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Preface

This lecture is about computing modular forms and some of their arithmetic properties.

We set the following challenging objectives:

• We explain and completely prove themodular symbols algorithmin as elementary and as ex-

plicit terms as possible. The chosen approach is based on group cohomology.

• The devoted student shall be enabled to implement the (group cohomological) modular symbols

algorithm over any ring (such that a sufficient linear algebra theory is available in the chosen

computer algebra system).

• We introduce the theory of Galois representations attached to modular forms inas explicit terms

as possible. We explain some of its number theoretic significance and some computational

approaches.

• The devoted student shall be enabled to compute important properties of Galois representations

attached to modular forms explicitly.

According to these objectives the lecture consists of two main parts:

I. Computing Modular Forms

II. Computational Galois Representations

Due to the diversity of the audience, ranging from students up to PhD students intending to gen-

eralise the presented algorithms in different directions, and due to the dualaims, theoretic and algo-

rithmic, the lecture is conceived inparallel layers. Not all layers need be followed by all students and

all layers can be reduced individually. The layers are the following:

• Theory. Roughly in 3 of the 4h per week the lecture will introduce theoretical results. All

students are expected to attend the lectures. The lectures will be accompanied by exercises

concerning the theory presented. Exercises can be handed in and will be corrected. Some time

will be devoted to discussing possible solutions.

• Algorithms and implementations. In a lecture in the beginning, programming in some standard

computer algebra systems is introduced. In some lectures during the term, algorithms and

possibly concrete implementations are presented. Much emphasis is laid on practical issues

and students will also be asked to find and implement algorithms. Possible solutions will be

discussed.

• Self-learn modules. For the devoted student to gain a more complete picture ofthe theory than

can be presented during the lecture, complementary reading is suggested.
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The parallel layers will not necessarily be on a single subject all the time, asit is often necessary to

introduce theory first. The lecture is divided up into stages, instead of chapters, in order to emphasize

the possible variety of subjects in each stage.

The conception of this lecture is different from every treatment I know, inparticular, from William

Stein’s excellent book “Modular Forms: A Computational Approach” ([Stein]). Parts will, however,

be similar to notes of a series of 4 lectures that I gave at the MSRI Graduate Workshop in Computa-

tional Number Theory “Computing With Modular Forms” ([MSRI]). We emphasize the central role of

Hecke algebras and focus on the use of group cohomology, since on theone hand it can be described in

very explicit and elementary terms and on the other hand already allows the application of the strong

machinery of homological algebra. We shall mention geometric approaches only in passing.

Organisational issues will be discussed with all participants and decided together in order to suit

everybody.
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Stage 1

Motivation and Survey

This section serves as an introduction to the topics that we are planning to cover this term. We will

briefly review the theory of modular forms and Hecke operators. Then wewill define the modular

symbols formalism and state the theorem by Eichler and Shimura establishing a link between modular

forms and modular symbols. This link is the central ingredient for the first part of the lecture, since

the modular symbols algorithm for the computation of modular forms is entirely based on it. In this

introduction, we shall already be able to give a brief outline of this algorithm.

In the second part of the introduction, we will state and explain the theorems by Shimura, Deligne

and Serre attaching a Galois representation to a Hecke eigenform. The modern number theoretic

significance of modular forms arises from these theorems (e.g. the role of modular forms in the proof

of Fermat’s Last Theorem). We will also sketch which number theoretic information can be obtained

from computing modular forms.

In the practically oriented part of the lecture, we shall introduce the computer algebra systems

MAGMA and SAGE and also show how to use the modular forms and modular symbols packages that

are already provided by these systems.

1.1 Theory: Brief review of modular forms and Hecke operators

Congruence subgroups

We first recall the standard congruence subgroups ofSL2(Z). ByN we shall always denote a positive

integer.

Consider the group homomorphism

SL2(Z)→ SL2(Z/NZ).

By Exercise 1 it is surjective. Its kernel is calledΓ(N). The groupSL2(Z/NZ) acts naturally on

(Z/NZ)2 (by multiplying the matrix with a vector). In particular, the mapSL2(Z/NZ)→ (Z/NZ)2

given by
(
a b
c d

)
7→

(
a b
c d

)
( 1

0 ) = ( ac ) takes all( ac ) ∈ (Z/NZ)2 as image such thata, c generateZ/NZ

(that’s due to the determinant being1). We also point out that the image can and should be viewed as

6
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the set of elements in(Z/NZ)2 which are of precise (additive) orderN . We consider the stabiliser

of ( 1
0 ). We define the groupΓ1(N) as the preimage of that stabiliser group inSL2(Z). Explicitly,

this means thatΓ1(N) consists of those matrices inSL2(Z) whose reduction moduloN is of the form

( 1 ∗
0 1 ).

The groupSL2(Z/NZ) also acts onP1(Z/NZ), the projective line overZ/NZ which one can

define as the tuples(a : c) with a, c ∈ Z/NZ such that〈a, c〉 = Z/NZ modulo the equivalence

relation given by multiplication by an element of(Z/NZ)×. The action is the natural one (we should

actually view(a : c) as a column vector, as above). The preimage inSL2(Z) of the stabiliser group

of (1 : 0) is calledΓ0(N). Explicitly, it consists of those matrices inSL2(Z) whose reduction is of

the form( ∗ ∗
0 ∗ ). We also point out that the quotient ofSL2(Z/NZ) modulo the stabiliser of(1 : 0)

corresponds to the set of cyclic subgroups of precise orderN in SL2(Z/NZ). These observations are

at the base of defining level structures for elliptic curves (see [MF]).

It is clear that

Γ0(N)/Γ1(N)

“
a b
c d

”
7→a

−−−−−−→ (Z/NZ)×

is a group isomorphism. We also let

χ : (Z/NZ)× → C×

denote a character, i.e. a group homomorphism. We shall extendχ to a map(Z/NZ) → C by

imposingχ(r) = 0 if (r,N) 6= 1.

By class field theory or Exercise 2 we have the isomorphism

Gal(Q(ζN )/Q)
Frobl 7→l
−−−−−→ (Z/NZ)×

for all primesl ∤ N . By ζN we denote any primitiveN -th root of unity. We shall, thus, later on also

considerχ as a character ofGal(Q(ζN )/Q). The nameDirichlet character(here ofmodulusN ) is

common usage for both.

Modular forms

We now recall the definitions of modular forms. We denote byH the upper half plane, i.e. the set

{z ∈ C|Im(z) > 0}. The set of cusps is by definitionP1(Q) = Q ∪ {∞}.

ForM =
(
a b
c d

)
an integer matrix with non-zero determinant, an integerk and a functionf : H→

C, we put

(f |kM)(z) = (f |M)(z) := f
(az + b

cz + d

)det(M)k−1

(cz + d)k
.

Fix integersk andN ≥ 1. A function

f : H→ C

given by a convergent power series (thean(f) are complex numbers)

f(z) =
∞∑

n=0

an(f)(e2πiz)n =
∞∑

n=0

anq
n with q(z) = e2πiz
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is called amodular form of weightk for Γ1(N) if

(i) the function(f |k
(
a b
c d

)
)(z) = f(az+bcz+d)(cz + d)−k is a holomorphic function (still fromH to C)

for all
(
a b
c d

)
∈ SL2(Z) (this condition is calledf is holomorphic at the cuspa/c), and

(ii) (f |k
(
a b
c d

)
)(z) = f(az+bcz+d)(cz + d)−k = f(z) for all

(
a b
c d

)
∈ Γ1(N).

We use the notationMk(Γ1(N) ; C). If we replace (i) by

(i)’ the function (f |k
(
a b
c d

)
)(z) = f(az+bcz+d)(cz + d)−k is a holomorphic function and the limit

f(az+bcz+d)(cz + d)−k is 0 whenz tends toi∞ (we often just write∞),

thenf is called acusp form. For these, we introduce the notationSk(Γ1(N) ; C).

Let us now suppose that we are given a Dirichlet characterχ of modulusN as above. Then we

replace (ii) as follows:

(ii)’ f(az+bcz+d)(cz + d)−k = χ(d)f(z) for all
(
a b
c d

)
∈ Γ0(N).

Functions satisfying this condition are calledmodular forms(respectively,cusp formsif they satisfy

(i)’) of weightk, characterχ and levelN . The notationMk(N,χ ; C) (respectively,Sk(N,χ ; C))

will be used.

All these are finite dimensionalC-vector space and fork ≥ 2, there are dimension formulae,

which one can look up in [Stein]. We, however, point the reader to the fact that for k = 1 nearly

nothing about the dimension is known (except that it is smaller than the respective dimension for

k = 2; it is believed to be much smaller, but only very weak results are known to date).

Hecke operators

At the base of everything that we will do with modular forms are the Hecke operators and the diamond

operators. One should really define them conceptually, as we have donein [MF]. Here is a definition

by formulae.

If a is an integer coprime toN , by Exercise 3 we may letσa be a matrix inΓ0(N) such that

σa ≡
(
a−1 0
0 a

)
mod N. (1.1.1)

We define thediamond operator〈a〉 (you see the diamond in the notation, with some phantasy)

by the formula

〈a〉f = f |kσa.

If f ∈ Mk(N,χ ; C), then we have by definition〈a〉f = χ(a)f . The diamond operators give a

group action of(Z/NZ)× on Mk(Γ1(N) ; C) and onSk(Γ1(N) ; C), and theMk(N,χ ; C) and

Sk(N,χ ; C) are theχ-eigenspaces for this action.

Let l be a prime. We let

Rl := {
(

1 r
0 l

)
|0 ≤ r ≤ l − 1} ∪ {σl

(
l 0
0 1

)
}, if l ∤ N (1.1.2)

Rl := {
(

1 r
0 l

)
|0 ≤ r ≤ l − 1}, if l | N (1.1.3)
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We use these sets to define theHecke operatorTl acting off as above as follows:

f |kTl = Tlf =
∑

δ∈Rl

f |kδ.

Lemma 1.1.1 Supposef ∈ Mk(N,χ ; C). Recall that we have extendedχ so thatχ(l) = 0 if l

dividesN . We have the formula

an(Tlf) = aln(f) + lk−1χ(l)an/l(f).

In the formula,an/l(f) is to be read as0 if l does not dividen.

Proof. Exercise 4. 2

The Hecke operators for compositen can be defined as follows (we putT1 to be the identity):

• Tlr+1 = Tl ◦ Tlr − l
k−1〈l〉Tlr−1 for all primesl andr ≥ 1,

• Tuv = Tu ◦ Tv for coprime positive integersu, v.

We derive the very important formula (valid for everyn)

a1(Tnf) = an(f). (1.1.4)

It is the only formula that we will really need.

From the above formulae it is also evident that the Hecke operators commute among one another.

By Exercise 5 eigenspaces for a collection of operators (i.e. each element of a given set of Hecke

operators acts by scalar multiplication) are respected by all Hecke operators. Hence, it makes sense

to consider modular forms which are eigenvectors for every Hecke operator. These are calledHecke

eigenforms, or often justeigenforms. Such an eigenformf is callednormalisedif a1(f) = 1.

We shall consider eigenforms in more detail in the following stage.

Finally, let us point out the formula (forl prime andl ≡ d mod N )

lk−1〈d〉 = T 2
l − Tl2 . (1.1.5)

Hence, the diamond operators can be expressed asZ-linear combinations of Hecke operators. Note

that divisibility is no trouble since we may choosel1, l2, both congruent tod moduloN satisfying an

equation1 = lk−1
1 r + lk−1

2 s.

Hecke algebras and theq-pairing

We now quickly introduce the concept of Hecke algebras. It will be treated in more detail in later

sections. In fact, when we claim to compute modular forms with the modular symbolsalgorithm, we

are really computing Hecke algebras. In the couple of lines to follow, we, however, show that the

Hecke algebra is the dual of modular forms, and hence all knowledge about modular forms can - in

principal - be derived from the Hecke algebra.
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For the moment, we define theHecke algebraof Mk(Γ1(N) ; C) as the sub-C-algebra inside the

endomorphism ring of theC-vector spaceMk(Γ1(N) ; C) generated by all Hecke operators and all

diamond operators. We make similar definitions forSk(Γ1(N) ; C), Mk(N,χ ; C) andSk(N,χ ; C).

Let us introduce the notations

TC(Mk(Γ1(N) ; C)),TC(Sk(Γ1(N) ; C)),TC(Mk(N,χ ; C)) andTC(Sk(N,χ ; C)),

respectively.

We now define a bilinear pairing, which I call the(complex)q-pairing, as

Mk(N,χ ; C)× TC(Mk(N,χ ; C))→ C, (f, T ) 7→ a1(Tf)

(compare with Equation 1.1.4).

Lemma 1.1.2 Supposek ≥ 1. The complexq-pairing is perfect, as is the analogous pairing for

Sk(N,χ ; C). In particular,

Mk(N,χ ; C) ∼= HomC(TC(Mk(N,χ ; C)),C), f 7→ (T 7→ a1(Tf))

and similarly forSk(N,χ ; C). For Sk(N,χ ; C), the inverse is given byφ 7→
∑∞

n=1 φ(Tn)q
n.

Proof. Let us first recall that a pairing over a field is perfect if and only if it is non-degenerate.

That is what we are going to check. It follows from Equation 1.1.4 like this. If for all n we have0 =

a1(Tnf) = an(f), thenf = 0 (this is immediately clear for cusp forms; for general modular forms at

the first place we can only conclude thatf is a constant, but sincek ≥ 1, non-zero constants are not

modular forms). Conversely, ifa1(Tf) = 0 for all f , thena1(T (Tnf)) = a1(TnTf) = an(Tf) = 0

for all f and alln, whenceTf = 0 for all f . As the Hecke algebra is defined as a subring in the

endomorphism ofMk(N,χ ; C) (resp. the cusp forms), we findT = 0, proving the non-degeneracy.

2

The perfectness of theq-pairing is also called theexistence of aq-expansion principle.

The Hecke algebra is the linear dual of the space of modular forms.

Lemma 1.1.3 Letf in Mk(Γ1(N) ; C) be a normalised eigenform. Then

Tnf = an(f)f for all n ∈ N.

Moreover, the natural map from the above duality gives a bijection

{Normalised eigenforms inMk(Γ1(N) ; C)} ↔ HomC−alg(TC(Mk(Γ1(N) ; C)),C).

Similar results hold, of course, also in the presence ofχ.

Proof. Exercise 6. 2
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1.2 Theory: The modular symbols formalism

In this section we give a definition of formal modular symbols, as implemented in MAGMA and like

the one in [MerelUniversal], [Cremona] and [Stein], except that we do not factor out torsion, but

intend a common treatment for all rings.

Contrary to the texts just mentioned, we prefer to work with the group

PSL2(Z) = SL2(Z)/〈−1〉,

since it will make some of the algebra much simpler and since it has a very simple description as a

free product (see later). The definitions of modular forms could have been formulated usingPSL2(Z)

instead ofSL2(Z), too (Exercise 7).

We introduce some definitions and notations to be used in all the lecture.

Definition 1.2.1 LetR be a ring,Γ a group andV a leftR[Γ]-module. TheΓ-invariants ofV are by

definition

V Γ = {v ∈ V |g.v = v ∀ g ∈ Γ} ⊆ V.

TheΓ-coinvariants ofV are by definition

VΓ = V/〈v − g.v|g ∈ Γ〉.

If H ≤ Γ is a finite subgroup, we define the norm ofH as

NH =
∑

h∈H

h ∈ R[Γ].

Similarly, if g ∈ Γ is an element of finite ordern, we define the norm ofg as

Ng = N〈g〉 =
n−1∑

i=0

gi ∈ R[Γ].

Please look at the important Exercise 8 for some properties of these definitions. We shall make use

of the results of this exercise in the section on group cohomology and probably also at other places.

For the rest of this section, we letR be a commutative ring with unit andΓ be a subgroup of finite

index inPSL2(Z). For the time being we allow general modules; so we letV be a leftR[Γ]-module.

Definition 1.2.2 We define theR-modules

MR := R[{α, β}|α, β ∈ P1(Q)]/〈{α, α}, {α, β}+ {β, γ}+ {γ, α}|α, β, γ ∈ P1(Q)〉

and

BR := R[P1(Q)].

We equip both with the natural leftΓ-action. Furthermore, we let

MR(V ) :=MR ⊗R V and BR(V ) := BR ⊗R V

for the left diagonalΓ-action.
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(a) We call theΓ-coinvariants

MR(Γ, V ) :=MR(V )Γ =MR(V )/〈(x− gx)|g ∈ Γ, x ∈MR(V )〉

the space of(Γ, V )-modular symbols.

(b) We call theΓ-coinvariants

BR(Γ, V ) := BR(V )Γ = BR(V )/〈(x− gx)|g ∈ Γ, x ∈ BR(V )〉

the space of(Γ, V )-boundary symbols.

(c) We define theboundary mapas the map

MR(Γ, V )→ BR(Γ, V )

which is induced from the mapMR → BR sending{α, β} to {β} − {α}.

(d) The kernel of the boundary map is denoted byCMR(Γ, V ) and is calledthe space of cuspidal

(Γ, V )-modular symbols.

(e) The image of the boundary map insideBR(Γ, V ) is denoted byER(Γ, V ) and is calledthe space

of (Γ, V )-Eisenstein symbols.

The reader is now invited to prove that the definition ofMR(Γ, V ) behaves well with respect to

base change (Exercise 9).

The modulesVn(R) and V χ
n (R)

Let R be a ring. We putVn(R) = R[X,Y ]n ∼= Symn(R2) (see Exercise 10). ByR[X,Y ]n we

mean the homogeneous polynomials of degreen in two variables with coefficients in the ringR. By

Mat2(Z)6=0 we denote theZ-module of integral2 × 2-matrices with non-zero determinant. Then

Vn(R) is aMat2(Z)6=0-module in several natural ways.

One can give it the structure of a leftMat2(Z)6=0-module via the polynomials by putting

(
(
a b
c d

)
.f)(X,Y ) = f

(
(X,Y )

(
a b
c d

) )
= f

(
(aX + cY, bX + dY )

)
.

Merel and Stein, however, consider a different one, and that’s the one implemented in MAGMA ,

namely

(
(
a b
c d

)
.f)(X,Y ) = f

(
(
(
a b
c d

)
)ι

(
X
Y

) )
= f

( (
d −b
−c a

) (
X
Y

) )
= f

( (
dX−bY
−cX+aY

) )
.

Here,ι denotes Shimura’s main involution whose definition can be read off from the line above (note

thatM ι is the inverse ofM if M has determinant1). Fortunately, both actions are isomorphic due to

the fact that the transpose of(
(
a b
c d

)
)ι

(
X
Y

)
is equal to(X,Y )σ−1

(
a b
c d

)
σ. More precisely, we have
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the ismorphismVn(R)
f 7→σ−1.f
−−−−−−→ Vn(R), where the left hand side module carries "our" action and the

right hand side module carries the other one. Byσ−1.f we mean "our"σ−1.f .

Of course, there is also a natural right action byMat2(Z)6=0, namely

(f.
(
a b
c d

)
)(

(
X
Y

)
) = f(

(
a b
c d

) (
X
Y

)
) = f(

(
aX+bY
cX+dY

)
).

By the standard inversion trick, also both left actions desribed above canbe turned into right ones.

Let now (Z/NZ)× → R× be a Dirichlet character, which we shall also consider as a character

χ : Γ0(N)

“
a b
c d

”
7→a

−−−−−−→ (Z/NZ)×
χ
−→ R×. ByRχ we denote theR[Γ0(N)]-module which is defined to

beR with theΓ0(N)-action throughχ, i.e.
(
a b
c d

)
.r = χ(a)r = χ−1(d)r for

(
a b
c d

)
∈ Γ0(N).

Note that due to(Z/NZ)× being an abelian group, the same formula makesRχ also into a right

R[Γ0(N)]-module. Hence, putting(f⊗r).
(
a b
c d

)
= (f |k

(
a b
c d

)
)⊗

(
a b
c d

)
r makesMk(Γ1(N) ; C)⊗C

Cχ into a rightΓ0(N)-module and we have the description (Exercise 11)

Mk(N,χ ; C) = (Mk(Γ1(N) ; C)⊗C Cχ)(Z/NZ)× (1.2.6)

and similarly forSk(N,χ ; C).

We let

V χ
n (R) := Vn(R)⊗R R

χ

equipped with the diagonal leftΓ0(N)-action. Note that unfortunately this module is in general not

anSL2(Z)-module, but we will not need that. Note, moreover, that ifχ(−1) = (−1)n, then minus

the identity acts trivially onV χ
n (R), whence we consider this module also as aΓ0(N)/{±1}-module.

The modular symbols formalism for standard congruence subgroups

We now specialise the general set-up on modular symbols that we have usedso far to the precise

situation needed for establishing relations with modular forms.

So we letN ≥ 1, k ≥ 2 be integers and fix a characterχ : (Z/NZ)× → R×, which we also

sometimes view as a group homomorphismΓ0(N)→ R× as above. We impose thatχ(−1) = (−1)k.

We define

Mk(N,χ ; R) :=MR(Γ0(N)/{±1}, V χ
k−2(R)),

CMk(N,χ ; R) := CMR(Γ0(N)/{±1}, V χ
k−2(R)),

Bk(N,χ ; R) := BR(Γ0(N)/{±1}, V χ
k−2(R))

and

Ek(N,χ ; R) := ER(Γ0(N)/{±1}, V χ
k−2(R)).

We make the obvious analogous definitions forMk(Γ1(N) ; R) etc.

Let η :=
(
−1 0
0 1

)
. Because of

η
(
a b
c d

)
η =

(
a −b
−c d

)
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we have

ηΓ1(N)η = Γ1(N) and ηΓ0(N)η = Γ0(N).

We can use the matrixη to define an involution (also denoted byη) on the various modular symbols

spaces. We just use the diagonal action onMR(V ) := MR ⊗R V , provided, of course, thatη acts

on V . OnVk−2(R) we use the usualMat2(Z)6=0-action, and onV χ
k−2(R) = Vk−2(R) ⊗ Rχ we let

η only act on the first factor. We will denote by the superscript+ the subspace invariant under this

involution, and by the superscript− the anti-invariant one. We point out that there are other very good

definitions of+-spaces and−-spaces. For instance, in many applications it can be of adavantage

to define the+-space as theη-coinvariants, rather than theη-invariants. In particular, for modular

symbols, where we are using quotients and coinvariants all the time, this alternative definition is more

suitable. The reader should just think about the differences between these two definitions.

Note that here we are not following the conventions of [Stein], p. 141. Our action just seems more

natural than adding an extra minus sign.

Hecke operators

The aim of this part is to state the definition of Hecke operators and diamond operators on formal

modular symbolsMk(N,χ ; R) andCMk(N,χ ; R). One immediately sees that it is very similar

to the one on modular forms. One can get a different insight in the defining formulae by seeing how

they are derived from a “Hecke correspondence like” formulation in thesection on Hecke operators

on group cohomology.

The definition given here is also explained in detail in [Stein]. We should alsomention the very

important fact that one can transfer Hecke operators in an explicit way toManin symbols. Also that

point is discussed in detail in [Stein].

We now give the definition only forTl for a primel and diamond operators. TheTn for composite

n can be computed from those by the formulae already stated in the beginning. Notice that the

R[Γ0(N)]-action onV χ
k−2(R) (for the usual conventions, in particular,χ(−1) = (−1)k) extends

naturally to an action of the semi-group generated byΓ0(N) andRl (see Equation 1.1.2). Thus, this

semi-group acts onMk(N,χ ; R) (and the cusp space) by the diagonal action on the tensor product.

Let x ∈Mk(Γ1(N) ; R) or x ∈Mk(N,χ ; R). We put

Tpx =
∑

δ∈Rl

δ.x.

If a is an integer coprime toN , we define the diamond operator as

〈a〉x = σax

with σa as in Equation 1.1.1. Whenx ∈Mk(N,χ ; R), we have〈a〉x = χ(a)x.

As in the section on Hecke operators on modular forms, we define Hecke algebras on modular

symbols in a very similar way. We will take the freedom of taking arbitrary baserings (we will do

that for modular forms in the next stage, too).
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Thus for any ringR we let TR(Mk(Γ1(n) ; R)) be theR-subalgebra of theR-endomorphism

algebra ofMk(Γ1(n) ; R) generated by the Hecke operatorsTn. For a characterχ : Z/NZ → R×,

we make a similar definition. We also make a similar definition for the cuspidal subspace and the+-

and−-spaces.

The following fact will be obvious from the description of modular symbols asManin symbols,

which will be derived in a later chapter. Here, we already want to use it.

Fact 1.2.3 TheR-modulesMk(Γ1(N) ; R), CMk(Γ1(N) ; R),Mk(N,χ ; R) andCMk(N,χ ; R)

are finitely presentedR-modules.

Corollary 1.2.4 LetR be a Noetherian ring. The Hecke algebras

TR(Mk(Γ1(N) ; R)),TR(CMk(Γ1(N) ; R)),TR(Mk(N,χ ; R)) andTR(CMk(N,χ ; R))

are finitely presentedR-modules.

Proof. This follows from Fact 1.2.3, since the endomorphism ring of a finitely presented module

is finitely presented and submodules of finitely presented modules over Noetherian rings are finitely

presented. 2

This very innocent looking corollary will give - together with the Eichler-Shimura isomorphism -

that coefficient fields of normalised eigenforms are number fields. We next prove that the formation

of Hecke algebras for modular symbols behaves well with respect to flat base change. We should have

in mind the exampleR = Z orR = Z[χ] andS = C.

Proposition 1.2.5 LetR be a Noetherian ring andR→ S a flat ring homomorphism.

(a) The natural map

TR(Mk(Γ1(N) ; R))⊗R S ∼= TS(Mk(Γ1(N) ; S))

is an isomorphism.

(b) The natural map

HomR(TR(Mk(Γ1(N) ; R)), R)⊗R S ∼= HomS(TS(Mk(Γ1(N) ; S)), S)

is an isomorphism.

(c) The map

HomR(TR(Mk(Γ1(N) ; R)), S)
φ7→(T⊗s 7→φ(T )s)
−−−−−−−−−−−→ HomS(TR(Mk(Γ1(N) ; R))⊗R S, S).

is also an isomorphism.
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(d) Suppose in addition thatR is an integral domain andS a field extension of the field of fractions

ofR. Then the natural map

TR(Mk(Γ1(N) ; R))⊗R S → TR(Mk(Γ1(N) ; S))⊗R S

is an isomorphism.

For a characterχ : (Z/NZ)× → R×, similar results hold. Similar statements also hold for the

cuspidal subspace.

Proof. We only prove the proposition forM :=Mk(Γ1(N) ; R). The arguments are exactly the

same in the other cases.

(a) By Exercise 9 it suffices to prove

TR(M)⊗R S ∼= TS(M ⊗R S).

Due to flatness and the finite presentation ofM the natural homomorphism

EndR(M)⊗R S → EndS(M ⊗R S)

is an isomorphism (see [Eisenbud], Prop. 2.10). By definition, the HeckealgebraTR(M) is anR-

submodule ofEndR(M). As injections are preserved by flat morphisms, we obtain the injection

TR(M)⊗R S →֒ EndR(M)⊗R S ∼= EndS(M ⊗R S).

The image is equal toTS(M ⊗R S), since all Hecke operators are hit, establishing (a).

(b) follows from the same citation from [Eisenbud] as above.

(c) Suppose that under the map from Statement (c)φ ∈ HomR(TR(M), S) is mapped to the zero

map. Thenφ(T )s = 0 for all T and alls ∈ S. In particular withs = 1 we getφ(T ) = 0 for all

T , whenceφ is the zero map, showing injectivity. Suppose now thatψ ∈ HomS(TR(M) ⊗R S, S)

is given. Callφ the compositeTR(M) → TR(M) ⊗R S
ψ
−→ S. Thenψ is the image ofφ, showing

surjectivity.

(d) We first define

N := ker
(
M

π:m7→m⊗1
−−−−−−−→M ⊗R S

)
.

We claim thatN consists only ofR-torsion elements. Letx ∈ N . Thenx⊗ 1 = 0. If rx 6= 0 for all

r ∈ R − {0}, then the mapR
r 7→rx
−−−→ N is injective. We callF the image to indicate that it is a free

R-module. Consider the exact sequence ofR-modules:

0→ F →M →M/F → 0.

From flatness we get the exact sequence

0→ F ⊗R S →M ⊗R S →M/F ⊗R S → 0.
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But,F ⊗R S is 0, since it is generated byx⊗ 1 ∈ M ⊗R S. However,F is free, whenceF ⊗R S is

alsoS. This contradiction shows that there is somer ∈ R− {0} with rx = 0.

As N is finitely generated, there is somer ∈ R − {0} such thatrN = 0. Moreover,N is

characterised as the set of elementsx ∈ M such thatrx = 0. For, we already know thatx ∈ N

satisfiesrx = 0. If, conversely,rx = 0 with x ∈M , then0 = rx⊗ 1/r = x⊗ 1 ∈M ⊗R S.

EveryR-linear (Hecke) operatorT onM clearly restricts toN , sincerTn = Trn = T0 = 0.

Suppose now thatT acts as0 onM ⊗R S. We claim that thenrT = 0 on all ofM . Letm ∈M . We

have0 = Tπm = πTm. ThusTm ∈ N and, so,rTm = 0, as claimed. In other words, the kernel of

the homomorphismTR(M)→ TR(M ⊗R S) is killed by r. This homomorphism is surjective, since

by definitionTR(M ⊗R S) is generated by all Hecke operators acting onM ⊗R S. Tensoring withS

kills the torsion and the statement follows. 2

Some words of warning are necessary. It is essential thatR → S is a flat homomorphism. A

similar result forZ → Fp is not true in general. I call this a "faithfulness problem", since then

Mk(Γ1(N) ; Fp) is not a faithful module forTZ(Mk(Γ1(N) ; C)) ⊗Z Fp. Some effort goes into

findingk andN , where this module is faithful.

Moreover,Mk(Γ1(N) ; R) need not be a freeR-module and can contain torsion. We will later in

the lecture calculate this torsion, at least for certain ringsR.

Please have a look at Exercise 12 now to find out whether one can use the+- and the−-space in

the proposition.

1.3 Theory: The modular symbols algorithm

The Eichler-Shimura theorem

At the basis of the modular symbols algorithm is the following theorem by Eichler,which was ex-

tended by Shimura. One of our aims in this lecture is to provide a proof for it. Inthis introduction,

however, we only state it and indicate how the modular symbols algorithm can bederived from it.

Theorem 1.3.1 (Eichler-Shimura) There are isomorphisms respecting the Hecke operators

(a) Mk(N,χ ; C))⊕ Sk(N,χ ; C)∨ ∼=Mk(N,χ ; C),

(b) Sk(N,χ ; C))⊕ Sk(N,χ ; C)∨ ∼= CMk(N,χ ; C),

(c) Sk(N,χ ; C) ∼= CMk(N,χ ; C)+.

Similar isomorphisms hold for modular forms and modular symbols onΓ1(N) andΓ0(N).

Proof. Later in this lecture. Those who already want to have an indication about theproof are

referred to [Diamond-Im], Theorem 12.2.2. There the language of group cohomology is used, as we

will do in this lecture. So, the reader should believe the fact - to be proved later this lecture, too - that

the group cohomology in [Diamond-Im] coincides with the modular symbols. 2
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The following corollary of the Eichler-Shimura theorem is of utmost importancefor the theory of

modular forms. It says that Hecke algebras of modular forms have an integral structure (takeR = Z

orR = Z[χ]). We will say more on this topic in the next stage.

Corollary 1.3.2 LetR be a subring ofC andχ : (Z/NZ)× → R× a character. Then the natural

map

TR(Mk(N,χ ; C))⊗R C ∼= TC(Mk(N,χ ; C))

is an isomorphism. A similar result holds forΓ1(N) without a character and also forΓ0(N).

Proof. We only prove this for the full space of modular forms. The arguments for cusp forms are

very similar. Theorem 1.3.1 tells us that theR-algebra generated by the Hecke operators inside the

endomorphism ring ofMk(N,χ ; C) equals theR-algebra generated by the Hecke operators inside

the endomorphism ring ofMk(N,χ ; C). i.e.

TR(Mk(N,χ ; C)) ∼= TR(Mk(N,χ ; C)).

To see this, one just need to see that the algebra generated onMk(N,χ ; C)) ⊕ Sk(N,χ ; C)∨ is the

same as the one generated onMk(N,χ ; C)), which follows from the fact that if someT annihilates

the full space of modular forms, then it also annihilates the dual of the cusp space.

Tensoring withC we get

TR(Mk(N,χ ; C))⊗R C ∼= TR(Mk(N,χ ; C))⊗R C ∼= TC(Mk(N,χ ; C)) ∼= TC(Mk(N,χ ; C)),

using Proposition 1.2.5 (d) and again Theorem 1.3.1. 2

The next corollary is at the base of the modular symbols algorithm, since it describes modular

forms in linear algebra terms involving only modular symbols.

Corollary 1.3.3 LetR be a subring ofC andχ : (Z/NZ)× → R× a character. Then

(a) Mk(N,χ ; C) ∼= HomR(TR(Mk(N,χ ; R)), R)⊗R C ∼= HomR(TR(Mk(N,χ ; R)),C) and

(b) Sk(N,χ ; C) ∼= HomR(TR(CMk(N,χ ; R)), R)⊗R C ∼= HomR(TR(CMk(N,χ ; R)),C).

Similar results hold forΓ1(N) without a character and also forΓ0(N).

Proof. This follows from Corollary 1.3.2, Proposition 1.2.5 and Lemma 1.1.2. 2

Please look at Exercise 13 to find out which statement should be included intothis corollary

concerning the+-spaces. Here is another important consequence of the Eichler-Shimuratheorem.

Corollary 1.3.4 Let f =
∑∞

n=1 an(f)qn ∈ Sk(Γ1(N) ; C) be a normalised Hecke eigenform. Then

Qf := Q(an(f)|n ∈ N) is a number field of degree less than or equal todimC Sk(Γ1(N) ; C).

If f has Dirichlet characterχ, thenQf is a finite field extension ofQ(χ) of degree less than or

equal todimC Sk(N,χ ; C). HereQ(χ) is the extension ofQ generated by all the values ofχ.
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Proof. It suffices to apply the previous corollaries withR = Q orR = Q(χ) and to remember that

normalised Hecke eigenforms correspond to algebra homomorphisms from the Hecke algebra intoC.

2

Sketch of the modular symbols algorithm

It may now already be quite clear how the modular symbols algorithm for computing cusp forms

proceeds. We give a very short sketch.

Algorithm 1.3.5 Input: A field K ⊂ C, integers N ≥ 1, k ≥ 2, P , a character χ : (Z/NZ)× →

K×.

Output: A basis of the space of cusp forms Sk(N,χ ; C); each form is given by its standard

q-expansion with precision P .

(1) Create M := CMk(N,χ ; K).

(2) L← [] (empty list), n← 1.

(3) repeat

(4) Compute Tn on M .

(5) Join Tn to the list L.

(6) T← the K-algebra generated by all T ∈ L.

(7) n← n+ 1

(8) until dimK(T) = dimC Sk(N,χ ; C)

(9) Compute a K-basis B of T.

(10) Compute the basis B∨ of T∨ dual to B.

(11) for φ in B∨ do

(12) Output
∑P

n=1 φ(Tn)q
n ∈ K[q].

(13) end for.

We should make a couple of remarks concerning this algorithm. Please remember that there are

dimension formulae forSk(N,χ ; C). In last term’s lecture [MF] we gave some of them. The general

case can be looked up in [Stein].

It is clear that the repeat-until loop will stop, due to Corollary 1.3.3. We can even give an upper

bound as to when it stops at the latest. That is the so-called Sturm bound, which we also treated in

last term’s course [MF] in some cases (even weights, no character; to get the formulation here, one

should plug in the formula used in the proof of Lemma 3.3.33 into the Sturm bound of Satz 3.3.37).
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Proposition 1.3.6 (Sturm) Let f ∈ Mk(N,χ ; C) such thatan(f) = 0 for all n ≤ kµ
12 , where

µ = N
∏
l|N prime(1 + 1

l ).

Thenf = 0.

Proof. Apply Corollary 9.20 of [Stein] withm = (0). 2

Corollary 1.3.7 LetK,N, χ etc. as in the algorithm. ThenTK(CMk(N,χ ; K)) can be generated

as aK-vector space by the operatorsT1, T2, . . . , T kµ
12

.

Proof. Exercise 14. 2

We shall see later how to compute eigenforms and how to decompose the spaceof modular forms

in a "sensible" way.

1.4 Theory: Number theoretic applications

Galois representations attached to eigenforms

We mention the sad fact that until 2006 only the one-dimensional representations ofGal(Q/Q) were

well understood. In the case of finite image one can use the Kronecker-Weber theorem, which asserts

that any cyclic extension ofQ is contained in a cyclotomic field. This is generalised by global class

field theory to one-dimensional representations ofGal(Q/K) for each number fieldK. Since we now

have Serre’s conjecture (a theorem by Khare, Wintenberger and Kisin), we also know a little bit about

2-dimensional representations ofGal(Q/Q), but, replacingQ by any other number field, all one has

is conjectures.

[Added an explanation of thep-cyclotomic character, the notion of unramified primes of Galois

representations and Frobenius elements.]

The great importance of modular forms for modern number theory is due to thefact that one may

attach a2-dimensional representation of the Galois group of the rationals to each normalised cuspidal

eigenform. The following theorem is due to Shimura fork = 2 and due to Deligne fork ≥ 2.

Theorem 1.4.1 Letk ≥ 2,N ≥ 1, p a prime not dividingN , andχ : (Z/NZ)× → C× a character.

Then to any normalised eigenformf ∈ Sk(N,χ ; C) with f =
∑

n≥1 an(f)qn one can attach a

Galois representation, i.e. a continuous group homomorphism,

ρf : Gal(Q/Q)→ GL2(Qp)

such that

(i) ρf is irreducible,

(ii) ρf (c) = −1 for any complex conjugationc ∈ Gal(Q/Q) (one says thatρf is odd),
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(iii) for all primes l ∤ Np the representationρf is unramified atl,

Tr(ρf (Frobl)) = al(f) and det(ρf (Frobl)) = ǫp(l)
k−1χ(l).

In the statement,Frobl denotes a Frobenius element atl, andǫp is thep-cyclotomic character.

By choosing a lattice inGL2(Qp) containingρ(Gal(Q/Q)), and applying reduction and semi-

simplification one obtains the following consequence.

Theorem 1.4.2 Letk ≥ 2,N ≥ 1, p a prime not dividingN , andχ : (Z/NZ)× → F
×
p a character.

Then to any normalised eigenformf ∈ Sk(N,χ ; C) with f =
∑

n≥1 an(f)qn and to any prime

ideal P of the ring of integers ofQf = Q(a(f) : n ∈ N) with residue characteristicp, one can

attach a Galois representation, i.e. a continuous group homomorphism (forthe discrete topology on

GL2(Fp)),

ρf : Gal(Q/Q)→ GL2(Fp)

such that

(i) ρf is semi-simple,

(ii) ρf (c) = −1 for any complex conjugationc ∈ Gal(Q/Q) (one says thatρf is odd),

(iii) for all primes l ∤ Np the representationρf is unramified atl,

Tr(ρf (Frobl)) ≡ al(f) mod P and det(ρf (Frobl)) ≡ l
k−1χ(l) mod P.

Translation to number fields

Proposition 1.4.3 Letf , Qf , P andρf be as in Theorem 1.4.2. Then the following hold:

(a) The image ofρf is finite and its image is contained inGL2(Fpr) for somer.

(b) The kernel ofρf is an open subgroup ofGal(Q/Q) and is hence of the formGal(Q/K) for some

Galois number fieldK. Thus, we can and do considerGal(K/Q) as a subgroup ofGL2(Fpr).

(c) The characteristic polynomial ofFrobl (more precisely, ofFrobΛ/l for any primeΛ ofK dividing

l) is equal toX2 − al(f)X + χ(l)lk−1 mod P for all primesl ∤ Np.

Proof. Exercise 15. 2

To appreciate the information obtained from theal(f) mod P, the reader is invited to do Exer-

cise 16 now.
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Images of Galois representations

One can also often tell what the Galois groupGal(K/Q) is as an abstract group. This is what the

problems are concerned with. There are not so many possibilites, as we see from the following

theorem.

Theorem 1.4.4 (Dickson)Letp be a prime andH a finite subgroup ofPGL2(Fp). Then a conjugate

ofH is isomorphic to one of the following groups:

• finite subgroups of the upper triangular matrices,

• PSL2(Fpr) or PGL2(Fpr) for r ∈ N,

• dihedral groupsDr for r ∈ N not divisible byp,

• A4,A5 or S4.

For modular forms there are several results mostly by Ribet concerning thegroups that occur as

images. Roughly speaking, they say that the image is "as big as possible" foralmost allP (for a

givenf ). For modular forms without CM and inner twists (to be defined later) this meansthat ifG is

the image, thenG modulo scalars is equal toPSL2(Fpr) or PGL2(Fpr), whereFpr is the extension

of Fp generated by thean(f) mod P. More precise results will be given later.

An interesting question is to study which groups (i.e. whichPSL2(Fpr)) occur in practice. It

would be nice to prove that all of them do, since - surprisingly - the simple groupsPSL2(Fpr) are still

resisting a lot to all efforts to realise them as Galois groups overQ in the context of inverse Galois

theory.

Serre’s conjecture

If time allows, we plan to explain this topic in more detail in the second part of this lecture.

Serre’s conjecture is the following. Letp be a prime andρ : Gal(Q/Q) → GL2(Fp) be a

continuous, odd, irreducible representation.

• LetNρ be the (outside ofp) conductor ofρ (defined by a formula analogous to the formula for

the Artin conductor, except that the local factor forp is dropped).

• Let kρ be the integer defined by [Serre].

• Letχρ be the prime-to-p part ofdet ◦ρ considered as a character(Z/NρZ)××(Z/pZ)× → F
×
p .

Conjecture 1.4.5 (Serre)Let p be a prime andρ : Gal(Q/Q) → GL2(Fp) be a continuous, odd,

irreducible representation. DefineNρ, k(ρ), kρ andχρ as above.

• (Strong form) There exists a normalised eigenformf ∈ Skρ(Nρ, χρ ; Fp)
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• (Weak form) There existN, k, χ and a normalised eigenformf ∈ Sk(N,χ ; Fp)

such thatρ is isomorphic to the Galois representation

ρf : Gal(Q/Q)→ GL2(Fp)

attached tof by Theorem 1.4.2.

It is known that the weak form implies the strong form. However, there is a "strongest" form with

a slightly different definition of weight. There is still an open case forp = 2 for the strongest form.

As mentioned above, Serre’s conjecture is now a theorem by Khare, Wintenberger and Kisin.

Serre’s conjecture implies that we can compute (in principle, at least) arithmeticproperties

of all Galois representations of the type in Serre’s conjecture by computingthe modpHecke

eigenform it comes from.

Conceptually, Serre’s conjecture gives an explicit description of all irreducible, odd and

continuous "modp" representations ofGal(Q/Q) and, thus, in a sense generalises class

field theory.

Edixhoven and coworkers have recently succeeded in giving an algorithm which computes the

actual Galois representation attached to a modp modular form. Hence, with Serre’s conjecture we

have a way of - in principle - obtaining all information on2-dimensional irreducible, odd continuous

representations ofGal(Q/Q).

1.5 Theory: Exercises

Exercise 1 (a) The group homomorphism

SL2(Z)→ SL2(Z/NZ)

given by reducing the matrices moduloN is surjective.

(b) Check the bijections

SL2(Z)/Γ1(N) = {( ac ) |〈a, c〉 = Z/NZ}

and

SL2(Z)/Γ0(N) = P1(Z/NZ),

which were given in the beginning.

Exercise 2 LetN be an integer andζN ∈ C any primitiven-th root of unity. Prove that the map

Gal(Q(ζN )/Q)
Frobl 7→l
−−−−−→ (Z/NZ)×

(for all primesl ∤ N ) is an isomorphism.
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Exercise 3 Prove that a matrixσa as in Equation 1.1.1 exists.

Exercise 4 Proof Lemma 1.1.1.

Exercise 5 (a) LetK be a field,V a vector space andT1, T2 two commuting endomorphisms ofV ,

i.e.T1T2 = T2T1. Letλ1 ∈ K and consider theλ1-eigenspace ofT1, i.e.V1 = {v|T1v = λ1v}.

Prove thatT2V1 ⊆ V1.

(b) Suppose thatMN (Γ1(k) ; C) is non-empty. Prove that it contains a Hecke eigenform.

Exercise 6 Prove Lemma 1.1.3.

Exercise 7 Check that it makes sense to replaceSL2(Z) by PSL2(Z) in the definition of modular

forms.

Exercise 8 LetR be a ring,Γ a group andV a leftR[Γ]-module.

(a) Define the augmentation idealIΓ by the exact sequence

0→ IΓ → R[Γ]
γ 7→1
−−−→ R→ 1.

Prove thatIΓ is the ideal inR[Γ] generated by the elements1− g for g ∈ Γ.

(b) Conclude thatVΓ = V/IΓV .

(c) Conclude thatVΓ
∼= R⊗R[Γ] V .

(d) Suppose thatΓ = 〈T 〉 is a cyclic group (either finite or infinite (isomorphic to(Z,+))). Prove

that IΓ is the ideal generated by(1− T ).

(e) Prove thatV Γ ∼= HomR[Γ](R, V ).

Exercise 9 LetR, Γ andV as in Definition 1.2.2 and letR→ S be a ring homomorphism.

(a) Prove that

MR(Γ, V )⊗R S ∼=MS(Γ, V ⊗R S).

(b) SupposeR→ S is flat. Prove a similar statement for the cuspidal subspace.

(c) Are similar statements true for the boundary or the Eisenstein space? What about the+- and the

−-spaces?

Exercise 10 Prove that the map

Symn(R2)→ R[X,Y ]n,
( a1
b1

)
⊗ · · · ⊗

( an

bn

)
7→ (a1X + b1Y ) · · · (anX + bnY )

is an isomorphism, whereSymn(R2) is then-th symmetric power ofR2, which is defined as the

quotient ofR2 ⊗R · · · ⊗R R
2

︸ ︷︷ ︸
n-times

by the span of all elementsv1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n) for all

σ in the symmetric group on the letters{1, 2, . . . , n}.



1.6. ALGORITHMS AND IMPLEMENTATIONS:MAGMA AND SAGE 25

Exercise 11 Prove Equation1.2.6.

Exercise 12 Can one use+- or −-spaces in Proposition 1.2.5? What could we say if we defined the

+-space asM/(1− η)M withM standing for some space of modular symbols?

Exercise 13 Which statements in the spirit of Corollary 1.3.3 (b) are true for the+-spaces?

Exercise 14 Prove Corollary 1.3.7.

Exercise 15 Prove Propsition 1.4.3.

Exercise 16 In how far is a conjugacy class inGL2(Fpr) determined by its characteristic polyno-

mial?

LetG ⊂ GL2(Fpr) be a subgroup. Same question as above forG.

1.6 Algorithms and Implementations: MAGMA and SAGE

Introduction to MAGMA

Please download the example file "MagmaIntro" from the web page. It will beexplained during the

lecture.

Introduction to SAGE

We shall not have time to present SAGE in detail. Please try to find the analogues of the topics pre-

sented for MAGMA yourself. The web pages for SAGE are:

http://sage.apcocoa.org/

http://www.sagemath.org/

1.7 Algorithms and Implementations: Modular symbols inMAGMA

Please download the example file "ModularSymbols" from the web page. It will be explained during

the lecture.

1.8 Computer exercises

Computer exercise 1 (a) Create a listL of all primes in between 234325 and 3479854? How many

are there?

(b) For n = 2, 3, 4, 5, 6, 7, 997 compute for eacha ∈ Z/nZ how often it appears as a residue in the

list L.
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Computer exercise 2 In this exercise you verify the validity of the prime number theorem.

(a) Write a functionNumberOfPrimes with the following specifications. Input: Positive integers

a, b with a ≤ b. Output: The number of primes in[a, b].

(b) Write a functionTotalNumberOfPrimes with the following specifications. Input: Positive

integersx, s. Outut: A list [n1, n2, n3, . . . , nm] such thatni is the number of primes between1

andi · s andm is the largest integer smaller than or equal tox/s.

(c) Compare the output ofTotalNumberOfPrimes with the predictions of the prime number

theorem: Make a function that returns the list[r1, r2, . . . , rm] with ri = si
log si . Make a function

that computes the quotient of two lists of "numbers".

(d) Play with these functions. What do you observe?

Computer exercise 3Write a functionValuesInField with: Input: a unitary polynomialf with

integer coefficients andK a finite field. Output: the set of values off in K.

Computer exercise 4 (a) Write a functionBinaryExpansion that computes the binary expan-

sion of a positive integer. Input: positive integern. Output: list of0’s and1’s representing the

binary expansion.

(b) Write a functionExpo with: Input: two positive integersa, b. Outputab. You must not use the

in-built functionab, but write a sensible algorithm making use of the binary expansion ofb. The

only arithmetic operations allowed are multiplications.

(c) Write similar functions using the expansion with respect to a general based.

Computer exercise 5 In order to contemplate recursive algorithms, the monks in Hanoi used to play

the following game. First they choose a degree of contemplation, i.e. a positive integern. Then they

create three lists:

L1 := [n, n− 1, . . . , 2, 1];L2 := [];L3 := [];

The aim is to exchangeL1 andL2. However, the monks may only perform the following step: Remove

the last element from one of the lists and append it to one of the other lists, subject to the important

condition that in all steps all three lists must be descending.

Contemplate how the monks can achieve their goal. Write a procedurePlayHanoi with inputn

that plays the game. After each step, print the number of the step, the threelists and test whether all

lists are still descending.

[Hint: For recursive procedures, i.e. procedures calling themselves,one must put the command

forward my_procedure in front of the definition ofmy_procedure.]

Computer exercise 6This exercise concerns the normalised cuspidal eigenforms in weight2 and

level23.
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(a) What is the number fieldK generated by the coefficients of each of the two forms?

(b) Compute the characteristic polynomials of the first 100 Fourier coefficients of each of the two

forms.

(c) Write a function that for a given primep computes the reduction modulop of the characteristic

polynomials from the previous point and their factorisation.

(d) Now use modular symbols overFp for a givenp. Compare the results.

(e) Now do the same for weight2 and level37. In particular, tryp = 2. What do you observe? What

could be the reason for this behaviour?

Computer exercise 7Try to implement Algorithm 1.3.5.

If it is still too difficult, don’t worry. We will be getting there.

1.9 Self-learn module:

Those not familiar enough with the theory of modular forms are invited to read the basics on modular

forms.



Part I

Computing Modular Forms



Stage 2

Hecke algebras

It is essential for studying arithmetic properties of modular forms to have someflexibility for the

coefficient rings. For instance, when studying modp Galois representations attached to modular

forms, it is often easier and sometimes necessary to work with modular forms whoseq-expansions

already lie in a finite field. Moreover, the concept of congruences of modular forms only gets its

seemingly correct framework when working over rings such as extensions of finite fields or rings like

Z/pnZ.

There is a very strong theory of modular forms over a general ringR that uses algebraic geometry

overR. One can, however, already get very far if one just defines modular forms overR as theR-

linear dual of theZ-Hecke algebra of the holomorphic modular forms, i.e. by takingq-expansions with

coefficients inR. In this lecture we shall only use this. Precise definitions will be given in a moment.

A priori it is maybe not clear whether non-trivial modular forms withq-expansions in the integers

exist at all. The situation is as good as it could possibly be: the modular forms with q-expansion in

the integers form a lattice in the space of all modular forms (at least forΓ1(N) andΓ0(N); if we are

working with a Dirichlet character, the situation is slightly more involved). This isan extremely useful

and important fact, which we shall derive from the corollaries of the Eichler-Shimura isomorphism

given in the previous stage.

Hecke algebras of modular forms overR are finitely generated asR-modules. This leads us to

a study, belonging to the theory of Commutative Algebra, of finiteR-algebras, that is,R-algebras

that are finitely generated asR-modules. We shall prove structure theorems, whenR is a discrete

valuation ring or a finite field. Establishing back the connection with modular forms, we will for

example see that the maximal ideals of Hecke algebras correspond to Galois conjugacy classes of

normalised eigenforms, and, for instance, the notion of a congruence can be expressed as a maximal

prime containing two minimal ones.

29
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2.1 Theory: Hecke algebras and modular forms over rings

We start by recalling and slightly extending the concept of Hecke algebrasof modular forms. It is of

utmost importance for our treatment of modular forms over general rings and their computation. In

fact, as pointed out a couple of times, we will compute Hecke algebras and not modular forms. We

shall assume thatk ≥ 1 andN ≥ 1.

As in the introduction, we define theHecke algebraof Mk(Γ1(N) ; C) as the subring (i.e. the

Z-algebra) inside the endomorphism ring of theC-vector spaceMk(Γ1(N) ; C) generated by all

Hecke operators. Remember that due to Formula 1.1.5 all diamond operators are contained in the

Hecke algebra. Of course, we make similar definitions forSk(Γ1(N) ; C) and use the notations

TZ(Mk(Γ1(N) ; C)) andTZ(Sk(Γ1(N) ; C)).

If we are working with modular forms with a character, we essentially have twopossibilities for

defining the Hecke algebra, namely, firstly as above as theZ-algebra generated by all Hecke operators

inside the endomorphism ring of theC-vector spaceMk(N,χ ; C) (notationTZ(Mk(N,χ ; C))) or,

secondly, as theZ[χ]-algebra generated by the Hecke operators insideEndC(Mk(N,χ ; C)) (notation

TZ[χ](Mk(N,χ ; C))); similarly for the cusp forms. HereZ[χ] is the ring extension ofZ generated

by all values ofχ, it is the integer ring ofQ(χ). For two reasons we prefer the second variant. The

first reason is that we needed to work overZ[χ] (or its extensions) for modular symbols. The second

reason is that on the naturalZ-structure insideMk(Γ1(N) ; C) the decomposition into(Z/NZ)×-

eigenspaces can only be made after a base change toZ[χ]. So, theC-dimension ofMk(N,χ ; C)

equals theQ[χ]-dimension ofTQ[χ](Mk(N,χ ; C)) and not theQ-dimension ofTQ(Mk(N,χ ; C)).

Lemma 2.1.1 (a) TheZ-algebrasTZ(Mk(Γ1(N) ; C)) andTZ(Mk(N,χ ; C)) are freeZ-modules

of finite rank; the same holds for the cuspidal Hecke algebras.

(b) TheZ[χ]-algebraTZ[χ](Mk(N,χ ; C)) is a torsion-free finitely generatedZ[χ]-module; the same

holds for the cuspidal Hecke algebra.

Proof. (a) Due to the corollaries of the Eichler-Shimura theorem (Corollary 1.3.2) we know that

these algebras are finitely generated asZ-modules. As they lie inside a vector space, they are free

(using the structure theory of finitely generated modules over principal ideal domains).

(b) This is like (a), except thatZ[χ] need not be a principal ideal domain, so that we can only

conclude torsion-freeness, but not freeness. 2

Modular forms over rings

Let k ≥ 1 andN ≥ 1. LetR be anyZ-algebra (ring). We now use theq-pairing to define modular

(cusp) forms overR. We let

Mk(Γ1(N) ; R) := HomZ(TZ(Mk(Γ1(N) ; C)), R) ∼= HomR(TZ(Mk(Γ1(N) ; C))⊗Z R,R).
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The isomorphism is proved precisely as in Proposition 1.2.5 (c), where we did not use the flat-

ness assumption. Every elementf of Mk(Γ1(N) ; R) thus corresponds to aZ-linear functionΦ :

TZ(Mk(Γ1(N) ; C))→ R and is uniquely identified by itsformal q-expansion

f =
∑

n

Φ(Tn)q
n =

∑

n

an(f)qn ∈ R[[q]].

We note thatTZ(Mk(Γ1(N) ; C)) acts naturally onHomZ(TZ(Mk(Γ1(N) ; C)), R), namely by

(T.Φ)(S) = Φ(TS) = Φ(ST ).

This means that the action ofTZ(Mk(Γ1(N) ; C)) on Mk(Γ1(N) ; R) gives the same formulae as

usual on formalq-expansions. For cusp forms we make the obvious analogous definition, i.e.

Sk(Γ1(N) ; R) := HomZ(TZ(Sk(Γ1(N) ; C)), R) ∼= HomR(TZ(Sk(Γ1(N) ; C))⊗Z R,R).

We caution the reader that for modular forms which are not cusp forms there also ought to be

some0th coefficient in the formalq-expansion, for example, for recovering the classical holomorphic

q-expansion. Of course, for cusp forms we do not need to worry.

Now we turn our attention to modular forms with a character. Letχ : (Z/NZ)× → C× be

a Dirichlet character andZ[χ] → R a ring homomorphism. We now proceed analogously to the

treatment of modular symbols for a Dirichlet character. We work withZ[χ] as the base ring (and not

Z). We let

Mk(N,χ ; R) := HomZ[χ](TZ[χ](Mk(N,χ ; C)), R) ∼= HomR(TZ[χ](Mk(N,χ ; C))⊗Z[χ] R,R)

and similarly for the cusp forms.

We remark that the two definitions ofMk(Γ1(N) ; C), Mk(N,χ ; C) etc. agree. As a special case,

we get thatMk(Γ1(N) ; Z) precisely consists of those holomorphic forms whoseq-expansions take

values inZ.

If Z[χ]
π
−→ R = F with F a finite field of characteristicp or Fp, we callMk(N,χ ; F) the space

of modp modular forms of weightk, levelN and characterχ (overF). By χ we meanπ ◦ χ, which

we write to point out that the definition ofMk(N,χ ; F) only depends onπ ◦ χ. Of course, for the

cuspidal space similar statements hold and we use similar notations.

We now study base change properties of modular forms overR.

Proposition 2.1.2 (a) Let Z → R → S be ring homomorphisms. Then the following statements

hold.

(i) The natural map

Mk(Γ1(N) ; R)⊗R S → Mk(Γ1(N) ; S)

is an isomorphism.



32 STAGE 2. HECKE ALGEBRAS

(ii) The evaluation pairing

Mk(Γ1(N) ; R)× TZ(Mk(Γ1(N) ; C))⊗Z R→ R

is theq-pairing and it is perfect.

(iii) The algebraTR(Mk(Γ1(N) ; R)) is naturally isomorphic toTZ(Mk(Γ1(N) ; C))⊗Z R.

(b) If Z[χ]→ R→ S are flat, then Statement (i) holds forMk(N,χ ; R).

(c) If TZ[χ](Mk(N,χ ; C)) is a freeZ[χ]-module andZ[χ] → R → S are ring homomorphisms,

statements (i)-(iii) hold forMk(N,χ ; R).

Proof. (a) We use the following general statement, in whichM is assumed to be a free finitely

generatedR-module andN,T areR-modules:

HomR(M,N)⊗R T ∼= HomR(M,N ⊗R T ).

To see this, just seeM as
⊕
R and pull the direct sum out of theHom, do the tensor product, and put

the direct sum back into theHom.

(i) Write TZ for TZ(Mk(Γ1(N) ; C)). It is a freeZ-module by Lemma 2.1.1. We have

Mk(Γ1(N) ; R)⊗R S = HomZ(TZ, R)⊗R S,

which by the above is isomorphic toHomZ(TZ, R⊗R S) and hence toMk(Γ1(N) ; S).

(ii) The evaluation pairingHomZ(TZ,Z) × TZ → Z is perfect, sinceTZ is free as aZ-module.

The result follows from (i) by tensoring withR.

(iii) We consider the natural map

TZ ⊗Z R→ EndR(HomR(TZ ⊗Z R,R))

and show that it is injective. Its image is by definitionTR(Mk(Γ1(N) ; R)). Let T be in the kernel.

Thenφ(T ) = 0 for all φ ∈ HomR(TZ ⊗Z R,R). As the pairing in (ii) is perfect and, in particular,

non-degenerate,T = 0 follows.

(b) Due to flatness we have

HomR(TZ ⊗Z R,R)⊗R S ∼= HomS(TZ ⊗Z S, S),

as desired.

(c) The same arguments as in (a) work. 2

Galois conjugacy classes

Recall that the normalised eigenforms inMk(Γ1(N) ; R) are precisely the set ofZ-algebra homomor-

phisms insideHomZ(TZ(Mk(Γ1(N) ; C)), R). Such an algebra homomorphismΦ is often referred
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to as asystem of eigenvalues, since the image of eachTn corresponds to an eigenvalue ofTn, namely

to Φ(Tn) = an(f) (if f corresponds toΦ).

Let us now consider a fieldK (if we are working with a Dirichlet character, we also want thatK

admits a ring homomorphismZ[χ]→ K). Denote byK a separable closure, so that we have

Mk(Γ1(N) ; K) ∼= HomZ(TZ(Mk(Γ1(N) ; C)),K) ∼= HomK(TZ(Mk(Γ1(N) ; C))⊗Z K,K).

We can compose anyΦ ∈ HomZ(TZ(Mk(Γ1(N) ; C)),K) by any Galois automorphismσ : K → K

fixing K. Thus, we obtain an action of the absolute Galois groupGal(K/K) onMk(Γ1(N) ; K) (on

formal q-expansions, we only need to applyσ to the coefficients). All this works similarly for the

cuspidal subspace, too.

Like this, we also obtain aGal(K/K)-action on the normalised eigenforms, and can hence speak

aboutGalois conjugacy classes of eigenforms.

Proposition 2.1.3 We have the following bijective correspondences.

Spec(TK(·))
1−1
↔ HomK-alg(TK(·),K)/Gal(K/K)

1−1
↔ { normalised eigenf. in· }/Gal(K/K)

and withK = K

Spec(TK(·))
1−1
↔ HomK-alg(TK(·),K)

1−1
↔ { normalised eigenforms in· }.

Here, · stands for eitherMk(Γ1(N) ; K), Sk(Γ1(N) ; K) or the respective spaces with a Dirichlet

character.

We recall thatSpec of a ring is the set of prime ideals. In the next section we will see that

in TK(·)) andTK(·)) all prime ideals are already maximal (it is an easy consequence of the finite

dimensionality).

Proof. Exercise 18. 2

We repeat that the coefficients of any eigenformf in Mk(N,χ ; K) lie in a finite extension ofK,

namely inTK(Mk(N,χ ; K))/m, whenm is the maximal ideal corresponding to the conjugacy class

of f .

Let us note that the above discussion applies toK = C,K = Q,K = Qp, as well as toK = Fp.

In the next sections we will also take into account the finer structure of Hecke algebras overO, or

rather over the completion ofO at one prime.

2.1.1 Some commutative algebra

In this section we leave the special context of modular forms for a moment andprovide quite useful

results from commutative algebra that will be applied to Hecke algebras in the sequel.

We start with a simple case which we will prove directly. LetT be anArtinian algebra, i.e. an

algebra in which every descending chain of ideals becomes stationary. Our main example will be finite
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dimensional algebras over a field. That those are Artinian is obvious, since in every proper inclusion

of ideals the dimension diminishes.

For any ideala of T the sequencean becomes stationary, i.e.an = an+1 for all n “big enough”.

Then we will use the notationa∞ for an.

Proposition 2.1.4 LetT be an Artinian ring.

(a) Every prime ideal ofT is maximal.

(b) There are only finitely many maximal ideals inT.

(c) Letm be a maximal ideal ofT. It is the only maximal ideal containingm∞.

(d) Letm 6= n be two maximal ideals. For anyk ∈ N andk =∞ the idealsmk andnk are coprime.

(e) The Jacobson radical
⋂

m∈Spec(T) m is equal to the nilradical and consists of the nilpotent ele-

ments.

(f) We have
⋂

m∈Spec(T) m∞ = (0).

(g) (Chinese Remainder Theorem) The natural map

T
a 7→(...,a+m∞,... )
−−−−−−−−−−−→

∏

m∈Spec(T)

T/m∞

is an isomorphism.

(h) For every maxmimal idealm, the ringT/m∞ is local with maximal idealm and is hence isomor-

phic toTm, the localisation ofT at m.

Proof. (a) Letp be a prime ideal ofT. The quotientT ։ T/p is an Artinian integral domain,

since ideal chains inT/p lift to ideal chains inT. Let 0 6= x ∈ T/p. We have(x)n = (x)n+1 = (x)∞

for somen big enough. Hence,xn = yxn+1 with somey ∈ T/p and soxy = 1, asT/p is an integral

domain.

(b) Assume there are infinitely many maximal ideals, number a countable subsetof them by

m1,m2, . . . . Form the descending ideal chain

m1 ⊃ m1 ∩m2 ⊃ m1 ∩m2 ∩m3 ⊃ . . . .

This chain becomes stationary, so that for somen we have

m1 ∩ · · · ∩mn = m1 ∩ · · · ∩mn ∩mn+1.

Consequently,m1 ∩ · · · ∩ mn ⊂ mn+1. We claim that there isi ∈ {1, 2, . . . , n} with mi ⊂ mn+1.

Due to the maximality ofmi we obtain the desired contradiction. To prove the claim we assume that

mi 6⊆ mn+1 for all i. Let xi ∈ mi − mn+1 andy = x1 · x2 · · ·xn. Theny ∈ m1 ∩ · · · ∩ mn, but

y 6∈ mn+1 due to the primality ofmn+1, giving a contradiction.
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(c) Letm ∈ Spec(T) be a maximal ideal. Assume thatn is a different maximal ideal withm∞ ⊂ n.

Choosex ∈ m. Some powerxr ∈ m∞ and, thus,xr ∈ n. As n is prime,x ∈ n follows, implying

m ⊆ n, contradicting the maximality ofm.

(d) Assume thatI := mk + nk 6= T. ThenI is contained in some maximal idealp. Hence,m∞

andn∞ are contained inp, whence by (c),m = n = p; contradiction.

(e) It is a standard fact from Commutative Algebra that the nilradical (the ideal of nilpotent ele-

ments) is the intersection of the minimal prime ideals.

(f) For k ∈ N andk =∞, (d) implies

⋂

m∈Spec(T)

mk =
∏

m∈Spec(T)

mk = (
∏

m∈Spec(T)

m)k = (
⋂

m∈Spec(T)

m)k.

By (e) we know that
⋂

m∈Spec(T) m is the nilradical. It can be generated by finitely many elements

a1, . . . , an all of which are nilpotent. So a high enough power of
⋂

m∈Spec(T) m is zero.

(g) The injectivity follows from (f). It suffices to show that the elements(0, . . . , 0, 1, 0, . . . , 0)

are in the image of the map. Suppose the1 is at the place belonging tom. Due to coprimeness (d)

for any maximal idealn 6= m we can findan ∈ n∞ andam ∈ m∞ such that1 = am + an. Let

x :=
∏

n∈Spec(T),n6=m
an. We havex ∈

∏
n∈Spec(T),n6=m

n∞ andx =
∏

n∈Spec(T),n6=m
(1 − am) ≡ 1

mod m. Hence, the map sendsx to (0, . . . , 0, 1, 0, . . . , 0), proving the surjectivity.

(h) By (c), the only maximal ideal ofT containingm∞ is m. Consequently,T/m∞ is a local ring

with maximal ideal the image ofm. Let s ∈ T− m. As s+ m∞ 6∈ m/m∞, the elements+ m∞ is a

unit in T/m∞. Thus, the map

Tm

y
s
7→ys−1+m∞

−−−−−−−−−→ T/m∞

is well-defined. It is clearly surjective. Supposeys maps to0. Since the image ofs is a unit,y ∈ m∞

follows. The elementx constructed in (g) is in
∏

n∈Spec(T),n6=m
n∞, but not it m. By (f) and (d),

(0) =
∏

m∈Spec(T) m∞. Thus,y · x = 0 and alsoys = yx
sx = 0, proving the injectivity. 2

A useful and simple way to rephrase a product decomposition as in (g) is to use idempotents. In

concrete terms, the idempotents ofT (as in the proposition) are precisely the elements of the form

(. . . , xm, . . . ) with xm ∈ {0, 1} ⊆ T/m∞.

Definition 2.1.5 Let T be a ring. Anidempotent ofT is an elemente that satisfiese2 = e. Two

idempotentse, f areorthogonalif ef = 0. An idempotente is primitive, if eT is a local ring. A set of

idempotents{e1, . . . , en} is said to becompleteif 1 =
∑n

i=1 ei.

In concrete terms forT =
∏

m∈Spec(T) T/m∞, a complete set of primitive pairwise orthogonal

idempotents is given by

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0), (0, . . . , 0, 1).

In Exercise 19, you are asked (among other things) to prove that in the above casem∞ is a principal

ideal generated by an idempotent.
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Below we will present an algorithm for computing a complete set of primitive pairwise orthogonal

idempotents for an Artinian ring.

We now come to a more general setting, namely working with a finite algebraT over a complete

local ring instead of a field. We will lift the idempotents of the reduction ofT (for the maximal ideal

of the complete local ring) to idempotents ofT by Hensel’s lemma. This gives us a proposition very

similar to Proposition 2.1.4.

Proposition 2.1.6 (Hensel’s lemma)LetR be a ring that is complete with respect to the idealm and

let f ∈ R[X] be a polynomial. If

f(a) ≡ 0 mod (f ′(a))2m

for somea ∈ R, then there isb ∈ R such that

f(b) = 0 andb ≡ a mod f ′(a)m.

If f ′(a) is not a zero-divisor, thenb is unique with these properties.

Proof. [Eisenbud], Theorem 7.3. 2

[Recall the termKrull dimensionandheightof a prime ideal.]

Proposition 2.1.7 LetO be an integral domain of characteristic zero which is a finitely generated

Z-module. WriteÔ for the completion ofO at a maximal prime ofO and denote byF the residue

field and byK the fraction field ofÔ. Let furthermoreT be a commutativeO-algebra which is finitely

generated as anO-module. For any ring homomorphismO → S write TS for T ⊗O S. Then the

following statements hold.

(a) The Krull dimension ofT bO is less than or equal to1, i.e. between any prime ideal and any maximal

idealp ⊂ m there is no other prime ideal. The maximal ideals ofT bO correspond bijectively under

taking pre-images to the maximal ideals ofTF. Primesp of height0 (i.e. those that do not contain

any other prime ideal) which are properly contained in a prime of height1 (i.e. a maximal prime)

of T bO are in bijection with primes ofTK under extension (i.e.pTK), for which the notationpe

will be used.

Under the correspondences, one has

TF,m
∼= T bO,m⊗ bO F

and

T bO,p
∼= TK,pe .

(b) The algebraT bO decomposes as

T bO
∼=

∏

m

T bO,m,

where the product runs over the maximal idealsm of T bO.
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(c) The algebraTF decomposes as

TF
∼=

∏

m

TF,m,

where the product runs over the maximal idealsm of TF.

(d) The algebraTK decomposes as

TK ∼=
∏

p

TK,pe ∼=
∏

p

T bO,p,

where the products run over the minimal prime idealsp of T bO which are contained in a prime

ideal of height1.

Proof. We first need that̂O has Krull dimension1. This, however, follows from the fact thatO

has Krull dimension1 by the correspondence of prime ideals between a ring and its completion. As

T bO is a finitely generated̂O-module,T bO/p with a primep is an integral domain which is a finitely

generated̂O-module. Hence, it is either a finite field or a finite extension ofÔ. This proves that the

height ofp is less than or equal to1. The correspondences and the isomorphisms of Part (a) are the

subject of Exercise 20. [This part could be explained with a bit more detail.]

We have already seen Parts (c) and (d) in Lemma 2.1.4. Part (b) follows from (c) by apply-

ing Hensel’s lemma (Proposition 2.1.6) to the idempotents of the decomposition of (c). We follow

[Eisenbud], Corollary 7.5, for the details. SincêO is complete with respect to some idealp, so isT bO.

Hence, we may use Hensel’s lemma inT bO.

Given an idempotente of TF, we will first show that it lifts to a unique idempotent ofT bO. Let e

be any lift ofe and letf(X) = X2 −X be a polynomial annihilatinge. We have thatf ′(e) = 2e− 1

is a unit, since(2e− 1)2 ≡ 1 mod p. Hensel’s lemma now gives us a unique roote1 ∈ T bO of f , i.e.

an idempotent, liftinge.

We now lift every element of a set of pairwise orthogonal idempotents ofTF. It now suffices to

show that the lifted idempotents are also pairwise orthogonal (their sum is1; otherwise we would get

a contradiction in the correspondences in (a): there cannot be more idempotents inT bO than inTF). As

their reductions are orthogonal, a producteiej of lifted idempotents is inp. Hence,eiej = edi e
d
j ∈ pd

for all d, whenceeiej = 0, as desired. 2

2.1.2 Commutative algebra of Hecke algebras

Let k ≥ 1, N ≥ 1 andχ : (Z/NZ)× → C×. Moreover, letp be a prime,O := Z[χ], P a maximal

prime ofO abovep, and letF be the residue field ofO moduloP. We letÔ denote the completion of

O atP. Moreover, the field of fractions of̂O will be denoted byK. ForTO(Mk(N,χ ; C)) we only

write TO for short, and similarly over other rings. We keep using the fact thatTO is finitely generated

as anO-module.

We shall now apply Proposition 2.1.7 toT bO. It is a freeÔ-module of finite rank (as it is torsion-

free), which has Krull dimension1, i.e. every maximal prime contains at least one minimal prime.
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By Proposition 2.1.7, minimal primes ofT bO correspond to the maximal primes ofTK and hence

to Gal(K/K)-conjugacy classes of eigenforms inMk(N,χ ; K). By a brute force identification of

K = Qp with C we may still think about these eigenforms as the usual holomorphic ones (the Galois

conjugacy can then still be seen as conjugacy by a decomposition group abovep inside the absolute

Galois group of the field of fractions ofO).

Again by Proposition 2.1.7, maximal primes ofT bO correspond to the maximal primes ofTF and

hence toGal(F/F)-conjugacy classes of eigenforms inMk(N,χ ; F).

The spectrum ofT bO allows one to phrase very elegantly when conjugacy classes of eigenforms

are congruent modulo a prime abovep. Let us first explain what that means. Normalised eigenformsf

take their coefficientsan(f) in rings of integers of number fields (TO/m, whenm is the kernel of the

O-algebra homomorphismTO → C, given byTn 7→ an(f)), so they can be reduced modulo primes

abovep (for which we will often just say “reduced modulop”). The reduction modulo a prime abovep

of theq-expansion of a modular formf in Mk(N,χ ; C) is the formalq-expansion of an eigenform

in Mk(N,χ ; F).

If two normalised eigenformsf, g in Mk(N,χ ; C) or Mk(N,χ ; K) reduce to the same element

in Mk(N,χ ; F), we say that they arecongruent modulop.

Due to Exercise 21, we may speak aboutreductions modulop of Gal(K/K)-conjugacy classes

of normalised eigenforms toGal(F/F)-conjugacy classes. We hence say that twoGal(K/K)-conju-

gacy classes, say corresponding to normalised eigenformsf, g, respectively, minimal idealsp1 andp2

of T bO, arecongruent modulop, if they reduce to the sameGal(F/F)-conjugacy class.

Proposition 2.1.8 TheGal(K/K)-conjugacy classes belonging to minimal primesp1 andp2 of TO

are congruent modulop if and only if they are contained in a common maximal primem of TO.

Proof. Exercise 22. 2

We mention the fact that iff is a newform belonging to the maximal idealm of the Hecke algebra

T := TQ(Sk(Γ1(N),C)), thenTm is isomorphic toQf = Q(an|n ∈ N).

2.2 Algorithms and Implementations: Localisation Algorithms

LetK be a perfect field,K an algebraic closure andA a finite dimensional commutativeK-algebra.

In the context of Hecke algebras we would like to compute a local decomposition ofA.

2.2.1 Primary spaces

Lemma 2.2.1 (a) A is local if and only if the minimal polynomial ofa (in K[X]) is a prime power

for all a ∈ A.

(b) LetV be anA-module such that for alla ∈ A the minimal polynomial ofa onV is a prime power

in K[X], i.e. V is a primary space for alla ∈ A. Then the image ofA in End(V ) is a local

algebra.
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(c) Let V be anA-module and leta1, . . . , an be generators of the algebraA. Suppose that for

i ∈ {1, . . . , n} the minimal polynomial ofai on V is a power of(X − λi) in K[X] for some

λi ∈ K (e.g. ifK = K). Then the image ofAK in End(V ) is a local algebra.

Proof. (a) Suppose first thatA is local and takea ∈ A. Letφa : K[X]→ A be the homomorphism

of K-algebras defined by sendingX to a. Let (f) be the kernel withf monic, so that by definitionf

is the minimal polynomial ofa. Hence,K[X]/(f) →֒ A, whenceK[X]/(f) is local, as it does not

contain a non-trivial idempotent. Thus,f cannot have two different prime factors.

Conversely, ifA were not local, we would have an idempotente 6∈ {0, 1}. The minimal polyno-

mial of e isX(X − 1), which is not a prime power.

(b) follows directly. For (c) one can use the following. Suppose that(a − λ)rV = 0 and(b −

µ)sV = 0. Then((a + b) − (λ + µ))r+sV = 0, as one sees by rewriting((a + b) − (λ + µ)) =

(a−λ)+(b−µ) and expanding out. From this it also follows that(ab−λµ)2(r+s)V = 0 by rewriting

ab− λµ = (a− λ)(b− µ) + λ(b− µ) + µ(a− λ). 2

We warn the reader that algebras such that a set of generators acts primarily need not be local,

unless they are defined over an algebraically closed field, as we have seen in Part (c) above. In

Exercise 23 you are asked to find an example.

The next proposition, however, tells us that an algebra over a field having a basis consisting of

primary elements is local. I found the idea for that proof in a paper by WayneEberly.

Proposition 2.2.2 LetK be a field of characteristic0 or a finite field. LetA be a finite dimensional

algebra overK and leta1, . . . , an be aK-basis ofA with the property that the minimal polynomial

of eachai is a power of a prime polynomialpi ∈ K[X].

ThenA is local.

Proof. We assume thatA is not local and take a decomposition

A
∼ α
−−−→

r∏

j=1

Aj

with r ≥ 2. LetKj be the residue field ofAj . The assumption on the basis means that the minimal

polynomial ofai|Aj
= p

ri,j
i with pi irreducible and certainri,j . The normal closureN of Kj overK

is equal to the splitting field of the polynomialspi for i = 1, . . . , n and is hence independent ofj.

Moreover,TrN/K(π ◦ α(ai)|Kj
) is also independent ofj with π :

∏r
j=1Aj ։

∏r
j=1Kj , since the

minimal polynomial ofπ ◦ α(ai)|Kj
is independent ofj.

We now use the assumptions onK. By Exercise 24 there isx ∈ K1 such thatTrN/K(x) 6= 0. In

A we take an elementy =
∑r

i=1 siai which maps to(x, 0, . . . , 0) ∈
∏r
j=1Kj underπ ◦ α, i.e.

x =
n∑

i=1

si · (π ◦ α(ai)|K1) and

0 =

n∑

i=1

si · (π ◦ α(ai)|K2).
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The traces forN/K of the right hand side of the two equations are equal; on the left hand side they

are not. This contradiction proves the proposition. 2

Lemma 2.2.3 LetA be a local finite dimensional algebra over a perfect fieldK. Leta1, . . . , an be a

set ofK-algebra generators ofA such that the minimal polynomial of eachai is a prime polynomial.

ThenA is a field.

Proof. As theai are diagonalisable (over a separable closure - considering the algebraas a matrix

algebra), so are sums and products of theai. Hence,0 is the only nilpotent element inA. As the

maximal ideal in an Artinian local algebra is the set of nilpotent elements, the lemma follows. 2

Proposition 2.2.4 LetA be a local finite dimensional algebra over a perfect fieldK. Leta1, . . . , an

be a set ofK-algebra generators ofA. Letpei

i be the minimal polynomial ofai (see Lemma 2.2.1).

Then the maximal idealm ofA is generated by{p1(a1), . . . , pn(an)}.

Proof. Let a be the ideal generated by{p1(a1), . . . , pn(an)}. The quotientT/a is generated by

the images of theai, call themai. We claim that eitherai = 0 or the minimal polynomial ofai is

equal topi. For, aspi(ai) ∈ a, it follows pi(ai) = 0, whence the minimal polynomial ofai divides

the prime polynomialpi, so that they are equal ifai 6= 0. By Lemma 2.2.3, we know thatT/a is a

field, whencea is the maximal ideal. 2

2.2.2 Algorithm for computing common primary spaces

[Recalled that one can think about finite dimensional algebras over a field as algebras of matrices and

that the localisation statements of this section just mean writing the matrices as blocks.]

By a common primary spacefor commuting matrices we mean a subvector space of the under-

lying vector space on which the minimal polynomials of the given matrices are primepowers. By

Proposition 2.2.2, a common primary space of a basis of a matrix algebra is a local factor of the

algebra.

By ageneralised eigenspacefor commuting matrices we mean a subvector space of the underlying

vector space on which the minimal polynomial of the given matrices are irreducible. Allowing base

changes to extension fields, the matrices restricted to the generalised eigenspace are diagonalisable.

In this section we present a straight forward algorithm for computing commonprimary spaces and

common generalised eigenspaces.

Algorithm 2.2.5 Input: A list ops of operators acting on the K-vector space V .

Output: A list of the common primary spaces inside V for all operators in ops.

(1) List := [V];

(2) for T in ops do

(3) newList := [];



2.2. ALGORITHMS AND IMPLEMENTATIONS: LOCALISATION ALGORITHMS 41

(4) for W in List do

(5) Compute the minimal polynomial f ∈ K[X] of T restricted to W .

(6) Factor f over K into its prime powers f(X) =
∏n
i=1 pi(X)ei .

(7) If n equals 1, then

(8) Append W to newList,

(9) else for i := 1 to n do

(10) Compute W̃ as the kernel of pi(T |W )α with α = ei for common primary

spaces or α = 1 for common generalised eigenspaces..

(11) Append W̃ to newList.

(12) end for; end if;

(13) end for;

(14) List := newList;

(15) end for;

(16) Return List and stop.

2.2.3 Algorithm for computing idempotents

Using Algorithm 2.2.5 it is possible to compute a complete set of orthogonal idempotents forA. We

now sketch a direct algorithm.

Algorithm 2.2.6 Input: A matrix M .

Output: A complete set of orthogonal idempotents for the matrix algebra generated by

M and 1.

(1) Compute the minimal polynomial f of M .

(2) Factor it f = (
∏n
i=1 p

ei

i )Xe overK with pi distinct irreducible polynomials different fromX.

(3) List := [];

(4) for i = 1 to n do

(5) g := f div pei

i ;

(6) M1 := g(M). If we think about M1 in block form, then there is only one non-empty

block on the diagonal, the rest is zero. In the next steps this block is replaced by the

identity.

(7) Compute the minimal polynomial h of M1.

(8) Strip possible factors X from h and normalise h so that h(0) = 1.
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(9) Append 1 − h(M1) to List. Note that h(M1) is the identity matrix except at the

block corresponding to pi, which is zero. Thus 1 − h(M1) is the idempotent being zero

everywhere and being the identity in the block corresponding to pi.

(10) end for;

(11) if e > 0 then

(12) Append 1−
∑

e∈ List e to List.

(13) end if;

(14) Return List and stop.

The algorithm for computing a complete set of orthogonal idempotents for a commutative matrix

algebra consists of multiplying together the idempotents of every matrix in a basis and to select an

orthogonal subset from these products. See Computer Exercise 12.

2.3 Algorithms and Implementations: More of MAGMA

• Linear algebra in MAGMA .

• Functions and procedures and comments revisited.

• Packages and intrinsics.

2.4 Theoretical exercises

Exercise 17 Use your knowledge on modular forms to prove that a modular formf =
∑∞

n=0 an(f)qn

of weightk ≥ 1 and levelN (and Dirichlet characterχ) is uniquely determined by
∑∞

n=1 an(f)qn.

Exercise 18 Prove Proposition2.1.3.

Exercise 19 LetT be an Artinian ring.

(a) Letm be a maximal ideal ofT. Prove thatm∞ is a principal ideal generated by an idempotent.

Call it em.

(b) Prove that the idempotents1−em and1−en for different maximal idealsm andn are orthogonal.

(c) Prove that the set{1 − em|m ∈ Spec(T)} forms a complete set of pairwise orthogonal idempo-

tents.

Exercise 20 Prove the correspondences and the isomorphisms from Part (a) of Proposition 2.1.7.

Exercise 21 Let f, g ∈ Mk(N,χ ; K) be normalised eigenforms that areGal(K/K)-conjugate.

Prove that their reductions modulop areGal(F/F)-conjugate.



2.5. COMPUTER EXERCISES 43

Exercise 22 Prove Proposition2.1.8.

Exercise 23 Find a non-local algebraA over a fieldK (of your choice) such thatA is generated as

aK-algebra bya1, . . . , an having the property that the minimal polynomial of eachai is a power of

an irreducible polynomial inK[X].

Exercise 24 LetK be a field of characteristic0 or a finite field. LetL be a finite extension ofK with

Galois closureN overK. Show that there is an elementx ∈ L with TrN/K(x) 6= 0.

Exercise 25 LetA be a commutative matrix algebra over a perfect fieldK. Suppose that the minimal

polynomial of each element of a generating set is the power of a prime polynomial (i.e. it is primary).

Show that there exist base change matrices such that the base changedalgebra consists only of

lower triangular matrices. You may and you may have to extend scalars to afinite extension ofK. In

Computer Exercise 14 you are asked to find and implement an algorithm computing such base change

matrices.

2.5 Computer exercises

Computer exercise 8Change Algorithm 1.3.5 (see Computer Exercise 7) so that it works for modu-

lar forms over a given ringR.

Computer exercise 9LetA be a commutative matrix algebra over a perfect fieldK.

(a) Write an algorithm to test whetherA is local.

(b) SupposeA is local. Write an algorithm to compute its maximal ideal.

Computer exercise 10LetA be a commutative algebra over a fieldK. The regular representation

is defined as the image of the injection

A→ EndK(A), a 7→ (b 7→ a · b).

Write a function computing the regular representation.

Computer exercise 11Implement Algorithm 2.2.5. Also write a function that returns the local fac-

tors as matrix algebras (possibly using regular representations).

Computer exercise 12(a) Implement Algorithm 2.2.6.

(b) LetS be a set of idempotents. Write a function selecting a subset ofS consisting of pairwise

orthogonal idempotents such that the subset spansS (all idempotents inS can be obtained as

sums of elements in the subset).
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(c) Write a function computing a complete set of pairwise orthogonal idempotents for a commutative

matrix algebraA over a field by multiplying together the idempotents of the matrices in a basis

and selecting a subset as in (b).

(d) Use Computer Exercise 9 to compute the maximal ideals ofA.

Computer exercise 13LetA be a commutative matrix algebra over a perfect fieldK. Suppose thatA

is a field (for instance obtained as the quotient of a localA by its maximal ideal computed in Computer

Exercise 9). Write a function returning an irreducible polynomialp such thatA isK[X]/(p).

If possible, the algorithm should not use factorisations of polynomials. It isa practical realisation

of Kronecker’s primitive element theorem.

Computer exercise 14LetA be a commutative matrix algebra over a perfect fieldK. Suppose that

the minimal polynomial of each element of a generating set is the power ofa prime polynomial (i.e. it

is primary).

Write a function computing base change matrices such that the base changed algebra consists

only of lower triangular matrices (cf. Exercise 25).
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Homological algebra

3.1 Theory: Categories and Functors

Definition 3.1.1 A categoryC consists of the following data:

• a classobj(C) of objects,

• a setHomC(A,B) of morphismsof every ordered pair(A,B) of objects,

• an identity morphismidA ∈ HomC(A,A) for every objectA, and

• a composition function

HomC(A,B)×HomC(B,C)→ HomC(A,C), (f, g) 7→ g ◦ f

for every ordered triple(A,B,C) of objects

such that

• (Associativity)(h ◦ g) ◦ f) = h ◦ (g ◦ f) for all f ∈ HomC(A,B), g ∈ HomC(B,C), h ∈

HomC(C,D) and

• (Unit Axiom)idB ◦ f = f = f ◦ idA for f ∈ HomC(A,B).

Example 3.1.2 Examples of categories are

• Sets: objects are sets, morphisms are maps.

• LetR be a not necessarily commutative ring. LeftR-modules (R −modules): objects areR-

modules, morphisms areR-module homomorphisms. This is the category we are going to work

with most of the time. Note that the category ofZ-modules is the category of abelian groups.

• RightR-modules (modules−R): as above.

• Etc.

45
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Definition 3.1.3 LetC andD be categories. Acovariant/contravariant functorF : C → D is

• a ruleobj(C)→ obj(D), C 7→ F (C) and

• a rule





covariant case: HomC(C1, C2)→ HomD(F (C1), F (C2)), f 7→ F (f)

contravariant case:HomC(C1, C2)→ HomD(F (C2), F (C1)), f 7→ F (f)

such that

• F (idC) = idF (C) and

•





covariant case: F (g ◦ f) = F (g) ◦ F (f)

contravariant case:F (g ◦ f) = F (f) ◦ F (g)

Example 3.1.4 • LetM ∈ obj(R−modules). Define

HomR(M, ·) : R−modules→ Z−modules, A 7→ HomR(M,A).

This is a covariant functor.

• LetM ∈ obj(R−modules). Define

HomR(·,M) : R−modules→ Z−modules, A 7→ HomR(A,M).

This is a contravariant functor.

• LetM ∈ obj(R−modules). Define

· ⊗RM : modules−R→ Z−modules, A 7→ A⊗RM.

This is a covariant functor.

• LetM ∈ obj(modules−R). Define

M ⊗R · : R−modules→ Z−modules, A 7→M ⊗R A.

This is a covariant functor.

Definition 3.1.5 • A covariant functorF : C → D is calledleft-exact, if for every exact sequence

0→ A→ B → C

the sequence

0→ F (A)→ F (B)→ F (C)

is also exact.
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• A contravariant functorF : C → D is calledleft-exact, if for every exact sequence

A→ B → C → 0

the sequence

0→ F (C)→ F (B)→ F (A)

is also exact.

• A covariant functorF : C → D is calledright-exact, if for every exact sequence

A→ B → C → 0

the sequence

F (A)→ F (B)→ F (C)→ 0

is also exact.

• A contravariant functorF : C → D is calledright-exact, if for every exact sequence

0→ A→ B → C

the sequence

F (C)→ F (B)→ F (A)→ 0

is also exact.

• A covariant or contravariant functor isexactif it is both left-exact and right-exact.

Example 3.1.6 Both functorsHomR(·,M) andHomR(M, ·) for M ∈ obj(R − modules) are left-

exact. Both functors· ⊗RM for M ∈ obj(R −modules) andM ⊗R · for M ∈ obj(modules− R)

are right-exact.

Proof. Exercise 26. 2

Definition 3.1.7 LetR be a not necessarily commutative ring. A leftR-moduleP is calledprojective

if the functorHomR(P, ·) is exact. A leftR-moduleI is calledinjective if the functorHomR(·, I) is

exact.

Lemma 3.1.8 LetR be a not necessarily commutative ring and letP be a leftR-module.

Show thatP is projective if and only ifP is a direct summand of some freeR-module. In particu-

lar, free modules are projective.

Proof. Exercise 27. 2
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3.2 Theory: Complexes and Cohomology

Definition 3.2.1 A (right) chain complexC• in the categoryR −modules is a collection of objects

Cn ∈ obj(R−modules) for n ≥ m for somem ∈ Z together with homomorphismsCn+1
∂n+1
−−−→ Cn,

i.e.

· · · → Cn+1
∂n+1
−−−→ Cn

∂n−→ Cn−1 → · · · → Cm+2
∂m+2
−−−→ Cm+1

∂m+1
−−−→ Cm

∂m−−→ 0,

such that

∂n ◦ ∂n+1 = 0

for all n ≥ m. The group ofn-cyclesof this chain complex is defined as

Zn(C•) = ker(∂n).

The group ofn-boundariesof this chain complex is defined as

Bn(C•) = im(∂n+1).

Then-th homology groupof this chain complex is defined as

Hn(C•) = ker(∂n)/ im(∂n+1).

The chain complexC• is exactif Hn(C•) = 0 for all n. If C• is exact andm = −1, one often says

thatC• is a resolutionofC−1.

A morphism of right chain complexesφ• : C• → D• is a collection of homomorphismsφn :

Cn → Dn for n ∈ N0 such that all the diagrams

Cn+1
∂n+1
−−−−→ Cn

φn+1

y φn

y

Dn+1
∂n+1
−−−−→ Dn

are commutative.

If all φn are injective, we regardC• as a sub-chain complex ofD•. If all φn are surjective, we

regardD• as a quotient complex ofC•.

Definition 3.2.2 A (right) cochain complexC• in the categoryR−modules is a collection of objects

Cn ∈ obj(R−modules) for n ≥ m for somem ∈ Z together with homomorphismsCn
∂n+1

−−−→ Cn+1,

i.e.

0
∂m

−−→ Cm
∂m+1

−−−→ Cm+1 ∂m+2

−−−→ Cm+2 → · · · → Cn−1 ∂n

−→ Cn
∂n+1

−−−→ Cn+1 → . . . ,

such that

∂n+1 ◦ ∂n = 0

for all n ≥ m. The group ofn-cocyclesof this cochain complex is defined as

Zn(C•) = ker(∂n+1).
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The group ofn-coboundariesof this cochain complex is defined as

Bn(C•) = im(∂n).

Then-th cohomology groupof this cochain complex is defined as

Hn(C•) = ker(∂n+1)/ im(∂n).

The cochain complexC• is exactif Hn(C•) = 0 for all n. If C• is exact andm = −1, one often says

thatC• is a resolutionofC−1.

A morphism of right cochain complexesφ• : C• → D• is a collection of homomorphismsφn :

Cn → Dn for n ∈ N0 such that all the diagrams

Cn
∂n+1

−−−−→ Cn+1

φn

y φn+1

y

Dn ∂n+1

−−−−→ Dn+1

are commutative.

If all φn are injective, we regardC• as a sub-chain complex ofD•. If all φn are surjective, we

regardD• as a quotient complex ofC•.

In Exercise 28 you are asked to define kernels, cokernels and images of morphisms of cochain

complexes and to show that morphisms of cochain complexes induce natural maps on the cohomology

groups. In fact, cochain complexes ofR-modules form an abelian category.

Example: standard resolution of a group

LetG be a group andR a commutative ring. We describe thestandard resolutionF (G)• of R by free

R[G]-modules:

0←− R
ǫ
←− F (G)0 := R[G]

∂1←− F (G)1 := R[G2]
∂2←− . . . ,

where we put (the “hat” means that we leave out that element):

∂n :=
n∑

i=0

(−1)idi and di(g0, . . . , gn) := (g0, . . . , ĝi, . . . , gn).

The mapǫ is the usual augmentation map defined by sendingg ∈ G to 1 ∈ R. We have∂0 = 0 by

definition.

In Exercise 29 you are asked to check that the standard resolution is indeed a resolution, i.e. that

the above complex is exact.
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Example: bar resolution of a group

We continue to treat the standard resolutionR by R[G]-modules, but we will write it differently.

[Weibel] calls the following theunnormalised bar resolutionofG. We shall simply saybar resolution.

If we let hr := g−1
r−1gr, then we get the identity

(g0, g1, g2, . . . , gn) = g0.(1, h1, h1h2, . . . , h1h2 . . . |hn) =: g0.[h1|h2| . . . hn].

The symbols[h1|h2| . . . |hn] with arbitraryhi ∈ G hence form anR[G]-basis ofF (G)n, and one has

F (G)n = R[G] ⊗R (freeR-module on[h1|h2| . . . |hn]). One computes the action ofdi on this basis

and gets

di[h1| . . . |hn] =





h1[h2| . . . |hn] i = 0

[h1| . . . |hihi+1| . . . |hn] 0 < i < n

[h1| . . . |hn−1] i = n.

We will from now on, if confusion is unlikely, simply write(h1, . . . , hn) instead of[h1| . . . |hn].

Example: resolution of a cyclic group

Let G = 〈T 〉 be an infinite cyclic group (i.e. a group isomorphic to(Z,+)). Here is a very simple

resolution ofR by freeR[G]-modules:

0→ R[G]
T−1
−−−→ R[G]

ǫ
−→ R→ 0.

Let nowG = 〈σ〉 be a finite cyclic group of ordern. Here is a resolution ofR by freeR[G]-

modules:

· · · → R[G]
Nσ−−→ R[G]

1−σ
−−→ R[G]

Nσ−−→ R[G]
1−σ
−−→ R[G]→ · · · → R[G]

1−σ
−−→ R[G]

ǫ
−→ R→ 0.

In Exercise 30 you are asked to verify the exactness of these two sequences.

Example: simplicial cohomology

Please have a look at the definition of simplicial cohomology in any textbook on Algebraic Topology.

Group cohomology

Definition 3.2.3 LetR be a ring,G a group. andM a leftR[G]-module. Recall thatF (G)• denotes

the standard resolution ofR by freeR[G]-modules.

(a) Let M be a leftR[G]-module. When we apply the functorHomR[G](·,M) to the standard

resolutionF (G)• cut off at 0 (i.e. F (G)1
∂1−→ F (G)0

∂0−→ 0), we get the cochain complex

HomR[G](F (G)•,M) :

→ HomR[G](F (G)n−1,M)
∂n

−→ HomR[G](F (G)n,M)
∂n+1

−−−→ HomR[G](F (G)n+1,M)→ .



3.3. THEORY: COHOMOLOGICAL TECHNIQUES 51

Define then-th cohomology group ofG with values in theG-moduleM as

Hn(G,M) := Hn(HomR[G](F (G)•,M)).

(b) LetM be a rightR[G]-module. When we apply the functorM ⊗R[G] · to the standard resolution

F (G)• cut off at0 we get the chain complexM ⊗R[G] F (G)• :

→M ⊗R[G] F (G)n+1
∂n+1
−−−→M ⊗R[G] F (G)n

∂n−→M ⊗R[G] F (G)n−1 → .

Define then-th homology group ofG with values in theG-moduleM as

Hn(G,M) := Hn(M ⊗R[G] F (G)•).

In this lecture we shall only use group cohomology. As a motivation for looking at group coho-

mology in this lecture, we can already point out that

H1(Γ1(N), Vk−2(R)) ∼=Mk(Γ1(N), R),

provided that6 is invertible inR. We shall prove this later in this lecture.

The reader is invited to compute explicit descriptions ofH0, H0 andH1 in Exercise 31.

3.3 Theory: Cohomological Techniques

The cohomology of groups fits into a general machinery, namely that of derived functor cohomology.

Derived functors are universal cohomologicalδ-functors and many properties of them can be derived

in a purely formal way from the universality. What this means will be explained in this section.

We omit all proofs. We will also be sloppy about categories. When we write category below, we

really mean abelian category, since we obviously need the existence of kernels, images, quotients etc.

Here we should really understand the word category not in its precise mathematical sense but as a

placeholder forR − modules, or (co-)chain complexes ofR − modules and other categories from

everyday life.

Definition 3.3.1 LetC andD be (abelian) categories (for instance,C the right cochain complexes of

R−modules andD = R−modules). A positive covariant cohomologicalδ-functorbetweenC and

D is a collection of functorsHn : C → D for n ≥ 0 together withconnecting morphisms

δn : Hn(C)→ Hn+1(A)

which are defined for every short exact sequence0→ A→ B → C → 0 in C such that the following

hold:

(a) (Positivity)Hn is the zero functor ifn < 0.
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(b) For every short exact sequence0 → A → B → C → 0 in C there is thelong exact sequence

in D:

. . .Hn−1(C)
δn−1

−−−→ Hn(A)→ Hn(B)→ Hn(C)
δn

−→ Hn+1(A)→ . . . ,

where the mapsHn(A)→ Hn(B)→ Hn(C) are those that are induced from the homomorphisms

in the exact sequence0→ A→ B → C → 0.

(c) For every commutative diagram inC

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

f

y g

y h

y

0 −−−−→ A′ −−−−→ B′ −−−−→ C ′ −−−−→ 0

with exact rows the following diagram inD commutes, too:

Hn−1(C)
δn−1

−−−−→ Hn(A) −−−−→ Hn(B) −−−−→ Hn(C)
δn

−−−−→ Hn+1(A)

Hn−1(h)

y Hn(f)

y Hn(g)

y Hn(h)

y Hn+1(f)

y

Hn−1(C ′)
δn−1

−−−−→ Hn(A′) −−−−→ Hn(B′) −−−−→ Hn(C ′)
δn

−−−−→ Hn+1(A′)

Theorem 3.3.2 LetR be a ring (not necessarily commutative). LetC stand for the category of cochain

complexes of leftR-modules. Then the cohomology functors

Hn : C → Z−modules, C• 7→ Hn(C•)

form a cohomologicalδ-functor.

Proof. This theorem is proved by some ’diagram chasing’ starting from the snakelemma. See

Chapter 1 of [Weibel] for details. 2

It is not difficult to conclude that group cohomology also forms a cohomological δ-functor.

Proposition 3.3.3 LetR be a commutative ring andG a group.

(a) The functor fromR[G]−modules to cochain complexes ofR[G]−modules which associates to

a leftR[G]-moduleM the cochain complexHomR[G](F (G)•,M) withF (G)• the bar resolution

of R by freeR[G]-modules is exact, i.e. it takes an exact sequence0 → A → B → C → 0 of

R[G]-modules to the exact sequence

0→ HomR[G](F (G)•, A)→ HomR[G](F (G)•, B)→ HomR[G](F (G)•, C)→ 0

of cochain complexes.

(b) The functors

Hn(G, ·) : R[G]−modules→ R−modules, M 7→ Hn(G,M)

form a cohomologicalδ-functor.
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Proof. Exercise 32. 2

We will now come to universalδ-functors. Important examples of such (among them group co-

homology) are obtained from injective resolutions. Although the following discussion is valid in any

abelian category (with enough injectives), we restrict toR−modules for a not necessarily commuta-

tive ringR.

Definition 3.3.4 LetR be a not necessarily commutative ring and letM ∈ obj(R−modules).

A projective resolutionofM is a resolution

· · · → P2
∂2−→ P1

∂1−→ P0 →M → 0,

i.e. an exact chain complex, in which all thePn for n ≥ 0 are projectiveR-modules.

An injective resolutionofM is a resolution

0→M → I0 ∂1

−→ I1 ∂2

−→ I2 → . . . ,

i.e. an exact cochain complex, in which all theIn for n ≥ 0 are injectiveR-modules.

We state the following lemma as a fact. It is easy for projective resolutions andrequires work for

injective ones.

Lemma 3.3.5 Injective and projective resolutions exist in the category ofR-modules, whereR is any

ring (not necessarily commutative). 2

Note that applying a left exact functorF to an injective resolution

0→M → I0 → I1 → I2 → . . .

of M gives rise to a cochain complex

0→ F(M)→ F(I0)→ F(I1)→ F(I2)→ . . . ,

of which only the part0 → F(M) → F(I0) → F(I1) need be exact. This means that theH0 of the

(cut off at0) cochain complexF(I0)→ F(I1)→ F(I2)→ . . . is equal toF(M).

Definition 3.3.6 LetR be a not necessarily commutative ring.

(a) LetF be a left exact covariant functor on the category ofR-modules (mapping for instance to

Z−modules).

Theright derived functorsRnF(·) ofF are the functors on the category ofR−modules defined as

follows. ForM ∈ obj(R −modules) choose an injective resolution0→M → I0 → I1 → . . .

and let

RnF(M) := Hn
(
F(I0)→ F(I1)→ F(I2)→ . . .

)
.
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(b) LetG be a left exact contravariant functor on the category ofR-modules.

Theright derived functorsRnG(·) ofG are the functors on the category ofR−modules defined as

follows. ForM ∈ obj(R−modules) choose a projective resolution· · · → P1 → P0 →M → 0

and let

RnG(M) := Hn
(
G(P0)→ G(P1)→ G(P2)→ . . .

)
.

We state the following lemma without a proof. It is a simple consequence of the injectivity re-

spectively projectivity of the modules in the resolution.

Lemma 3.3.7 The right derived functors do not depend on the choice of the resolution and they form

a cohomologicalδ-functor. 2

Of course, one can also define left derived functors of right exactfunctors. An important example

is theTor-functor which is obtained by deriving the tensor product functor in a way dual toExt (see

below).

As already mentioned, the importance of right and left derived functors comes from their univer-

sality.

Definition 3.3.8 LetC andD be two categories andF andG two covariant functors betweenC and

D. A natural transformationη : F ⇒ G is a rule that associates a morphism

ηC : F (C)→ G(C)

for everyC ∈ obj(C) such that to everyf : C → C ′ in HomC(C,C
′) the diagram

F (C)
F (f)
−−−−→ F (C ′)

ηC

y ηC′

y

G(C)
G(f)
−−−−→ G(C ′)

commutes. For contravariant functors we make the same definition with the horizontal arrows in the

diagram reversed.

Example 3.3.9 Let R be a not necessarily commutative ring and letA,B ∈ obj(R − modules)

as well asC,D ∈ obj(modules − R) with morphismsA → B and C → D. Then there are

natural transformationsHomR(B, ·) ⇒ HomR(A, ·) and HomR(·, A) ⇒ HomR(·, B) as well as

· ⊗R A⇒ · ⊗R B andA⊗R · ⇒ B ⊗R ·.

Proof. Exercise 33. 2

Definition 3.3.10 (a) Let (Hn)n and (Tn)n be cohomologicalδ-functors. Amorphism of cohomo-

logicalδ-functorsis a collection of natural transformationsηn : Hn ⇒ Tn that commute with the
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connecting homomorphismsδ, i.e. for every short exact sequence0 → A → B → C → 0 and

everyn the diagram

Hn(C)
δ

−−−−→ Hn+1(A)

ηn
C

y ηn+1
A

y

Tn(C)
δ

−−−−→ Tn+1(A)

commutes.

(b) The cohomologicalδ-functor(Hn)n is universalif for every other cohomologicalδ-functor(Tn)n
and every natural transformationη0 : H0(·) ⇒ T 0(·) there is a unique natural transformation

ηn : Hn(·)⇒ Tn(·) for all n ≥ 1 such that theηn form a morphism of cohomologicalδ-functors

between(Hn)n and(Tn)n.

For the proof of the following central result we refer to[Weibel], Chapter 2.

Theorem 3.3.11LetR be a not necessarily commutative ring and letF be a left exact covariant or

contravariant functor on the category ofR-modules (mapping for instance toZ−modules).

Theright derived functors(RnF(·))n ofF form a universalcohomologicalδ-functor.

Example 3.3.12 (a) LetR be a commutative ring andG a group. The functor

(·)G : R[G]−modules→ R−modules, M 7→MG

is left exact and covariant, hence we can form its right derived functorsRn(·)G. Since we have

the special case(R0(·)G)(M) = MG, universality gives a morphism of cohomologicalδ-functors

Rn(·)G ⇒ Hn(G, ·). We shall see that this is an isomorphism in a moment.

(b) LetR be a not necessarily commutative ring. We have seen that the functorsHomR(·,M) and

HomR(M, ·) are left exact. We write

ExtnR(·,M) := RnHomR(·,M) and ExtnR(M, ·) := RnHomR(M, ·).

By definition we haveHn(G,M) ∼= ExtnR(·,M)(R).

(c) If R is again commutative andG a group, then due to the universality andHomR[G](R,M) =

MG we have thatRn(·)G is isomorphic toExtnR(R, ·).

(d) Many cohomology theories in (algebraic) geometry are also of a right derived functor nature.

For instance, letX be a topological space and consider the category of sheaves of abeliangroups

onX. The global sections functorF 7→ F(X) = H0(X,F) is left exact and its right derived

functorsRn(H0(X, ·)) can be formed. They are usually denoted byHn(X, ·) and they define

’sheaf cohomology’ onX. Etale cohomology is an elaboration of this based on a generalisation

of topological spaces.
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Universal properties of group cohomology

Theorem 3.3.13LetR be a not necessarily commutative ring. TheExt-functor isbalanced. This

means that for any twoR-modulesM,N there are isomorphisms

(ExtnR(·, N))(M) ∼= (ExtnR(M, ·)(N) =: ExtnR(M,N).

Proof. [Weibel],Theorem 2.7.6. 2

Corollary 3.3.14 LetR be a commutative ring andG a group. For everyR[G]-moduleM there are

isomorphisms

Hn(G,M) ∼= ExtnR[G](R,M) ∼= (Rn(·)G)(M)

and the functors(Hn(G, ·))n form a universal cohomologicalδ-functor. Moreover, instead of the

standard resolution ofR by freeR[G]-modules, any other resolution ofR by projectiveR[G]-modules

may be used to computeHn(G,M).

Proof. We may computeExtnR[G(·,M)(R) by any resolution ofR by projectiveR[G]-modules.

Our standard resolution is such a resolution, since any free module is projective. Hence,Hn(G,M) ∼=

ExtnR[G](·,M)(R). The key is now thatExt is balanced (Theorem 3.3.13), since it givesHn(G,M) ∼=

ExtnR[G](R, ·)(M) = Rn(·)G(M) ∼= ExtnR[G](R,M). As theExt-functor is universal (being a right

derived functor), alsoHn(G, ·) is universal. For the last statement we recall that right derived functors

do not depend on the chosen projective respectively injective resolution. 2

You are invited to look at Exercise 34 now.

3.4 Theory: Generalities on Group Cohomology

We now apply the universality of theδ-functor of group cohomology. Letφ : H → G be a group

homomorphism andA anR[G]-module. Viaφ we may considerA also as anR[H]-module and

res0 : H0(G, ·)→ H0(H, ·) is a natural transformation. By the universality ofH•(G, ·) we get natural

transformations

resn : Hn(G, ·)→ Hn(H, ·).

These maps are calledrestrictions. See Exercise 35 for a description in terms of cochains. Very often

φ is just the embedding map of a subgroup.

Assume now thatH is a normal subgroup ofG andA is anR[G]-module. Then we can consider

φ : G → G/H and the restriction above gives natural transformationsresn : Hn(G/H, (·)H) →

Hn(G, (·)H). We define theinflation mapsto be

infln : Hn(G/H,AH)
resn

−−→ Hn(G,AH) −→ Hn(G,A),

where the last arrow is induced from the natural inclusionAH →֒ A.
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Under the same assumptions, conjugation byg ∈ G preservesH and we have the isomor-

phismH0(H,A) = AH
a 7→ga
−−−→ AH = H0(H,A). Hence by universality we obtain natural maps

Hn(H,A)→ Hn(H,A) for everyg ∈ G. One even gets anR[G]-action onHn(H,A). Ash ∈ H is

clearly the identity onH0(H,A), the above action is in fact also anR[G/H]-action.

Let nowH ≤ G be a subgroup of finite index. Then the normNG/H :=
∑

gi
∈ R[G] with {gi} a

system of representatives ofG/H gives a natural transformationcores0 : H0(H, ·)→ H0(G, ·) where

· is anR[G]-module. By universality we obtain

coresn : Hn(H, ·)→ Hn(G, ·),

thecorestriction (transfer)maps.

The inflation map, theR[G/H]-action and the corestriction can be explicitly described in terms

of cochains of the bar resolution (see Exercise 35).

It is clear thatcores0 ◦ res0 is multiplication by the index(G : H). By universality, alsocoresn ◦

resn is multiplication by the index(G : H). Hence we have proved the first part of the following

proposition.

Proposition 3.4.1 (a) LetH < G be a subgroup of finite index(G : H). For all i and allR[G]-

modulesM one has the equality

coresGH ◦ resGH = (G : H)

on all Hi(G,M).

(b) LetG be a finite group of ordern andR a ring in whichn is invertible. ThenHi(G,M) = 0 for

all i and allR[G]-modulesM .

Proof. Part (b) is an easy consequence withH = 1, since

Hi(G,M)
resG

H−−−→ Hi(1,M)
coresG

H−−−−→ Hi(G,M)

is trivially the zero map, but it also is multiplication byn. 2

The following exact sequence turns out to be very important for our purposes.

Theorem 3.4.2 (Hochschild-Serre)Let H ≤ G be a normal subgroup andA an R[G]-module.

There is the exact sequence:

0→ H1(G/H,AH)
infl
−−→ H1(G,A)

res
−−→ H1(G,A)G/H → H2(G/H,AH)

infl
−−→ H2(G,A).

Proof. We only sketch the proof for those who know spectral sequences. It is, however, possible

to verify the exactness on cochains explicitly (after having defined the missing map appropriately).

Grothendieck’s theorem on spectral sequences ([Weibel], 6.8.2) associates to the composition of func-

tors

(A 7→ AH 7→ (AH)G/H) = (A 7→ AG)
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the spectral sequence

Ep,q2 : Hp(G/H,Hq(H,A))⇒ Hp+q(G,A).

The statement of the theorem is then just the5-term sequence that one can associate with every spectral

sequence of this type. 2

Coinduced modules and Shapiro’s Lemma

LetH < G be a subgroup andA be a leftR[H]-module. TheR[G]-module

CoindGH(A) := HomR[H](R[G], A)

is called thecoinductionor thecoinduced modulefromH toG of A. We makeCoindGH(A) into a left

R[G]-module by

(g.φ)(g′) = φ(g′g) ∀ g, g′ ∈ G, φ ∈ HomR[H](R[G], A).

Proposition 3.4.3 (Shapiro’s Lemma)For all n ≥ 0, the map

Sh : Hn(G,CoindGH(A))→ Hn(H,A)

given on cochains is given by

c 7→ ((h1, . . . , hn)→ (c(h1, . . . , hn))(1G))

is an isomorphism.

Proof. Exercise 36. 2

Mackey’s formula and stabilisers

If H ≤ G are groups andV is anR[G]-module, we denote byResKH(V ) the moduleV considered as

anR[H]-module.

Proposition 3.4.4 LetR be a ring,G be a group andH,K subgroups ofG. Let furthermoreV be an

R[H]-module.Mackey’s formulais the isomorphism

ResGKCoindGHV
∼=

∏

g∈H\G/K

CoindKK∩g−1Hg
g(ResHH∩gKg−1V ).

Hereg(ResHH∩gKg−1V ) denotes theR[K∩g−1Hg]-module obtained fromV via the conjugated action

g−1hg.gv := h.v for v ∈ V andh ∈ H such thatg−1hg ∈ K.
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Proof. We consider the commutative diagram

ResGKHomR[H](R[G], V ) //

++W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

∏
g∈H\G/K HomR[K∩g−1Hg](R[K], g(ResHH∩gKg−1V ))

∼

��∏
g∈H\G/K HomR[H∩gKg−1](R[gKg−1],ResHH∩gKg−1V )).

The vertical arrow is just given by conjugation and is clearly an isomorphism. The diagonal map is

the product of the natural restrictions. From the bijection

(
H ∩ gKg−1

)
\gKg−1 gkg−1 7→Hgk

−−−−−−−−→ H\HgK

it is clear that also the diagonal map is an isomorphism, proving the proposition. 2

From Shapiro’s Lemma we directly get the following.

Corollary 3.4.5 In the situation of Proposition 3.4.4 one has

Hi(K,CoindGHV ) ∼=
∏

g∈H\G/K

Hi(K ∩ g−1Hg, g(ResHH∩gKg−1V )

∼=
∏

g∈H\G/K

Hi(H ∩ gKg−1,ResHH∩gKg−1V )

for all i ∈ N. 2

3.5 Theoretical exercises

Exercise 26 Verify the statements of Example 3.1.6.

Exercise 27 Prove Lemma 3.1.8.

Exercise 28 Letφ• : C• → D• be a morphism of cochain complexes.

(a) Show thatker(φ•) is a cochain complex and is a subcomplex ofC• in a natural way.

(b) Show thatim(φ•) is a cochain complex and is a subcomplex ofD• in a natural way.

(c) Show thatcoker(φ•) is a cochain complex and is a quotient ofD• in a natural way.

(d) Show thatφ• induces homomorphismsHn(C•)
Hn(φ•)
−−−−→ Hn(D•) for all n ∈ N.

Exercise 29 Check the exactness of the standard resolution of a groupG.

Exercise 30 Check the exactness of the resolutions given for an infinite and a finite cyclic group on

page 50.
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Exercise 31 LetR,G,M be as in the definition of group (co-)homology.

(a) ProveH0(G,M) ∼= MG, theG-invariants ofM .

(b) ProveH0(G,M) ∼= MG, theG-coinvariants ofM .

(c) Prove the explicit descriptions:

Z1(G,M) = {f : G→M map| f(gh) = g.f(h) + f(g) ∀g, h ∈ G},

B1(G,M) = {f : G→M map| ∃m ∈M : f(g) = (1− g)m ∀g ∈ G},

H1(G,M) = Z1(G,M)/B1(G,M).

In particular, if the action ofG onM is trivial, the boundariesB1(G,M) are zero, and one has:

H1(G,M) = Homgroup(G,M).

Exercise 32 Prove Proposition 3.3.3.

Exercise 33 Check the statements made in Example3.3.9.

Exercise 34 LetR be a commutative ring.

(a) LetG = 〈T 〉 be a free cyclic group andM anyR[G]-module. Prove

H1(G,M) = M/(1− T )M and Hi(G,M) = 0

for all i ≥ 2.

(b) For a finite cyclic groupG and anyR[G]-moduleM prove that

Hi(G,M) ∼= Hi+2(G,M)

for all i ≥ 1.

Exercise 35 LetR be a commutative ring.

(a) Letφ : H → G be a group homomorphism andA anR[G]-module. Prove that the restriction

mapsresn : Hn(G,A) → Hn(H,A) are given in terms of cochains of the bar resolution by

composing the cochains byφ.

(b) LetH be a normal subgroup ofG. Describe the inflation maps in terms of cochains of the bar

resolution.

(c) LetH be a normal subgroup ofG andA an R[G]-module. Describe theR[G/H]-action on

Hn(H,A) in terms of cochains of the bar resolution.

(d) Let nowH ≤ G be a subgroup of finite index. Describe the corestriction maps in terms of

cochains of the bar resolution.

Exercise 36 Prove Shapiro’s lemma, i.e. Prop. 3.4.3.



Stage 4

Cohomology ofPSL2(Z)

4.1 Theory: PSL2(Z) as a free product

As already done for the modular symbols formalism, we shall also base our group cohomological

treatment of modular symbols on the groupPSL2(Z), rather thanSL2(Z), which simplifies the treat-

ment, sincePSL2(Z) has a very simple structure, namely as a free product of two cyclic groups. That

is what we are going to treat first.

Definition 4.1.1 Let G andH be two groups. Thefree productG ∗ H of G andH is the group

having as elements all the possiblewords, i.e. sequences of symbols,a1a2 . . . an with ai ∈ G − {1}

or ai ∈ H − {1} such that elements fromG andH alternate (i.e. ifai ∈ G, thenai+1 ∈ H and

vice versa) together with the empty word, which we denote by1. The group operation inG ∗ H is

concatenation of words, possibly multiplying the two symbols that meet at theconcatenation point.

The integern is called thelengthof the group element (word)g = a1a2 . . . an and denoted byl(g).

We putl(1) = 0 for the empty word.

In Exercise 37 you are asked to verify theG ∗ H is indeed a group and to prove a universal

property.

We define the matrices ofSL2(Z)

σ :=
(

0 −1
1 0

)
, τ :=

(
−1 1
−1 0

)
, T = ( 1 1

0 1 ) = τσ.

They have the following conceptual meaning:

〈±σ〉 = StabSL2(Z)(i), 〈±τ〉 = StabSL2(Z)(ζ6) and 〈±T 〉 = StabSL2(Z)(∞)

with ζ6 = e2πi/6. From now on we will often represent classes of matrices inPSL2(Z) by matrices in

SL2(Z). The orders ofσ andτ in PSL2(Z) are2 and3, respectively. These statements are checked

by calculation. Exercise 38 is recommended at this point.

61



62 STAGE 4. COHOMOLOGY OFPSL2(Z)

Theorem 4.1.2 The groupPSL2(Z) is the free product of the cyclic groups〈σ〉 of order2 and〈τ〉 of

order3. In particular, as an abstract group,PSL2(Z) can be represented by generators and relations

as〈σ, τ |σ2 = τ3 = 1〉.

Proof. Let P = 〈σ〉 ∗ 〈τ〉. In last term’s course we proved thatSL2(Z) is generated byσ andτ ,

hence the universal property of the free product gives us a surjection of groupsP ։ PSL2(Z).

Let B be the geodesic path fromζ6 to i, i.e. the arc betweenζ6 and i in positive orientation

(counter clockwise) on the circle of radius1 around the origin. Define the map (’graph’)

PSL2(Z)
φ
−→ {Paths inH}

which sendsγ ∈ PSL2(Z) to γ.B, i.e. the image ofB underγ. The proof of the theorem is now

finished by showing that the composite

P ։ PSL2(Z)
φ
−→ {Paths inH}

is injective, as then the first map must be an isomorphism.

Why this composition is injective, is easily seen and explained by looking at the tessellation of

the upper half plane by the standard fundamental domain and by marking the image ofφ, i.e. all the

γ.B. Neighbouring edges of the edgeγ.B areγσ.B, γτ.B, γτ2.B and the three neighbouring edges

are distinct. Just by looking at the image ofφ, one sees that it forms a tree, i.e. a graph without circles.

Hence, applying any worda1a2 . . . an of positive lengthn ≥ 1 as in the definition of the free product,

one never hasB = a1a2 . . . an.B, as desired. [Show some picture.] 2

4.2 Theory: Mayer-Vietoris for PSL2(Z)

Motivated by the descriptionPSL2(Z) = C2 ∗ C3, we now consider the cohomology of a groupG

which is the free product of two finite groupsG1 andG2, i.e.G = G1 ∗G2.

Proposition 4.2.1 The sequence

0→ R[G]
α
−→ R[G/G1]⊕R[G/G2]

ǫ
−→ R→ 0

with α(g) = (gG1,−gG2) andǫ(gG1, 0) = 1 = ǫ(0, gG2) is exact.

Proof. This proof is an even more elementary version of an elementary proof that Ifound in

[Bieri]. Clearly, ǫ is surjective and alsoǫ ◦ α = 0.

Next we compute exactness at the centre. We first claim that for every elementg ∈ G we have

g − 1 =
∑

j

αjgj(hj − 1) ∈ R[G/G1]
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for certainαj ∈ R and certaingj ∈ G, hj ∈ G2 and analogously with the roles ofG1 andG2

exchanged. To see this, we writeg = a1a2 . . . an (we do not need the uniqueness of this expression).

If n = 1, there is nothing to do. Ifn ≥ 1, we have

a1a2 . . . an − 1 = a1a2 . . . an−1(an − 1) + (a1a2 . . . an−1 − 1)

and we obtain the claim by induction. Consequently, we have for allλ =
∑

i rigiG1 and allµ =∑
k r̃kg̃kG2 with ri, r̃k ∈ R andgi, g̃k ∈ G

λ−
∑

i

ri1GG1 =
∑

j

αjgj(hj − 1) ∈ R[G/G1]

and

µ−
∑

k

r̃k1GG2 =
∑

l

α̃lg̃l(h̃l − 1) ∈ R[G/G2]

for certainαj , α̃l ∈ R, certaingj , g̃l ∈ G and certainhj ∈ G2, h̃l ∈ G1. Suppose now that withλ

andµ as above we have

ǫ(λ, µ) =
∑

i

ri +
∑

k

r̃k = 0.

Then we directly get

α(
∑

j

αjgj(hj − 1)−
∑

l

α̃lg̃l(h̃l − 1) +
∑

i

ri1G
)

= (λ, µ)

and hence the exactness at the centre.

It remains to prove thatα is injective. Now we use the freeness of the product. Letλ =∑
w aww ∈ R[G] be an element in the kernel ofα. Hence,

∑
w awwG1 = 0 =

∑
w awwG2.

Let us assume thatλ 6= 0. It is clear thatλ cannot just be a multiple of1 ∈ G, as otherwise it would

not be in the kernel ofα. Now pick theg ∈ G with ag 6= 0 having maximal lengthl(g) (among all the

l(w) with aw 6= 0). It follows thatl(g) > 0. Assume without loss of generality that the representation

of g ends in a non-zero element ofG1. Further, sinceag 6= 0 and0 =
∑

w awwG2, there must be an

h ∈ G with g 6= h, gG2 = hG2 andah 6= 0. As g does not end inG2, we must haveh = gy for some

0 6= y ∈ G2. Thus,l(h) > l(g), contradicting the maximality and proving the proposition. 2

Proposition 4.2.2 (Mayer-Vietoris) Let G = G1 ∗ G2 be a free product. LetM be a leftR[G]-

module. Then the Mayer-Vietoris sequence gives the exact sequences

0→MG →MG1 ⊕MG2 →M → H1(G,M)
res
−−→ H1(G1,M)⊕H1(G2,M)→ 0.

and for all i ≥ 2 an isomorphism

Hi(G,M) ∼= Hi(G1,M)⊕Hi(G2,M).
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Proof. We see that all terms in the exact sequence of Proposition 4.2.1 are freeR-modules. We

now apply the functorHomR(·,M) to this exact sequence and obtain the exact sequence ofR[G]-

modules

0→M → HomR[G1](R[G],M)⊕HomR[G2](R[G],M)→ HomR(R[G],M)→ 0.

The central terms, as well as the term on the right, can be identified with coinduced modules. Hence,

the statements on cohomology follow by taking the long exact sequence of cohomology and invoking

Shapiro’s Lemma 3.4.3. 2

We now apply the Mayer-Vietoris sequence (Prop. 4.2.2) toPSL2(Z) and get that for any ringR

and any leftR[PSL2(Z)]-moduleM the sequence

0→MPSL2(Z) →M 〈σ〉 ⊕M 〈τ〉 →M

m7→fm
−−−−→ H1(PSL2(Z),M)

res
−−→ H1(〈σ〉,M)⊕H1(〈τ〉,M)→ 0 (4.2.1)

is exact and for alli ≥ 2 one has isomorphisms

Hi(PSL2(Z),M) ∼= Hi(〈σ〉,M)⊕Hi(〈τ〉,M). (4.2.2)

The1-cocyclefm can be explicitly described as the cocycle given byfm(σ) = (1−σ)m andfm(τ) =

0 (see Exercise 40).

Lemma 4.2.3 LetΓ ≤ PSL2(Z) be a subgroup of finite index and letx ∈ H ∪ P1(Q) be any point.

(a) The map

Γ\PSL2(Z)/PSL2(Z)x
g 7→gx
−−−→ Γ\PSL2(Z)x

is a bijection.

(b) Recall thatPSL2(Z)x denotes the stabiliser ofx for thePSL2(Z)-action. Forg ∈ PSL2(Z) the

stabiliser ofgx for theΓ-action is

Γgx = Γ ∩ gPSL2(Z)xg
−1.

(c) For all i ∈ N, Mackey’s formula (Prop. 3.4.4) gives an isomorphism

Hi(PSL2(Z)x,Coind
PSL2(Z)
Γ V ) ∼=

∏

y∈Γ\PSL2(Z)x

Hi(Γy, V ).

Proof. (a) and (b) are clear and (c) follows directly from Mackey’s formula. 2

Corollary 4.2.4 LetR be a ring andΓ ≤ PSL2(Z) be a subgroup of finite index such that all the

orders of all stabiliser groupsΓx for x ∈ H are invertible inR. Then for allR[Γ]-modulesV one has

H1(Γ, V ) = M/(M 〈σ〉 +M 〈τ〉) withM = Coind
PSL2(Z)
Γ (V ) andHi(Γ, V ) = 0 for all i ≥ 2.
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Proof. By Exercise 38, all non-trivial stabiliser groups for the action ofΓ on H are of the form

g〈σ〉g−1 ∩ Γ or g〈τ〉g−1 ∩ Γ for someg ∈ PSL2(Z). Due to the invertibility assumption we get

from Prop. 3.4.1 that the groups on the right in the equation in Lemma 4.2.3 (c) are zero. Hence, by

Shapiro’s lemma (Prop. 3.4.3) and Equations (4.2.1) and (4.2.2) we obtain theproposition. 2

By Exercise 38, the assumptions of the proposition are for instance always satisfied ifR is a field

of characteristic not2 or 3. Look at Exercise 39 to see for whichN the assumptions hold forΓ1(N)

andΓ0(N) over an arbitrary ring (e.g. the integers).

4.3 Theory: Parabolic group cohomology

Let R be a ring,Γ ≤ PSL2(Z) a subgroup of finite index. One defines theparabolic cohomology

group for the leftR[Γ]-moduleV as the kernel of the restriction map in

0→ H1
par(Γ, V )→ H1(Γ, V )

res
−−→

∏

g∈Γ\PSL2(Z)/〈T 〉

H1(Γ ∩ 〈gTg−1〉, V ). (4.3.3)

Proposition 4.3.1 LetR be a ring andΓ ≤ PSL2(Z) be a subgroup of finite index such that all the
orders of all stabiliser groupsΓx for x ∈ H are invertible inR. LetV be a leftR[Γ]-module. Write
for shortG = PSL2(Z) andM = HomR[Γ](R[G], V ). Then the following diagram is commutative,
its vertical maps are isomorphisms and its rows are exact:

0 // H1
par(Γ, V ) // H1(Γ, V )

res //
∏

g∈Γ\PSL2(Z)/〈T 〉

H1(Γ ∩ 〈gTg−1〉, V ) // VΓ
// 0

0 // H1
par(G,M) //

Shapiro

OO

H1(G,M)
res //

Shapiro

OO

H1(〈T 〉,M) //

Mackey
OO

VΓ
// 0

0 // H1
par(G,M) // M/(M 〈σ〉 +M 〈τ〉)

m 7→(1−σ)m //

m 7→fm

OO

M/(1− T )M //
��

c 7→c(T )

MG
//

φ

OO

0

The mapφ : MG → VΓ is given asf 7→
∑

g∈Γ\G f(g).

Proof. The commutativity of the diagram is checked in Exercise 41. By Exercise 34 we have

H1(〈T 〉,M) ∼= M/(1−T )M . Due to the assumptions we may apply Corollary 4.2.4. The cokernel of

M/(M 〈σ〉+M 〈τ〉)
m7→(1−σ)m
−−−−−−−→M/(1−T )M is immediately seen to beM/((1−σ)M+(1−T )M),

which is equal toMG, asT andσ generatePSL2(Z). Hence, the lower row is an exact sequence.

We now check that the mapφ is well-defined. For this we verify that the image off(g) in VΓ only

depends on the cosetΓ\G:

f(g)− f(γg) = f(g)− γf(g) = (1− γ)f(g) = 0 ∈ VΓ.

Hence, for anyh ∈ G we get

φ((1− h).f) =
∑

g∈Γ\PSL2(Z)

(f(g)− f(gh)) = 0,
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asgh runs over all cosets. Thus,φ is well-defined. To show thatφ is an isomorphism, we give an

inverseψ to φ by

ψ : VΓ → HomR[Γ](R[G], V )G, v 7→ ev with ev(g) =




gv, for g ∈ Γ

0, for g 6∈ Γ.

It is clear thatφ ◦ ψ is the identity. The mapφ is an isomorphism, asψ is surjective. Fix a system of

representatives{1 = g1, g2, . . . , gn} for Γ\PSL2(Z). We have

f =
n∑

i=1

gi.ef(gi) =
n∑

i=2

ef(gi) +
n∑

i=2

(1− gi).ef(gi) ∈ im(ψ),

as needed. [Actually, a more conceptual proof would be to first identify non-canonically the coinduced

moduleCoind
PSL2(Z)
Γ (V ) with the induced oneInd

PSL2(Z)
Γ (V ) = R[G]⊗R[Γ]V (see later). We claim

that theG-coinvariants are isomorphic toR⊗R[Γ]V ∼= VΓ. AsR-modules we haveR[G] = IG⊕R1G,

sincer 7→ r1G defines a splitting of the augmentation map. Consequently,R[G]⊗R[Γ]V ∼= (IG⊗R[Γ]

V )⊕R⊗R[Γ] V . The claim follows, sinceIG(R[G]⊗R[Γ] V ) ∼= IG⊗R[Γ] V .]

Since all the terms in the upper and the middle row are isomorphic to the respective terms in the

lower row, all rows are exact. 2

4.4 Theory: Dimension computations

This seems to be a good place to compute the dimension ofH1(Γ, Vk−2(K)) andH1
par(Γ, Vk−2(K))

over a fieldK under certain conditions. The results will be important for the proof of the Eichler-

Shimura theorem.

Lemma 4.4.1 LetR be a ring and letn ≥ 1 be an integer,t =
(

1 N
0 1

)
andt′ =

(
1 0
N 1

)
.

(a) If n!N is not a zero divisor inR, then for thet-invariants we have

Vn(R)〈t〉 = 〈Xn〉

and for thet′-invariants

Vn(R)〈t
′〉 = 〈Y n〉.

(b) If n!N is invertible inR, then the coinvariants are given by

Vn(R)〈t〉 = Vn(R)/〈Y n, XY n−1, . . . , Xn−1Y 〉

respectively

Vn(R)〈t′〉 = Vn(R)/〈Xn, Xn−1Y, . . . ,XY n−1〉.

(c) If n!N is not a zero divisor inR, then theR-module ofΓ(N)-invariantsVn(R)Γ(N) is zero. In

particular, if R is a field of characteristic0 andΓ is any congruence subgroup, thenVn(R)Γ is

zero.
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(d) If n!N is invertible inR, then theR-module ofΓ(N)-coinvariantsVn(R)Γ(N) is zero. In partic-

ular, if R is a field of characteristic0 andΓ is any congruence subgroup, thenVn(R)Γ is zero.

Proof. (a) The action oft is t.(Xn−iY i) = Xn−i(NX + Y )i and consequently

(t− 1).(Xn−iY i) = (
i∑

j=0

(
i
j

)
N i−jXi−jY j)Xn−i −Xn−iY i =

i−1∑

j=0

ri,jX
n−jY j

with ri,j = N i−j
(
i
j

)
, which is not a zero divisor, respectively invertible, by assumption. Forx =∑n

i=0 aiX
n−iY i we have

(t− 1).x =
n∑

i=0

ai

i−1∑

j=0

Xn−jY j =
n−1∑

j=0

Xn−jY j(
n∑

i=j+1

airi,j)

= XY n−1anrn,n−1 +X2Y n−2(anrn,n−2 + an−1rn−1,n−2) + . . . .

If (t−1).x = 0, we conclude forj = n−1 thatan = 0. Next, forj = n−2 it follows thatan−1 = 0,

and so on, untila1 = 0. This proves the statement on thet-invariants. The one on thet′-invariants

follows from symmetry.

(b) The claims on the coinvariants are proved in a very similar and straightforward way.

(c) and (d) AsΓ(N) contains the matricest andt′, this follows from Parts (a) and (b). 2

Proposition 4.4.2 LetK be a field of characteristic0 andΓ ≤ PSL2(Z) be a congruence subgroup

of finite indexµ such thatΓy = {1} for all y ∈ H (e.g.Γ = Γ1(N) withN ≥ 4).

Then

dimK H1(Γ, Vk−2(K)) = (k − 1)
µ

6
+ δk,2

and

dimK H1
par(Γ, Vk−2(K)) = (k − 1)

µ

6
− ν∞ + 2δk,2,

whereν∞ is the number of cusps ofΓ.

Proof. Let M = Coind
PSL2(Z)
Γ (Vk−2(K)). This module has dimension(k − 1)µ. From the

Mayer-Vietoris exact sequence

0→MPSL2(Z) →M 〈σ〉 ⊕M 〈τ〉 →M → H1(PSL2(Z),M)→ 0,

we obtain

dim H1(Γ, Vk−2(K)) = dimM + dimMPSL2(Z) − dim H0(〈σ〉,M)− dim H0(〈τ〉,M).

Recall the leftPSL2(Z)-action onHomK[Γ](K[PSL2(Z)], Vk−2(K)), which is given by(g.φ)(h) =

φ(hg); it is clear that every function inHomK[Γ](K[PSL2(Z)], Vk−2(K))PSL2(Z) is constant and

equal to its value at1. The Γ-invariance, however, imposes additionally that this contant lies in
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Vk−2(K)Γ. Hence, by Lemma 4.4.1dimMPSL2(Z) = δk,2. The termH0(〈σ〉,M) is handled by

Mackey’s formula:

dim H0(〈σ〉,M) =
∑

x∈Γ\PSL2(Z).i

dimVk−2(K)Γx = (k − 1)#(Γ\PSL2(Z).i) = (k − 1)
µ

2
,

since allΓx are trivial by assumption and there are hence preciselyµ/2 points inYΓ lying over i in

YSL2(Z). By the same argument we get

dim H0(〈τ〉,M) =
µ

3
.

Putting these together gives the first formula:

dimK H1(Γ, Vk−2(K)) = (k − 1)(µ−
µ

2
−
µ

3
) + δk,2 = (k − 1)

µ

6
+ δk,2.

The second formula can be read off from the diagram in Proposition 4.3.1.It gives directly

dim H1
par(Γ, Vk−2(K)) =

dim H1(Γ, Vk−2(K)) + dimVk−2(K)Γ −
∑

g∈Γ\PSL2(Z)/〈T 〉

dim H1(Γ ∩ 〈gTg−1〉, Vk−2(K)).

All the groupsΓ ∩ 〈gTg−1〉 are of the form〈Tn〉 for somen ≥ 1. Since they are cyclic, we have

dim H1(Γ ∩ 〈gTg−1〉, Vk−2(K)) = dimVk−2(K)〈Tn〉 = 1

by Lemma 4.4.1. As the setΓ\PSL2(Z)/〈T 〉 is the set of cusps ofΓ, we conclude
∑

g∈Γ\PSL2(Z)/〈T 〉

dim H1(Γ ∩ 〈gTg−1〉, Vk−2(K)) = ν∞.

Moreover, also by Lemma 4.4.1dimVk−2(K)Γ = δk,2. Putting everything together yields the formula

dim H1
par(Γ, Vk−2(K)) = (k − 1)

µ

6
+ 2δk,2 − ν∞,

as claimed. 2

Remark 4.4.3 It is easy to derive a formula for the dimension, even ifΓ is not torsion-free. One only

needs to compute the dimensionsVk−2(K)〈σ〉 andVk−2(K)〈τ〉 and to modify the above proof slightly.

4.5 Theoretical exercises

Exercise 37 (a) Verify thatG ∗H is a group.

(b) Prove the following universal property. LetιG : G→ G ∗H andιH : H → G ∗H be the natural

inclusions. LetP be any group together with group injectionsηG : G → P andηH : H → P ,

then there is a unique group homomorphismφ : G ∗ H → P such thatηG = φ ◦ ιG and

ηH = φ ◦ ιH .
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Exercise 38 (a) LetM ∈ SLn(Z) be an element of finite orderm. Determine the primes that may

dividem. [Hint: Look at the characteristic polynomial ofM .]

(b) Determine all conjugacy classes of elements of finite order inPSL2(Z).

Exercise 39 (a) Determine theN ≥ 1 for whichΓ1(N) has no element of finite order apart from the

identity. [Hint: You should getN ≥ 4.]

(b) Determine theN ≥ 1 for whichΓ0(N) has no element of order4. Also determine the cases in

which there is no element of order6.

Exercise 40 Prove the explicit description offm in the Mayer-Vietoris sequence (Equation 4.2.1).

Exercise 41 Verify the commutativity of the diagram in Proposition 4.3.1.

4.6 Computer exercises

Computer exercise 15LetN ≥ 1. Compute a list of the elements ofP1(Z/NZ). Compute a list

of the cusps ofΓ0(N) and Γ1(N) (vgl. [Stein], p. 60). I recommend to use the decomposition of

P1(Z/NZ) into P1(Z/pnZ).

Computer exercise 16Let K be some field. Letχ : (Z/NZ)× → K× be a Dirichlet character

of modulusN . For givenN andK, compute the group of all Dirichlet characters. Every Dirichlet

character should be implemented as a mapφ : Z → K× such thatφ(a) = 0 for all a ∈ Z with

(a,N) 6= 1 andφ(a) = χ(a mod N) otherwise.
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Modular symbols and Manin symbols

5.1 Theory: Manin symbols

Manin symbols provide an alternative description of modular symbols. We shall use this description

for the comparison with group cohomology and for implementating the modular symbols formalism.

We stay in the general setting over a ringR.

Proposition 5.1.1 The sequence ofR-modules

0→ R[PSL2(Z)]Nσ +R[PSL2(Z)]Nτ → R[PSL2(Z)]
g 7→ g(1−σ)∞
−−−−−−−−→ R[P1(Q)]

g∞ 7→ 1
−−−−→ R→ 0

is exact. (We are consideringR[PSL2(Z)] as a rightR[PSL2(Z)]-module.)

Proof. For a finite subgroupH of a groupG, one easily checks that the map

HomR(R[H], R[H\G])→ R[G], f 7→
∑

h∈H

h.f(h),

whereH\G stands for a fixed system of representatives of the cosets, is an isomorphism. This yields

via Shapiro’s lemma that

H i(〈σ〉, R[PSL2(Z)]) = H i(〈1〉, R[〈σ〉\PSL2(Z)]) = 0

for all i ≥ 1, and similarly for〈τ〉. The resolution for a cyclic group on page 50 gives

R[PSL2(Z)]Nσ = kerR[PSL2(Z)](1− σ) = R[PSL2(Z)]〈σ〉,

R[PSL2(Z)]Nτ = kerR[PSL2(Z)](1− τ) = R[PSL2(Z)]〈τ〉,

R[PSL2(Z)](1− σ) = kerR[PSL2(Z)]Nσ and

R[PSL2(Z)](1− τ) = kerR[PSL2(Z)]Nτ .

By Proposition 4.2.1, we have the exact sequence

0→ R[PSL2(Z)]→ R[PSL2(Z)]〈σ〉 ⊕R[PSL2(Z)]〈τ〉 → R→ 0.

70
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The injectivity of the first map in the exact sequence (which we recall is a consequence ofPSL2(Z) =

〈σ〉 ∗ 〈τ〉) means

R[PSL2(Z)](1− σ) ∩R[PSL2(Z)](1− τ) = 0.

We identifyR[PSL2(Z)]/R[PSL2(Z)](1−T ) withR[P1(Q)] by sendingg to g∞. Now we show

the exactness atR[PSL2(Z)], which comes down to proving that the equationx(1 − σ) = y(1 − T )

for x, y ∈ R[PSL2(Z)] implies thatx is inR[PSL2(Z)]〈σ〉 +R[PSL2(Z)]〈τ〉.

Using the formulaτ = Tσ we obtain thatx(1− σ) = y(1− T ) = y(1− τ)− yT (1 − σ). This

yieldsx(1− σ) + yT (1− σ) = y(1− τ). This expression, however, is zero. Consequently, there is a

z ∈ R[PSL2(Z)] such thaty = zNτ . Hence, usingT = τσ and consequentlyNτT = Nτσ, we get

y(1− T ) = zNτ (1− T ) = zNτ (1− σ) = y(1− σ).

The equationx(1 − σ) = y(1 − σ) means thatx − y is in R[PSL2(Z)]〈σ〉. As we know thaty ∈

R[PSL2(Z)]〈τ〉, we see thatx = (x− y) + y is inR[PSL2(Z)]〈σ〉 +R[PSL2(Z)]〈τ〉, as required.

The exactness atR[P1(Q)] can be seen as follows (we avoid here the traditional continued frac-

tions argument). Sinceσ andT = τσ generatePSL2(Z), the kernel ofR[PSL2(Z)]
g 7→1
−−−→ R is

R[PSL2(Z)](1 − σ) + R[PSL2(Z)](1 − T ). Taking the quotient byR[PSL2(Z)](1 − T ) gives the

desired exactness. 2

Lemma 5.1.2 The sequence ofR-modules

0→MR
{α,β}7→β−α
−−−−−−−−→ R[P1(Q)]

α 7→1
−−−→ R→ 0

is exact.

Proof. The injectivity of the first arrow is clear, since we can write any element inMR as∑
α 6=∞ rα{∞, α} with rα ∈ R, using the relations definingMR. The image of this element un-

der the first arrow is
∑

α 6=∞ rαα− (
∑

α 6=∞ rα)∞. If this is zero, clearly allrα are zero, proving the

injectivity of the first arrow.

Suppose now we are given
∑

α rαα ∈ R[P1(Q)] in the kernel of the second arrow. Then
∑

α rα =

0 and consequently we have

∑

α

rαα =
∑

α 6=∞

rαα− (
∑

α 6=∞

rα)∞

which is in the image of the first arrow, as noticed before. 2

Proposition 5.1.3 The homomorphism ofR-modules

R[PSL2(Z)]
φ
−→MR, g 7→ {g.0, g.∞}

is surjective and its kernel is given byR[PSL2(Z)]Nσ +R[PSL2(Z)]Nτ .
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Proof. This is a direct consequence of Proposition 5.1.1 and Lemma 5.1.2. 2

We are now ready to prove the description of modular symbols in terms of Maninsymbols. For

this we need the notion of an induced module. In homology it plays the role that the coinduced module

plays in cohomology.

Definition 5.1.4 LetR be a ring,G a group,H ≤ G a subgroup andV a leftR[H]-module. The

induced moduleof V fromH toG is defined as

IndGH(V ) := R[G]⊗R[H] V,

where we viewR[G] as a rightR[H]-module via the natural action. The induced module is a left

R[G]-module via the natural left action ofG onR[G].

In case ofH having a finite index inG (as in our standard exampleΓ1(N) ≤ PSL2(Z)), the

induced module is non-canonically isomorphic to the coinduced one:

Lemma 5.1.5 LetR be a ring,G a group,H ≤ G a subgroup of finite index andV a leftR[H]-

module.

(a) IndGH(V ) andCoindGH(V ) are (non-canonically) isomorphic as leftR[G]-modules.

(b) Equip(R[G]⊗R V ) with the diagonal leftH-actionh.(g⊗ v) = hg⊗h.v and the rightG-action

(g⊗ v).g̃ = gg̃⊗ v. Consider the induced moduleIndGH(V ) as a rightR[G]-module by inverting

the left action in the definition. Then

IndGH(V )→ (R[G]⊗R V )H , g ⊗ v 7→ g−1 ⊗ v

is an isomorphism of rightR[G]-modules.

Proof. Exercise 42. 2

Theorem 5.1.6 Let M = Ind
PSL2(Z)
Γ (V ), which we identify with the rightR[PSL2(Z)]-module

(R[PSL2(Z)]⊗R V )Γ as in Lemma 5.1.5 (b). The following statements hold:

(a) The homomorphismφ from Proposition 5.1.3 induces the exact sequence ofR-modules

0→MNσ +MNτ →M →MR(Γ, V )→ 0.

The homomorphismM →MR(Γ, V ) is given byg ⊗ v 7→ {g.0, g.∞}⊗ v.

Elements inM/(MNσ +MNτ ) are calledManin symbols.

(b) The homomorphismR[PSL2(Z)] → R[P1(Q)] sendingg to g.∞ induces the exact sequence of

R-modules

0→M(1− T )→M → BR(Γ, V )→ 0.
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(c) The identifications of (a) and (b) imply the isomorphism

CMR(Γ, V ) ∼= ker
(
M/(MNσ +MNτ )

m7→m(1−σ)
−−−−−−−→M/M(1− T )

)
.

Proof. (a) We derive this from Proposition 5.1.3, which gives the exact sequence

0→ R[PSL2(Z)]Nσ +R[PSL2(Z)]Nτ → R[PSL2(Z)]→M2(R)→ 0.

Tensoring withV overR, we obtain the exact sequence of leftR[Γ]-modules

0→ (R[PSL2(Z)]⊗R V )Nσ + (R[PSL2(Z)]⊗R V )Nτ → (R[PSL2(Z)]⊗R V )→MR(V )→ 0.

Passing to leftΓ-coinvariants yields (a). Part (b) is clear from the definition and Part (c) has already

been noticed in the proof of Proposition 5.1.1. 2

In the literature on Manin symbols one usually finds a more explicit version of the induced module.

This is the contents of the following proposition. It establishes the link with the maintheorem on

Manin symbols in [Stein], namely Theorem 8.4.

Since in the following proposition left and right actions are involved, we sometimes indicate left

(co-)invariants by using left subscripts (resp. superscripts) and right (co-)invariants by right ones.

Proposition 5.1.7 Let χ : (Z/NZ)× → R× be a character such thatχ(−1) = (−1)k. Consider

theR-moduleX := R[Γ1(N)\SL2(Z)] ⊗R Vk−2(R) ⊗R R
χ equipped with the rightSL2(Z)-action

(Γ1(N)h⊗ V ⊗ r)g = (Γ1(N)hg ⊗ g−1v ⊗ r) and with the leftΓ1(N)\Γ0(N)-actiong(Γ1(N)h⊗

v ⊗ r) = (Γ1(N)gh⊗ v ⊗ χ(g)r).

ThenX is isomorphic as a rightR[SL2(Z)]-module and a leftR[Γ1(N)\Γ0(N)]-module to

Ind
SL2(Z)
Γ1(N) (V χ

k (R)), and, moreover,Γ1(N)\Γ0(N)X is isomorphic toInd
SL2(Z)
Γ0(N) (V χ

k (R)). If N ≥ 3,

then the latter module is isomorphic toInd
PSL2(Z)
Γ0(N)/{±1}(V

χ
k (R)).

Proof. Mappingg ⊗ v ⊗ r to g ⊗ g−1v ⊗ r defines an isomorphism of rightR[SL2(Z)]-modules

and of leftR[Γ1(N)\Γ0(N)]-modules

Γ1(N)(R[SL2(Z)]⊗R Vk−2(R)⊗R R
χ)→ X.

As we have seen above, the left hand side module is naturally isomorphic to theinduced module

Ind
SL2(Z)
Γ1(N) (V χ

k (R)) (equipped with its rightR[SL2(Z)]-action described before). This establishes the

first statement. The second one follows fromΓ1(N)\Γ0(N)

(
Γ1(N)M

)
= Γ0(N)M for any Γ0(N)-

moduleM . The third statement is due to the fact that〈−1〉(R[SL2(Z)] ⊗R V χ
k−2(R)) is naturally

isomorphic toR[PSL2(Z)]⊗RV
χ
k−2(R), since−1 acts trivially on the second factor, as the assumption

assures that−1 ∈ Γ0(N) but−1 6∈ Γ1(N). 2

For one more description of the induced moduleInd
PSL2(Z)
Γ0(N)/{±1}(V

χ
k (R)) see Exercise 43. It is this

description that uses up the least memory in an implementation.

Now all the prerequisites have been provided for implementing Manin symbols (say forΓ0(N)

and a character). This is the task of Computer Exercise 17.
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5.2 Theory: Manin symbols and group cohomology

Let Γ ≤ PSL2(Z) be a subgroup of finite index, andV a leftR[Γ]-module for a ringR.

Theorem 5.2.1 Suppose that the orders of all stabliser subgroups ofΓ for the action onH are invert-

ible inR. Then we have isomorphisms:

H1(Γ, V ) ∼=MR(Γ, V )

and

H1
par(Γ, V ) ∼= CMR(Γ, V )

Proof. This follows immediately from comparing the Manin symbols description of modular

symbols (Theorem 5.1.6) with the corollary of the Mayer-Vietoris exact sequence (Corollary 4.2.4),

using Mackey’s formula as in Lemma 4.2.3 (c) and the resolution ofR for a free group on page 50.

2

5.3 Algorithms and Implementations: Conversion between Manin and

modular symbols

We now use the Euclidean Algorithm to represent any elementg ∈ PSL2(Z) in terms ofσ andT .

Algorithm 5.3.1 Input: A matrix M =
(
a b
c d

)
with integer entries and determinant 1.

Output: A list of matrices [A1, A2, . . . , An] where all Ai ∈ {Tn|n ∈ Z} ∪ {σ} and σ and Tn

alternate.

(1) Create an empty list output.

(2) if |c| > |a| then

(3) Append σ to output.

(4) M := σM .

(5) end if;

(6) while c 6= 0 do

(7) q := a div c.

(8) Append T q to output.

(9) Append σ to output.

(10) M := σT−qM .

(11) end while;

(12) if M 6∈ {( 1 0
0 1 ) ,

(
−1 0
0 −1

)
} then [At this point M ∈ {( 1 ∗

0 1 ) ,
(
−1 ∗
0 −1

)
}.]
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(13) Append M to output.

(14) end if;

(15) return output.

This algorithm gives a constructive proof of the fact thatPSL2(Z) is generated byσ andT , and

hence also byσ andτ . Note, however, that the algorithm does not necessarily give the shortest such

representation. See Exercise 44 for a relation to continued fractions.

We can use the algorithm to make a conversion between modular symbols and Manin symbols,

as follows. Suppose we are given the modular symbols{α,∞} (this is no loss of generality, as we

can represent{α, β} = {α,∞} − {β,∞}). Supposeα is given asg∞ with someg ∈ SL2(Z) (i.e.

representing the cusp as a fractionac with (a, c) = 1, then we can findb, d by the Euclidean Algorithm

such thatg =
(
a b
c d

)
∈ SL2(Z) satisfies the requirements). We now use Algorithm 5.3.1 to represent

g asσT a1σT a2σ . . . T anσ (for example). Then we have

{α,∞} = σT a1σT a2σ . . . T an{0,∞}+σT a1σT a2σ . . . T an−1{0,∞}+· · ·+σT a1{0,∞}+{0,∞}.

If g does not end inσ butT an , then we must dropT an from the above formula (sinceT stabilises∞).

If g starts inT a1 (instead ofσ), then we must drop the last summand.

In Computer Exercise 18 you are asked to implement a conversion between Manin and modular

symbols.

5.4 Theoretical exercises

Exercise 42 Prove Lemma5.1.5.

Exercise 43 Assume the set-up of Proposition 5.1.7. Describe a rightPSL2(Z)-action on

Y := R[P1(Z/NZ)]⊗R Vk−2(R)⊗R R
χ

and an isomorphism

Γ1(N)\Γ0(N)X → Y

of right PSL2(Z)-modules.

Exercise 44 Provide a relationship between Algorithm 5.3.1 and continued fractions.

5.5 Computer exercises

Computer exercise 17Use the description of Exercise 43 and your results from Computer Exercises

15 and 16 to implement Manin symbols forΓ0(N) and a character over a field. As a first approach

you may use the trivial character only.
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Computer exercise 18(a) Write an algorithm to represent any element ofPSL2(Z) in terms ofσ

andT .

(b) Write an algorithm that represents any modular symbol{α, β} as a Manin symbol (inside the

vector space created in Computer Exercise 17).



Stage 6

Eichler-Shimura

6.1 Theory: Petersson scalar product

Recall the (closed) standard fundamental domain forSL2(Z) (from last term’s course)

F = {z = x+ iy ∈ H | |z| ≥ 1, |x| ≤
1

2
}.

Every subgroupΓ ≤ SL2(Z) of finite index has a fundamental domain, e.g.
⋃
γ∈Γ\PSL2(Z) γF for any

choice of system of representatives of the cosetsΓ\PSL2(Z), where we putΓ = Γ/(〈±1〉 ∩ Γ).

Lemma 6.1.1 (a) Let Γ ≤ SL2(Z) be a subgroup of finite index. Letf ∈ Mk(Γ ; C) and g ∈

Sk(Γ ; C). We have withz ∈ H

f(γz)g(γz)(γz − γz)k = f |γ(z)g|γ(z)(z − z)
k

for all γ ∈ SL2(R). The functionG(z) := f(z)g(z)(z − z)k is bounded onH.

(b) We havedγz = 1
(cz+d)2

dz for all γ ∈ SL2(R).

(c) The differential formdz∧dz
(z−z)2

is SL2(R)-invariant. In terms ofz = x + iy we have dz∧dz
(z−z)2

=
i
2
dx∧dy
y2

.

(d) Let Γ ≤ SL2(Z) be a subgroup with finite indexµ = (PSL2(Z) : Γ). The volume of any

fundamental domainFΓ for Γ with respect to the differential form2dz∧dz
i(z−z)2

, i.e.

vol(FΓ) =

∫

FΓ

2dz ∧ dz

i(z − z)2
,

is equal toµπ3 .

Proof. (a) The first statement is computed as follows:

f(γz)g(γz)(γz − γz)k = (f |γ(z)(cz + d)k)(g|γ(z)(cz + d)k)(
az + b

cz + d
+
az + b

cz + d
)k

= f |γ(z)g|γ(z)((az + b)(cz + d)− (az + b)(cz + d))k

= f |γ(z)g|γ(z)(z − z)
k,

77
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where we writeγ =
(
a b
c d

)
. By the preceding computation, the functionG(z) is invariant underγ ∈ Γ.

Hence, it suffices to check that|G(z)| is bounded on any closed fundamental domainFΓ for Γ. For

this, it is enough to verify for everyγ in a system of representatives ofΓ\SL2(Z) that any of the

functionsG(γz) is bounded on the closure of the standard fundamental domainF . By the preceding

computation, we also haveG(γz) = f |γ(z)g|γ(z)(z − z)k for γ ∈ SL2(Z). Note thatf(z)g(z)

is a cusp form inS2k(Γ ; C), in particular, for everyγ ∈ SL2(Z) the functionf |γ(z)g|γ(z) has a

Fourier expansion in∞ of the form
∑∞

n=1 ane
2πizn. This series converges absolutely and uniformly

on compact subsets ofH, in particular, for anyC > 1

Kγ :=
∞∑

n=1

|ane
2πi(x+iC)n| =

∞∑

n=1

|an|e
−2πCn

is a positive real number, depending onγ (in a system of representativesΓ\SL2(Z)). We have with

z = x+ iy andy ≥ C

|G(γz)| ≤ (2y)k
∞∑

n=1

|an|e
−2πyn = (2y)ke−2πy

∞∑

n=1

|an|e
−2πy(n−1)

≤ (2y)ke−2πy
∞∑

n=1

|an|e
−2πC(n−1) ≤ (2y)ke−2πyKγe

2πC .

This goes to0 if y tends to∞. Consequently, the functionG(γz) is bounded on all of the standard

fundamental domain, as desired.

(b) Again writingγ =
(
a b
c d

)
we have

dγz

dz
=
daz+bcz+d

dz
=

1

(cz + d)2
(a(cz + d)− (az + b)c) =

1

(cz + d)2
,

which gives the claim.

(c) This is again a simple computation:

(γz − γz)−2dγz ∧ dγz = (
az + b

cz + d
+
az + b

cz + d
)−2(cz + d)−2(cz + d)−2dz ∧ dz

= (z − z)−2dz ∧ dz,

using (b). The last statement is

dz ∧ dz

(z − z)2
=

(dx+ idy) ∧ (dx− idy)

(2iy)2
=
−2idx ∧ dy

−4y2
=
idx ∧ dy

2y2
.

(d) Due to theΓ-invariance, it suffices to show
∫

F

dz ∧ dz

(z − z)2
=
iπ

6
.

Let ω = − dz
z−z . The total derivative ofω is

dω = ((z − z)−2dz − (z − z)−2dz) ∧ dz =
dz ∧ dz

(z − z)2
.
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Hence, Stokes’ theorem yields ∫

F

dz ∧ dz

(z − z)2
= −

∫

∂F

dz

z − z
,

where∂F is the positively oriented border ofF , which we desribe concretely as the pathA from∞

to ζ3 on the vertical line, followed by the pathC from ζ3 to ζ6 on the unit circle and finally followed

by−TA. Hence withz = x+ iy we have
∫

F

dz ∧ dz

(z − z)2
= −

1

2i

( ∫

A

dz

y
−

∫

TA

dz

y
+

∫

C

dz

y

)
= −

1

2i

∫

C

dz

y
,

sincedz = dTz. Using the obvious parametrisation ofC we obtain

−
1

2i

∫

C

dz

y
= −

1

2i

∫ 2π/6

2π/3

1

Im(eiφ)

deiφ

dφ
dφ = −

1

2

∫ 2π/6

2π/3

eiφ

Im(eiφ)
dφ

= −
1

2

∫ 2π/6

2π/3
(
cos(φ)

sin(φ)
+ i)dφ = −

i

2
(
2π

6
−

2π

3
) =

iπ

6
,

sincesin is symmetric aroundπ/2 andcos is antisymmetric, so that the integral overcos(φ)
sin(φ) cancels.

2

Definition 6.1.2 Let Γ ≤ SL2(Z) be a subgroup of finite index and letµ := (PSL2(Z) : Γ) be the

index ofΓ = Γ/(〈±1〉 ∩ Γ) in PSL2(Z). We define thePetersson pairingas

Mk(Γ ; C)× Sk(Γ ; C)→ C, (f, g) 7→
1

µ

∫

FΓ

f(z)g(z)(z − z)k
2dz ∧ dz

i(z − z)2
=: (f, g),

whereFΓ is any fundamental domain forΓ.

Proposition 6.1.3 (a) The integral in the Petersson pairing converges. It does not depend on the

choice of the fundamental domainFΓ.

(b) The Petersson pairing is a sesqui-linear pairing (linear in the first andanti-linear in the second

variable).

(c) The restriction of the Petersson pairing toSk(Γ ; C) is a positive definite scalar product (the

Petersson scalar product).

(d) If f, g are modular (cusp) forms for the groupΓ andΓ′ ≤ Γ is a subgroup of finite index, then the

Petersson pairing off andg with respect toΓ gives the same value as the one with respect toΓ′.

Proof. (a) By Lemma 6.1.1 the integral converges, since the functionG(z) := f(z)g(z)(z − z)k

is bounded onFΓ and the volume ofFΓ for the measure in question is finite. The integral does not

depend on the choice of the fundamental domain by the invariance ofG(z) underΓ.

(b) is clear.

(c) The product to(f, f) is 1
µ

∫
F |f(z)|2yk−2dx ∧ dy, which is clearly non-negative. It is0 if and

only if f is the zero function, showing that the product is positive definite.
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(d) If FΓ is a fundamental domain forΓ, then
⋃
γ∈Γ′\Γ γFΓ is a fundamental domain forΓ′ (for

any choice of representatives ofΓ′\Γ). But on everyγFΓ the integral takes the same value. 2

Proposition 6.1.4 Letf, g ∈ Sk(Γ ; C). We have

(f, g) =
2

iµ

∑

γ∈Γ\PSL2(Z)

∫ i

ζ3

∫ 0

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz.

Proof. Let us write for shortGγ(z, z) = f |γ(z)g|γ(z)(z − z)
k for γ ∈ SL2(Z). Then

iµ

2
(f, g) =

∫
S

γ γF
G(z, z)

dz ∧ dz

(z − z)2
=

∑

γ

∫

F
Gγ(z, z)

dz ∧ dz

(z − z)2

by Lemma 6.1.1, where the union resp. sum runs over a fixed system of coset representatives of

Γ\PSL2(Z); by our observations everything is independent of this choice. Consider the differential

form

ωγ :=
( ∫ z

∞
f |γ(u)(u− z)

k−2du
)
g|γ(z)dz.

Note that the integral converges, sincef is a cusp form. The total derivative ofωγ is dωγ =

Gγ(z, z)
dz∧dz
(z−z)2

. Consequently, Stokes’ theorem gives

∑

γ

∫

F
Gγ(z, z)

dz ∧ dz

(z − z)2
=

∑

γ

∫

∂F

( ∫ z

∞
f |γ(u)(u− z)

k−2du
)
g|γ(z)dz,

where as above∂F is the positively oriented border of the standard fundamental domainF , which we

describe as the pathA along the vertical line from∞ to ζ3, followed by the pathB from ζ3 to i along

the unit circle, followed by−σB and by−TA.

We now make a small calculation. Let for thisC be any (piecewise continuously differentiable)

path inH andM ∈ SL2(Z):
∫

MC

∫ z

∞
f |γ(u)g|γ(z)(u− z)

k−2dudz

=

∫

C

∫ Mz

∞
f |γ(u)g|γ(Mz)(u−Mz)k−2du

dMz

dz
dz

=

∫

C

∫ z

M−1∞
f |γM (u)g|γM (z)(u− z)k−2dudz

=

∫

C

∫ z

∞
f |γM (u)g|γM (z)(u− z)k−2dudz −

∫

C

∫ M−1∞

∞
f |γM (u)g|γM (z)(u− z)k−2dudz.

This gives

∫

C−MC

∫ z

∞
f |γ(u)g|γ(z)(u− z)

k−2dudz =

∫

C

∫ z

∞
(Gγ(u, z)−GγM (u, z))dudz +

∫

C

∫ M−1∞

∞
GγM (u, z)dudz.
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Continuing with the main calculation, we have

iµ

2
(f, g) =

∑

γ

[ ∫

A

∫ z

∞
(Gγ(u, z)−GγT (u, z))dudz +

∫

A

∫ T−1∞

∞
GγT (u, z)dudz

]

+
∑

γ

[ ∫

B

∫ z

∞
(Gγ(u, z)−Gγσ(u, z))dudz +

∫

B

∫ σ−1∞

∞
Gγσ(u, z)dudz

]

=
∑

γ

∫

B

∫ 0

∞
Gγσ(u, z)dudz,

usingT−1∞ = ∞, σ−1∞ = 0 and the fact that theγT andγσ are just permutations of the cosets.

2

6.2 Theory: The Eichler-Shimura map

Let Γ ≤ SL2(Z) be a subgroup of finite index.

Definition 6.2.1 The space ofantiholomorphic cusp formsSk(Γ ; C) consists of the functionsz 7→

f(z) := f(z) with f ∈ Sk(Γ ; C).

We fix somez0, z1 ∈ H. Forf ∈ Mk(Γ ; C) with k ≥ 2 andg, h in SL2(Z) let

If (gz0, hz0) :=

∫ hz0

gz0

f(z)(Xz + Y )k−2dz ∈ Vk−2(C)

and

If (gz1, hz1) :=

∫ hz1

gz1

f(z)(Xz + Y )k−2dz ∈ Vk−2(C).

The integral is to be taken coefficient wise. Note that it is independent of the chosen path, since

we are integrating a holomorphic respectively anti-holomorphic function.

Lemma 6.2.2 For anyz0 ∈ H and any matricesg, h ∈ Z2×2 with positive determinant we have

If (z0, ghz0) = If (z0, gz0) + If (gz0, ghz0)

and

If (gz0, ghz0) = det(g)2−kg.
(
If |g(z0, hz0)

)

and similarly forf .
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Proof. The first statement is clear. Writeg =
(
a b
c d

)
. Recall that by Lemma 6.1.1 (b), we have

dgz = det(g)
(cz+d)2

dz. We compute further

If (gz0, ghz0) =

∫ ghz0

gz0

f(z)(Xz + Y )k−2dz

=

∫ hz0

z0

f(gz)(Xgz + Y )k−2dgz

dz
dz

= det(g)2−k
∫ hz0

z0

f |g(z)(cz + d)k−2(X
az + b

cz + d
+ Y )k−2dz

= det(g)2−k
∫ hz0

z0

f |g(z)(X(az + b) + Y (cz + d))k−2dz

= det(g)2−k
∫ hz0

z0

f |g(z)((Xa+ Y c)z + (Xb+ Y d))k−2dz

= det(g)2−k
∫ hz0

z0

f |g(z)(g.(Xz + Y )k−2)dz

= det(g)2−kg.
( ∫ hz0

z0

f |g(z)(Xz + Y )k−2dz
)

= det(g)2−kg.
(
If |g(z0, hz0)

)
.

We recall that for a polynomialP (X,Y ) we have the action(g.P )(X,Y ) = P ((X,Y )
(
a b
c d

)
) =

P (Xa+ Y c,Xb+ Y d). The statement onIf is proved in exactly the same way. 2

Proposition 6.2.3 Letk ≥ 2 andΓ ≤ SL2(Z) be a subgroup of finite index and fixz0, z1 ∈ H.

(a) TheEichler-Shimura map

Mk(Γ ; C)⊕ Sk(Γ ; C)→ H1(Γ, Vk−2(C)),

(f, g) 7→ (γ 7→ If (z0, γz0) + Ig(z1, γz1))

is a well-defined homomorphism ofC-vector spaces. It does not depend on the choice ofz0 andz1.

(b) Theinduced Eichler-Shimura map

Mk(Γ ; C)⊕ Sk(Γ ; C)→ H1(SL2(Z),HomC[Γ](C[SL2(Z)], Vk−2(C))),

(f, g) 7→ (a 7→ (b 7→ If (bz0, baz0) + Ig(bz1, baz1)))

is a well-defined homomorphism ofC-vector spaces. It does not depend on the choice ofz0 andz1.

Via the map from Shapiro’s lemma, this homomorphism coincides with the one from (a).

Proof. (a) For checking that the map is well-defined, it suffices to compute thatγ 7→ If (z0, γz0)

is a1-cocycle:

If (z0, γδz0) = If (z0, γz0) + If (γz0, γδz0) = If (z0, γz0) + γ.If (z0, δz0),
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using Lemma 6.2.2 andf |γ = f , sinceγ ∈ Γ.

The independence of the base point is seen as follows. Letz̃0 be another base point.

If (z̃0, γz̃0) = If (z̃0, z0) + If (z0, γz0) + If (γz0, γz̃0) = If (z0, γz0) + (1− γ)If (z̃0, z0).

The difference of the cocycles(γ 7→ If (z̃0, γz̃0)) and(γ 7→ If (z0, γz0)) is hence the coboundary

(γ 7→ (1− γ)If (z̃0, z0)).

(b) We first check that the map(b 7→ If (bz0, baz0) + Ig(bz0, baz0)) is indeed in the coinduced

moduleHomC[Γ](C[SL2(Z)], Vk−2(C)). For that letγ ∈ Γ. We have

If (γbz0, γbaz0) = γ.(If (bz0, baz0))

by Lemma 6.2.2, as desired. The mapφ(a) := (b 7→ If (bz0, baz0) + Ig(bz1, baz1)) is a cocycle:

φ(a1a2)(b) = If (bz0, ba1a2z0) = If (bz0, ba1z0) + If (ba1z0, ba1a2z0)

= φ(a1)(b) + φ(a2)(ba1) = φ(a1)(b) + (a1.(φ(a2)))(b),

by the definition of the left action ofSL2(Z) on the coinduced module.

Note that the map in Shapiro’s lemma in our situation is given by

φ 7→ (γ 7→ φ(γ)(1) = If (z0, γz0)),

which shows that the maps from (a) and (b) coincide. The independencefrom the base point in (b)

now follows from the independence in (a). 2

Proposition 6.2.4 Let Γ ≤ SL2(Z) be a subgroup of finite index and letR be a ring in which2 is

invertible. LetV be a leftR[Γ]-module. Assume that either−1 6∈ Γ or −1 ∈ Γ acts trivially onV .

ThenH1(SL2(Z),HomR[Γ](R[SL2(Z)], V )) and H1(PSL2(Z),HomR[Γ](R[PSL2(Z)], V )) are

naturally isomorphic. We shall make this identification from now on.

Proof. Due to the invertibility of2, the Hochschild-Serre exact sequence gives an isomorphism

H1(PSL2(Z),HomR[Γ](R[SL2(Z)], V )〈−1〉)
infl
−−→ H1(SL2(Z),HomR[Γ](R[SL2(Z)], V )).

If −1 6∈ Γ, thenΓ ∼= Γ andHomR[Γ](R[SL2(Z)], V )〈−1〉 consists of all the functions satisfying

f(g) = f(−g) for all g ∈ SL2(Z), which are precisely the functions inHomR[Γ](R[PSL2(Z)], V ).

If −1 ∈ Γ and−1 acts trivially onV , thenf(−g) = (−1).f(g) = f(g) and so−1 already

acts trivially onHomR[Γ](R[SL2(Z)], V ). ThisR[SL2(Z)]-module is then naturally isomorphic to

HomR[Γ](R[PSL2(Z)], V ), since any function is uniquely determined on its classes modulo〈−1〉.

2



84 STAGE 6. EICHLER-SHIMURA

Proposition 6.2.5 The kernel of the Eichler-Shimura map composed with the restriction

Mk(Γ ; C)⊕ Sk(Γ ; C)→ H1(Γ, Vk−2(C))→
∏

c∈Γ\P1(Q)

H1(Γc, Vk−2(C))

is equal toSk(Γ ; C)⊕Sk(Γ ; C). In particular, the image ofSk(Γ ; C)⊕Sk(Γ ; C) under the Eichler-

Shimura map lies in the parabolic cohomologyH1
par(Γ, Vk−2(C)).

Proof. The composition maps a modular formf to the1-cocycle (forγ ∈ Γc)

γ 7→

∫ γz0

z0

f(z)(Xz + Y )k−2dz

with a fixed base pointz0 ∈ H. The aim is now to move the base point to the cusps. We cannot

just replacez0 by∞, as then the integral might not converge any more (it converges on cuspforms).

Let c = M∞ be any cusp withM =
(
a b
c d

)
∈ SL2(Z). We then haveΓc = 〈MTM−1〉 ∩ Γ =

〈MT rM−1〉 for somer ≥ 1. Sincef is holomorphic in the cusps, we have

f |M (z) =
∞∑

n=0

ane
2πinz = a0 + g(z)

and thus

f(z) = a0|M−1(z) + g|M−1(z) =
a0

(−cz + a)k
+ g|M−1(z).

Now we compute the cocycle evaluated atγ = MT sM−1:
∫ γz0

z0

f(z)(Xz + Y )k−2dz = a0

∫ γz0

z0

(Xz + Y )k−2

(−cz + a)k
dz +

∫ γz0

z0

g|M−1(z)(Xz + Y )k−2dz.

Before we continue by evaluating the right summand, we remark that the integral

Ig|
M−1

(z0,M∞) =

∫ M∞

z0

g|M−1(z)(Xz + Y )k−2dz = M.

∫ ∞

M−1z0

g(z)(Xz + Y )k−2dz

converges. We have
∫ γz0

z0

g|M−1(z)(Xz + Y )k−2dz = (

∫ M∞

z0

+

∫ γz0

γM∞
)g|M−1(z)(Xz + Y )k−2dz

= (1− γ).

∫ M∞

z0

g|M−1(z)(Xz + Y )k−2dz

sinceg|M−1γ(z) = g|T sM−1(z) = g|M−1(z). The1-cocycleγ 7→
∫ γz0
z0

g|M−1(z)(Xz + Y )k−2dz is

thus a1-coboundary. Consequently, the class of the image off is equal to the class of the1-cocycle

γ 7→ a0

∫ γz0

z0

(Xz + Y )k−2

(−cz + a)k
dz.

We have the isomorphism (as always for cyclic groups)

H1(Γc, Vk−2(C))
φ7→φ(MT rM−1)
−−−−−−−−−−→ Vk−2(C)Γc .
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Furthermore, we have the isomorphism

Vk−2(C)Γc

P 7→M−1P
−−−−−−→ Vk−2(C)〈T s〉

P 7→P (0,1)
−−−−−−→ C

with polyomialsP (X,Y ). Note that the last map is an isomorphism by the explicit description of

Vk−2(C)〈T s〉. Under the composition the image of the cocycle coming from the modular formf is

a0M
−1.

∫ γz0

z0

(Xz + Y )k−2

(−cz + a)k
dz(0, 1) = a0

∫ γz0

z0

(Xz + Y )k−2

(−cz + a)k
dz(−c, a)

= a0

∫ γz0

z0

1

(−cz + a)2
dz = a0

∫ T rM−1z0

M−1z0

dz = a0(M
−1z0 + r −M−1z0) = ra0,

as(0, 1)M−1 = (0, 1)
(
d −b
−c a

)
= (−c, a). This expression is zero if and only ifa0 = 0, i.e. if and

only if f vanishes at the cuspc.

A similar argument works for anti-holomorphic cusp forms. 2

6.3 Theory: Cup product and Petersson scalar product

This part owes much to the treatment of the Petersson scalar product by Haberland.

Definition 6.3.1 LetG be a group andM andN be two leftR[G]-modules. We equipM ⊗R N with

the diagonal leftR[G]-action. Letm,n ≥ 0. Then we define thecup product

∪ : Hn(G,M)⊗R Hm(G,N)→ Hn+m(G,M ⊗R N)

by

(φ, ψ) 7→ ((g1, . . . , gn, gn+1, . . . , gn+m) 7→ φ(g1, . . . , gn)⊗ gn.ψ(gn+1, . . . , gn+m)

on cochains of the bar resolution.

In Exercise 45 it is checked that the cup product is well-defined. We arenow going to formulate a

pairing on cohomology, which will turn out to be a version of the Petersson scalar product. We could

introduce compactly supported cohomology for writing it in more conceptual terms, but have decided

not to do this in order not to increase the amount of new material even more.

Definition 6.3.2 LetM be anR[PSL2(Z)]-module. Theparabolic1-cocyclesare defined as

Z1
par(Γ,M) = ker(Z1(Γ,M)

res
−−→

∏

g∈Γ\PSL2(Z)/〈T 〉

Z1(Γ ∩ 〈gTg−1〉, V )).

Proposition 6.3.3 LetR be a ring in which6 is invertible. LetM,N be leftR[PSL2(Z)]-modules

together with a homomorphismπ : M⊗RN → R ofR[PSL2(Z)]-modules, where we equivM⊗RN

with the diagonal action. WriteG for PSL2(Z). We define a pairing

〈, 〉 : Z1(G,M)× Z1(G,N)→ R
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as follows: Let(φ, ψ) be a pair of1-cocycles. Form their cup productρ := π∗(φ∪ψ) in Z2(G,R) via

Z2(G,M ⊗R N)
π∗−→ Z2(G,R). AsH2(G,R) is zero (Corollary 4.2.4),ρ must be a2-coboundary,

i.e. there isa : G→ R such that

ρ(g, h) = π(φ(g)⊗ g.ψ(h)) = g.a(h)− a(gh) + a(g).

We define the pairing by

〈φ, ψ〉 := a(T ).

(a) The pairing is well-defined and bilinear. It can be expressed as

〈φ, ψ〉 = −ρ(τ, σ) +
1

2
ρ(σ, σ) +

1

3
(ρ(τ, τ) + ρ(τ, τ2)).

(b) If φ ∈ Z1
par(G,M), thenρ(τ, σ) = ρ(σ, σ) and

〈φ, ψ〉 = −
1

2
ρ(σ, σ) +

1

3
(ρ(τ, τ) + ρ(τ, τ2)).

Moreover,〈φ, ψ〉 only depends on the class ofψ in H1(G,N).

(c) If ψ ∈ Z1
par(G,N), thenρ(τ, σ) = ρ(τ, τ2) and

〈φ, ψ〉 =
1

2
ρ(σ, σ) +

1

3
ρ(τ, τ)−

2

3
ρ(τ, τ2).

Moreover,〈φ, ψ〉 only depends on the class ofφ in H1(G,M).

(d) If φ ∈ Z1
par(G,M) andψ ∈ Z1

par(G,N), thenρ(σ, σ) = ρ(τ, τ2) and

〈φ, ψ〉 = −
1

6
ρ(σ, σ) +

1

3
ρ(τ, τ).

Proof. (a) We first have

0 = π(φ(1)⊗ ψ(1)) = ρ(1, 1) = a(1)− a(1) + a(1) = a(1),

sinceφ andψ are1-cocycles. Recall that the value of a1-cocycle at1 is always0 due toφ(1) =

φ(1 · 1) = φ(1) + φ(1). Furthermore, we have

ρ(τ, σ) = a(τ)− a(T ) + a(σ)

ρ(σ, σ) = a(σ)− a(1) + a(σ) = 2a(σ)

ρ(τ, τ2) = a(τ2)− a(1) + a(τ) = a(τ) + a(τ2)

ρ(τ, τ) = a(τ)− a(τ2) + a(τ) = 2a(τ)− a(τ2)

Hence, we geta(T ) = −ρ(τ, σ) + a(σ) + a(τ) anda(σ) = 1
2ρ(σ, σ) as well asa(τ) = 1

3(ρ(τ, τ) +

ρ(τ, τ2)), from which the claimed formula follows. The formula also shows the independence of the

choice ofa and the bilinearity.
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(b) Now assumeφ(T ) = 0. UsingT = τσ we obtain

ρ(τ, σ) = π(φ(τ)⊗ τψ(σ)) = −π(τ.φ(σ)⊗ τψ(σ))

= −π(φ(σ)⊗ ψ(σ)) = π((φ(σ)⊗ σψ(σ))) = ρ(σ, σ)

because0 = φ(T ) = φ(τσ) = τ.φ(σ) + φ(τ) and0 = ψ(1) = ψ(σ2) = σ.ψ(σ) + ψ(σ). This yields

the formula.

We now show that the pairing does not depend on the choice of1-cocycle in the class ofψ. To see

this, letψ(g) = (g− 1)n be a1-coboundary. Putb(g) := −φ(g)⊗ gn. Then one immediately checks

the equality

ρ(g, h) = φ(g)⊗ g(h− 1)n = g.b(h)− b(gh) + b(g).

Hence,(φ, ψ) is mapped tob(T ) = −φ(T )⊗ Tn = 0⊗ Tn = 0.

(c) Let nowψ(T ) = 0. Then0 = ψ(T ) = ψ(τσ) = τψ(σ) + ψ(τ) and 0 = ψ(τ3) =

τψ(τ2) + ψ(τ), whenceτψ(τ2) = τψ(σ). Consequently,

ρ(τ, σ) = π(φ(τ)⊗ τψ(σ)) = π(φ(τ)⊗ τψ(τ2)) = ρ(τ, τ2),

implying the formula.

The pairing does not depend on the choice of1-cocycle in the class ofφ. Let φ(g) = (g − 1)m

be a1-coboundary and putc(g) := m⊗ ψ(g). Then the equality

ρ(g, h) = (g − 1)m⊗ gψ(h) = g.c(h)− c(gh) + c(g)

holds. Hence,(φ, ψ) is mapped toc(T ) = m⊗ ψ(T ) = m⊗ 0 = 0.

(d) Suppose now thatφ(T ) = 0 = ψ(T ), then by what we have just seen

ρ(τ, σ) = ρ(σ, σ) = ρ(τ, τ2).

This implies the claimed formula. 2

Our next aim is to specialise this pairing to the cocycles coming from modular forms under the

Eichler-Shimura map. We must first define a pairing on the modules used in the cohomology groups.

On the modulesSymk−2(R2) we now define thesymplectic pairingover any ringR in which

(k − 2)! is invertible. Letn = k − 2 for simplicity. The pairing forn = 0 is just the multiplication

onR. We now define the pairing forn = 1 as

R2 ×R2 → R2, ( ac ) •
(
b
d

)
:= det

(
a b
c d

)
.

For anyg ∈ SL2(Z) we have

g( ac ) • g
(
b
d

)
= det g

(
a b
c d

)
= det

(
a b
c d

)
= ( ac ) •

(
b
d

)
.

As the next step, we define a pairing on then-th tensor power ofR2

(R2 ⊗R · · · ⊗R R
2)× (R2 ⊗R · · · ⊗R R

2)→ R
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by

(( a1
c1 )⊗ · · · ⊗ ( an

cn )) • (
(
b1
d1

)
⊗ · · · ⊗

(
bn
dn

)
) :=

n∏

i=1

( ai
ci ) •

(
bi
di

)
.

This pairing is still invariant under theSL2(Z)-action.

Now we use the assumption on the invertibility ofn! in order to embedSymn(R2) as anR[Sn]-

module in then-th tensor power, where the action of the symmetric groupn is on the indices. We

have that the map (in fact,1/n! times the norm)

Symn(R2)→ R2 ⊗R · · · ⊗R R
2, [( a1

c1 )⊗ · · · ⊗ ( an
cn )] 7→

1

n!

∑

σ∈Sn

(
aσ(1)
cσ(1)

)
⊗ · · · ⊗

(
aσ(n)
cσ(n)

)

is injective (one can use Tate cohomology groups to see this), as the orderof Sn is invertible in the

ring.

Finally, we define the pairing onSymn(R2) as the restriction of the pairing on then-th tensor

power to the image ofSymn(R2) under the embedding that we just described. This pairing is, of

course, stillSL2(Z)-invariant.

We point to the important special case

( ac )
⊗(k−2) •

(
b
d

)⊗(k−2)
= (ad− bc)k−2.

Hence, after the identificationSymk−2(R2) ∼= Vk−2(R) from Exercise 10, the resulting pairing on

Vk−2(R) has the property

(aX + cY )k−2 • (bX + dY )k−2 7→ (ad− bc)k−2.

This pairing extends to a paring on induced modules

π : HomR[Γ](R[PSL2(Z)], Vk−2(R))⊗R HomR[Γ](R[PSL2(Z)], Vk−2(R))→ R

by mapping(α, β) to
∑

γ∈Γ\PSL2(Z) α(γ) • β(γ).

Proposition 6.3.4 Let k ≥ 2. Let f, g ∈ Sk(Γ ; C) be cusp forms. Denote byφf and φf the 1-

cocycles associated withf andf under the Eichler-Shimura map for the base pointsz0 =∞, i.e.

φf (a) = (b 7→ If (b∞, ba∞)) ∈ Z1(PSL2(Z),Coind
PSL2(Z)
Γ (Vk−2(C)))

and

φf (a) = (b 7→ If (b∞, ba∞)) ∈ Z1(PSL2(Z),Coind
PSL2(Z)
Γ (Vk−2(C))).

Similarly, denote byψg andψg the 1-cocycles associated withg and g for the base pointz1 = ζ6.

Define a bilinear pairing as in Proposition 6.3.3

〈, 〉 : Z1(PSL2(Z),Coind
PSL2(Z)
Γ (Vk−2(C)))× Z1(PSL2(Z),Coind

PSL2(Z)
Γ (Vk−2(C)))→ C

with the product on the coinduced modules described above.
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Then the equations

〈φf , ψg〉 =
µ

2i
(f, g)

〈ψg, φf 〉 = (−1)k−1〈φf , ψg〉 and

〈φf , ψg〉 = (−1)k−1〈ψg, φf 〉

hold, where(f, g) denotes the Petersson scalar product andµ the index ofΓ in PSL2(Z).

Proof. Note that the choice of base point∞ is on the one hand well-defined (the integral con-

verges, as it is taken over a cusp form) and on the other hand it ensuresthatφf (T ) = φf (T ) = 0.

Now consider〈φf , ψg〉. Let ρ(a, b) := π(φf (a)⊗ aψg(b)). We first describeρ(a, b):

ρ(a, b) =
∑

γ

( ∫ γa∞

γ∞
f(z)(Xz + Y )k−2dz

)
•

( ∫ γabζ6

γaζ6

g(z)(Xz + Y )k−2dz
)

=
∑

γ

∫ γabζ6

γaζ6

∫ γa∞

γ∞
f(z)g(z)

(
(Xz + Y )k−2 • (Xz + Y )k−2

)
dzdz

=
∑

γ

∫ γabζ6

γaζ6

∫ γa∞

γ∞
f(z)g(z)(z − z)k−2dzdz

=
∑

γ

∫ abζ6

aζ6

∫ a∞

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz.

where the sums run over a system of representatives ofΓ\PSL2(Z). We obtain

ρ(σ, σ) =
∑

γ

∫ σ2ζ6

σζ6

∫ σ∞

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz

=
∑

γ

∫ ζ6

ζ3

∫ 0

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz,

=
∑

γ

[ ∫ i

ζ3

∫ 0

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz +

∫ σi

σζ3

∫ σ0

σ∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz
]

=
∑

γ

[ ∫ i

ζ3

∫ 0

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz +

∫ i

ζ3

∫ 0

∞
f |γσ(z)g|γσ(z)(z − z)

k−2dzdz
]

= 2
∑

γ

∫ i

ζ3

∫ 0

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz,

ρ(τ, τ) =
∑

γ

∫ τ2ζ6

τζ6

∫ τ∞

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz = 0 and

ρ(τ, τ2) =
∑

γ

∫ τ3ζ6

τζ6

∫ τ∞

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz = 0,

sinceτ stabilisesζ6. It now suffices to compare with the formulas computed before (Propositions

6.3.3 and 6.1.4) to obtain〈φf , ψg〉 = µ
2i(f, g).



90 STAGE 6. EICHLER-SHIMURA

Now consider〈ψg, φf 〉. Letλ(a, b) := π(ψg(a)⊗ aφf (b)). We now describeλ(a, b):

λ(a, b) =
∑

γ

( ∫ γaζ6

γζ6

g(z)(Xz + Y )k−2dz
)
•

( ∫ γab∞

γa∞
f(z)(Xz + Y )k−2dz

)

=
∑

γ

∫ aζ6

ζ6

∫ ab∞

a∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz.

where again the sums run over a system of representatives ofΓ\PSL2(Z). We find further

λ(σ, σ) = (−1)k
∑

γ

∫ σζ6

ζ6

∫ σ2∞

σ∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz

= (−1)k
∑

γ

∫ ζ6

ζ3

∫ 0

∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz = ρ(σ, σ),

λ(τ, τ) =
∑

γ

∫ τζ6

ζ6

∫ τ2∞

τ∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz = 0 and

λ(τ, τ2) =
∑

γ

∫ τζ6

ζ6

∫ τ3∞

τ∞
f |γ(z)g|γ(z)(z − z)

k−2dzdz = 0.

We can again appeal to Propositions 6.3.3 and 6.1.4 to obtain〈ψg, φf 〉 = (−1)k−1 µ
2i(f, g).

To prove the final equation we proceed precisely as in the preceding calculations and obtains

〈φf , ψg〉 = (−1)k−1〈ψg, φf 〉. To conclude, one uses

∫

α
F (z)dz =

∫ 1

0
F (α(t))

dα

dt
dt =

∫ 1

0
F (α(t))

dα

dt
dt =

∫ 1

0
F (α(t))

dα

dt
dt =

∫

α
F (z)dz

for any piecewise analytic pathα : [0, 1]→ C and any integrable complex valued functionF . 2

6.4 Theory: The Eichler-Shimura theorem

We can now, finally, prove that the Eichler-Shimura map is an isomorphism. It should be pointed out

again that the cohomology groups can be replaced by modular symbols according to Theorem 5.2.1.

Theorem 6.4.1 (Eichler-Shimura) LetN ≥ 4 and k ≥ 2. The Eichler-Shimura map and the in-

duced Eichler-Shimura map (Proposition 6.2.3) are isomorphisms forΓ = Γ1(N). The image of

Sk(Γ1(N) ; C)⊕ Sk(Γ1(N) ; C) is isomorphic to the parabolic subspace.

Proof. We first assert that the dimensions of both sides of the Eichler-Shimura map agree and

also that twice the dimension of the space of cusp forms equals the dimension ofthe parabolic sub-

space. The dimension of the cohomology group and its parabolic subspacewas computed in Proposi-

tion 4.4.2. For the dimension of the left-hand side we refer to last terms course(for even weights) or

to [Stein].
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Due to Proposition 6.2.5 it suffices to prove that the restriction of the Eichler-Shimura map to

Sk(Γ1(N) ; C) ⊕ Sk(Γ1(N) ; C) is injective. In order to do this we choosez0 = z1 = ∞ as base

points for the Eichler-Shimura map, which is possible as the integrals converge on cusp forms (as in

Proposition 6.2.3 one sees that this choice of base point does not changethe cohomology class). As

in Proposition 6.3.4, we writeφf andφf for the1-cocycles associated with a cusp formf for the base

point∞ and alsoψf andψf for the base pointζ6.

We now make use of the pairing from Proposition 6.3.4 onZ1(PSL2(Z),Coind
PSL2(Z)
Γ (Vk−2)),

where we putΓ := Γ1(N) for short. This pairing induces a pairing

〈, 〉 : Z1
par(PSL2(Z),Coind

PSL2(Z)
Γ (Vk−2))×H1(PSL2(Z),Coind

PSL2(Z)
Γ (Vk−2))→ R.

Let f, g ∈ Sk(Γ1(N) ; C) be cusp forms and assume that[φf ] + [φg] = 0. By [·] we denote

cohomology classes. We must make a distinction between odd and even weights. Assume first thatk

is even. Then the formulae from Proposition 6.3.4 give

0 = 〈−φf + φg, [φf ] + [φg]〉 = −〈φf , [φf ]〉+ 〈φg, [φg]〉 − 〈φf , [φg]〉+ 〈φg, [φf ]〉

= −〈φf , φf 〉+ 〈φg, φg〉 − 〈φf , φg〉+ 〈φg, φf 〉 = −〈ψf , φf 〉+ 〈φg, ψg〉 − 〈φf , ψg〉+ 〈ψg, φf 〉

= 〈φf , ψf 〉+ 〈φg, ψg〉+ 〈ψg, φf 〉+ 〈ψg, φf 〉

=
µ

2i

(
(f, f) + (g, g)

)
+ 2 Re(〈ψg, φf 〉).

Hence,(f, f) = 0 = (g, g) and, thus,f = g = 0, since the Petersson scalar product is positive

definite. Ifk is odd, we conclude similarly:

0 = 〈φf + φg, [φf ] + [φg]〉 = 〈φf , [φf ]〉+ 〈φg, [φg]〉+ 〈φf , [φg]〉+ 〈φg, [φf ]〉

= 〈φf , φf 〉+ 〈φg, φg〉+ 〈φf , φg〉+ 〈φg, φf 〉 = 〈ψf , φf 〉+ 〈φg, ψg〉+ 〈φf , ψg〉+ 〈ψg, φf 〉

= 〈φf , ψf 〉+ 〈φg, ψg〉+ 〈ψg, φf 〉+ 〈ψg, φf 〉

=
µ

2i

(
(f, f) + (g, g)

)
+ 2 Re(〈ψg, φf 〉).

Hence, againf = g = 0. This proves the injectivity. 2

Remark 6.4.2 The Eichler-Shimura map is in fact an isomorphism for all subgroupsΓ of SL2(Z) of

finite index. The proof is the same, but must use more involved dimensionformulae for the cohomology

group (see Remark 4.4.3) and modular forms.

In Corollary 7.4.1 we will see that there also is an Eichler-Shimura isomorphism with a Dirichlet

character.

6.5 Theoretical exercises

Exercise 45 Check that the cup product is well-defined.



Stage 7

Hecke operators

7.1 Hecke rings

Definition 7.1.1 LetN,n ∈ N. We define

∆n
0 (N) = {

(
a b
c d

)
∈M2(Z)|

(
a b
c d

)
≡ ( ∗ ∗

0 ∗ ) mod N, (a,N) = 1,det
(
a b
c d

)
= n},

∆n
1 (N) = {

(
a b
c d

)
∈M2(Z)|

(
a b
c d

)
≡ ( 1 ∗

0 ∗ ) mod N, det
(
a b
c d

)
= n},

∆0(N) =
⋃

n∈N

∆n
0 (N),

∆1(N) =
⋃

n∈N

∆n
1 (N).

In the following we always let(∆,Γ) = (∆1(N),Γ1(N)) oder (∆,Γ) = (∆0(N),Γ0(N)),

unless we state something different explicitly.

Lemma 7.1.2 Letα ∈ ∆. We put

Γα = Γ ∩ α−1Γα andΓα = Γ ∩ αΓα−1.

ThenΓα has finite indexΓ andα−1Γα (one says thatΓ andα−1Γα are commensurable), and also

Γα has finite index inΓ andαΓα−1 (hence,Γ andαΓα−1 are commensurable).

Proof. Let n = detα. One checks by matrix calculation that

α−1Γ(Nn)α ⊂ Γ(N).

Thus,

Γ(Nn) ⊂ α−1Γ(N)α ⊂ α−1Γα.

Hence, we haveΓ(Nn) ⊂ Γα and the first claim follows. For the second claim, one proceeds simi-

larly. 2

92
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Example 7.1.3 LetΓ = Γ0(N) andp a prime. The most important case for the sequel isα =
(

1 0
0 p

)
.

An elementary calculation shows

Γα = Γ0(Np).

Definition 7.1.4 Letα ∈ ∆. We consider the diagram

Γα\H
τ 7→ατ

∼
//

πα

��

Γα\H

πα

��
Γ\H Γ\H,

in which πα and πα are the natural projections. One checks that this is well defined by using

αΓαα
−1 = Γα.

Themodular correspondenceor Hecke correspondenceτα is defined as

τα : Div(YΓ)
π∗

α−→ Div(YΓα)
α∗−→ Div(YΓα)

πα
∗−−→ Div(YΓ).

Here,π∗ is the pull-back of divisors andπ∗α andπα∗ are the maps which one obtains by applyingα

andπα to the points of the divisor.

These modular correspondences will be described more explicitly in a moment.First a lemma:

Lemma 7.1.5 Letαi ∈ Γ for i ∈ I with some index setI. Then we have

Γ =
⊔

i∈I

Γααi ⇔ ΓαΓ =
⊔

i∈I

Γααi.

Proof. Last term’s course. A simple calculation. 2

Corollary 7.1.6 Letα ∈ ∆ andΓαΓ =
⊔
i∈I Γααi. Then the Hecke corresondenceτα : Div(YΓ)→

Div(YΓ) is given byτ 7→
∑

i∈I ααiτ for representativesτ ∈ H.

Proof. It suffices to check the definition using the Lemma. 2

Remark 7.1.7 We have∆n =
⋃
α∈∆,detα=n ΓαΓ and one can choose finitely manyαi for i ∈ I such

that∆n =
⊔
i∈I ΓαiΓ.

Definition 7.1.8 Let∆n =
⊔
i∈I ΓαiΓ. The Hecke operatorTn onDiv(YΓ) is defined as

Tn =
∑

i∈I

ταi
.

We have already seen in the beginning:
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Lemma 7.1.9 For (a,N) = 1 there is a matrixσa ∈ Γ0(N) with σa ≡
(
a−1 0
0 a

)
mod N .

Proof. From(a,N) = 1 we conclude the existence ofr, s with 1 = ar −Ns. Hence the matrix

( r s
N a ) is in Γ0(N) and further( r s

N a ) ≡
(
a−1 s
0 a

)
mod N . Now it suffices to clear the top right

corner in order to find the desired matrix. We putσa = ( r s
N a )

(
1 −as
0 1

)
∈ Γ0(N). A short matrix

calculation shows thatσa satisfies the demands. 2

Proposition 7.1.10 (a) We have the decomposition

∆n
0 (N) =

⊔

a

⊔

b

Γ0(N)
(
a b
0 d

)
,

wherea runs through the positive integers witha | n and (a,N) = 1 and b runs through the

integers such that0 ≤ b < d =: n/a.

(b) For (a,N) = 1 we choose a matrixσa as in the Lemma. Then we have the decomposition

∆n
1 (N) =

⊔

a

⊔

b

Γ1(N)σa
(
a b
0 d

)

with a, b, d as in (a).

Proof. Last term’s lecture. This proof is elementary. 2

For completeness we give an interpretation of the Hecke operatorTp in terms of the moduli inter-

pretation of the modular curveYΓ0(N).

Proposition 7.1.11 OnYΓ0(N) the Hecke operatorTp for a prime numberp is given by

Tp : τ 7→





∑p−1
b=0

τ+b
p + pτ, if p ∤ N,

∑p−1
b=0

τ+b
p , if p | N.

Under the identifications

Γ0(N)\H→ {(E,C)}/ ∼=, τ 7→ (C/Λτ , 〈
1

N
〉

andDiv(YΓ0(N)) ∼= Div({(E,C)}/ ∼=) we have

Tp : (E,C) 7→
∑

(E′,C′)

(E′, C ′),

where the sum is taken over allp-isogeniesE → E′ andC ′ denotes the image ofC.

Proof. The first statement follows from the preceding proposition. For the second one only has

to convince oneself whatp-isogenies for the elliptic curveC/Λτ look like. The details of this simple

calculation were presented in last term’s course. 2

Next, we turn to the important description of the Hecke algebra as a double coset algebra.
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Definition 7.1.12 TheHecke ringR(∆,Γ) is the free abelian group on the double cosetsΓαΓ for

α ∈ ∆.

As our next aim we would like to define a multiplication, which then also justifies the name "ring".

First letΓαΓ =
⊔n
i=1 Γαi undΓβΓ =

⊔m
j=1 Γβj . We just start computing.

ΓαΓ · ΓβΓ =
⋃

j

ΓαΓβj =
⋃

i,j

Γαiβj .

This union is not necessarily disjoing. The left hand side can be written as adisjoint union of double

cosets
⊔r
k=1 ΓγkΓ. Each of these double cosets is again of the form

ΓγkΓ =

nk⊔

l=1

Γγk,l.

We obtain in summary

ΓαΓ · ΓβΓ =
⋃

i,j

Γαiβj =
⊔

k

⊔

l

Γγk,l.

We will now introduce a notation for the multiplicity with which every coset on the right appears in

the centre. For fixedk we define for everyl

mk,l = #{(i, j)|Γγk,l = Γαiβj}.

The important point is the following lemma.

Lemma 7.1.13 The numbermk,l is independent ofl. We putmk := mk,l.

Proof. See last term’s course. The proof is combinatorial and quite straight forward. 2

In conclusion, Lemma 7.1.13 tells us that the cosetΓγk,l appears preciselymk times in

⋃

i,j

Γαiβj = ΓαΓ · ΓβΓ =
⊔

k

ΓγkΓ =
⊔

k

⊔

l

Γγk,l.

Definition 7.1.14 We define the multiplication onR(∆,Γ) by

ΓαΓ · ΓβΓ =
n∑

k=1

mkΓγkΓ,

using the preceding notations.

In Exercise 46 you are asked to check that the Hecke ring is indeed a ring. The definition of the

multiplication makes sense, as it gives for Hecke correspondences:

τα ◦ τβ =
n∑

k=1

mkτγk
.
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Definition 7.1.15 For α ∈ ∆ let τα = ΓαΓ. We define (as above)

Tn =
∑

α

τα ∈ R(∆,Γ),

where the sum runs over a set ofα such that∆n =
⊔
α ΓαΓ. For a | d and(d,N) = 1 we let

T (a, d) = Γσa
(
a 0
0 d

)
Γ ∈ R(∆,Γ).

From Exercise 47, we obtain the the following important corollary.

Corollary 7.1.16 We haveTmTn = TnTm and henceR(∆,Γ) is a commutative ring. 2

7.2 Hecke operators on modular forms

In this section we again let(∆,Γ) = (∆0(N),Γ0(N)) or (∆1(N),Γ1(N)). We now define an action

of the Hecke ringR(∆,Γ) on modular forms.

Definition 7.2.1 Letα ∈ ∆. SupposeΓαΓ =
⊔n
i=1 Γαi and letf ∈Mk(Γ). We put

f.τα :=
n∑

i=1

f |αi
.

Lemma 7.2.2 The functionf.τα again lies inMk(Γ).

Proof. Forγ ∈ Γ we check the transformation rule:
∑

i

f |αi
|γ =

∑

i

f |αiγ =
∑

i

f |αi
,

since the cosetsΓ(αiγ) are a permutation of the cosetsΓαi. The holomorphicity off.τ is clear and

the holomorphicity in the cusps is not difficult. 2

This thus gives the desired operation ofR(∆,Γ) onMk(Γ).

Proposition 7.2.3 Let (∆,Γ) = (∆0(N),Γ0(N)) andf ∈Mk(Γ). The following formulae hold:

(a) (f.Tm)(τ) = 1
m

∑
a|m,(a,N)=1

∑m
a
−1

b=0 akf(aτ+bm/a ),

(b) an(f.Tm) =
∑

a|(m,n),(a,N)=1 a
k−1amn

a2
.

Similar formulae hold for(∆1(N),Γ1(N)), if one includes a Dirichlet character at the right places.

Proof. (a) follows directly from Proposition 7.1.10.

(b) is a simple calculation using

d−1∑

b=0

e2πi
b
d
n =





0, if d ∤ n

d, if d | n.

For details, see last term’s course. 2
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Remark 7.2.4 The Hecke ringR(∆,Γ) also acts onSk(Γ).

Corollary 7.2.5 Let (∆,Γ) = (∆0(N),Γ0(N)). For the action of the Hecke operators onMk(Γ)

andSk(Γ) the following formulae hold:

(a) TnTm = Tnm for (n,m) = 1,

(b) Tpr+1 = TpTpr − pk−1Tpr−1 , if p ∤ N , and

(c) Tpr+1 = TpTpr , if p | N .

Here,p always denotes a prime number. Similar formulae hold for(∆1(N),Γ1(N)), if one includes

a Dirichlet character at the right places.

Proof. These formulae follow from Exercise 47 and the definition of the action. 2

The formulae from the corollary can be expressed very elegantly like this:

Proposition 7.2.6 (Euler product) The action of the Hecke operatorsTn on modular forms satisfies

the formal identity:

∞∑

n=1

Tnn
−s =

∏

p∤N

(1− Tpp
−s + pk−1−2s)−1 ·

∏

p|N

(1− Tpp
−s)−1.

That the identity is formal means that we can arbitrarily permute terms in sums and products

without considering questions of convergence.

Proof. The proof is carried out in three steps.

1st step: Let g : Z→ C be any function. Then we have the formal identity

∏

p prime

∞∑

r=0

g(pr) =
∞∑

n=1

∏

pr‖n

g(pr).

For its proof, let firstS be a finite set of prime numbers. Then we have the formal identity:

∏

p∈S

∞∑

r=0

g(pr) =
∞∑

n=1,n only has prime factors inS

∏

pr‖n

g(pr),

which one proves by multiplying out the left hand side (Attention! Here one permutes the terms!).

We finish the first step by lettingS run through arbitrarily large sets.

2nd step:Forp ∤ N we have

(

∞∑

r=0

Tprp−rs)(1− Tpp
−s + pk−1−2s) = 1

and forp | N :

(
∞∑

r=0

Tprp−rs)(1− Tpp
−s) = 1.
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The proof of the second step consists of multiplying out these expressionsand to identify a “tele-

scope”. For details see last term’s course.

3rd step:The proposition now follows by using the first step withg(pr) = Tprp−rs and plugging

in the formulae from the second step. 2

7.3 Hecke operators on group cohomology

In this section we again let(∆,Γ) = (∆0(N),Γ0(N)) or (∆1(N),Γ1(N)). LetR be a ring andV

a leftR[Γ]-module which extends to a semi-group action by the semi-group consisting of all αι for

α ∈ ∆n for all n. Recall that
(
a b
c d

)ι
=

(
d −b
−c a

)
.

Recall the definition of the Hecke operatorτα onDiv(Γ\H).

Definition 7.3.1 Letα ∈ ∆. TheHecke operatorτα acting on group cohomology is the composite

H1(Γ, V )
res
−−→ H1(Γα, V )

conjα−−−→ H1(Γα, V )
cores
−−−→ H1(Γ, V ).

The first map is therestriction, and the third one is thecorestriction. We explicitly describe the second

map on cocycles:

conjα : H1(Γα, V )→ H1(Γα, V ), c 7→
(
gα 7→ αι.c(αgαα

−1)
)
.

There is a similar description on the parabolic subspace and the two are compatible, see Exercise 48.

Proposition 7.3.2 Let α ∈ ∆. Suppose thatΓαΓ =
⋃n
i=1 Γδi is a disjoint union. Then the Hecke

operator τα acts onH1(Γ, V ) and H1
par(Γ, V ) by sending the non-homogeneous cocylec to Tαc

defined by

(ταc)(g) =
n∑

i=1

διic(δigδ
−1
σg(i))

for g ∈ Γ. Hereσg(i) is the index such thatδigδ
−1
σg(i) ∈ Γ.

Proof. We only have to describe the corestriction explicitly. For that we use thatΓ =
⋃n
i=1 Γαgi

with αgi = δi. Furthermore, by Exercise 49 the corestriction of a non-homogeneous cocycleu ∈

H1(Γα, V ) is the cocyclecores(u) uniquely given by

cores(u)(g) =
n∑

i=1

g−1
i u(gigg

−1
σg(i)) (7.3.1)

for g ∈ Γ. Combining with the explicit description of the mapconjα yields the result. 2

Definition 7.3.3 For a positive integern, theHecke operatorTn is defined as
∑

α τα, where the sum

runs through a system of representatives of the double cosetsΓ\∆n/Γ.

Let a be an integer coprime toN . Thediamond operator〈a〉 is defined asτα for the matrix

σa ∈ Γ0(N), defined in Equation 1.1.1 (if theΓ-action onV extends to an action of the semi-group

generated byΓ andαι; note thatα ∈ ∆1
0, but in general not in∆1

1).
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It is clear that the Hecke and diamond operators satisfy the “usual” Euler product.

Proposition 7.3.4 The Eichler-Shimura isomorphism is compatible with the Hecke operators.

Proof. We recall the definition of Shimura’s main involution:
(
a b
c d

)ι
=

(
d −b
−c a

)
. In other words,

for matrices with a non-zero determinant, we have

(
a b
c d

)ι
= (det

(
a b
c d

)
) ·

(
a b
c d

)−1
.

Let now f ∈ Mk(Γ ; C) be a modular form,γ ∈ Γ andz0 ∈ H. For any matrixg with non-zero

determinant, Lemma 6.2.2 yields

If |g(z0, γz0) = gιIf (gz0, gγz0).

Let α ∈ ∆. We show the compatibility of the Hecke operatorτα with the map

f 7→ (γ 7→ If (z0, γz0))

betweenMk(Γ ; C) andH1(Γ, Vk−2(C)). The same arguments will also hold for anti-holomorphic

cusp forms.

Consider a coset decompositionΓαΓ =
⊔
i Γδi. We use the notations as in Proposition 7.3.2. We

compute:

Iταf (z0, γz0) = IP
i f |δi

(z0, γz0) =
∑

i

If |δi
(z0, γz0) =

∑

i

διiIf (δiz0, δiγz0)

=
∑

i

διi
(
If (δiz0, z0) + If (z0, δiγδ

−1
σγ(i)z0) + If (δiγδ

−1
σγ(i)z0, δiγδ

−1
σγ(i)δσγ(i)z0)

)

=
∑

i

διiIf (z0, δiγδ
−1
σγ(i)z0) +

∑

i

διiIf (δiz0, z0)−
∑

i

διiδiγδ
−1
σγ(i)If (δσγ(i)z0, z0)

=
∑

i

διiIf (z0, δiγδ
−1
σγ(i)z0) + (1− γ)

∑

i

διiIf (δiz0, z0),

sinceδιiδiγδ
−1
σγ(i) = γδισγ(i). Up to coboundaries, the cocycleγ 7→ Iταf (z0, γz0) is thus equal to

the cocycleγ 7→
∑

i δ
ι
iIf (z0, δiγδ

−1
σγ(i)z0), which by Proposition 7.3.2 is equal toτα applied to the

cocycleγ 7→ If (z0, γz0), as required. 2

Remark 7.3.5 The conceptual reason why the above proposition is correct, is, of course, that the

Hecke operators come from Hecke correspondences. Formulating theproof using the definition of

Hecke operators rather than Proposition 7.3.2 makes it more lengthy, butmaybe also less mysterious.

7.4 Theory: Eichler-Shimura revisited

In this sections we present some corollaries and extensions of the Eichler-Shimura theorem. We first

come to modular symbols with a character and, thus, also to modular symbols forΓ0(N).
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Corollary 7.4.1 (Eichler-Shimura) LetN ≥ 1, k ≥ 2 andχ : (Z/NZ)× → C× be a Dirichlet

character. Then the Eichler-Shimura map gives isomorphisms

Mk(N,χ ; C)⊕ Sk(N,χ ; C)→ H1(Γ0(N), V χ
k−2(C)),

and

Sk(N,χ ; C)⊕ Sk(N,χ ; C)→ H1
par(Γ0(N), V χ

k−2(C)).

Proof. Recall that theσa are a system of coset representatives forΓ0(N)/Γ1(N) =: ∆ and that

the group∆ acts onH1(Γ0(N), V ) by sending a cocyclec to the cocycleδc (for δ ∈ ∆) which is

defined by

γ 7→ δ.c(δ−1γδ).

With δ = σ−1
a = σιa, this reads

γ 7→ σιa.c(σ
−1
a γσa) = σιac(σ

−1
a γσa) = τσac = 〈a〉c.

Hence, the∆-action is through the diamond operators.

We now appeal to the Hochschild-Serre exact sequence, using that thecohomology groups (from

index1 onwards) vanish if the group order is finite and invertible. We get the isomorphism

H1(Γ0(N), V χ
k−2(C))

res
−−→ H1(Γ1(N), V χ

k−2(C))∆.

The Eichler-Shimura theorem we proved further gives us an isomorphismof Hecke modules

Mk(Γ1(N) ; C)⊕ Sk(Γ1(N) ; C)→ H1(Γ1(N), V χ
k−2(C)),

since as aΓ1(N)-moduleV χ
k−2(C) ∼= Vk−2(C). To finish the proof, it suffices to take∆-invariants on

both sides, i.e. to take invariants for the action of the diamond operators. Theresult on the parabolic

subspace is proved in the same way. 2

Corollary 7.4.2 LetΓ = Γ1(N). The maps

Sk(Γ ; C)→ H1
par(Γ, Vk−2(R)), f 7→ (γ 7→ Re(If (z0, γz0)))

and

Sk(Γ ; C)→ H1
par(Γ, Vk−2(R)), f 7→ (γ 7→ Im(If (z0, γz0)))

are isomorphisms (of real vector spaces) compatible with the Hecke operators. A similar result holds

in the presence of a Dirichlet character.

Proof. We consider the composite

Sk(Γ ; C)
f 7→ 1

2
(f+f)

−−−−−−−→ Sk(Γ ; C)⊕ Sk(Γ ; C)
Eichler-Shimura
−−−−−−−−→ H1

par(Γ, Vk−2(C)).

It is clearly injective. Note thatIf (z0, γz0) = If (z0, γz0). Hence, the composite map coincides with

the first map in the statement. Its image is thus already contained inH1
par(Γ, Vk−2(R)). Since the real
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dimensions coincide, the map is an isomorphism. In order to prove the second isomorphism, we use

f 7→ 1
2(f − f) and proceed as before. 2

We now treat the+ and the−-space for the involution attached to the matrixη =
(
−1 0
0 1

)
(see

p. 13). The action ofη on H1(Γ, V ) is the action of the Hecke operatorτη; strictly speaking, this

operator is not defined because the determinant is negative, however we use the same definition. To

be precise we have

τη : H1(Γ, V )→ H1(Γ, V ), c 7→ (γ 7→ ηι.c(ηγη)),

provided, of course, thatηι acts onV (compatibly with theΓ-action).

We also want to define an involutionτη on Sk(Γ ; C) ⊕ Sk(Γ ; C). For that recall that iff(z) =∑
ane

2πinz, then f̃(z) :=
∑
ane

2πinz is again a cusp form inSk(Γ ; C), since we only applied a

field automorphism (complex conjugation) to the coefficients (think of cusp forms as maps from the

Hecke algebra overQ to C). We defineτη as the composite

τη : Sk(Γ ; C)
f 7→(−1)k−1f̃
−−−−−−−−→ Sk(Γ ; C)

f̃ 7→f̃
−−−→ Sk(Γ ; C).

Similarly, we also defineτη : Sk(Γ ; C) → Sk(Γ ; C) and obtain in consequence an involutionτη on

Sk(Γ ; C)⊕ Sk(Γ ; C).

Let us consider the function(−1)k−1f̃(z) as a function ofz:

(−1)k−1f̃(z) = (−1)k−1
∑

n

ane2πinz = (−1)k−1
∑

n

ane
2πin(−z) = (−1)k−1f(−z) = f |η(z).

Proposition 7.4.3 The Eichler-Shimura map commutes withτη.

Proof. Let f ∈ Sk(Γ ; C) (for simplicity). We have to check whetherτη of the cocycle attached

to f is the same as the cocycle attached toτηf . We evaluate the latter at a generalγ ∈ Γ and compute:

I
(−1)k−1f̃

(z0, γz0) = (−1)k−1

∫ γz0

z0

f̃(z)(Xz + Y )k−2dz

= (−1)k−1

∫ γz0

z0

f(−z)(Xz + Y )k−2dz

= (−1)k−2

∫ −γz0

−z0

f(z)(X(−z) + Y )k−2dz

= ηι
∫ ηγη(−z0)

−z0

f(z)(Xz + Y )k−2dz.

If we change the last expression by a suitable coboundary, then it is equal to

ηι
∫ ηγηz0

z0

f(z)(Xz + Y )k−2dz,

which isτη of the cocycle attached tof , as required. 2
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Corollary 7.4.4 LetΓ = Γ1(N). The maps

Sk(Γ ; C)→ H1
par(Γ, Vk−2(C))+, f 7→ (1 + τη).(γ 7→ If (z0, γz0))

and

Sk(Γ ; C)→ H1
par(Γ, Vk−2(C))−, f 7→ (1− τη).(γ 7→ If (z0, γz0))

are isomorphisms compatible with the Hecke operators, where the+ (respectively the−) indicate

the subspace invariant (respectively anti-invariant) for the involutionτη. A similar result holds in the

presence of a Dirichlet character.

Proof. Both maps are clearly injective (consider them as being given byf 7→ f+τηf followed by

the Eichler-Shimura map) and so dimension considerations show that they areisomorphisms. 2

Note that if the coefficients off are real, theñf = f and the image off under the maps from

the two preceding corollaries is the same (possibly up to a sign). You are invited to take a look at

Exercise 50.

7.5 Theory: Transfer of Hecke operators to Manin symbols

We first prove that the Hecke operators are compatible with Shapiro’s lemma.This was first proved

by Ash and Stevens. We first need to say what the action ofα ∈ ∆ on the coinduced module

HomR[Γ](R[SL2(Z)], V ) should be. Here we are assuming thatV carries an action by the semi-

group∆ι (that is,ι applied to all elements of∆).

LetUN be the image of∆ι in Mat2(Z/NZ). The natural map

Γ\SL2(Z)→ UN\Mat2(Z/NZ)

is injective. Its image consists of thoseUNg such that

(∗) (0, 1)g = (u, v) with 〈u, v〉 = Z/NZ.

If that is so, then we say for short thatg is (∗). Note that this condition does not depend on the choice

of g in UNg. Define theR[∆ι]-moduleC(N,V ) by

C(N,V ) = {f ∈ HomR(R[UN\Mat2(Z/NZ)] | f(g) = 0 if g is not(∗)}

with the action ofδ ∈ ∆ι given by(δ.f)(g) = δ.(f(gδ)). The moduleC(N,V ) is isomorphic to the

coinduced moduleHomR[Γ](R[SL2(Z)], V ) as anR[Γ]-module by

HomR[Γ](R[SL2(Z)], V )→ C(N,V ), f 7→





(g 7→ gf(g−1)) for anyg ∈ SL2(Z)

0 if g is not(∗).

Note that
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Proposition 7.5.1 The Hecke operators are compatible with Shapiro’s Lemma. More precisely, for

all n ∈ N the following diagram commutes:

H1(Γ, V )
Tn // H1(Γ, V )

H1(SL2(Z), C(N,V ))
Tn //

Shapiro

OO

H1(SL2(Z), C(N,V )).

Shapiro

OO

Proof. Let δi, for i = 1, . . . , r be the representatives ofSL2(Z)\∆(1)n provided by Proposi-

tion 7.1.10. Say, that they are ordered such thatδi for i = 1, . . . , s with s ≤ r are representatives

for Γ\∆. This explicitly means that the lower row ofδιi is (0, a) with (a,N) = 1 (or even(0, 1)

if we are in theΓ1(N)-situation) fori = 1, . . . , s. If s < i ≤ r, then the lower row is(u, v) with

〈u, v〉 � Z/NZ.

Let c ∈ H1(SL2(Z), C(N,V )) be a1-cochain. Then

Shapiro(Tn(c))(γ) =
r∑

i=1

(διi .c(δ
iγδ−1

σγ(i)))((
1 0
0 1 )) =

r∑

i=1

διi(c(δ
iγδ−1

σγ(i))(δ
ι
i))

=
s∑

i=1

διi(c(δ
iγδ−1

σγ(i))((
1 0
0 1 ))) = Tn(Shapiro(c))(γ),

as required. 2

Remark 7.5.2 A very similar description exists involvingPSL2(Z).

[For the rest of this section only hand-written notes exist presently. Theywill be typed once the

author is more satisfied with the presentation than he currently is.]

7.6 Theoretical exercises

Exercise 46 Check that thatR(∆,Γ) is a ring (associativity and distributivity).

Exercise 47 Show the formula

TmTn =
∑

d|(m,n),(d,N)=1

dT (d, d)Tmn

d2
.

Also show thatR(∆,Γ) is generated byTp andT (p, p) for p running through all prime numbers.

Exercise 48 Check that the Hecke operatorτα from Definition 7.3.1 restricts toH1
par(Γ, V ).

Exercise 49 Prove Equation 7.3.1.

Exercise 50 Does the Eichler-Shimura map send the subspace of Eisenstein series to the +-space

H1(Γ, Vk−2(C))+, to the−-space or to none of them (in general)?



104 STAGE 7. HECKE OPERATORS

7.7 Computer exercises

Computer exercise 19Implement Hecke operators.



Part II

Computational Galois Representations



Stage 8

Images of Galois Representations

As time is running short, we shall only treat images of Galois representations without actually speak-

ing about Galois representations. This will be done in next term’s lecture in detail.

The main theorem in this context is due to Deligne and Shimura.

Theorem 8.0.1 (Shimura, Deligne)Letf ∈ Sk(N,χ ; C) be a normalised Hecke eigenform. Denote

by Qf the coefficient field ofQ, i.e. Q(an|(n,N) = 1), where thean are the coefficients off in the

q-expansion at infinity.

For any prime idealP of (the ring of integers of)Qf , there exists a Galois number fieldK with

Galois groupGal(K/Q) =: G such that

• K is unramified outsideNp, wherep is the residue characteristic ofP;

• there is a group injectionG := Gal(K/Q)
ρ
→֒ GL2(Fq), whereq is the cardinality of the

residue field ofP;

• for all maximal idealsΛ of (the ring of integers of)Qf coprime topN we have

charpoly(ρ(FrobΛ)) = X2 − apX + lk−1χ(l),

wherel is the residue characteristic ofΛ and· denotes the reduction moduloP;

• K is totally imaginary ifp 6= 2.

We quickly explain the notion of Frobenius elements:FrobΛ. The decomposition groupDΛ

is a subgroup ofGal(K/Q) and, sinceΛ is unramified, reduction moduloΛ gives an isomorphism

betweenDΛ andGal((OQf
/Λ)/Fl). The latter Galois group is cyclic and generated by the Frobenius

automorphismx 7→ xl. By FrobΛ we denote the unique element ofGal(K/Q) lying in DΛ whose

reduction moduloΛ gives the Frobenius automorphism of the finite field.

One often writesFrobl instead ofFrobΛ. If one does this, one has to keep in mind that the actual

elementFrobΛ depends on the choice of a primeΛ abovel. Another choice, sayΛ′ would giveFrobΛ′

106
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andFrobΛ andFrobΛ′ are conjugate by some element inGal(K/Q) (namely theσ ∈ Gal(K/Q) such

thatΛ′ = σΛ).

The above theorem, however, only makes statements about characteristic polynomials of images

of Frobenius elements. Characteristic polynomials only depend on the conjugacy class. Thus, for the

above purpose, it is enough to writeFrobl.

In the lecture so far we have explained how one computes coefficients of modular forms, i.e. the

an. Now we ask the question what we can determine about the number fieldK from Deligne’s and

Shimura’s theorem. In this final lecture we shall show that we can determine (in most cases) the

groupG. Calculating a polynomial whose splitting field isK is much much more difficult; but the

question has been solved in principle by Edixhoven et al. last year. We willnot be able to treat the

answer here.

The determination of the groupG is very much simplified by the fact that the subgroup structure of

GL2(Fq) is very simple. This is a fact that goes back into the 19th century (see also theintroduction).

Theorem 8.0.2 (Dickson)Letp be a prime andH a subgroup ofPGL2(Fq). Then a conjugate ofH

is isomorphic to one of the following groups:

• finite subgroups of the upper triangular matrices (order dividingq(q − 1))

• PSL2(Fpr) or PGL2(Fpr) with Fpr ⊆ Fq,

• dihedral groupsDr of order2r with r | q − 1 or r | q + 1,

• cyclic groupsDr of order2r with r | q − 1 or r | q + 1,

• A4,A5 or S4.

Corollary 8.0.3 LetH ⊆ GL2(Fq) be a subgroup containingx, y, z such that

• ord(x) 6= 2 6= ord(y) andord(z) > 5

• charpoly(x) = (X − a)(X − b) with a, b ∈ Fq[X] anda 6= b,

• charpoly(y) is irreducible overFq,

• charpoly(z) 6= (X − c)2 for anyc ∈ Fp.

ThenH modulo scalars isPSL2(Fpr) or PGL2(Fpr) for someFpr →֒ Fq.

If furthermores is the minimum such thatFps containsa and b and Fp2s contains the roots of

charpoly(y), thens | r.

Proof. The order ofx dividesq − 1 and the order ofy dividesq + 1. Since the greatest common

divisor ofq−1 andq+1 is 2, the dihedral, cyclic and upper triangular groups appearing in Dickson’s

theorem are excluded. The presence of a non-scalar element of order bigger than5 excludesA4, S4

andA5. 2
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Proposition 8.0.4 The set of subgroups{H ⊆ GL2(Fq)|SL2(Fq) ⊆ H} is in bijection with the set of

subgroups{R ⊆ F×
q }.

The bijection associates with anH the groupR := {det(h)|h ∈ H} and with anR the group

H := {g ∈ GL2(Fq)|det(g) ∈ R}.

Proof. Just notice that the determinant gives a group isomorphismGL2(Fq)/SL2(Fq)→ F×
q . The

statement is then a well-known result from algebra. 2

Proposition 8.0.5 Assume the situation of Deligne’s theorem and suppose thatSL2(Fq) ⊆ G. Then

{det(g)|g ∈ G} = 〈W,F
×(k−1)
l 〉 ⊆ F×

q ,

whereW = {χ(n)|(n,N) = 1} ⊆ F×
q .

Proof. The number field cut out byχ, i.e. the number fieldL such thatGal(Q/L) is the kernel

of χ : Gal(Q/Q) → C×, is unramified atl. Hence, its intersection with the atl totally ramified field

Q(ζl) is Q. Hence, the Galois groupGal(M/Q) of the compositeM = LQ(ζl) is the direct product

of Gal(L/Q) ∼= W andGal(Q(ζl)/Q ∼= F×
l . The isomorphisms are given byFrobr 7→ χ(r) and

Frobr 7→ r mod l. Chebotarev’s density theorem hence tells us that for a givenw ∈ W and a given

residue classa mod l there exist infinitely many primesr such thatχ(r) = w andr ≡ a mod l.

Consequently, every element of the formwak−1 lies in the left hand side group. The other inclusion

is trivial. 2

Now we dispose of the necessary tools for writing down an algorithm that determines the Galois

group of the extensionK/Q from Deligne’s and Shimura’s theorem. More precisely, the algorithm

will return a minimals as in Corollary 8.0.3, or it will return the answer that the algorithm was not

conclusive. IfFps = Fq, then by Propositions 8.0.4 and 8.0.5 the Galois group can be determined

precisely.

Algorithm 8.0.6 Input: A field F and a list CharPolyList of < a, b >, where a is the trace

and b is the determinant of a 2× 2-matrix over F, where F is some extension of Fl.

Output: A boolean value conclusive and an integer s. If conclusive is false, the

algorithm was not conclusive. If conclusive is true, then any matrix algebra containing

matrices with trace and determinant given in the input contains the group SL2(F
s
l ).

(1) divplus := false; divmin := false; bigorder := false; s := 1;

(2) for t in CharPolyList do

(3) f := X2 − t[1]X + t[2] ∈ F[X] [This is the characteristic polynomial of any matrix with

the given trace and determinant.]

(4) Factor f over F[X].

(5) if f 6= (X − c)2, then [This excludes that the matrix is scalar.]
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(6) if ((x5−1 mod f) 6= 0) and ((x4−1 mod f) 6= 0) and ((x3−1 mod f) 6= 0)

then

(7) bigorder := true;

(8) end if; [If the condition is true, then the order of any matrix with the given

polynomial is bigger than5.]

(9) if f is irreducible over F[X], then

(10) Factor f over the quadratic extension of F.

(11) Let a be 1/2 times the degree of the first zero of f in the quadratic

extension of F.

(12) Let s be the lowest common multiple of a and s.

(13) divplus := true; [the charpoly is irreducible overF, hence, the order

dividesq + 1 with q = |F|.]

(14) else

(15) Let a be the degree of the first zero of f in F.

(16) Let b be the degree of the second zero of f in F.

(17) Let s be the lowest common multiple of a, b and s.

(18) divmin := true; [the charpoly is reducible overF, hence, the order

dividesq − 1.]

(19) end if;

(20) end if;

(21) end for;

(22) return divplus and divmin and bigorder, s;
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