theQ-dimension ofQf can be at most

theQ-dimension ofQ ⊗Z Tk(N), which is equal to theZ-rank ofTk(N), which in turn is equal to

theC-dimension ofMk(N), as already pointed out.

If f, g : Tk(N)Q → C have the same kernel, thenQf andQg are isomorphic as field extensions

of Q. To see thatf andg are conjugate, it suffices to lift this field isomorphism to an automorphism

of C, which can be done by a standard result from Galois theory.

Note the obvious corollary for a normalised eigenformf ∈ Mk(N): Zf = Z[an(f) | n ≥ 1] is

an order in the number fieldQf = Q(an(f) | n ≥ 1). This is much less trivial than it might look!

The coefficientsan(f) (for n ≥ 1) of a normalised eigenformf are algebraic integers.

Adjoining the infinitely manyan(f) (for n ≥ 1), one only gets a finite extension ofQ.

Warning: This does not say anything abouta0(f) and the same conclusion is wrong, in general!

For instance,E12 = 691
65520 + 1 +

∑
n≥2 σ11(n)qn is a normalised eigenform, buta0 is not an integer!

So, we are on the safe side working with cusp forms (all the above holds for cusp forms!). Or, we

just disregarda0, since it is uniquely determined anyway (as long ask ≥ 1, what we are assuming).

1.4 Modular forms with coefficients in a ring

LetR be a commutative ring.

Definition 1.17. A modular form of weightk and levelN with coefficients inR is a group homomor-

phism:

f : Tk(N) → R.

We use the notationMk(N)(R) := Hom(Tk(N), R) for these.

A weak Hecke eigenform of weightk and levelN with coefficients inR is a ring homomorphism:

f : Tk(N) → R.

A weak Hecke eigenformf : Tk(N) → R is calledstrongif there is a normalised Hecke eigenform

g ∈ Mk(N) and a ring homomorphismα : Zg → R such thatf = α ◦ Φ(g). In this case, we have

an(f) = α(an(g)) for all n ≥ 1.

In analogy to normalised eigenforms inMk(N), we should actually always insert the word ‘nor-

malised’ also in this definition, but, I prefer not to do it. It may even happen that I drop the word

‘Hecke’ form ‘Hecke eigenform’. Hopefully, no confusion will arise.

We shall occasionally writean(f) for f(Tn) (as we already did in the definition) and think off as

the formalq-expansion
∑∞

n=1 an(f)qn ∈ R[[q]] (note: we disregarda0 due to the problems pointed

out above).

Lemma 1.18. LetR→ S be a ring homomorphism. ThenS ⊗R Mk(N)(R) ∼= Mk(N)(S).
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Proof. We know thatTk(N) is a freeZ-module of some finite rankd. Hence:S ⊗R Mk(N)(R) ⊗R

S = S ⊗R HomZ(Tk(N), R) ∼= S ⊗R HomZ(Zd, R) ∼= S ⊗R Rd ∼= Sd ∼= HomZ(Zd, S) ∼=

HomZ(Tk(N), S) = Mk(N).

Corollary 1.19. We haveMk(N)(Z) ⊗Z C ∼= Mk(N)(C) ∼= Mk(N).

Hence,Mk(N)(Z), the modular forms with integral Fourier expansion, form an integral structure

in theC-vector space of modular formsMk(N).

1.5 Mod p modular forms

We now specialise to ‘modp’ modular forms. Letp be a prime. We fix an algebraic closureFp of Fp.

Definition 1.20. A modular form of weightk and levelN with coefficients inFp is also called amodp

modular form of weightk and levelN . Similarly, we defineweak modp Hecke eigenforms.

PutTk(N)Fp
:= Fp ⊗Z Tk(N) = Tk(N)/pTk(N).

We continue with an abstract statement from commutative algebra (complementingProposition

1.15), now focussing on modp reductions. Its proof is not difficult and can be done as an exercise.

Proposition 1.21. Let T be aZ-algebra which is free of finite rankr as aZ-module. LetTFp
:=

Fp ⊗Z T.

(a) TFp
is an Artin Fp-algebra of dimensionr. As such it satisfies:TFp

∼=
∏

m�TFp prime(TFp
)m

(localisation atm).

(b) The projectionπ : T ։ TFp
induces a bijection (via preimages) between the (finitely many)

prime ideals ofTFp
(which are all maximal) and the maximal prime ideals ofTFp

of residue

characteristicp. The inverse is given by the image underπ.

Let us study this definition in a way similar to Proposition 1.16.

Proposition 1.22. Let f : Tk(N) → Fp be a weak Hecke eigenform of levelN and weightk. Let

mf := ker(f) be the kernel off .

(a) mf is a maximal ideal ofTk(N). It has height1.

(b) The image off is the finite extensionFp,f of Fp (insideFp) generated by thean(f) = f(Tn) for

n ≥ 1. The degree[Fp,f : Fp] is at mostdimCMk(N).

(c) f factors through to give anFp-algebra homomorphismTk(N)Fp
→ Fp, whose kernel is the max-

imal ideal which is the image ofmf (in accordance to the correspondence in Proposition 1.21).

Conversely, everyf : Tk(N) → Fp arises by restriction from anFp-algebra homomorphism

Tk(N)Fp
→ Fp.

12



(d) Let f : Tk(N)Fp
→ Fp be a normalised Hecke eigenform andφ ∈ Gal(Fp/Fp) be a field

automorphism. Theng := φ ◦ f is another weak Hecke eigenform, having the same kernel. In

this case, we say thatf andg areGal(Fp/Fp)-conjugated.

Conversely, suppose thatf, g : Tk(N)Fp
→ Fp have the same kernel. Then they areGal(Fp/Fp)-

conjugated. Hence, theGal(Fp/Fp)-conjugacy classes are in bijection with the maximal ideals

of Tk(N)Fp
.

(e) The local factors inTk(N)Fp
∼=

∏
m�Tk(N)Fp prime(Tk(N)Fp

)m correspond to theGal(Fp/Fp)-

conjugacy classes.

Proof. The image off is clearly the subfield generated by thef(Tn). AsTk(N) is free as aZ-module

of rankdimCMk(N), it is clear that the degree ofFp,f is bounded by this number. Hence,Tk(N)/mf

is a finite field, whencemf is maximal.

The rest is very similar to the proof of Proposition 1.16, using Proposition 1.21).

Proposition 1.23(Deligne-Serre lifting lemma). Every weak modp Hecke eigenform is strong.

Proof. Let f : Tk(N) → Fp be a weak Hecke eigenform with kernelm. As the height ofm is 1, it

contains a minimal prime idealp. So, we have

f : Tk(N) ։ Tk(N)/p ։ Tk(N)/m ⊆ Fp.

Recall thatO := Tk(N)/p is an order in a number field (being an integral domain that is integral over

Z and of finiteZ-rank), so that we can view it as a subring ofC. Consequently, we obtain

g : Tk(N) ։ Tk(N)/p →֒ C,

a normalised holomorphic eigenform withZg = Tk(N)/p, so that we may takeα to beTk(N)/p ։

Tk(N)/m →֒ Fp.

Next we study congruences modp in terms of prime ideals.

Definition 1.24. Letf1, f2 ∈Mk(N) be normalised Hecke eigenforms. We knowan(f1), an(f2) ∈ Z

for all n ≥ 1. We say thatf1 ≡ f2 (mod p) if an(f1) = an(f2) for all n ≥ 1, where we denote by·

the reduction homomorphismZ ։ Fp.

Proposition 1.25. (a) If f1 ≡ f2 (mod p), then there is a maximal idealm of Tk(N) containing

both the minimal prime idealspf1
andpf2

.

(b) Letm be a maximal ideal ofTk(N) which contains minimal prime idealsp1, p2. Then there are

normalised Hecke eigenformsf1, f2 ∈ Mk(N) such thatf1 ≡ f2 (mod p) andp1 = pf1
and

p2 = pf2
.
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Proof. (a) We look at the ring homomorphisms

fi : Tk(N) → Tk(N)/pfi
= Zfi

→֒ Z →֒ C

for i = 1, 2. We obtain the ring homomorphisms

f i : Tk(N) → Tk(N)/pfi
= Zfi

→֒ Z ։ Fp

for i = 1, 2, satisfyingf1(Tn) = an(f1) = an(f2) = f2(Tn) for all n ≥ 1. So,f1 = f2 (they agree

on a set of generators). Consequently, their kernel is a maximal ideal (factoring it out, we get a finite

field), which containspf1
andpf2

(that is evident from the two previous displayed formula).

(b) We just turn the argumentation in (a) around. Givenm we can write the same ring homomor-

phism in two different ways:

Tk(N) ։ Tk(N)/pi ։ Tk(N)/m →֒ Fp

for i = 1, 2. By choosingan embeddingTk(N)/pi →֒ C, we obtain normalised Hecke eigenforms

fi : Tk(N) ։ Tk(N)/pi →֒ C for i = 1, 2, which are congruent modp.

One can do the same argumentation with congruences ‘outsideD’, whereD is any integer. Then

one should consider the Hecke algebra generated by allTn with (n,D) = 1, whose structure theory

works in the same way. For the sake of not making the exposition too complicated, I did not do this.

It is an instructive exercise to check it.

An important point, however, is to note thatT
(D)
k (N) ⊆ Tk(N) is an integral ring extension,

whence prime ideals ofT(D)
k (N) (corresponding to ‘partial’q-expansions) can be lifted to prime ideals

of Tk(N) (corresponding to ‘complete’q-expansion) by ‘going up’ (a theorem from commutative

algebra). (I note this here because it doesn’t seem so trivial to establish a similar statement modpn.)

1.6 Classical modular forms withp-adic coefficients

This section is not aboutp-adic modular forms (in any sense). Ian and Panos will say something about

them. It just treats modular forms withp-adic coefficients according to our definition of such.

LetR be aZp-algebra, e.g.R could be (the integers of) ap-adic field (i.e. a finite field extension

of Qp), Qp, Cp or a finite extension ofFp or Fp. This is also case, in which we are mainly interested

this week, for modular forms modpn (see below).

It is common practice to view holomorphic modular forms as modular forms with coefficients

in Qp by choosing (and fixing!) a field isomorphismC ∼= Qp (which, of course, does not at all respect

the topology!).

PutTk(N)Zp
:= Zp ⊗Z Tk(N).

We continue with some general statements about finite freeZ-algebras, as in Propositions 1.15

and 1.21. Its proof is again a good exercise.

Proposition 1.26.LetT be aZ-algebra that is free of finite rankr asZ-module. WriteTZp
:= Zp⊗ZT

andTQp
:= Qp ⊗Z T = Qp ⊗Q TQ.
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(a) TFp
= Fp ⊗Z T = Fp ⊗Zp

TZp
.

(b) The embeddingι : T →֒ TZp
induces (by taking preimages) a bijection between the maximal

prime ideals ofTZp
and the maximal ideals ofT of residue characteristicp. The inverse is given

by extension.

(c) Consider the embeddingι : TQ →֒ TQp
, which makesTQp

into aTQ-algebra, whence we have

TQp
∼=

∏

p�TQ prime

(TQp
)p,

by localising at the primes ofTQ. LettingK = TQ/p and consideringQp ⊗Q K =
∏

PKP,

where the product runs through all prime idealsP ofK dividingp, it follows that

(TQp
)p

∼=
∏

P

(TQp
)Q,

whereQ is the kernel ofTQp
→ (TQp

)p ։ TQp
/p = K ։ KP.

So, aAutQ(C)-conjugacy class breaks intoGal(Qp/Qp)-conjugacy classes according to the

decomposition ofp in TQ/p.

We now pass from finite freeZ-algebras to finite freeZp-algebras. The latter have an even nicer

structure theory, very close to the Artinian case. The following propositionapplies, in particular, with

T̂k(N) := Tk(N)Zp
.

Proposition 1.27. Let T̂ be aZp-algebra that is free of finite rankr as Zp-module. WritêTQp
:=

Qp ⊗Zp
T̂ andT̂Fp

:= Fp ⊗Zp
T̂.

(a) Zp ⊆ T̂ is an integral ring extension.

(b) T̂ is equidimensional of Krull dimension1.

(c) The natural projectionπ : T̂ → T̂Fp
induces (by taking preimages) a bijection between the finitely

many prime ideals of̂TFp
(which are all maximal) and the maximal ideals ofT̂. The inverse is

given by taking the image. Moreover,Fp ⊗Zp
T̂m

∼= (T̂Fp
)m,

(d) T̂Fp
is an ArtinFp-algebra of dimensionr. As such it satisfies:̂TFp

∼=
∏

m�bTFp prime(T̂Fp
)m.

(e) T̂/m is a finite field of degree at mostr over Fp, T̂/p is an order in ap-adic field of degree at

mostr overQp.

(f) T̂ ∼=
∏

m T̂m, where the product runs over all maximal ideals ofT̂ andT̂m denotes the localisation

of T̂ at m.

(g) T̂Qp
is an ArtinQp-algebra of dimensionr. As such it satisfies:̂TQp

∼=
∏

p�bTQp prime(T̂Qp
)p.
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(h) The embeddingι : T̂ →֒ T̂Qp
induces a bijection (via preimages) between the (finitely many)

prime ideals of̂TQp
(which are all maximal) and the minimal prime ideals ofT̂. The inverse is

given by extension.

The proof of this proposition is precisely the same as what was done earlier, with the exception

of (f). This, one obtains, by Hensel lifting the idempotents of the decompositon in (d).

Now we apply this to modular forms with coefficients in aZp-algebra. The proof of the following

proposition is again an instructive exercise without any greater difficulties.

Proposition 1.28. LetR be aZp-algebra andf : Tk(N) → R a weak Hecke eigenform.

(a) f extends tof : T̂k(N) := Tk(N)Zp
→ R, by multiplying with the scalar. Leta := ker(f) be the

kernel off .

(b) By choosing a maximal idealm � T̂k(N) containinga, we obtain aGal(Fp/Fp)-conjugacy class

of weak (and, hence, even strong) modp eigenforms bŷTk(N) ։ T̂k(N)/a ։ T̂k(N)/m →֒ Fp.

(c) If R is local, then theGal(Fp/Fp)-conjugacy class from (b) is unique and we denote a member of

it by f .

(d) The decomposition̂Tk(N) ∼=
∏

m�bTk(N) maximalTk(N)m corresponds to the distinct residual

Gal(Fp/Fp)-conjugacy classes.

(e) T̂k(N)Qp
∼=

∏
m�bTk(N) maximal

( ∏
p⊂m minimal(T̂k(N)Qp

)p

)
, is the decomposition of̂Tk(N)Qp

into Gal(Qp/Qp)-conjugacy classes, grouped together by being congruent modp.

Note that the ideala need not contain a minimal prime ideal. In other words, a weakf as in the

proposition need not be strong.

1.7 Interlude: Integers modp
n

We want to define congruences modpn of two elementsα ∈ OK1
andβ ∈ OK2

, whereK1 andK2

are finite extensions ofQp. Of course, in order to do so, one chooses ap-adic fieldK containing both

K1 andK2. However, we want our definition to be independent of any such choice.

For this reason, it is useful, following [3], to defineγK(m) := (m− 1)eK/Qp
+1, with eK/Qp

the

ramification index ofK/Qp. This definition is made precisely so that the natural maps below yield

injections of rings, i.e. ring extensions ofZ/pmZ,

Z/pmZ →֒ OK/p
γK(m)
K →֒ OL/p

γL(m)
L

for any finite extensionL/K (with pL the prime ofL overpK in K). We can thus form the ring

Z/pmZ := lim−→
K

OK/p
γK(m)
K ,
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which we also consider as a topological ring with the discrete topology. Whenwe speak ofα

(mod pm) for α ∈ Zp, we mean its image inZ/pmZ. In particular, forα, β ∈ Zp, we define

α ≡ β (mod pm) as an equality inZ/pmZ, or equivalently, byα− β ∈ p
γK(m)
K , whereK/Qp is any

finite extension containingα andβ.

Here is a different point of view on this, which was pointed out to me be Khuri-Makdisi. Let v

the normalised valuation onZp, i.e.v(p) = 1. Define the idealan = {x ∈ Zp | v(x) > n− 1}. Then

Z/pnZ ∼= Zp/an.

1.8 Modular forms mod p
n

Definition 1.29. A modular form modpn of weightk and levelN is a modular form of weightk and

levelN with coefficients inZ/pnZ.

As before we define strong and weak eigenforms modpn as such having coefficients inZ/pnZ.

As seen above, iff is a modular form modpn of weightk and levelN , then it can be seen as a

Zp-linear map

f : T̂k(N) → Z/pnZ,

and asZp-algebra homomorphism if it is a weak eigenform.

Contrary to the casen = 1, weak eigenforms modpn need not strong forn > 1! See, for example,

[3], 4.2.

Later in the lecture we shall introduce one more kind of modp modular form, namely, dc-weak

modular forms (there we ‘mix’ weights).

2 Galois Representations Modulo Prime Powers

In this talk we study Galois representations modpn, without focussing on modular ones yet.

2.1 Some general representation theory

Proposition 2.1. LetK be ap-adic field withO its ring of integers. LetG be a profinite group andV

ann-dimensionalK-vector space with a continousK-linearG-action, so that we have the continuous

representation

ρ : G→ AutK(V ) ∼= GLn(K).

Then there is anO-latticeL in V which is stabilised byρ, so thatρ is equivalent to

ρL : G→ AutO(L) ∼= GLn(O).

Proposition 2.2. LetR be a local ring and letρi : G → GLn(R) be a continuous representation of

a groupG for i = 1, 2 such thatρ1 is residually absolutely irreducible. Assume that all traces are

equal:Tr(ρ1(g)) = Tr(ρ2(g)) for all g ∈ G.

Thenρ1 andρ2 are equivalent.
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Corollary 2.3. LetK be ap-adic field withO its ring of integers. LetG be a profinite group and

ρ : G→ GLn(K)

be a continuous representation. LetρL1
ρL2

be two lifts toGLn(O).

If the residual representationsρL1
: G→ GLn(O) ։ GLn(F) is absolutely irreducible, thenρL1

is equivalent toρL1
.

We will just writeρ for ρL andρ for the reduction.

Warning: Ifρ is not absolutely irreducible, it makes no sense to speak of the reduction ofa repre-

sentation taking values inQp! Note that the semi-simplification ofρL for any latticeL is independent

of L. That is what people in modular forms normally do. But, we will see that in general we cannot

define semi-simplifications in the modpn set-up.

[Could recall the definition of the conductor of a Galois representation in order to show that fixed

spaces play an essential role, which are not free, in general, when wework modpn.]

2.2 Two dimensional representations modpn

LetG be a finite group andO be the ring of integers of ap-adic fieldK. Here we study representations:

ρ : G→ GL2(O/p
γK(n)
K ) →֒ GL2(Z/pnZ).

Fixed vectors

The definition of the conductor of a Galois representation (over a field) involves the dimension of the

fixed spacesV Gi , whereGi are the higher ramification groups.

Note that an analogous definition modpn leads into trouble. Look at the matrix
(

1+p 1
0 2

)
(assuming

2 6= p). As a matrix inZp it fixes only the zero vector:

(
1+p 1
0 2

)
( x

y ) =
(

x(1+p)+y
2y

)

(note thaty = 0 follows immediately, andx(1 + p) = x impliesx = 0). But, overZ/(p2), we have a

non-zero fixed vector, namely( p
0 )!!! But this fixed vector does not span a free submodule.

Let’s change the previous example a bit and consider the matrix
(

1+p 1
0 1

)
. Its fixed space is the

span of
(

1
−p

)
and( p

0 ), which is also not free.

So, we would not be able to simply replace ‘dimension’ by ‘rank’ in the definition of the conductor.

Reducible representations

LetK/Qp beQp(π) whereπ is such thatπ2 = p. This is a totally ramified extension of degree2, so

thatγK(2) = e(n − 1) + 1 = 3. We make some computations modulop2 (i.e. modπ3). Consider

the matrixM :=
(

1+p 1
p 1−p

)
. Its characteristic polynomial isX2 − 2X + 1 − p− p2, i.e. viewing it

moduloπ3, it is justX2 − 2X + 1 − p.
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Let us suppose thatα is an eigenvalue with an eigenvector that spans a free rank1 submodule of

O2/(π3); this just means that not both entries in the eigenvector are divisible byπ. Then we can form

a base change matrix by putting the eigenvector into the first column, and choosing any other second

column which makes the determinant (i.e. the matrix) invertible. For this new basis,the matrix will

then have upper triangular form.

Let a ∈ {0, . . . , p − 1} and considerα = 1 + π + aπ2 andβ = 1 − π − aπ2. These are all

elements such thatα+ β = 2 (the trace) andαβ = 1− p (the determinant), i.e.X2 − 2X + 1− p =

(X − α)(X − β). Note that this means that the polynomial as2p zeros (instead of2). [Maybe, I

should have puta as a subscript ofα andβ to recall the dependence.]

Let’s compute the eigenvectors forα andβ:
(

1+p 1
p 1−p

) (
1

π+π2(a−1)

)
=

(
1+π+aπ2

π+aπ2

)
= α

(
1

π+π2(a−1)

)

(
1+p 1

p 1−p

) (
1

−π+π2(−a−1)

)
=

(
1−π−aπ2

−π−aπ2

)
= β

(
1

−π+π2(−a−1)

)

The computation shows that
(

1
π+π2(a−1)

)
is an eigenvector for the eigenvalueα and

(
1

−π+π2(−a−1)

)

is an eigenvector for the eigenvalueβ.

The first conclusion is that the matrix
(

1+p 1
p 1−p

)
cannot be brought into diagonal form (α andβ

on the diagonal) by conjugation because the base change matrix would be
(

1 1
π+π2(a−1) −π+π2(−a−1)

)
,

which is not invertible in the ring.

But, we can use the base change matrixC :=
(

1 0
π+π2(a−1) 1

)
. Conjugation gives:

C−1MC =
(

α 1
0 β

)
.

Now we interpret this in terms of representations. Letχα be the character that multiplies an entry

by α. Then our representation is equivalent is equivalent to

1 → χα → V → χβ → 1,

and this extension is non-split. But, now recall thatα depends on the choice ofa. So,V is such an

extension for all choices ofa! We can even swap the roles ofα andβ and obtain extensions ‘the other

way around’. This behaviour is definitely crazy! If one wants to get something useful out of this, one

must consider all these different choices ‘the same’, but, I am not surehow to do this properly.

Semi-simplification

The semi-simplification is traditionally defined as the direct sum of the Jordan-Hölder factors of a

composition series. But, the Jordan Hölder factors are, of course, simple(by definition), as such they

areFp-vector spaces and not at all freeZ/(pn)-modules. A free rank1 module overZ/(pn) has a

composition series consisting ofn Fp-vector spaces, so that the traditional semi-simplification would

be ann-dimensional representation overFp and there would be noZ/(pn)-structure left at all!
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In favourable cases, we can do the following: Take the modp reduction and assume it is reducible.

Hence, there are two characters modp appearing. If the two characters are distinct, then we can use

them to split theZ/(pn)-module into a direct sum of two free ones of rank1 via Hensel’s Lemma (the

characteristic polynomial will have precisely two roots modpn which are distinct modp and one can

just take the eigenvectors for these eigenvalues).

But, if the characters coincide modp, we have seen that there are many possibilities of identifying

characters. If there’s an eigenvector that generates a free rank1-submodule, we may define asemi-

simplification as the direct sum of the two characters appearing. In the example there arep ways for

doing so!

Note that in a representation modpn, which is not irreducible, there need not be such an eigen-

vector. Consider the representation generated by

( 1 1
0 1 ) and

(
1+p 0

p 1+p

)
.

Seeing these matrices overQp, they form an irreducible representation. Modulop, the representation

is clearly reducible. Modp2, there is no eigenvector that generates a free rank1 submodule.

2.3 1-dimensional Galois representations

We have seen that2-dimensional representation theory modpn behaves like crazy. Now, we draw a

crazy conclusion on the number theory side. To make things easier we study1-dimensional represen-

tations first.

Theorem 2.4. Letp be an odd prime. The set

{χ : GQ → F
×
p | unramified outsidep}

is finite. It containsp− 1 elements.

Proof. Let χ : GQ → F
×
p be any character. Its image is finite (due to continuity). By the Kronecker-

Weber theorem,χ factors throughGal(Q(ζN )/Q) for some primitiveN -th root of unity for some

integerN . However, assuming in addition thatχ is unramified outsidep means that we may takeN

to be a power ofp. But, since the onlypn-th root of unity inFp is 1, the characterχ takes values in

F×
p and factors throughGal(Q(ζp)/Q) ∼= F×

p . Hence, there are preciselyp − 1 characters in the set

of the assertion.

We will now see that this statement completely breaks down when working modpn.

One of the first statement one learns about characters with finite image is thatthe image is cyclic.

The reason being that every finite subgroup of the multiplicative group of afield is cyclic, namely

contained in the roots of unity. The only things one uses in order to prove thisis that the polynomial

XN − 1 has at mostN roots, namely theN -th roots of unity, which we know form a cyclic group.

But, not working in an integral domain, a polynomial of degreeN may have more thanN -roots, so

we’d be leaving the roots of unity.
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If we have a character modpn with non-cyclic image, then it consequently cannot be the reduction

of a finite image character toZ
×
p , as otherwise the image would be cyclic (any quotient of a cyclic

group is cyclic). But, I have not really thought about whether the character could be the reduction of

a character toZ
×
p of infinite order.

Theorem 2.5. Letp be an odd prime. The set

{χ : GQ → Z/p2Z
×
| unramified outsidep}

is infinite.

We develop this step by step.

Lemma 2.6. Letp be an odd prime andn ∈ N. Byζpn we denote a primitivepn-root of unity inQp.

(a) Zp[ζpn ] is the ring of integers ofQp(ζpn), which is a totally ramified extension of degreeen =

ϕ(pn) = (p− 1)pn−1. A uniformiser isπn := 1− ζpn . Any elementx in Zp[ζpn ] can be uniquely

written in itsπ-adic expansion:x = a0 + a1πn + a2π
2
n + . . . with ai ∈ {0, 1, . . . , p− 1}. Taking

x modπen+1 just means breaking off this expansion atπen
n .

(b) Letx = a0 + a1πn + a2π
2
n + . . . . Thenxp−1 = 1 + b1πn + . . . .

(c) Let1 6= x = 1 + a1πn + a2π
2
n + · · · ∈ Zp[ζpn ]. Let i ≥ 1 be the smallest index such thatai 6= 0.

Then the order ofx in Zp[ζpn ]/(πen+1
n )× is equal topn−r with r = ⌈logp

i
p−1⌉.

(d)
(
Zp[ζpn ]/(πen+1

n )
)×

has a subgroup of the formF×
p × Fp × · · · × Fp︸ ︷︷ ︸

(p−1)2pn−2 copies

.

(e) There are elements of order(p− 1)pn.

Proof. (a) is well-known and will not be proved here.

(b) This is becauseap−1
0 ≡ 1 (mod p).

(c) We havex = 1 + aiπ
i
n + . . . . Hence,xp = (1 + aiπ

i
n + . . . )ps

= 1 + aiπ
ips

n + . . . and this is

non-zero if and only ifips ≤ en = (p − 1)pn−1, which is the case if and only if i
p−1 ≤ pn−s−1 and

that is true if and only if⌈logp
i

p−1⌉ ≤ n− s− 1. The result follows.

(d) Using (c), we just count the number of elements having order dividingp, by counting the

coefficients that may be chosen

(e) follows from (c).

It is not difficult to derive the full group structure of
(
Zp[ζpn ]/(πen+1

n )
)×

from the above, but, I

have not done so.

Proof of Theorem 2.5.RecallGal(Q(ζ2
p )/Q) ∼= F×

p ⊕ Fp. Working modp2 and with fixedn, Lem-

ma 2.6 (d) allows us to send the generator ofFp to ppn−2

−1 different non-zero elements. Asn grows,

this number tends to infinity.
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Here is another corollary.

Corollary 2.7. There are charactersχ : GQp
→ Z/p2Z, unramified outsidep, of arbitrarily high

conductor. This means the following. Letk ∈ N. Then there is a characterχ as before such thatGk
Qp

is not in the kernel ofχ.

Proof. Them-th ramification group ofG(Qp(ζpm/Qp)) is Z/(pm−1) (if I remember correctly). By

Lemma 2.6 (e), this can be send injectively intoZ/p2Z.

I put this corollary because in the modp settingGp+2 is always in the kernel (if I remember

correctly). This is an indication why the weights do not become arbitrarily highmodp, so that we

might now expect that they might become arbitrarily high modpn.

2.4 My main motivation

Let f ∈ Sk(Nq) with q ∤ Np a prime be a newform andρp : Gal(Q/Q) → GL2(Qp) be the attached

p-adic Galois representation. (We assume that the nebentype, if any, is unramified atq.)

What is the shape ofρℓ restricted toDq? Local Langlands tells us that there is aQp-basis such

that

ρp|Iq ∼ ( 1 1
0 1 ) .

Now let us assume thatρp is absolutely irreducible, so that we have a unique representation

ρp : Gal(Q/Q) → GL2(Zp).

We ask the same question. From local Langlands we derive:

ρp|Iq ∼ ( 1 x
0 1 )

for some0 6= x ∈ Zp. Note that the matrix
(

1 p
0 1

)
cannot be conjugated to( 1 1

0 1 ) in Zp (because their

reductions modp are obviously not conjugated).

This answer is insufficient: We don’t know anything aboutx!

What is thep-valuation ofx?

Answer, thevp(x) > n−1 if and only ifx = 0 in Z/pnZ if and only ifρp (mod pn) is unramified

at q.

So, I want to detect at whichn, the representationρp (mod pn) stops being unramified atq.

One could conjecture that this should be detected by the existence of a weakeigenformg mod-

ulo pn of levelN in the same weight which has the sameq-expansion asf modulopn, away from a

finite set of primes.

3 Galois Representations Attached to dc-Weak Eigenforms

This part is essentially copy-and-paste from the article Chen-Kiming-Wiese.
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3.1 dc-weak eigenforms

Let S =
⊕

k∈N Sk(M) be theC-vector space of all cusp forms of any positive weight at a fixed

level M . Let each Hecke operatorTn act onS via the diagonal action. We will be considering

finite-dimensional subspacesS ⊆ S of the following type:

S = Sb(M) :=
b⊕

k=1

Sk(M)

for anyb ∈ N,M ≥ 1. Such a subspaceS is mapped into itself byTn for all n ≥ 1.

For f ∈ S, let f(q) ∈ C[[q]] denote itsq-expansion. We denote theq-expansion maponS ⊂ S

by

ΦS : S → C[[q]], f 7→ f(q) =
∑

n≥1

an(f)qn.

Proposition 3.1. Fix M ∈ N andb ∈ N. LetS := Sb(M). ThenΦS is injective.

Proof. Let fk ∈ Sk(M), for k = 1, . . . , b be such that
∑b

k=1 fk(q) = 0. The function
∑b

k=1 fk is

holomorphic and1-periodic and hence uniquely determined by its Fourier series. Hence,
∑b

k=1 fk =

0 and it then follows from [2], Lemma 2.1.1, that we havefk = 0 for eachk.

We will identify an integral structure inS by making use of the results of the first talk.

Definition 3.2. LetH(S) be theC-subalgebra ofEndC(S) generated by theTn for n ≥ 1. LetT(S)

be the subring ofEndC(S) generated by theTn for n ≥ 1.

As was proved in the first lecture, the spacesSk(M) have an integral structure:Sk(M)(Z). It

follows that the spaceS = Sb(Γ1(M)) :=
⊕b

k=1 Sk(M) also contains an integral structure, namely,
⊕b

k=1 Sk(M)(Z). This is clear because tensoring it overZ with C clearly gives backS and theZ-rank

on the left is theC-dimension on the right.

Thus,T(S) sits inside an integer matrix ring, we get, as before:

Proposition 3.3. (a) C ⊗Z T(S) ∼= H(S).

(b) T(S) is free of finite rank asZ-module and the rank is equal to theC-dimension ofH(S) (which

is equal to theC-dimension ofS due to theq-pairing, see below).

As the complexq-pairing S × H(S) → C, given, as before, by(f, T ) 7→ a1(Tf), is non-

degenerate (same proof!), we obtain the isomorphism

S ∼= HomC(H(S),C) −→ HomZ(T(S),C).

For any commutative ringR we make the definition, as before,

S(R) := HomZ(T(S), R) (Z-linear homomorphisms).
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We callS(R) thecusp forms inS with coefficients inR. This definition comes together, as before,

with a natural action ofT(S) onS(R) given by(T.f)(T ′) = f(TT ′). Note that, as before,S(C) ∼= S.

Moreover, for any ring homomorphismR1 → R2 we obtain

R2 ⊗R1
S(R1) ∼= S(R2).

We remark that for any ringR and any1 ≤ k ≤ b, the map

Sk(M)(R) → Sb(M)(R), f 7→ f ◦ π,

is anR-module monomorphism, whereπ is the surjective ring homomorphism

T(Sb(M)) → T(Sk(M)),

defined by restricting Hecke operators.

For a positive integerD, let T(D)(S) be the subring ofT(S) generated by those Hecke operators

Tn for whichn andD are coprime.

As before, we have forf ∈ S(R) that the following two statements are equivalent:

(i) f is an eigenvector with eigenvaluef(T ) for everyT ∈ T(D)(S) andf(1) = 1.

(ii) The restriction off to T(D) is a ring homomorphism.

We again use the terminologyHecke eigenformfor such objects. Moreover, via our chosen field

isomorphismC ∼= Qp we identify the two spacesS(C) andS(Qp).

Let us now specialise toR = Z/pnZ. We first record the following simple lifting property.

Lemma 3.4. Fix M, b ∈ N and letS :=
⊕b

k=1 Sk(M).

Let f ∈ S(Z/pmZ). Then there is a number field (and hence there is also ap-adic field)K and

f̃ ∈ S(OK) such thatf̃ ≡ f (mod pm), in the sense that̃f(Tn) ≡ f(Tn) (mod pm) for all n ∈ N.

Proof. As T(S) is a freeZ-module of finite rank, it is a projectiveZ-module. Moreover, the image

of the homomorphism (of abelian groups)f : T(S) → Z/pmZ lies inOK/p
γK(m)
K for some number

field (or, p-adic field)K. The projectivity implies by definition thatf lifts to a homomorphism

f̃ : T(S) → OK .

We stress again that eigenforms modpm cannot, in general, be lifted to eigenforms ifm > 1.

Divided congruence forms ‘mix’ weights. However, when we are over acharacteristic0 field,

there’s no mixing, in the following sense.

Lemma 3.5. Fix M, b ∈ N and letS :=
⊕b

k=1 Sk(M). PutSk := Sk(M) for eachk.

If K is anyQ-algebra, then one hasS(K) =
⊕b

k=1 Sk(K). Moreover, ifK is a field extension

of Q andf ∈ S(K) is a normalized eigenform, then there isk, a normalized eigenform̃f ∈ Sk(L)

for some finite extensionL/K and a positive integerD such thatf(Tn) = f̃(Tn) for all n coprime

withD.
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Proof. For each1 ≤ k ≤ b, we have a natural homomorphismTQ(S) → TQ(Sk) given by restriction,

and hence taking the product of these, we obtain a monomorphismTQ(S) →
∏b

k=1 TQ(Sk) of Q-

algebras. By the existence of an integral structure, we have that

dimQ TQ(S) = dimC S =
b∑

k=1

dimC Sk =
b∑

k=1

dimQ TQ(Sk),

showing thatTQ(S) ∼=
∏b

k=1 TQ(Sk). Now, we see that

S(K) = HomZ(T(S),K) ∼= HomQ(T(S) ⊗Z Q,K) ∼= HomQ(TQ(S),K)

∼= HomQ(
b∏

k=1

TQ(Sk),K) ∼=

b⊕

k=1

HomZ(TZ(Sk),K) =
b⊕

k=1

Sk(K).

Now assume thatK is a field extension ofQ and thatf is a normalized eigenform (for all operators

Tn with n coprime toD), giving a ring homomorphismT(D)
Q → K. It can be extended to a ring

homomorphismf̃ : TQ(S) → L for some finite extensionL/K, since in the integral extension

of rings T
(D)
Q →֒ TQ(S) we need only choose a prime ideal ofTQ(S) lying over the prime ideal

ker(f) � T
(D)
Q by ‘going up’.

To conclude, it suffices to note that every ring homomorphismTQ(S) → K factors through a

uniqueTQ(Sk). In order to see this, one can consider a complete set of orthogonal idempotents

e1, . . . , en of TQ(S), i.e. e2i = ei, eiej = 0 for i 6= j and1 = e1 + · · · + en. AsK is a field and

idempotents are mapped to idempotents, eachei is either mapped to0 or 1, and as0 maps to0 and1

maps to1, there is precisely one idempotent that is mapped to1, the others to0. This establishes the

final assertion.

[COMPARES(Z) and
⊕b

k=1 Sk(M)(Z)]

Note that in general it is not true that a normalisedf (as in the lemma), which is an eigenform for

all Tn with n coprime to some integerD, liesSk(K) for anyk: Let D ∈ N, let f ∈ Sk(K) be an

eigenform for allTn and let0 6= g ∈ Sr(K) be a modular form such thatg(Tn) = 0 for all n coprime

with D; thenf + g is an eigenform (outsideD) but does not lie in a single weight.

We explicitly point out the following easy consequence of Lemma 3.5.

Lemma 3.6. LetO be the ring of integers ofK, whereK is a number field or a finite extension ofQp.

LetS =
⊕b

k=1 Sk(M).

Then:

S(O) = {f ∈ S(K) | f(Tn) ∈ O ∀n} = {f ∈
b⊕

k=1

Sk(M)(K) | f(Tn) ∈ O ∀n}.

This establishes thatS(O) is the space also used by Hida on p. 550 of [1].

Now, we give an indication for the name ‘divided congruence’. It shows that, when working over

a ring, there really is some ‘mixing’, unlike the situation forQ-algebras of Lemma 3.5.
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Any f ∈ S(O) is of the formf =
∑

k fk with fk ∈ Sk(M)(K), and although none of thefk need

be inSk(O), the sum has all its coefficients inO. This is the origin of the name ‘divided congruence’

for such anf : Suppose for example that we have formsgk ∈ S(O) for various weightsk and that
∑

k gk ≡ 0 (mod πm) for somem, whereπ is a uniformizer ofO. Puttingfk := gk/π
m for eachk

we then havefk ∈ Sk(M)(K) for all k as well asf :=
∑

k fk ∈ S(O). Conversely, any element of

S(O) arises in this way by ‘dividing a congruence’.

3.2 Some general representation theory

Theorem 3.7(Carayol, Serre). LetR be a complete local ring with finite residue field. LetR′ be a

semi-local ring containingR. Let ρ′ : G → GLn(R′) be a continuous representation of a groupG

which is residually absolutely irreducible. Assume that all tracesTr(ρ(g)) for g ∈ G lie in R.

Thenρ′ is obtained by scalar extension to a representation of the formρ : G→ GLn(R).

3.3 Galois representations

From here on we only work withΓ1.

In this section we construct a Galois representation attached to a dc-weak eigenform modpm.

For expressing its determinant, we find it convenient to work with Hida’s stroke operator|ℓ, which

we denote[ℓ]. We recall its definition from [1], p. 549. Let us consider again a spaceof the form

S =
⊕b

k=1 Sk(M) for someb. We now consider specifically a levelM written in the form

M = Npr

wherep ∤ N .

LetZ = Z×
p ×(Z/NZ)×, into which we embedZ diagonally with dense image. We have a natural

projectionπ : Z → Z Z /prZ × Z/NZ ∼= Z/NprZ. Let firstf ∈ S be of weightk. Hida defines for

z = (zp, z0) ∈ Z the stroke operator:

[z]f = zk
p 〈π(z)〉f.

The diamond operator〈d〉 for d ∈ Z/NprZ is defined asf|kσd
with σd ∈ SL2(Z) such that

σd ≡
(

a b
c d

)
d−1 ∗0d mod Npr. Since the diamond operator is multiplicative (it gives a group action

of Z/NprZ×), so is the stroke operator.

We now show that forz ∈ Z the definition of[z] can be made so as not to involve the weight. Let

ℓ ∤ Np be a prime. Due to the well known equalitiesTℓ,ℓ = ℓk−2〈ℓ〉 andℓTℓ,ℓ = T 2
ℓ −Tℓ2 , one obtains

[ℓ] = ℓk〈ℓ〉 = ℓ2Tℓ,ℓ = ℓ(T 2
ℓ − Tℓ2).

This first of all implies that[ℓ] ∈ T(S), since the right hand side clearly makes sense onS and is an

element ofT(S). Due to multiplicativity, all[n] lie in T(S) for n ∈ Z. Consequently,[n] acts onS(A)

for any ringA by its action viaT(S). Moreover, iff ∈ S(A) is an eigenform for allTn (n ∈ N), then

it is also an eigenfunction for all[n].
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One can extend the stroke operator to a group action ofZ onS(O) for all completeZp-algebrasO

by continuity (which one must check). Thus, iff ∈ S(O) is an eigenfunction for all Hecke operators,

then it is in particular an eigenfunction for all[z] for z ∈ Z, whence sending[z] to its eigenvalue onf

gives rise to a characterθ : Z → O×, which we may also factor asθ = ηψ with ψ : Z/NZ× → O×

andη : Z×
p → O×.

Since it is the starting point and the fundamental input to the sequel, we recallthe existence

theorem onp-adic Galois representations attached to normalized Hecke eigenforms fork = 2 by

Shimura, fork > 2 by Deligne and fork = 1 by Deligne and Serre. ByFrobℓ we always mean an

arithmetic Frobenius element atℓ.

Theorem 3.8. Suppose thatS = Sk(Γ1(Np
r)) with k ≥ 1. Supposef ∈ S(Qp) is a normalized

eigenform, so that〈ℓ〉f = χ(ℓ)f for a characterχ : (Z/NprZ)× → Q
×
p for primesℓ ∤ Np.

Then there is a continuous odd Galois representation

ρ = ρf,p : Gal(Q/Q) → GL2(Qp)

that is unramified outsideNp and satisfies

Tr(ρ(Frobℓ)) = f(Tℓ) and det(ρ(Frobℓ)) = ℓk−1χ(ℓ)

for all primesℓ ∤ Np.

Corollary 3.9. Suppose thatS =
⊕b

k=1 Sk(Γ1(Np
r)). Supposef ∈ S(Qp) is a normalized eigen-

form, so that[ℓ]f = η(ℓ)ψ(ℓ)f for some charactersψ : (Z/NZ)× → Q
×
p andη : Z×

p → Q
×
p .

Then there is a continuous Galois representation

ρ = ρf,p : Gal(Q/Q) → GL2(Qp)

that is unramified outsideNp and satisfies

Tr(ρ(Frobℓ)) = f(Tℓ) and det(ρ(Frobℓ)) = f(ℓ−1[ℓ]) = ℓ−1η(ℓ)ψ(ℓ)

for all primesℓ ∤ Np.

Proof. From Lemma 3.5 we know thatf has a unique weightk, i.e. lies in someSk(Qp). Thus,f also

gives rise to a characterχ : Z/NprZ× → Q
×
p by sending the diamond operator〈ℓ〉 to its eigenvalue

onf . The assertion now follows from the equationℓk〈ℓ〉 = [ℓ] and Theorem 3.8.

Corollary 3.10. Suppose thatS =
⊕b

k=1 Sk(Γ1(Np
r)). Supposēf ∈ S(Fp) is a normalized eigen-

form, so that[ℓ]f̄ = η(ℓ)ψ(ℓ)f̄ for some charactersψ : (Z/NZ)× → F
×
p andη : Z×

p → F
×
p .

Then there is a semisimple continuous Galois representation

ρ = ρf̄ ,p,1 : Gal(Q/Q) → GL2(Fp)

that is unramified outsideNp and satisfies

Tr(ρ(Frobℓ)) = f̄(Tℓ) and det(ρ(Frobℓ)) = ℓ−1η(ℓ)ψ(ℓ)

for all primesℓ ∤ Np.
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Proof. By the Deligne-Serre lifting lemma, there is an eigenformf ∈ S(Zp) whose reduction is̄f ,

whence by Corollary 3.9 there is an attached Galois representationρf,p. Due to the compactness

of Gal(Q/Q) and the continuity, there is a finite extensionK/Qp such that the representation is

isomorphic to one of the formGal(Q/Q) → GL2(OK). We defineρf̄ ,p,1 as the semisimplification of

the reduction of this representation modulo the maximal ideal ofOK . It inherits the assertions on the

characeristic polynomial atFrobℓ from ρf,p.

Next we construct a Galois representation into the completed Hecke algebra.

Theorem 3.11.Suppose thatS =
⊕b

k=1 Sk(Γ1(Np
r)).

LetD be a positive integer and letm be a maximal ideal of̂T(D)(S) := Zp ⊗Z T(D)(S) and

denote bŷT(D)(S)m the completion of̂T(D)(S) at m. Assume that the residual Galois representation

attached to

T(D)(S) →֒ T̂(D)(S) → T̂(D)(S)m → T̂(D)(S)/m →֒ Fp

is absolutely irreducible (note that this ring homomorphism can be extendedto a ring homomorphism

T(S) → Fp).

Then there is a continuous representation

ρ = ρm : Gal(Q/Q) → GL2(T̂
(D)(S)m),

that is unramified outsideNp and satisfies

Tr(ρ(Frobℓ)) = Tℓ and det(ρ(Frobℓ)) = ℓ−1[ℓ]

for all primesℓ ∤ DNp.

Proof. Assume first that all prime divisors ofNp also divideD. As the Hecke operatorsTn with

n coprime toD commute with each other and are diagonalizable (as elements ofEndC(S)), there

is a C-basisΩ for S consisting of eigenforms forT(D)(S). As T(D)(S) is finite overZ, for each

f ∈ Ω, its image ontoT(D)(Cf) is an order in a number field. Here, obviouslyT(D)(Cf) denotes the

Z-subalgebra ofEndC(Cf) generated by theTn with (n,D) = 1.

Consider the natural map

T(D)(S) →
∏

f∈Ω

T(D)(Cf),

which is a monomorphism becauseΩ is a C-basis forS. Letting R = T(D)(S) ⊗ Q, we see

that
∏

f∈Ω T(D)(Cf) ⊗Z Q is a semi-simpleR-module, as eachT(D)(Cf) ⊗Z Q is a simpleR-

module. Thus, theR-submoduleR ⊂
∏

f∈Ω T(D)(Cf) ⊗ Q is also a semi-simpleR-module, and

R = T(D)(S) ⊗Z Q is a semi-simple ring. It follows thatT(D)(S) ⊗Z Q ∼=
∏

i Fi, where theFi are

a finite collection of number fields. This means thatT(D)(S) ⊗Z Qp
∼=

∏
iKi with theKi a finite

collection of finite extensions ofQp.

Thus, there is a monomorphism̂T(D)(S) →֒
∏

i Oi, whereOi is the ring of integers ofKi. Hence,

there is a monomorphism̂T(D)(S)m →֒
∏

i Oi, which is obtained from the previous one by discarding

28



factors wherem is not sent into the maximal ideal ofOi. Each projection̂T(D)(S)m → Oi is a map

of local rings.

Each ring homomorphismgi : T(D)(S) → Ki lifts to a ring homomorphismfi : T(S) → Ei,

whereEi is a finite extension ofKi. By Corollary 3.9, for eachi, there is a continuous Galois

representationρi : Gal(Q/Q) → GL2(O
′
i), whereO′

i is the ring of integers ofEi.

Let ρ =
∏

i ρi : Gal(Q/Q) →
∏

i GL2(O
′
i) = GL2(

∏
i O

′
i) be the product representation. Under

the inclusionT(D)(S) →֒
∏

i O
′
i, we see forℓ ∤ DNp, thatTr ρ(Frobℓ) = Tℓ anddet ρ(Frobℓ) =

ℓ−1[ℓ]. The residual Galois representationsρi : Gal(Q/Q) → GL2(k
′
i), wherek′i is the residue field

of O′
i, are all isomorphic to the Galois representation attached toT(D)(S) → T̂(D)(S)/m, and hence

are absolutely irreducible.

Applying Theorem 3.7, withA = T̂(D)(S)m andA′ =
∏

i O
′
i (which is a semi-local extension of

A), we deduce that the representationρ descends to a continuous Galois representation

ρm : Gal(Q/Q) → GL2(T̂
(D)(S)m),

as claimed.

For the general case, whenD is not divisible by all prime divisors ofNp, one first applies the

above withD′ := DNp and the maximal idealm′ of T̂(D′) given asm ∩ T̂(D′) to obtainρm′ :

Gal(Q/Q) → GL2(T̂
(D′)(S)m′), which can finally be composed with the natural mapT̂(D′)(S)m′ →

T̂(D)(S)m.

Corollary 3.12. Suppose thatS =
⊕b

k=1 Sk(Γ1(Np
r)). LetA be a complete local ring with maximal

ideal p of residue characteristicp. Supposef ∈ S(A) is a normalized eigenform, so that[ℓ]f =

η(ℓ)ψ(ℓ)f̄ for some charactersψ : (Z/NZ)× → A× and η : Z×
p → A×. Assume the Galois

representation attached to the reductionf̄ : T(S) → A→ A/p modp of f , which defines an element

of S(Fp), is absolutely irreducible (cf. Corollary 3.10).

Then there is a continuous Galois representation

ρ = ρf,p : Gal(Q/Q) → GL2(A)

that is unramified outsideNp and satisfies

Tr(ρ(Frobℓ)) = f(Tℓ) and det(ρ(Frobℓ)) = ℓ−1η(ℓ)ψ(ℓ)

for all primesℓ ∤ DNp (whereD any the integer such that the restriction off to T(D)(S) is a ring

homomorphism).

Proof. SinceS(A) is a normalized eigenform,f : T(D)(S) → A is a ring homomorphism, which

factors througĥT(D)(S)m for some maximal idealm, sinceA is complete and local. (The idealm can

be seen as the kernel ofT̂(D)(S) → A ։ A/p.) We thus have a ring homomorphism̂T(D)(S)m →

A. Composing this with the Galois representationρm from Theorem 3.11 yields the desired Galois

representationρf,p.
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3.4 Nebentype obstructions

We show here that in order to strip powers ofp from the level of a Galois representation which is

strongly modular, it is necessary in general to consider the Galois representations attached to dc-

weak eigenforms. The argument uses certain nebentypus obstructions that also – in general – prohibit

‘weak’ eigenforms of level prime-to-p from coinciding with ‘dc-weak’ eigenforms.

Assumep ∤ N and letf ∈ Sk(Γ1(Np
r))(Zp) be a strong eigenform. A consequence of the result

of stripping powers ofp from the level is that the Galois representationρf,p,m dc-weakly arises from

Γ1(N). We show thatρf,p,m does not, in general, weakly arise fromΓ1(N).

Suppose that〈ℓ〉f = χ(ℓ)f for primesℓ with ℓ ∤ DNp (for some positive integerD), with a

characterχ that we decompose asχ = ψωiη, whereψ is a character of conductor dividingN , ω is

the Teichmüller lift of the modp cyclotomic character, andη is a character of conductor dividingpr

and order a power ofp. Assumep is odd,r ≥ 2, η 6= 1, andm ≥ 2. Let ρf,p,m be the modpm repre-

sentation attached tof . Then it is not possible to find a weak eigenformg ∈ Sk′(Γ1(N))(Z/pmZ) of

any weightk′ such thatρg,p,m
∼= ρf,p,m by the argument below.

Let η have orderps where1 ≤ s ≤ r − 1. Then we may regardη as a characterη : (Z/prZ)× →

Zp[ζ]
×, whereζ is a primitiveps-th root of unity. Assume there exists a weak eigenformg onΓ1(N)

such thatρf,p,m
∼= ρg,p,m. As g is an eigenform for〈ℓ〉 for primesℓ with ℓ ∤ DNp, we have that

〈ℓ〉g = ψ′(ℓ)g, where

ψ′ : (Z/NZ)× → Z/pmZ
×

is a modpm character of conductor dividingN . Sinceρf,p,m
∼= ρg,p,m, we have thatdet ρg,p,m =

det ρf,p,m. Now, we know that

det ρf,p,m ≡ ǫk−1ψωiη (mod pm),

with ǫ thep-adic cyclotomic character. Also, from the construction of the Galois representation at-

tached tog, we have that

det ρg,p,m ≡ ǫk
′−1ψ′ (mod pm).

Hence, after restricting to the inertia group atp, we have that

ǫk
′−1 ≡ ηǫk−1 (mod pm)

as characters ofZ×
p , or equivalently,η ≡ ǫk

′−k (mod pm).

The cyclotomic characterǫ(x) = x has values inZp, however the image of the characterη in

Zp[ζ] containsζ. Sincem ≥ 2, the injection

Zp/(p
m) →֒ Zp[ζ]/(1 − ζ)(m−1)ps−1(p−1)+1

is not a surjection. Thus, the reduction modpm of ǫk
′−k has values inZp/(p

m), but the reduction

modpm of η does not. This contradicts the equalityη ≡ ǫk
′−k (mod pm).

30



Note form = 1, we always haveη ≡ 1 (mod p) and hence it is possible to have the equality of

characters in this situation.

Although the main purpose of this section is to show that there existρf,p,m which arise strongly

from Γ1(Np
r) and do not arise weakly fromΓ1(N), we note the proof shows there exist dc-weak

eigenforms of levelN which are not weak eigenforms of levelN .

3.5 On the weights in divided congruences

In this subsection we show that undercertainconditions, the weights occurring in a dc-weak eigen-

form satisfy enough congruence conditions so that one can equalize them using suitable powers of

Eisenstein series. In fact, Corollary 3.15 below is a generalization of some of the results in Chen-

Kiming-Rasmussen, using different methods. We impose here thatp > 2.

Lemma 3.13. LetO be a local ring with maximal idealp, and letM be a finite projectiveO-module.

If f̄1, . . . , f̄n ∈ M/pM are linearly independent overO/p, thenf1, . . . , fn ∈ M/pmM are linearly

independent overO/pm.

Proof. M is isomorphic toF ⊕
⊕n

i=1 Ofi with F a freeO-module, from which the assertion imme-

diately follows.

Proposition 3.14.LetO be the ring of integers of a finite extension ofQp. Letfi ∈ Ski
(Γ1(Np

r))(O)

for i = 1, . . . , t, where theki are distinct, and suppose[ℓ]fi = ℓkiψi(ℓ)ηi(ℓ)fi, for ℓ ∤ DNp (for some

positive integerD), whereψi : Z/NZ× → O×, ηi : Z/prZ× → O× have finite order. Suppose also

that theq-expansionsfi(q) (mod p) are linearly independent overZ/pZ = Fp.

Put f :=
∑t

i=1 fi and assume thatf is an eigenform for the operators[ℓ] (e.g. this is the case if

f is a dc-weak eigenform).

Thenk1 ≡ k2 ≡ · · · ≡ kt (mod ϕ(pm)/h), whereϕ is the Euler-ϕ-function, andh is the least

common multiple of the orders of theηi (mod pm).

Proof. Denote byλ, λi the[ℓ]-eigenvalue off and thefi, respectively. Then we have

λf ≡
t∑

i=1

λifi(q) (mod pm),

whence
∑t

i=1(λ − λi)fi(q) ≡ 0 (mod pm). Lemma 3.13 applied withM = O[[q]]/(qL) for suit-

ableL large enough (for instance, takeL so that theq-expansion map⊕t
i=1Ski

(Γ1(Np
r))(O) →

O[[q]]/(qL) is injective), shows thatλ ≡ λi (mod pm) for all i. In particular, we haveλi ≡ λj

(mod pm) for all i, j.

We haveλi = ℓkiψi(ℓ)ηi(ℓ). If ℓ ≡ 1 (mod N) thenψi(ℓ) = 1. For suchℓ we thus have

ℓkih = λh
i ≡ λh

j = ℓkjh (mod pm)

for all i, j, by the definition ofh.
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By Chebotarev’s density theorem, we can chooseℓ so that in addition to the propertyℓ ≡ 1

(mod N), we have thatℓ is a generator of(Z/pmZ)× (here we use thatp is odd and thatp ∤ N .) It

then follows thatk1h ≡ k2h ≡ . . . ≡ kth (mod ϕ(pm)) as desired.

The proposition has the following application. Suppose thatf is a dc-weak eigenform modpm

at levelN of the formf =
∑t

i=1 fi with fi ∈ Ski
(Γ1(N))(O) for i = 1, . . . , t, where theki are

distinct. Suppose that eachfi has a nebentypus and that, crucially, theq-expansionsfi(q) (mod p)

are linearly independent overFp.

Then the proposition applies withh = 1 and shows that we havek1 ≡ · · · ≡ kt (mod ϕ(pm)).

Without loss of generality suppose thatkt is the largest of the weights. Whenp ≥ 5, we can use

the Eisenstein seriesE := Ep−1 of weightp − 1 and level1, normalized in the usual way so that its

q-expansion is congruent to1 (mod p). The formẼ := Epm−1

is of weightϕ(pm) = (p− 1)pm−1,

level 1, and is congruent to1 (mod pm). Due to the congruence on the weights, we may multiply

eachfi for i = 1, . . . , t − 1 with a suitable power of̃E so as to make it into a form of weightkt

with the sameq-expansion modpm. Consequently, in weightkt and levelN there is a form that is

congruent tof modpm, i.e.,f is in fact a weak eigenform modpm at levelN .

We also record the following variant of Proposition 3.14 as it represents ageneralization of some

of the results of Chen-Kiming-Rasmussen.

Corollary 3.15. LetO be the ring of integers of a finite extension ofQp. Letfi ∈ Ski
(Γ1(Np

r))(O)

for i = 1, . . . , t satisfyf1(q) + . . . + ft(q) ≡ 0 (mod pm), where theki are distinct, and suppose

[ℓ]fi = ℓkiψi(ℓ)ηi(ℓ)fi, whereψi : Z/NZ× → O×, ηi : Z/prZ× → O× have finite order. Suppose

for somei, theq-expansionsfj(q) (mod p), j 6= i are linearly independent overZ/pZ = Fp.

Thenk1 ≡ k2 ≡ · · · ≡ kt (mod ϕ(pm)/h), whereϕ is the Euler-ϕ-function, andh is the least

common multiple of the orders of theηj (mod pm).

Proof. Without loss of generality, assumei = 1. As −f1(q) ≡
∑t

i=2 fi (mod pm) the proof of

Proposition 3.14 shows that we have

ℓk1ψ1(ℓ)η1(ℓ) ≡ ℓkiψi(ℓ)ηi(ℓ) (mod pm)

for i = 2, . . . , t, and the desired congruences then follow in the same way.
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