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Abstract

This is a sketch of the content of my three lectures duringrthB SchooModular Galois
Representations Modulo Prime Poweteld in Copenhagen from 6/12/2011 until 9/12/2011,
organised by lan Kiming. Thanks lan!

1 Modular Forms Modulo Prime Powers

Modular forms, in their classical appearance (19th century! Eisen$t&irerstrall, Jacobi, Poincaré,
etc.) and in the way one usually gets to know them during one’s studiesppetof Complex
Analysis: holomorphic functions satisfying a certain transformation rulenyMieve an evident num-
ber theoretic significance (they were studied because of this!), like-theé=ourier coefficient of the
Eisenstein serieB), beingoy_1(n) = Zo<d‘n d*=1. But, it is a highly non-trivial step to ‘transport’
modular forms from Analysis to Algebra, i.e. to identify an algebraic structuesven stronger, an
integral structure, on the complex vector space of modular forms. Thiselasved by Hecke, Eich-
ler and Shimura. Without that we would not be able to do anything of whatreve@ng this week,
and it is probably fair to say that without that Fermat’s last theorem wouithiae been proved. So,
this first lecture is mainly concerned with integral structures on modular fdFmally, it will be used
to introduce modular forms modulo prime powers, as an application.

A reference where most of the content of this lecture is worked out ardectyre notes [4].

1.1 Hecke algebras and generaj-expansions

Definition 1.1. Let My (N) be theC-vector space of modular forms of weighand levelN (either
I'1(N) or 'y (V) — doesn'’t matter for us). By (V) we denote the cuspidal subspace.

Let’Hx (V) be theC-subalgebra oEndc (M (N)) generated (a&-algebra) by the Hecke oper-
atorsT,, forn € N.

Let Tx(N) be the subring oEndc (Mg (N)) generated (as a ring, i.e. as A-algebra) by the
Hecke operator§, for n € N.

BothH(N) and Ty (V) are calledHecke algebra of weiglit and levelN.



It is well-known that the Hecke algebfid;(N) (and thus alsdl',(N)) is commutative. As it
is commutative, inM(N) there are modular forms that are eigenvectors for all Hecke operators
T,: These are calle(Hecke) eigenformsLet f = >~ , a,(f)¢™ be such an eigenform (we write
q = q(z) = €2™%). We say that it isiormalisedf a;(f) = 1.

One can compute directly that the level one Eisenstein sejiese Hecke eigenforms (for &t).
One also trivially gets an eigenform if the space of modular (cuspidal) femslimensional. This
proves that the Ramanujax € S15(1) is a Hecke eigenform.

The following simple lemma, which is a direct consequence of the descriptideade operators
on Fourier expansions of modular forms, turns out to be the key to evegytat follows.

Lemma 1.2. Supposef = > > an(f)¢" € My(N) be a modular form of weight and levelN.
Then for alln > 1 we haveu, (T, f) = an(f).

We now define a bilinear pairing, which | call thieomplex)y-pairing, as
My(N) x He(N) = C, (f,T) — a1(T'f).

Proposition 1.3. Supposeé: > 1. The complex-pairing is non-degenerate. In particular, we have
the isomorphism

® : My,(N) 2 Home(He(N),C), f— ®(f), whered(f)(T) = a1 (T'f).

It is useful to point out tha®( f) mapsT,, to a1 (T, f) = an(f).
The inversel of @ is given byp — ag + Y .-, #(T,,)q", whereay is a uniquely defined complex
number.

Proof. This follows from Lemma 1.2 like this. If for ath we have0 = a1(T,f) = a,(f), then
f = 0 (this is immediately clear for cusp forms; for general modular forms at thefiese we
can only conclude thaf is a constant, but sinde > 1, non-zero constants are not modular forms).
Conversely, ifa; (T'f) = 0 for all f, thena;(T(T,,f)) = a1(T, T f) = an(Tf) = 0 for all f and all
n, whencel'f = 0 for all f. As the Hecke algebra is defined as a subring in the endomorphism of
My (N), we findT = 0, proving the non-degeneracy.

Let ¢ € Home (Hy (), C). Itis obvious thatV(¢) is a modular formyf such that,,(f) = ¢(T,)
for all » > 1. Note that the coefficients,(f) for n > 1 uniquely determiney(f), as the difference
of two forms having the same, (f) for n > 1 would be a constant modular form of the same weight
and so is th&@-function by the assumptiok > 0. However, | do not know a general formula how to
write downag(f) (but, it can be computed in all cases). Ol

The perfectness of thgpairing is also called thexistence of g-expansion principle

’The Hecke algebra is the linear dual of the space of modular f(#rms.




So, from the knowledge of the Hecke algebra we can recover the modufas fvia theirg-
expansions as thé-linear mapsH(N) — C. Itis this point of view that will generalise well!

But, more is true: We can identify normalised eigenforms as@redgebra homomorphisms
among theH,(N) — C:

Corollary 1.4. Let f in My (N) be a normalised eigenform. Then
T.f =an(f)f forallneN.
Moreover,® from Proposition 1.3 gives a bijection
{Normalised eigenforms i/, ()} < Homc_ag(Hr(N),C).

Proof. Let \,, be the eigenvalue df,, on a normalised eigenforrfi Then:

an(f) = ar(Tnf) = a1(Mnf) = Mar(f) = An,

proving the first statement. Furthermore:

S(f)NTnTm) = arx(ToTinf) = a1(Tnam(f)f) = am(f)an(f) = @(f)(Tn)2(f)(Tm),

as well as (using thaf; is the identity of Hy(NV)):

O(f)(T1) = ar(f) = 1.

This proves tha®( f) is a ring homomorphism (note that it suffices to check the multiplicativity on a
set of generators — given the additivity).
Conversely, if®( f) is a ring homomorphism, then

an(Tf) = ©(Tf)(Tn) = ar(TTof) = (/) (TTn) = @(f)(T)2(S)(Tn) = 2(f)(T)an(f)

for all n > 1 showing thatl'f = \f with A = ®(f)(T) (note that we again have to worry about the
0-th coefficient, but, as before, it suffices that the other coefficiemtseag conclude that thHeth one
does as well). O

1.2 Existence of integral structures on Hecke algebras

Note that by definitioril;, (V) is a subring ofH;(/N). The main point is to see that, (V) is an
integral structure of{; (V). We first prove this in the level case, which requires least machinery.
Then, we prove it in general by citing the Eichler-Shimura theorem, as weihes on modular
symbols.



1.2.1 Proofin levell using Eisenstein series

The input to this proof are the following standard facts from modular foroosses:

Lemma 1.5. (a) The Eisenstein serids, € M,(1) and Es € Mg(1) have a Fourier expansion with
integral coefficients an@-th coefficient equal té. Ramanujan’'sA\ € M2 (1) is a cusp form with
integral Fourier expansion antl-st coeffient equal to.

(b) Letf € My(N) be a modular form with an integral Fourier expansion. THgy{f) also has an
integral Fourier expansion.

(c) For anyk, we haveMj 10 = A - My & (CEfng, wherea, 3 € Ny are any elements such that
k+12 = 4a+ 63 (which always exist sinceis even — otherwise we're dealing with thespace).

This can be used to construct a Victor-Miller basis\éf (1) (say, its dimension ig), that is any
basis of theC-vector spacé/;(1) consisting of modular formg, fo, ..., fn—1 With integral Fourier
coefficients such that

a;i(fj) = 0i;
forall0 <i,57 <n-—1.

How to construct such a basis? We do it inductively. Eoe 4,6,8,10, 14 the existence is
obvious, since the spacdd.(1) is 1-dimensional and the Eisenstein series does the jobk Forl 2,
we start withE2 = 1 — 1008¢ + ... andA = ¢ + ..., so that we can tak¢ = E2 + 1008A and
f1=A.

Suppose now that we have a Victor-Miller bagis. . ., f,—1 of Mx(N). Fori =0,...,n—1, let
gi+1 := Af;andgg := Ejng. This is not a Victor-Miller basis, in general, but can be made into one.
Note first thata;(g;) = 1 forall 0 < i < nandthata;(g;) =0forall0 <i <nandall0 <j <i.
Graphically, it looks like this:

go = 1+ g+ o>+ ... cot oV 1t og"
gL = q+ o>+ ... .+ oV 1t og"
go = P+ ... ot oV 1+ og"
o1 = qn—1+ .qn
gn = q"

| think that it is now obvious how to make this basis into a Victor-Miller one.

Proposition 1.6. Let { fo, ..., fn.—1} be a Victor-Miller basis ofM(1). Then the Hecke operators
T, written as matrices with respect to the Victor-Miller basis, have integraliestr



Proof. In order to write down the matrix, we must determifig f; forall 0 < ¢ < n — 1 in terms of
the basis. But, this is trivial: If

Tofi = aio+a;1q+ ai,2q2 + -4 ai,n—lqn_l +...,

thenT,, f; = Z?:—OI a; ; fj, o thea; ; are just the entries of the matrix. They are integrall’ag; has
integral Fourier coefficients (using here that all ffa&lo). O

Now we draw our conclusions:

Corollary 1.7. The natural mapC @z Ty(1) — H (1) is an isomorphism. In particulaff (1) is
free asZ-module (i.e. abelian group) of rank equal to tBedimension of{;(1).
We say thafl';(1) is an integral structure i+ (1).

Proof. Let us identifyEndc (M (1)) with Mat,, (C) (with n the dimension ofM (1)) by writing
down the Hecke operators with respect to a Victor-Miller basis.
By Proposition 1.6, we have thdt. (1) lies in Mat,(Z). Let us write this more formally as a
(ring) injection
t: Tr(1) — Mat,(Z).

Recall thatC is a flatZ-module, hence, tensoring with overZ preserves injections, yielding
d®t:C®yz T, — C®y Matn(Z) = Matn((C),

where the last isomorphism can be seeftas, (ZGZ e Z ¢ Z) = (C2272)® (CozZ)® (C®y
2)® (CezZ) =2 CaCaCaC. The image oid ® ¢ lies in H (1) and contains all;,,, whence
the image i (1), proving the isomorphisi® ®z Ty = Hi(1).

It follows immediately thafl'; (1) is a freeZ-module of rank equal to the dimensiondf.(1). O

What happened? The only non-trivial thing we used is that we could woitencbur Hecke
operators as matrices with integral entries. For higher levels this also warkd do not know of a
proof as easy as this one. We'll derive it from the Eichler-Shimura isphism.

1.2.2 General proof using Eichler-Shimura

In the levell situation we obtained Hecke operators with integral matrix entries by provangxis-
tence of a ‘good basis’ consisting of modular forms with integral Fourieffmeents and exploiting
the fact that Hecke operators preserve the subset of modular formiteitinal Fourier coefficients.
In the general level case, it is easier to obtain an integral structure ot Bpace of modular forms

directly, but, in an othe€-vector space, a certain group cohomology space (or, a modular symbols

space — see below).
We do not define group cohomology here. An account is given in my keciotes [4].
The groupSLy(Z) acts on a polynomiaf (X, Y') (in two variables) from the left as follows:

((26) NEY) = F((XY) (25)) = flaX +V,bX +dY).
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By R[X,Y],_2 we denote the?-module of polynomials in two variables which are homogeneous of
degreek — 2 (for k > 2) with coefficients in any commutative ring. It is possible to define Hecke
operatorsT;, for n € N on the group cohomology spa&g (I'y(N), R[X, Y]x_2) (also forTo(N))

and on the parabolic subspaldéar(l“l(N), R[X,Y]k—2).

Theorem 1.8(Eichler-Shimura) Letk > 2. Then there are natural isomorphisms
My (N) ® Sg(N) = H'(T, C[X, Y];—2)

and
Sk(N) D Sk(N) = Hll)ar(rv (C[Xa Y]k—?)v

which are compatible with the Hecke operators, whHeig I'; (IV) or I'g (V) (just as before).

The ‘natural isomorphism’ is actually given by integration (not so difficulife lecture notes [4]
contain a description and a proof (which is probably not the most elegait o

Corollary 1.9. The Hecke algebré{;(N) (resp.Tx(N)) is isomorphic to theC-subalgebra (resp.
the subring) ofindc(HY(T", C[X, Y])_2)) generated by}, for n € N.

Proof. A Hecke operator o/ (N) @ Si(/N) can be written as a block matri€’, 7") whereT” is
the restriction ofl" to S;. (V). Sending 7', 7") to T' defines a homomorphism from the Hecke algebra
onHY(T, C[X, Y]r_2) to the one on,(N), which is clearly surjective as all generators (i@ are
hit. It is injective, because if is zero, then so ig”. O

From the standard resolution for definining group cohomology it is vesy ¢a deduce that
HYT, Z[X, Y]r—2)tee iS @an integral structure di' (T', C[X, Y];_») in the sense that it is a subgroup
and

C @z HY(T, Z[X, Y]r—2)fee = HYT, C[X, Y]i_2).

If M is any finitely generated-module, then it is the direct sum of a fréemodule and the torsion
submodule:M = Myee ® Miorsion, WhereMgeo = M /Miosion- NOte that the Hecke operators on
HY(T, Z[X,Y]r_2) send torsion elements to torsion elements, and, thus give rise to Heckéoopera
onHY (', Z[X, Y]1_2)tree by modding out the torsion submodule.

Now, we can draw the same conclusion as in the lévehse: The Hecke operatdfy can be
written as matrices with integral entries, hen€g(N) < Mat,,(Z), wheren is the C-dimension of
HY(T',C[X,Y])_2), which is equal to th&-rank of H(T", Z[ X, Y]i_2).

So, again by the flatness GfasZ-module, we obtain, precisely as earlier:

Theorem 1.10(Shimura??) C @z Tr(N) = Hk(N).

Note that our proof requires > 2. Fork = 1, | am not aware of a proof along the above
lines. However, it is known that the result of the theorem is true neveghelhis one proves using
the algebraic geometric description of modular forms due to Katz, which isdetye scope of this
lecture.



1.2.3 General proof using modular symbols

Personally, I like group cohomology much better than modular symbols (&t ilease defines mod-
ular symbols in the way | am going to do in this section, namely, as an abstrawlfem) because
working with group cohomology one has all the tools from that theory asahigposal.

However, modular symbols (the formalism) is precisely what is implemented in Magth&age
(by William Stein, principally). Moreover, the definitions are so short thay thasily fit into this
lecture (at least the typed version), whereas a good definition of g@upmology doesn't.

Recall that the projective line ové€} can be seen & U {oo} and that it carries the natural left

SL»(Z)-action by fractional linear combinationés %) £ = Zjisz wherecc is treated in the obvious

way, namely, ag.

Definition 1.11. Let R be a commutative ring and writéfor I or 'y (IV), aswellas’ = R[X, Y ]2
for somek > 2. We define th&-modules

Mg = R[{a, B}]a, 8 € P(Q)]/{{a, a}, {a, B} + {8, 7} + {7, a}|a, 8,7 € PL(Q))

and
Bgr := R[P'(Q)].

We equip both with the natural Idftaction. Furthermore, we let
Mp(V)=MprerV and Bgr(V):=BrgrV
for the left diagonal'-action.
(a) We call thel’-coinvariants
My(N; R) == Mp(V)r = Mg(V)/{(z — gz)|lg € I',x € Mg(V))

the space of modular symbols of lev€land weightk.

(b) We call thel-coinvariants
Bi(N; R) == Br(V)r = Br(V)/{(z — gz)|g € ',z € Br(V))

the space of boundary symbols of levéland weightk.

(c) We define thboundary mags the map
Mi(N; R) — Bi(N; R)
which is induced from the maptr — Br sending{«, 5} to {8} — {a}.

(d) The kernel of the boundary map is denoted’t . (IV; R) and is calledthe space of cuspidal
modular symbols of levelV and weightk.



We now give the definition of the Hecke operafgrfor a prime? on I'o(N) (the definition on
I'1(N) is slightly more involved). Thé;, for compositen can be computed from those by the usual
formulae. A matrix(¢ %) € Maty(Z) with non-zero determinant acts ovi,,(IV; R) by the diagonal
action on the tensor product. Letc M (N; R). We put

Tgl‘ = Z 5..%',

0ERy

where

0 <r<e-13u{(§9)} if (4N
Jlo<r<e-1}, if £|N.

It is very easy to see thatl(N; Z)fpee = Mi(N;Z)/ My(N;Z)orsion 1S @n integral structure
in My (N;C), so Hecke operators ol (N; C) can be written as matrices with integral entries.
Modular symbols (ove€) describe the first homology df for the moduleC[X, Y];_o (or the
first homology of the modular curvEr — this comes with a caveat because we must pay attention
whether we should not use compactly supported cohomology at some;plaeesgvork with X and
cuspidal modular symbols, everything is simpler). As homology and cohom@laydual to each
other (at least in good situations), we have:

Proposition 1.12. There is a non-degenerate pairing
HYI',C[X,Y];_2) x My(N;C) — C.

It follows that the Hecke algebra dit* (T, C[X, Y],_2) is isomorphic to the one oM (N; C),
where the isomorphism is simply given by transposing the matrices (wrt. to @ lfixsis, say, of
M (N; R)) because the two spaces are dual to each other by the virtue of the pairing
Consequently, we can again prove the isomorphismy, Tx(N) = H(NN) by using the Hecke
operators oMM (N; Z)ee (Which, of course, can be represented by matrices with integral entries)
again fork > 2.

1.3 Exploiting integral structures on Hecke algebras

We are now exploiting consequencesb®y, Ty (N) = Hy(N).

Corollary 1.13. (a) Tx(N) is a freeZ-module of rank equal to th€-dimension of{;(/V), which is
equal to theC-dimension of\/ () by Proposition 1.3.

(b) HomZ(Tk(N),(C) = HOm((j(Hk(N),(C) = Mk(N)

(c) TheZ-algebra homomorphisms iiomy (T (N ), C) correspond bijectively (under the mapping
of the previous item) to the normalised Hecke eigenformig,gfN ).



Proof. That the natural maps are isomorphisms is immediately clear if we Wit& ) = Z @ --- @
7. O

Now, we do not nee; (V) anymore. We will only work witHl';, (V).

The modular forms inV/ (V) correspond to the group homomorphisihg V) — C.
The normalised eigenforms i, (V') correspond to the ring homomorphisfiig(N) — C.

We include a short interlude on commutative algebra(s). Recall that a rirgjlesd Artinian if
every descending ideal chain becomes stationary. This is the caBg fof T (V) because it is a
finite dimensionalf,-vector space, so that ideals are subspaces, and, of courses chaubspaces
thus have to become stationary for dimension reasons. For the same, relasdd @7 Ty (N) is
Artinian, butT(N), of course, is not!

Proposition 1.14. Let R be an Artinian ring.

(a) Every prime ideal oR? is maximal.

(b) There are only finitely many maximal idealsfin

(c) Letm be a maximal ideal oR. It is the only maximal ideal containing>°.

(d) Letm # n be two maximal ideals. For any € N andk = oo the idealsm”* andn” are coprime.

(e) The Jacobson radic@mespeC(R) m is equal to the nilradical and consists of the nilpotent ele-
ments.

(f) We have ) ,cspec(ry ™™ = (0).

(9) (Chinese Remainder Theorem) The natural map

R ar—(...,a+m™>®...) H R/m°°
meSpec(R)

is an isomorphism.

(h) For every maxmimal ideah, the ring R/m® is local with maximal ideai and is hence isomor-
phic to Ry, the localisation ofR at m.

The Hecke algebrd; (V) satisfies the assumptions (and hence the conclusions) of the following
proposition.

Proposition 1.15. Let T be aZ-algebra which is free of finite rank as aZ-module. Leflg :=
Q ®7 T.

(a) Z C T is an integral ring extension.



(b) T is equidimensional of Krull dimensidn meaning that every maximal idealof T contains at
least one minimal prime idealand there is no prime ideal strictly included betwgeandm.

(c) T/m is afinite field of degree at mostover the prime fieldT/p is an order in a number field of
degree at most overQ.

(d) Tq is an ArtinQ-algebra of dimension. As such it satisfiesTq = [ [, .1, prime(Ta)y (localisa-
tion atp).

(e) The embedding: T — Tgq induces a bijection (via preimages) between the (finitely many) prime
ideals of T (which are all maximal) and the minimal prime idealsThf The inverse is given by
extension.

The proofs of the two propositions are not difficult. We will now exploit themdur purposes.
Let us writeT(N)g := Q ®z T, (N) (similarly to the use in the previous proposition).
We now consider ring homomorphisnfis Ty (N) — C in more detail.

Proposition 1.16. Let f : T;(/N) — C be aring homomorphism and Ig be its kernel.
(@) py is a minimal prime ideal of';, (V).

(b) The image of is an orderZ (thecoefficient ring off) in a number field), (thecoefficient field
of f), which can be explicitly described & = Z[f(T,,) | n > 1] andQ; = Q(f(T,) | n > 1).
Moreover,[Q; : Q] < dimg My(N).

() f : Te(N) — C extends to aQ-linear mapT,(N)g — C, whose kernel is the maximal
ideal which is the extension @f; (in accordance to the correspondence in Proposition 1.15).
Conversely, everyf : Ty(N) — C arises by restriction from &)-algebra homomorphism
Tw(N)g — C.

(d) Letf : Tx(NN)g — C be a normalised Hecke eigenform and= Autg(C) be a field automor-
phism. Thery := ¢ o f is another normalised Hecke eigenform, having the same kernel. In this
case, we say that and g are Autg(C)-conjugated.

Conversely, suppose thgtg : T;(N)g — C have the same kernel. Then they &retg(C)-
conjugated. Hence, th&utg(C)-conjugacy classes are in bijection with the maximal ideals of
Tr(N)q-

(e) The local factors iTx(N)q = [1,ar, (3 primel(Tk(NV)@)p correspond to thelutg (C)-conju-
gacy classes.

Proof. A rough sketch only. Nothing is difficult and everything can be done &xarcise! Of course,
the kerneb is an ideal. It is prime becaud®,(N)/p; is a subring ofC (hence, an integral domain),
which is equal to the image gf. As Ty (N) is generated by th&,,, the image is generated by the
valuesf(Ty,), i.e. is equal t& . By Proposition 1.157 is an order in the integers of a number field,
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which is, of course, the fraction field @, i.e. Q;. We can also se@; as the image of the induced
homomorphism ofQ-algebras:T;,(N)g — C, showing that th&)-dimension ofQ; can be at most
the Q-dimension ofQ ®z Ty (N), which is equal to th&-rank of Ty, (), which in turn is equal to
the C-dimension of)M},(IV), as already pointed out.

If f,g:Tkp(N)g — C have the same kernel, th@y andQ, are isomorphic as field extensions
of Q. To see thalf andg are conjugate, it suffices to lift this field isomorphism to an automorphism
of C, which can be done by a standard result from Galois theory. Ol

Note the obvious corollary for a normalised eigenfofre My (N): Zf = Zlan(f) | n > 1] is
an order in the number fiel@; = Q(a,(f) | » > 1). This is much less trivial than it might look!

The coefficients, (f) (for n > 1) of a normalised eigenforrfi are algebraic integers.
Adjoining the infinitely manyu,, (f) (for n > 1), one only gets a finite extension ©f

Warning: This does not say anything abaytf) and the same conclusion is wrong, in general!
ForinstanceF; = oot + 1+ > n>2 011(n)g" is a normalised eigenform, bug is not an integer!
So, we are on the safe side working with cusp forms (all the above halds$p forms!). Or, we

just disregardi, since it is uniquely determined anyway (as long:as 1, what we are assuming).

1.4 Modular forms with coefficients in a ring
Let R be a commutative ring.

Definition 1.17. A modular form of weight and levelN with coefficients inR is a group homomor-
phism:
f:Tp(N) — R.

We use the notation/(N)(R) := Hom(T(V), R) for these.
Aweak Hecke eigenform of weightand levelV with coefficients inR is a ring homomorphism:

f:Tp(N) — R.

A weak Hecke eigenforrh: T, (N) — R is calledstrongif there is a normalised Hecke eigenform
g € My(N) and a ring homomorphism : Z, — R such thatf = a o ®(g). In this case, we have
an(f) = alay(g)) forall n > 1.

In analogy to normalised eigenforms Ay (IV), we should actually always insert the word ‘nor-
malised’ also in this definition, but, | prefer not to do it. It may even happenltdeop the word
‘Hecke’ form ‘Hecke eigenform’. Hopefully, no confusion will arise.

We shall occasionally write,,(f) for f(7;,) (as we already did in the definition) and think o&s
the formalg-expansiony >~ ; a,(f)q" € R[[q]] (note: we disregard, due to the problems pointed
out above).

Lemma 1.18. Let R — S be a ring homomorphism. Theéh®r M (N)(R) = Mi(N)(S).
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Proof. We know thatl', (V) is a freeZ-module of some finite ran#&. Hence:S ®r Mi(N)(R) ®r
S = S ®@r Homz(Tx(N),R) =2 S ® Homz(Z,R) = S ®r R? = S¢ =~ Homg(Z4,S) =
Homyz(Tk(N),S) = Mg(N). O

Corollary 1.19. We havel,(N)(Z) ®z C = My(N)(C) = My(N).
Hence, M (N)(Z), the modular forms with integral Fourier expansion, form an integral strce
in the C-vector space of modular formig (V).

1.5 Mod p modular forms

We now specialise to ‘mogl modular forms. Lep be a prime. We fix an algebraic closufg of F,.

Definition 1.20. A modular form of weight and levellV with coefficients ifF,, is also called anodp
modular form of weighk and levelN. Similarly, we defineveak modp Hecke eigenforms
PutTy(N)p, :=Fp @z Tx(N) = Tr(N)/pTx(N).

We continue with an abstract statement from commutative algebra (complemBEntipgsition
1.15), now focussing on madreductions. Its proof is not difficult and can be done as an exercise.

Proposition 1.21. Let T be aZ-algebra which is free of finite rank as aZ-module. Lefly, :=
F, ®z T.

(@) T, is an Artin IFp-algebra of dimensiom. As such it satisfiesTr, = [],, s, prime( TF, )m
(localisation atm).

(b) The projectiont : T — Ty, induces a bijection (via preimages) between the (finitely many)
prime ideals ofTy, (which are all maximal) and the maximal prime idealsTof, of residue
characteristicp. The inverse is given by the image under

Let us study this definition in a way similar to Proposition 1.16.

Proposition 1.22. Let f : T,(N) — F, be a weak Hecke eigenform of levéland weightk. Let
my := ker(f) be the kernel of .

(a) my is a maximal ideal of;, (V). It has heightl.

(b) The image of is the finite extensioR,, ; of F, (insideF,) generated by the,,(f) = f(T;,) for
n > 1. The degreglF, ¢ : F,] is at mostdimc My(N).

(c) f factors through to give afi,-algebra homomorphisfi, (N)r, — F,,, whose kernel is the max-
imal ideal which is the image afi; (in accordance to the correspondence in Proposition 1.21).
Conversely, every : Tx(N) — F, arises by restriction from af¥,-algebra homomorphism
Tk(N)IFp — ﬁp.
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(d) Let f : Tx(N)s, — F, be a normalised Hecke eigenform ande Gal(F,/F,) be a field
automorphism. Then := ¢ o f is another weak Hecke eigenform, having the same kernel. In
this case, we say thgtand g are Gal(F,/F,)-conjugated.

Conversely, suppose thftg : Tx(N)r, — [, have the same kernel. Then they & (F, /F,)-
conjugated. Hence, th&al(F,/F,)-conjugacy classes are in bijection with the maximal ideals
of Ty (N)F, .

(e) The local factors il (N)r, = [Inar, (3, prime(Tk(V)F,)m correspond to th&al(F,/F)-
conjugacy classes.

Proof. The image off is clearly the subfield generated by thel},). As Ty (N) is free as &-module
of rankdim¢ My, (N), itis clear that the degree Bf, ¢ is bounded by this number. Hendg, (V) /m¢
is a finite field, whencen; is maximal.

The rest is very similar to the proof of Proposition 1.16, using Propositiah) 1.2 O

Proposition 1.23(Deligne-Serre lifting lemma)Every weak mog@ Hecke eigenform is strong.

Proof. Let f : Tx(N) — F, be a weak Hecke eigenform with kernel As the height ofn is 1, it
contains a minimal prime ideal So, we have

Recall thatO := T (NN)/p is an order in a number field (being an integral domain that is integral over
7 and of finiteZ-rank), so that we can view it as a subringl@fConsequently, we obtain

g: Te(N) = Tx(N)/p — C,

a normalised holomorphic eigenform wilty = T (V) /p, so that we may take to beT(N)/p —
Ti(N)/m < F,. O

Next we study congruences mgdn terms of prime ideals.

Definition 1.24. Let f1, fo € M (N) be normalised Hecke eigenforms. We kng\f1), an(f2) € Z
forall n > 1. We say thaf; = fo (mod p) if a,(f1) = an(f2) for all n > 1, where we denote by
the reduction homomorphisth— F,,.

Proposition 1.25. (a) If f1 = f2 (mod p), then there is a maximal ideat of T (/N) containing
both the minimal prime ideals;, andyp,.

(b) Letm be a maximal ideal of';, (V') which contains minimal prime ideajs, po. Then there are
normalised Hecke eigenfornys, fo € M (V) such thatf; = f» (mod p) andp; = py, and

P2 =Pys,-
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Proof. (a) We look at the ring homomorphisms
fi : Tk(N) — Tk(N)/pr = Zfi — Z<—> C
for i = 1,2. We obtain the ring homomorphisms

fi i Te(N) = To(N)/pg, = Zy, > Z—> Fy

fori = 1,2, satisfyingf,(T},) = an(f1) = an(f2) = fo(Ty) foralln > 1. So, f, = f, (they agree
on a set of generators). Consequently, their kernel is a maximal ideab(iing it out, we get a finite
field), which containg;, andp, (that is evident from the two previous displayed formula).

(b) We just turn the argumentation in (a) around. Givewe can write the same ring homomor-
phism in two different ways:

Tr(N) = Tr(N)/pi = Tp(N)/m — F,

for i = 1,2. By choosingan embeddind’y(N)/p; — C, we obtain normalised Hecke eigenforms
fi: Tg(N) — Tx(N)/p; — Cfori = 1,2, which are congruent mad O

One can do the same argumentation with congruences ‘ouisidehere D is any integer. Then
one should consider the Hecke algebra generated Wy, allith (n, D) = 1, whose structure theory
works in the same way. For the sake of not making the exposition too complitalieichot do this.

It is an instructive exercise to check it.

An important point, however, is to note thﬁkD)(N) C Tk(NN) is an integral ring extension,
whence prime ideals d]l‘l(CD) (N) (corresponding to ‘partialj-expansions) can be lifted to prime ideals
of Tx(N) (corresponding to ‘completej-expansion) by ‘going up’ (a theorem from commutative

algebra). (I note this here because it doesn’t seem so trivial to estatdimilar statement mad®.)

1.6 Classical modular forms withp-adic coefficients

This section is not abogtadic modular forms (in any sense). lan and Panos will say something abou
them. It just treats modular forms wighadic coefficients according to our definition of such.

Let R be aZ,-algebra, e.gR could be (the integers of)aadic field (i.e. a finite field extension
of @), @, C, or afinite extension o, or IF,,. This is also case, in which we are mainly interested
this week, for modular forms mad’ (see below).

It is common practice to view holomorphic modular forms as modular forms witHficieeits
in Q, by choosing (and fixing!) a field isomorphisth= Q,, (which, of course, does not at all respect
the topology!).

PutTy,(N)z, = Z, ®z Tr(N).

We continue with some general statements about finiteZreégebras, as in Propositions 1.15
and 1.21. Its proof is again a good exercise.

Proposition 1.26.LetT be aZ-algebra that is free of finite rankasZ-module. Writel'z, := Z, 27T
and']I‘Qp =Qp®z T =Qp, ®q To.
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(@) Tr, = F, ©2 T = F, @z, Tz,.

(b) The embedding : T — Tz, induces (by taking preimages) a bijection between the maximal
prime ideals offz, and the maximal ideals df of residue characteristip. The inverse is given
by extension.

(c) Consider the embedding Tq — Tg,, which make, into aTg-algebra, whence we have
TQP = H (TQp)P7
p<dTq prime
by localising at the primes dfg. Letting X' = Tqg/p and consideringQ, ®q K = ]_[;Jp K,
where the product runs through all prime ide§bsof K dividing p, it follows that
(TQp)p = H(TQp)Q7
B
whereQ is the kernel oflg, — (Tg,), - Tg,/p = K - K.
So, aAutg(C)-conjugacy class breaks int@al(@p/(@p)—conjugacy classes according to the

decomposition gb in Tg/p.

We now pass from finite freg-algebras to finite fre&,-algebras. The latter have an even nicer
structure theory, very close to the Artinian case. The following proposagties, in particular, with
Tx(N) := Tr(N)z,.

Proposition 1.27. Let T be aZy-algebra that is free of finite rank as Z,-module. Writéﬁ‘Qp =
Qp Rz, T andTFP =T, Xz, T.

(@) z, < Tis an integral ring extension.
(b) Tis equidimensional of Krull dimension

(c) The natural projection : T — TFP induces (by taking preimages) a bijection between the finitely
many prime ideals o’f‘FF (which are all maximal) and the maximal ideals®f The inverse is
given by taking the image. Moreovey, @z, T = ('pr)m,

(d) T]Fp is an ArtinF,,-algebra of dimension. As such it satisfieéf‘]yp o qump prime(ﬂAI‘]Fp)m.

(e) ?T‘/m is a finite field of degree at mostover[F, ’/JI\‘/p is an order in ap-adic field of degree at
mostr overQ,,.

® T = [l Tm, where the product runs over all maximal ideaI§AIt19[tnd'TI\“m denotes the localisation
of T atm.

(@) TAFQP is an ArtinQ,,-algebra of dimension. As such it satisfieéﬁ‘@p = Hqu@p prime(ﬁ‘@p)p.
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(h) The embedding : T — TQP induces a bijection (via preimages) between the (finitely many)
prime ideals off“@p (which are all maximal) and the minimal prime idealsTaf The inverse is
given by extension.

The proof of this proposition is precisely the same as what was done guailierthe exception
of (f). This, one obtains, by Hensel lifting the idempotents of the decompoisit(d).

Now we apply this to modular forms with coefficients ifZg-algebra. The proof of the following
proposition is again an instructive exercise without any greater difficulties

Proposition 1.28. Let R be aZ,-algebra andf : T;(/N) — R a weak Hecke eigenform.

() fextends tof : Tj,(N) := Tx(N)z, — R, by multiplying with the scalar. Let := ker(f) be the
kernel off.

(b) By choosing a maximal ideal < 'Tfk(N) containinga, we obtain aGal(F,/F,)-conjugacy class
of weak (and, hence, even strong) maglgenforms bﬁ‘k(N) — ﬁ‘k(N)/a — ﬁ‘k(N)/m — F,.

(c) If Ris local, then theGal(F, /F,)-conjugacy class from (b) is unique and we denote a member of
it by £.

(d) The decompositioﬁ‘k(N) = I]
Gal(F,/F,)-conjugacy classes.

i (V) maximal Lk (I )m corresponds to the distinct residual

(e) Tk(N)Qp = Hm<Tk(N) maximal(Hpcmminimal(Tk<N)Qp)P)’ is the decomposition dﬁ"k(N)Qp
into Gal(@p/Qp)-conjugacy classes, grouped together by being congruentzmod

Note that the ideat need not contain a minimal prime ideal. In other words, a wgak in the
proposition need not be strong.
1.7 Interlude: Integers modp”

We want to define congruences mgtof two elementsy € Ok, andj € Ok,, whereK; and K>
are finite extensions dp,. Of course, in order to do so, one choosegsaalic field X' containing both
K, andK5. However, we want our definition to be independent of any such choice

For this reason, it is useful, following [3], to defirg (m) := (m — 1)eK/Qp +1, with e/, the
ramification index off{/Q,. This definition is made precisely so that the natural maps below yield
injections of rings, i.e. ring extensions 8fp"Z,

for any finite extensiorl /K (with pz, the prime ofL overpg in K). We can thus form the ring

Z/p"Z = h_r)n OK/p’IY(K(m)’
K
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which we also consider as a topological ring with the discrete topology. Wieispeak ofa
(mod p™) for a € Z,, we mean its image iZ/p™Z. In particular, fora, 3 € Z,, we define
a = (mod p™) as an equality iZ./p™Z, or equivalently, byy — 3 € p}(K(m), whereK/Q, is any
finite extension containing andg.

Here is a different point of view on this, which was pointed out to me be KiMakdisi. Letv
the normalised valuation dh,, i.e.v(p) = 1. Define the idead,, = {z € Z, | v(xz) > n — 1}. Then

Z/p"ZL = T/ .

1.8 Modular forms mod p™

Definition 1.29. A modular form mog™ of weightk and levelN is a modular form of weight and
level N with coefficients itZ /p"Z.
As before we define strong and weak eigenforms pfiaas such having coefficients &y p»Z.

As seen above, if is a modular form mog™ of weight & and levelN, then it can be seen as a

Zp-linear map
f:T(N)— Z/p"Z,

and asZ,-algebra homomorphism if it is a weak eigenform.

Contrary to the case = 1, weak eigenforms mogl* need not strong for > 1! See, for example,
[3], 4.2.

Later in the lecture we shall introduce one more kind of rpadodular form, namely, dc-weak
modular forms (there we ‘mix’ weights).

2 Galois Representations Modulo Prime Powers

In this talk we study Galois representations mddwithout focussing on modular ones yet.

2.1 Some general representation theory

Proposition 2.1. Let K be ap-adic field withO its ring of integers. Le& be a profinite group and”
ann-dimensionalK -vector space with a continous-linear G-action, so that we have the continuous
representation

p:G— Autg (V) = GL,(K).

Then there is ai0-lattice L in V' which is stabilised by, so thatp is equivalent to
pL : G — Autp(L) = GL,(0).

Proposition 2.2. Let R be a local ring and lep; : G — GL,(R) be a continuous representation of
a groupG for i = 1,2 such thatp, is residually absolutely irreducible. Assume that all traces are
equal: Tr(p1(g)) = Tr(p2(g)) forall g € G.

Thenp; andp- are equivalent.
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Corollary 2.3. Let K be ap-adic field withQ its ring of integers. Le¢: be a profinite group and
p:G— GL,(K)

be a continuous representation. Let, pr, be two lifts toGL,, (O).

If the residual representatiorng,, : G — GL,(O) — GL,(F) is absolutely irreducible, thepy,,
is equivalent ty,, .

We will just writep for p;, andp for the reduction.

Warning: Ifp is not absolutely irreducible, it makes no sense to speak of the reductsorepfe-
sentation taking values @p! Note that the semi-simplification @f; for any latticeL is independent
of L. That is what people in modular forms normally do. But, we will see that in igémes cannot
define semi-simplifications in the mgd set-up.

[Could recall the definition of the conductor of a Galois representationderdo show that fixed
spaces play an essential role, which are not free, in general, whemrkenodp™.]

2.2 Two dimensional representations mog"

Let G be afinite group an@ be the ring of integers of gradic field K. Here we study representations:

p: G — GLy(0/p]E ™y < GLy(Z/p"Z).

Fixed vectors

The definition of the conductor of a Galois representation (over a fieldjvies the dimension of the
fixed spaced @i, whereG; are the higher ramification groups.

Note that an analogous definition mgilleads into trouble. Look at the matr(%gp ;) (assuming
2 # p). As a matrix inZ, it fixes only the zero vector:

(473) Gy = (™)
(note thaty = 0 follows immediately, and:(1 + p) = x impliesz = 0). But, overZ/(p?), we have a
non-zero fixed vector, name(y; )!!! But this fixed vector does not span a free submodule.
Let's change the previous example a bit and consider the m(a]tﬁﬁ}) Its fixed space is the
span of( 1, ) and(% ), which is also not free.
So, we would not be able to simply replace ‘dimension’ by ‘rank’ in the defimitifthe conductor.

Reducible representations

Let K/Q, beQ,(7) wherer is such thatr? = p. This is a totally ramified extension of degreso
thatyx(2) = e(n — 1) + 1 = 3. We make some computations modwfo(i.e. modr3). Consider
the matrixM := (1;’9 1;). Its characteristic polynomial i&? — 2X + 1 — p — p?, i.e. viewing it
modulo73, itis just X? — 2X + 1 — p.
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Let us suppose that is an eigenvalue with an eigenvector that spans a free rankbmodule of
0?/(73); this just means that not both entries in the eigenvector are divisibte Bjen we can form
a base change matrix by putting the eigenvector into the first column, andiochany other second
column which makes the determinant (i.e. the matrix) invertible. For this new blasimatrix will
then have upper triangular form.

Leta € {0,...,p — 1} and considerr = 1 + 7 + ar? and3 = 1 — 7 — an?. These are all
elements such that 4+ 3 = 2 (the trace) and3 = 1 — p (the determinant), i.eX? —2X +1 —p =
(X — a)(X — (). Note that this means that the polynomial2aszeros (instead o). [Maybe, |
should have put as a subscript ok andg to recall the dependence.]

Let's compute the eigenvectors farandg:

(4718 (wanitanny ) = (H7er) = o (rintta)

(1? 111)) (—Tr+7r21(—a—1)) - (1:::(1&:22) =p (—7r+7r21(—a—1))

The computation shows thégT+7r21(a_1) ) is an eigenvector for the eigenvalaend ( _W+7r21(_a_1) )
is an eigenvector for the eigenvalge
1+p 1

The first conclusion is that the matr(x » 17},) cannot be brought into diagonal form and g

on the diagonal) by conjugation because the base change matrix WO(JLderé(afl) 7“,,21(7%1) ) :
which is not invertible in the ring.
But, we can use the base change maftix= (szl(a_l) ?) Conjugation gives:

C'MC = (§5).

Now we interpret this in terms of representations. kgtbe the character that multiplies an entry
by a.. Then our representation is equivalent is equivalent to

L= xa—= V= x5 — 1,

and this extension is non-split. But, now recall thatlepends on the choice af So,V is such an
extension for all choices afl We can even swap the roles@fandg and obtain extensions ‘the other
way around’. This behaviour is definitely crazy! If one wants to get shing useful out of this, one
must consider all these different choices ‘the same’, but, | am not®wweo do this properly.

Semi-simplification

The semi-simplification is traditionally defined as the direct sum of the JorddaeHfactors of a
composition series. But, the Jordan Holder factors are, of course, sibyptkefinition), as such they
areF,-vector spaces and not at all frég(p")-modules. A free rank module overZ/(p") has a
composition series consisting oflF,-vector spaces, so that the traditional semi-simplification would
be ann-dimensional representation ovgy and there would be nd/(p™)-structure left at all!
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In favourable cases, we can do the following: Take the pastiuction and assume it is reducible.
Hence, there are two characters modppearing. If the two characters are distinct, then we can use
them to split theZ /(p™)-module into a direct sum of two free ones of rankia Hensel’'s Lemma (the
characteristic polynomial will have precisely two roots mddwhich are distinct mog and one can
just take the eigenvectors for these eigenvalues).

But, if the characters coincide mpgdwe have seen that there are many possibilities of identifying
characters. If there’s an eigenvector that generates a freel rankmodule, we may definesgmi-
simplification as the direct sum of the two characters appearing. In the éx#mepe are ways for
doing so!

Note that in a representation med, which is not irreducible, there need not be such an eigen-
vector. Consider the representation generated by

(41) and ("7,9,)

Seeing these matrices ov@y, they form an irreducible representation. Modpldhe representation
is clearly reducible. Mog?, there is no eigenvector that generates a free tassubmodule.

2.3 1-dimensional Galois representations

We have seen th&dimensional representation theory mgtbehaves like crazy. Now, we draw a
crazy conclusion on the number theory side. To make things easier welstlichensional represen-
tations first.

Theorem 2.4. Letp be an odd prime. The set
{x:Gg — F, | unramified outside}
is finite. It containg — 1 elements.

Proof. Letx : Gg — F; be any character. Its image is finite (due to continuity). By the Kronecker-
Weber theoremy factors throughGal(Q(¢x)/Q) for some primitiveN-th root of unity for some
integerN. However, assuming in addition thatis unramified outside means that we may tak¥

to be a power op. But, since the only™-th root of unity inF,, is 1, the charactey takes values in

I and factors througlsal(Q(¢,)/Q) = F,’. Hence, there are precisgly— 1 characters in the set

of the assertion. O

We will now see that this statement completely breaks down when workingpfhod

One of the first statement one learns about characters with finite image tkahiatage is cyclic.
The reason being that every finite subgroup of the multiplicative groupfieldis cyclic, namely
contained in the roots of unity. The only things one uses in order to provesttiiat the polynomial
XN — 1 has at mosiV roots, namely théV-th roots of unity, which we know form a cyclic group.
But, not working in an integral domain, a polynomial of degféenay have more tha#V-roots, so
we’d be leaving the roots of unity.
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If we have a character mgé with non-cyclic image, then it consequently cannot be the reduction
of a finite image character lﬁ;, as otherwise the image would be cyclic (any quotient of a cyclic
group is cyclic). But, | have not really thought about whether the dtaraould be the reduction of
a character t@; of infinite order.

Theorem 2.5. Letp be an odd prime. The set
{x:Gq — Z/p*Z" | unramified outside}
is infinite.
We develop this step by step.
Lemma 2.6. Letp be an odd prime and € N. By (,» we denote a primitivg"-root of unity inQ,,.

(@) Zy[¢pn] is the ring of integers of), (¢, ), which is a totally ramified extension of degree =
o) = (p—1)p"~L. Auniformiser ist,, := 1 — (,». Any element in Z,[(,»] can be uniquely
written in itsw-adic expansionz = ag + a1, + a2 +... witha; € {0,1,...,p—1}. Taking
x modr¢*1 just means breaking off this expansionrt.

(b) Letz = ag + a1m, + a2 +.... ThenzP~! =1+ bym, + .. ..

(c) Letl #z =1+ aymy, + asm2 + - € Zp[(pn]. Leti > 1 be the smallest index such that+ 0.

Then the order of in Z,[(;»]/(ms 1) * is equal top™ " with r = [log,, %57,

(d) (Zp[¢pn]/(me*1)) ™ has a subgroup of the forfy’ x F, x -+ x F, .
—_———
(p—1)2pn—2 copies

(e) There are elements of order — 1)p™.

Proof. (a) is well-known and will not be proved here.

(b) This is because’ ' =1 (mod p).

(c) We haver = 1+ a;m% +.... Hencea? = (1 +a;mi +... )7 = 1+ a;m +... and thisis
non-zero if and only ifip® < e, = (p — 1)p" !, which is the case if and only 'pl% < p"*~land
that is true if and only iflog, -*7] < n — s — 1. The result follows.

(d) Using (c), we just count the number of elements having order divigjrigy counting the
coefficients that may be chosen

(e) follows from (c). O

It is not difficult to derive the full group structure ¢, [(,n]/(7& 1)) from the above, but, |
have not done so.

Proof of Theorem 2.5RecallGal(Q(¢3)/Q) = F) & F,. Working modp? and with fixedrn, Lem-
mal 2.6 (d) allows us to send the generatdl?‘jpfopil’"_2 — 1 different non-zero elements. Asgrows,
this number tends to infinity. O
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Here is another corollary.

Corollary 2.7. There are characterg : Go, — Z/p*Z, unramified outside, of arbitrarily high
conductor. This means the following. liet N. Then there is a charactey as before such thaﬂ@p
is not in the kernel ok.

Proof. The m-th ramification group of7(Q,(¢,m /Qp)) is Z/(p™~1) (if | remember correctly). By
Lemma 2.6 (e), this can be send injectively ifop2Z. O

| put this corollary because in the madsetting GP*2 is always in the kernel (if | remember
correctly). This is an indication why the weights do not become arbitrarily higd p, so that we
might now expect that they might become arbitrarily high npdd

2.4 My main motivation

Let f € Si(Ng) with ¢ { Np a prime be a newform ang), : Gal(Q/Q) — GL2(Q,) be the attached
p-adic Galois representation. (We assume that the nebentype, if anyaisiied atg.)
What is the shape qf, restricted toD,? Local Langlands tells us that there i@g—basis such
that
pplr, ~ (§1)-

Now let us assume tha, is absolutely irreducible, so that we have a unique representation

Pp: Gal(@/@) — GL?(ZP)'

We ask the same question. From local Langlands we derive:

pol1, ~ (6 1)

for some0 # « € Z,. Note that the matriX ; ?') cannot be conjugated td }) in Z, (because their
reductions mogh are obviously not conjugated).

This answer is insufficient: We don’t know anything about

What is thep-valuation ofx?

Answer, the, () > n—1ifand onlyifz = 0in Z/pnZif and only if p, (mod p") is unramified
atq.

So, | want to detect at which, the representation, (mod p™) stops being unramified at

One could conjecture that this should be detected by the existence of aeigealtormg mod-
ulo p™ of level N in the same weight which has the sagexpansion ag' modulop™, away from a
finite set of primes.

3 Galois Representations Attached to dc-Weak Eigenforms

This part is essentially copy-and-paste from the article Chen-Kiming-Wiese
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3.1 dc-weak eigenforms

Let S = @,y Sk(M) be theC-vector space of all cusp forms of any positive weight at a fixed
level M. Let each Hecke operatdr, act onS via the diagonal action. We will be considering
finite-dimensional subspacésC S of the following type:

P~

S =S8°M) =P S,(M)

k=1

foranyb € N, M > 1. Such a subspacgis mapped into itself by, for all n > 1.
For f € S, let f(q) € C[[¢]] denote itsg-expansion. We denote tlgeexpansion mapn S C S
by
Bs: S —Cllgll, f— fla) =Y an(f)g™

n>1

Proposition 3.1. Fix M € Nandb € N. LetS := S*(M). Then®g is injective.

Proof. Let f; € Sp(M), fork = 1,...,bbe such thad 2_, fr(¢) = 0. The function>_b_, /i is
holomorphic and -periodic and hence uniquely determined by its Fourier series. H@i:gl fe =
0 and it then follows from [2], Lemma 2.1.1, that we hafye= 0 for eachk. O

We will identify an integral structure i by making use of the results of the first talk.

Definition 3.2. LetH(.S) be theC-subalgebra oEndc(S) generated by thé&, for n > 1. LetT(S)
be the subring oEndc(S) generated by th&), for n > 1.

As was proved in the first lecture, the spacg$M ) have an integral structureSy(M)(Z). It
follows that the spacé = S*(I'; (M)) := EBZZI Si(M) also contains an integral structure, namely,
@221 Sk(M)(Z). Thisis clear because tensoring it oZewith C clearly gives baclé and theZ-rank
on the left is theC-dimension on the right.

Thus,T(S) sits inside an integer matrix ring, we get, as before:

Proposition 3.3. (a) C ®z T(S) = H(S).

(b) T(S) is free of finite rank a&-module and the rank is equal to tlizdimension of+(.S) (which
is equal to theC-dimension of5 due to theg-pairing, see below).

As the complexg-pairing S x H(S) — C, given, as before, byf,T) — a1(Tf), is non-
degenerate (same proof!), we obtain the isomorphism

S = Homc(H(S),C) — Homgz(T(S),C).
For any commutative ring we make the definition, as before,

S(R) := Homz(T(S),R) (Z-linear homomorphisms)
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We call S(R) the cusp forms inS with coefficients inR. This definition comes together, as before,
with a natural action df'(S) on S(R) given by(T.f)(T") = f(T'T"). Note that, as before5(C) = S.
Moreover, for any ring homomorphisi®; — Ry we obtain

Ry @R, S(R1) = S(Ra).
We remark that for any ringg and anyl < k < b, the map
Sp(M)(R) — S*(M)(R), fw form,
is an R-module monomorphism, whereis the surjective ring homomorphism
T(S"(M)) — T(Sk(M)),

defined by restricting Hecke operators.

For a positive integeD, let T(”)(S) be the subring of'(S) generated by those Hecke operators
T,, for whichn and D are coprime.

As before, we have fof € S(R) that the following two statements are equivalent:

() fis an eigenvector with eigenvalyéT’) for everyT € T(P)(S) andf(1) = 1.
(i) The restriction off to T(?) is a ring homomorphism.

We again use the terminolodyecke eigenfornfior such objects. Moreover, via our chosen field
isomorphismC = Q,, we identify the two space$(C) andS(Q,,).
Let us now specialise tR = Z/p"Z. We first record the following simple lifting property.

Lemma 3.4. Fix M,b € N and letS := @}_, Sx(M).
Let f € S(Z/p™Z). Then there is a number field (and hence there is alpeadic field) X' and
f € S(Ok) such thatf = f (mod p™), in the sense that(T},) = f(T},) (mod p™) for all n € N.

Proof. As T(S) is a freeZ-module of finite rank, it is a projectivé-module. Moreover, the image
of the homomorphism (of abelian groups) T(S) — Z/p™Z lies in (’)K/p'};‘(m) for some number
field (or, p-adic field) K. The projectivity implies by definition thaf lifts to a homomorphism
f:T(S) — Ok. O

We stress again that eigenforms m@tl cannot, in general, be lifted to eigenformsif> 1.
Divided congruence forms ‘mix’ weights. However, when we are oveharacteristid field,
there’s no mixing, in the following sense.

Lemma 3.5. Fix M,b € N and letS := @} _, S,(M). PutS), := Si(M) for eachk.
If K is anyQ-algebra, then one haS(K) = @2:1 Sik(K). Moreover, ifK is a field extension
of Qand f € S(K) is a normalized eigenform, then therekisa normalized eigenfornf € S (L)

for some finite extensioh/K and a positive integeD such thatf(7,,) = f(T;,) for all n coprime
with D.
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Proof. For eachl < k£ < b, we have a natural homomorphidhg (S) — Tq(Sk) given by restriction,
and hence taking the product of these, we obtain a monomorphigi) — []%_, To(Sk) of Q-
algebras. By the existence of an integral structure, we have that

b b

dimg Tg(S) = dimg S = > dime S = Y _ dimg To(S),
k=1 k=1

showing thaflo(S) = []%_, To(Sk). Now, we see that

S(K) = Homgz(T(S), K) = Homg(T(S) ®z Q, K) = Homg(Tg(S), K)

k=1 k=1 k=1

Now assume thak is a field extension df) and thatf is a normalized eigenform (for all operators
T, with n coprime toD), giving a ring homomorphisrfi‘éf) — K. It can be extended to a ring
homomorphismf : Tq(S) — L for some finite extensiod /K, since in the integral extension
of rings T(E@D) — Tg(S) we need only choose a prime ideal Bf;(S) lying over the prime ideal
ker(f) < T((@D) by ‘going up’.

To conclude, it suffices to note that every ring homomorph&#siS) — K factors through a
unique Tq(Sk). In order to see this, one can consider a complete set of orthogonal atiemip
e1,... e, Of Tg(9), i.e.€? = e;, e;ej = 0fori # jandl = e; + -+ + e,. As K is a field and
idempotents are mapped to idempotents, eadheither mapped t6 or 1, and ag®) maps ta0 and1
maps tol, there is precisely one idempotent that is mappet tbe others td. This establishes the

final assertion. O

[COMPARE S(Z) and@’_, Si(M)(Z)]

Note that in general it is not true that a normaligie@s in the lemma), which is an eigenform for
all 7,, with n coprime to some integeD, lies S(K) for anyk: Let D € N, let f € S(K) be an
eigenform for allT}, and letd # g € S, (K) be a modular form such that7;,) = 0 for all n coprime
with D; thenf + g is an eigenform (outsid®) but does not lie in a single weight.

We explicitly point out the following easy consequence of Lemma 3.5.

Lemma 3.6. LetO be the ring of integers ok, whereK is a number field or a finite extension@f.
LetS = @b_, Sp(M).
Then:

b
S(0) ={f € S(K) | f(T,) € O Vn} = {f € P Su(M)(K) | f(T) € O Vn}.
k=1

This establishes that(©) is the space also used by Hida on p. 550 of [1].
Now, we give an indication for the name ‘divided congruence’. It shtvat, when working over
aring, there really is some ‘mixing’, unlike the situation f@ralgebras of Lemma 3.5.
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Any f € S(O)isoftheformf = >, fi with f; € Si.(M)(K), and although none of th& need
be inS;(O), the sum has all its coefficients . This is the origin of the name ‘divided congruence
for such anf: Suppose for example that we have formse S(QO) for various weights: and that
>k 9k =0 (mod 7™) for somem, wherer is a uniformizer of0. Putting f;, := g, /7" for eachk
we then havefy, € Si(M)(K) for all k as well asf := >, fi € S(O). Conversely, any element of
S(0O) arises in this way by ‘dividing a congruence’.

3.2 Some general representation theory

Theorem 3.7(Carayol, Serre)Let R be a complete local ring with finite residue field. LRtbe a
semi-local ring containing?. Letp’ : G — GL,(R’) be a continuous representation of a groGp
which is residually absolutely irreducible. Assume that all tra€e&(g)) for g € G liein R.

Theny' is obtained by scalar extension to a representation of the forr — GL,,(R).

3.3 Galois representations

From here on we only work with';.

In this section we construct a Galois representation attached to a dc-vgesifoem modp™.
For expressing its determinant, we find it convenient to work with Hida'kstaperator,, which
we denotel¢]. We recall its definition from [1], p. 549. Let us consider again a sgddbe form
S =@b_, S,(M) for someb. We now consider specifically a leva! written in the form

M = Np"

wherep t N.

LetZ = Z,; x (Z/NZ)*, into which we embed diagonally with dense image. We have a natural
projectionr : Z — Z 7 /p"7 x Z/NZ = 7Z/Np"Z. Letfirst f € S be of weightk. Hida defines for
z = (2p, 20) € Z the stroke operator:

The diamond operatofd) for d € Z/Np"Z is defined asf|,,, with o4 € SLz(Z) such that
oq = (g g) d=1x0d mod Np". Since the diamond operator is multiplicative (it gives a group action
of Z/Np"Z>*), so is the stroke operator.

We now show that for € Z the definition of{z] can be made so as not to involve the weight. Let
¢t Np be a prime. Due to the well known equalitis, = ¢*~2(¢) and(T,, = T? — T2, one obtains

0] = €°() = O*Ty 0 = ((T? — Tp).

This first of all implies tha{¢] € T(S), since the right hand side clearly makes sens& amd is an
element ofl'(S). Due to multiplicativity, allln] lie in T(.S) for n € Z. Consequentlyjy] acts onS(A)
for any ring A by its action vidl'(S). Moreover, if f € S(A) is an eigenform for all’,, (n € N), then
it is also an eigenfunction for a}h].
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One can extend the stroke operator to a group actidhai .S(O) for all completeZ,-algebragd
by continuity (which one must check). Thusfife S(O) is an eigenfunction for all Hecke operators,
then it is in particular an eigenfunction for & for = € Z, whence sendinft] to its eigenvalue orf
gives rise to a charactér: Z — O*, which we may also factor as= ni with ¢ : Z/NZ* — O*
andn : Z; — O*.

Since it is the starting point and the fundamental input to the sequel, we tkeadixistence
theorem orp-adic Galois representations attached to normalized Hecke eigenforms=foR by
Shimura, fork > 2 by Deligne and fok = 1 by Deligne and Serre. B¥rob, we always mean an
arithmetic Frobenius element &t

Theorem 3.8. Suppose thaf = Sy (' (Np")) with & > 1. Supposef € S(Q,) is a normalized
eigenform, so tha{¢) f = x(¢) f for a charactery : (Z/Np"Z)* — @; for primes/ { Np.
Then there is a continuous odd Galois representation
pP=prp: Gal(Q/Q) — GLQ(@p)
that is unramified outsid&/p and satisfies
Tr(p(Froby)) = f(Ty) and det(p(Froby)) = £F~1x(¢)
for all primes/ { Np.
Corollary 3.9. Suppose thaf = @221 Se(T'1(Np")). Supposef € S(Q,) is a normalized eigen-
form, so thaf?] f = n(¢)y(¢) f for some characterg : (Z/NZ)* — @; andn : Z, — @;.
Then there is a continuous Galois representation
pP=pPfp: Gal(@/@) — GLZ(@p)
that is unramified outsid&/p and satisfies
Tr(p(Froby)) = f(Ty) and det(p(Froby)) = f(£71[]) = £~ n(0)y(¢)
for all primes/ { Np.

Proof. From Lemma 3.5 we know thgthas a unique weigli, i.e. lies in somes;,(Q,,). Thus, f also
gives rise to a character: Z/Np"Z* — @; by sending the diamond operat@) to its eigenvalue
on f. The assertion now follows from the equatii{¢) = [¢] and Theorern 3.8. O]

Corollary 3.10. Suppose thas = @°_, Sx(T'1(Np")). Suppose’ € S(F,) is a normalized eigen-
form, so thaf¢] f = 5(¢)y(¢) f for some characters : (Z/NZ)* — T, andn:ZX —F,.
Then there is a semisimple continuous Galois representation

P=Pfp1- Gal(Q/Q) — GLQ(FP)
that is unramified outsid&/p and satisfies
Tr(p(Froby)) = f(T;) and det(p(Froby)) = £~ n(£)y(¢)

for all primes/ t Np.
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Proof. By the Deligne-Serre lifting lemma, there is an eigenfofng S(Z,) whose reduction i,
whence by Corollary 3.9 there is an attached Galois representafign Due to the compactness
of Gal(Q/Q) and the continuity, there is a finite extensiéiyQ, such that the representation is
isomorphic to one of the formial(Q/Q) — GL2(Ok). We definep; , , as the semisimplification of
the reduction of this representation modulo the maximal ide&©f It inherits the assertions on the
characeristic polynomial &trob, from py . O

Next we construct a Galois representation into the completed Hecke algebra

Theorem 3.11. Suppose thas = @°_, Si(I'1(Np")).

Let D be a positive integer and let be a maximal ideal off(”)(S) := Z, @7 T(P)(S) and
denote byl'®) (S),,, the completion off(?)(S) at m. Assume that the residual Galois representation
attached to

T)(S) — TP)(S) — TP () — TP)(S) /m — F,

is absolutely irreducible (note that this ring homomorphism can be extelndedng homomorphism
T(S) — F)).
Then there is a continuous representation

p = pm: Gal(Q/Q) — GLo(T)()wm),
that is unramified outsid&/p and satisfies
Tr(p(Froby)) = T, and det(p(Froby,)) = £71[/]
for all primes? { DNp.

Proof. Assume first that all prime divisors dfp also divideD. As the Hecke operatorE, with
n coprime toD commute with each other and are diagonalizable (as elemeitadf(.5)), there
is aC-basisQ for S consisting of eigenforms fof(P?)(S). As T(P)(S) is finite overZ, for each
f € Q, its image ontd['”)(Cf) is an order in a number field. Here, obvioudl{”)(C f) denotes the
Z-subalgebra ofndc (Cf) generated by th&), with (n, D) = 1.

Consider the natural map

TP)($) — [[ T™(Ch),
feQ

which is a monomorphism becau$kis a C-basis forS. Letting R = T(P)(S) @ Q, we see
that [T;., T”)(Cf) @z Q is a semi-simplek-module, as eac”)(Cf) ®; Q is a simpleR-
module. Thus, theR-submoduleR C [];.q T?)(Cf) ® Q is also a semi-simpl&-module, and
R = TP)(S) @z Q is a semi-simple ring. It follows that(®) (S) @7 Q = [], F;, where theF; are
a finite collection of number fields. This means tfaP) (S) @z Q, = []; K; with the K; a finite
collection of finite extensions @,,.

Thus, thereis a monomorphisﬁﬁD)(S) — [, O;, whereQ; is the ring of integers ok;. Hence,
there is a monomorphisi(?) (S)m = [1; Oi, which is obtained from the previous one by discarding

28



factors wheren is not sent into the maximal ideal @1;. Each projectioriAl"(’j’)(S)m — O;isamap
of local rings.

Each ring homomorphismy; : T(")(S) — K; lifts to a ring homomorphisny; : T(S) — E;,
where E; is a finite extension of<;. By Corollary3.9, for each, there is a continuous Galois
representatiop; : Gal(Q/Q) — GL2(O)), where! is the ring of integers of;.

Letp = [T, pi : Gal(Q/Q) — [, GL2(O)) = GLo(T]; O.) be the product representation. Under
the inclusionT(”)(S) — [], O., we see for { DNp, thatTr p(Frob,) = T, anddet p(Frob,) =
¢=1[¢]. The residual Galois representatighs Gal(Q/Q) — GLa(k.), wherek! is the residue field
of O}, are all isomorphic to the Galois representation attach&it(S) — T(P)(5)/m, and hence
are absolutely irreducible.

Applying Theorem 3.7, witht = T(P)(8),, and A’ = [], @} (which is a semi-local extension of
A), we deduce that the representatipdescends to a continuous Galois representation

pm : Gal(Q/Q) — GLZ(T(D)<S)m),

as claimed.

For the general case, whdn is not divisible by all prime divisors oNp, one first applies the
above withD’ := DNp and the maximal ideak’ of T(?) given asm N T(?") to obtain pyy :
Cal(Q/Q) — GLy(TP)(S).), which can finally be composed with the natural M&f") (S)y —
TP (S) . O

Corollary 3.12. Suppose that = @221 Sk(T'1(Np")). LetA be a complete local ring with maximal
ideal p of residue characteristip. Supposef € S(A) is a normalized eigenform, so thil f =
n(¢)y(¢)f for some characters) : (Z/NZ)* — A* andn : Z, — A*. Assume the Galois
representation attached to the reductipn T(S) — A — A/p modp of f, which defines an element
of S(F,), is absolutely irreducible (cf. Corollary 3.10).

Then there is a continuous Galois representation

p=prp: Gal(Q/Q) — GLa(4)
that is unramified outsidé&’p and satisfies
Tr(p(Froby)) = f(Ty) and det(p(Froby)) = £~ n(¢)(¢)

for all primes? + DNp (whereD any the integer such that the restriction pto T(?)(S) is a ring
homomorphism).

Proof. SinceS(A) is a normalized eigenforny. : T(")(S) — A is a ring homomorphism, which
factors througl’iAl"(D)(S)m for some maximal ideah, sinceA is complete and local. (The idealcan

be seen as the kernel &f")(S) — A — A/p.) We thus have a ring homomorphisi) ($),, —

A. Composing this with the Galois representatignfrom Theorem 3.11 yields the desired Galois
representatiopy ,. O
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3.4 Nebentype obstructions

We show here that in order to strip powerspofrom the level of a Galois representation which is
strongly modular, it is necessary in general to consider the Galois mjiagi®ns attached to dc-
weak eigenforms. The argument uses certain nebentypus obstrucabatsth— in general — prohibit
‘weak’ eigenforms of level prime-tg-from coinciding with ‘dc-weak’ eigenforms.

Assumep f N and letf € S;.(I'1(Np"))(Z,) be a strong eigenform. A consequence of the result
of stripping powers op from the level is that the Galois representatigy, ,, dc-weakly arises from
I'1(IV). We show thapy, ,, does not, in general, weakly arise frdm(V).

Suppose thatl) f = x(¢)f for primes? with ¢ + DNp (for some positive integeD), with a
charactery that we decompose as= w'n, wherey is a character of conductor dividing, w is
the Teichmuiller lift of the mogb cyclotomic character, anglis a character of conductor dividing
and order a power gf. Assumep is odd,r > 2,7 # 1, andm > 2. Letp;,, ,,, be the mog™ repre-
sentation attached tb. Then it is not possible to find a weak eigenfogng S/ (I'1 (N))(Z/p™Z) of
any weightk’ such thalp, ;, » = py,.m by the argument below.

Letn have ordep® wherel < s < r — 1. Then we may regarg as a charactey : (Z/p"Z)* —
Zp|C]*, where( is a primitivep®-th root of unity. Assume there exists a weak eigenfgranI'; (V)
such thato . = pgpm- As g is an eigenform for¢) for primes/ with ¢ { DNp, we have that
(0)g = /(¢)g, where

W' (Z)NZ)* — ZJp"ZL

is a modp™ character of conductor dividing. Sincepy ., = pgpm, We have thatlet p, p, ;=
det psp.m- Now, we know that

det pspm = ¥ 1pwin  (mod p™),

with € the p-adic cyclotomic character. Also, from the construction of the Galois segprtation at-
tached tgy, we have that
det pgpm = € "1 (mod p™).

Hence, after restricting to the inertia grouppatve have that

sl = nek_l (mod p™)

as characters G, or equivalentlyy = ¥ =% (mod p™).
The cyclotomic charactes(z) = « has values ir¥Z,, however the image of the charactein
Zp|¢] contains(. Sincem > 2, the injection

Ly (p™) — Zp[C]/(1 — C)(mfl)l)sfl(pfl)ﬂ

is not a surjection. Thus, the reduction mgd of ¢*'~* has values irZ,/(p™), but the reduction
modp™ of 5 does not. This contradicts the equality= ¥~ (mod p™).
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Note form = 1, we always havegy = 1 (mod p) and hence it is possible to have the equality of
characters in this situation.

Although the main purpose of this section is to show that there gxis}, which arise strongly
from 'y (Np") and do not arise weakly frofi; (), we note the proof shows there exist dc-weak
eigenforms of levelV which are not weak eigenforms of levi|.

3.5 On the weights in divided congruences

In this subsection we show that undmrtain conditions, the weights occurring in a dc-weak eigen-
form satisfy enough congruence conditions so that one can equalireusiag suitable powers of
Eisenstein series. In fact, Corollary 3.15 below is a generalization of sérhe eesults in Chen-
Kiming-Rasmussen, using different methods. We impose here thal.

Lemma 3.13. Let O be a local ring with maximal ideal, and letM be a finite projectivé)-module.
If f1,...,fn € M/pM are linearly independent ove® /p, thenfi, ..., f,, € M/p™M are linearly
independent ove® /p™.

Proof. M is isomorphic toF' & p;"_; O f; with F' a freeO-module, from which the assertion imme-
diately follows. O

Proposition 3.14. LetO be the ring of integers of a finite extensior(®f. Let f; € Sy, (I'1(Np"))(O)
fori =1,...,t, where the; are distinct, and supposé] f; = ¢¥i;()n;(¢) f;, for £ + DNp (for some
positive integetD), wherey; : Z/NZ* — O*,n; : Z/p"Z* — O* have finite order. Suppose also
that theg-expansions;(¢) (mod p) are linearly independent ovéf/pZ = TF,,.

Put f .= Zle fi and assume thaf is an eigenform for the operatof$| (e.g. this is the case if
f is a dc-weak eigenform).

Thenk; = ky = --- = k¢ (mod p(p™)/h), whereyp is the Eulere-function, andh is the least
common multiple of the orders of the (mod p™).

Proof. Denote by, \; the [¢]-eigenvalue off and thef;, respectively. Then we have
t
A= Xifig) (mod p™),
=1

whence>™_ (A — \;)fi(g) = 0 (mod p™). Lemma 3.13 applied witd/ = O[[¢]]/(¢") for suit-
able L large enough (for instance, taleso that theg-expansion mags!_, Sk, (I'1(Np"))(O) —
Ol[lql]/(¢") is injective), shows thah = A; (mod p™) for all 5. In particular, we have,, = ),
(mod p™) for all 4, 5.

We have); = Fitp; (£)n;(£). If £ =1 (mod N) theny;(¢) = 1. For such¥ we thus have

Rt = \h = /\? = (% (mod p™)
for all 4, 7, by the definition ofh.
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By Chebotarev’s density theorem, we can chobs® that in addition to the property = 1
(mod N), we have that is a generator ofZ/p™7)* (here we use that is odd and thap t N.) It
then follows that1h = koh = ... = kth (mod (p™)) as desired. O

The proposition has the following application. Suppose thiat a dc-weak eigenform mog™
at level N of the form f = S°!_, f; with f; € S, (T'1(N))(O) fori = 1,...,t, where thek; are
distinct. Suppose that eagh has a nebentypus and that, crucially, thexpansionsf;(¢) (mod p)
are linearly independent ove,.

Then the proposition applies with= 1 and shows that we havg = --- = k; (mod ¢(p™)).
Without loss of generality suppose thatis the largest of the weights. When> 5, we can use
the Eisenstein series := F,,_; of weightp — 1 and levell, normalized in the usual way so that its

m—

g-expansion is congruent to (mod p). The formE := EP "is of weighto(p™) = (p — 1)p™ 1,
level 1, and is congruent té (mod p™). Due to the congruence on the weights, we may multiply
eachf; fori = 1,...,¢t — 1 with a suitable power o’ so as to make it into a form of weiglht
with the samey-expansion mog™. Consequently, in weight; and levelN there is a form that is
congruent tof modp™, i.e., f is in fact a weak eigenform mad™” at level N.

We also record the following variant of Proposition 3.14 as it represeggmaralization of some
of the results of Chen-Kiming-Rasmussen.

Corollary 3.15. Let O be the ring of integers of a finite extension@y. Let f; € Sk, (I'1(Np"))(O)
fori =1,...,tsatisfyfi(q) + ...+ fi(¢g) = 0 (mod p™), where thek; are distinct, and suppose
() fi = C*ipi(O)ni(0) f;, wherey; : Z/NZ* — OX,n; : Z)p"Z>* — O* have finite order. Suppose
for somei, theg-expansiong;(q) (mod p), j # i are linearly independent ové#/pZ = T,

Thenk; = ky = --- = k¢ (mod ¢(p™)/h), whereyp is the Eulerg-function, andh is the least
common multiple of the orders of the (mod p™).

Proof. Without loss of generality, assumie= 1. As —fi(q) = 2522 fi (mod p™) the proof of
Proposition 3.14 shows that we have

CFrapy (Omr (0) = i (€)n; () (mod p™)

fori =2,...,t, and the desired congruences then follow in the same way. Ol
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