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1. Introduction

This essay contains an introduction to the Euler-Poincaré characteristic for the cohomology of
profinite groups with coefficients in discrete modules, as well as Z,-modules and Q,-vector spaces.
It also gives a treatment of the first six chapters of the recent paper by Serre La distribution
d’Euler-Poincaré d’un groupe profini (|9]), in which a distribution is developed that describes the
Euler-Poincaré characteristic. Along the way, some representation theory of finite and profinite
groups is dealt with.

Although the choice of topics treated was influenced by what is needed to prove the main
theorems from [9], other interesting results have been included.

The main goal of this essay is to develop in detail all the theory concerned, which goes beyond
what is generally taught in basic courses on algebra, topology, groups, (co-)homological algebra
and categories. Due to space and time limitations, this is not possible when giving full and detailed
proofs. However, every result cited, which is necessary for the main theorems proved in chapters 3
to 5, could be proved at the stage, where it is mentioned, without referring to “deeper” theorems.
In the chapters on the preliminaries (chapter 2) and the applications (chapter 6) most results are
only stated, but references are given.

Next I would like to give a brief outline of the essay. In chapter 2 basic results about profinite
groups and the representation theory of finite groups are listed.

Chapter 3 aims at proving that every Euler-Poincaré map (i. e. a map from the objects of
a category of G-modules to a ring having the same additivity property as the Euler-Poincaré
characteristic) can be uniquely described by a distribution satisfying certain conditions (theorem
3.5.10). This is a purely representation theoretic result, in which Brauer characters play the
central role. The main references are [9], [1] and [11].

The first six sections of chapter 4 contain an introduction to the cohomology of profinite
groups with coefficients in discrete G-modules, for which the main references are [16], [7], [8] and
[13]. A slight emphasis is put on the cohomological dimension. In section 4.7 the Euler-Poincaré
characteristic is introduced and a theorem (4.7.5) is derived, which states that the Euler-Poincaré
characteristic can be described by a unique distribution.

Chapter 5 contains results about the cohomology of profinite groups with coefficients in finitely
generated Zjp-modules and finite dimensional Q,-vector spaces. In corollary 5.3.4 the Euler-
Poincaré characteristic is described by a distribution. The main theorem (5.4.2) gives an explicit
formula for calculating this distribution based on certain characters. The main reference for this
is Serre’s paper [9].

In the final chapter two results by Tate about the Euler-Poincaré characteristic of Galois
groups of p-adic fields and number fields are stated in terms of distributions, without giving
proofs. References for this are [9], [8] and Tate’s papers [14] and [15].



2. Preliminaries

2.1. Profinite groups

In this section we list some facts about profinite groups. Proofs can be found in [7], [16], [6].

2.1.1 Theorem. Let G be a topological group. Then the following are equivalent:
(i) G is compact, Hausdorff and totally disconnected.

(ii) G is compact, Hausdorff and the unit 1 has a basis of open neighbourhoods consisting of
normal subgroups.

(iii) G is the projective limit of a projective system of finite groups.

2.1.2 Definition. If one of the conditions in the theorem holds, then G is called a profinite
group.

If a profinite group G is the projective limit of a projective system of p-groups (cyclic groups),
then G is called a pro-p (pro-cyclic) group.

For a profinite group G, let Ug denote the set of all open normal subgroups of G.

2.1.3 Proposition. Let G be a profinite group. Then (G : U) < oo for all U € Ug and G =
lim G/U, where the projective system is formed by the projections G/V — GJ/U for V. < U

(U, V € Ug).

2.1.4 Example. o Ly = lgn Z/p"Z, the integral p-adic numbers, is a pro-cyclic group. The
projective system is formed by the natural projections Z/p"Z — Z/p™Z with n > m € N.

e The Priifer group 7 = lim Z/mZ is a pro-cyclic group. The projective system is formed
by the projections Z/nZ — Z/mZ for m|n.
We have Z =[], Zy.

o Let L/k be a Galois extension of fields. Then G(L/k) = lim G(K/k), where K runs over all
finite Galois extensions K/k.

o A closed subgroup H < G of a profinite group G is profinite. In fact, H = lim HU/U =
lim H/H NU, where U runs over Ug.

e A quotient of a profinite group G by a closed normal subgroup H is a profinite group. In
fact, G/H =lim G/HU.

e Direct products of profinite groups are profinite.

o The projective limit of a projective system of profinite groups is a profinite group.

A further example is that of the general linear group I' = GL4(Z)) (d € N). We follow [2] and
introduce the congruence subgroups

I = {76I‘]fyzid(modpi) }
which are normal and for which one can show
T/T; = GL4(Z/p'Z).

These form a projective system of finite groups with limit I', whence I' is profinite.



In fact, we can say more. A combinatorial argument shows that (I'y : ;) = de(i_l). Thus
I’y is a pro-p group, which implies that I" is virtually a pro-p group. (A profinite group is said to
have a property virtually, if an open normal subgroup has it.)

We now introduce the concept of supernatural numbers, which allows us to define orders and
indices of profinite groups.

2.1.5 Definition. A supernatural number is a formal product Hp p"?) where p runs over all
primes and n(p) € NU {oo}.

The product of two supernatural numbers, their greatest common divisor (gcd) and their lowest
common multiple (lcm) are defined in the obvious way.

We now apply this definition to profinite groups.
2.1.6 Definition. Let G be a profinite group. Define the order of G by
#G = |G| =1lem{ |G/U| | U € Ug }.
Let H be a closed subgroup of G. The index of H in G is defined by
(G:H)=Ilem{ (G/U : HUJU) |U € Ug } =lem{ (G : HU) | U € Ug }.
For a finite group these definition conincide with the usual ones.

2.1.7 Proposition. Let K < H < G be profinite groups. Then (G : K) = (G : H)(H : K).
Further, (G : H) is finite if and only if H is open in G.

2.1.8 Example. o |Zy| =p>™
o 2] =TI, p™

2.1.9 Definition. Let G be a profinite group and p a prime. A closed subgroup H < G 1is called
a p-Sylow subgroup, if H is a pro-p group and p [ (G : H).

2.1.10 Theorem. (Sylow theorems) Let G be a profinite group. Then
(i) For every prime p there exists a p-Sylow subgroup of G.
(i) Any two p-Sylow subgroups are conjugate.

(iii) Every pro-p subgroup is contained in a p-Sylow subgroup of G.

(i) If h: Gy — Gs is a continuous surjective homomorphism of profinite groups, then the image
of a p-Sylow group is a p-Sylow group.

(v) |G| =11, |Gpl, where Gy, is any p-Sylow subgroup of G.

2.1.11 Proposition. (Classification of pro-cyclic groups) (i) For every supernatural num-
ber n = pr”(p) there exists a pro-cyclic group of order n, which is unique up to isomor-
phism.

(ii) For each supernatural number n = pr”(p) there exists a unique closed subgroup H on of
index n. Moreover, H =[] .\, Z;, where M = {p | n(p) < oo}.

(iii) Every pro-cyclic group is uniquely obtained as a quotient of Z.

We will often make use of the follwing proposition.



2.1.12 Proposition. Let G be a profinite group, X any topological space and f : G — X a locally
constant map. Then there is U € Ug, such that for all g € G, f restricted to gU is constant. We
will call such f locally constant modulo U.

Proof. For each g € G we can find U, € Ug such that f is constant on gU,. Since G is
compact, we can choose a finite subset gi,...,g, with G = U g;U,,. Now the fact that Ug
forms a base of neighbourhoods of 1 allows us to find U € Ug contained in all Ugy,. Let g € g;Uy,,
say g = giu; (u; € Ug,). Hence gU = g;w;U C giu;Ug, = g;Ug,. As fis constant on each g;Uy,, it
is constant on gU for g € G. g
2.2. Some representation theory

In this section we will first introduce some notation for use throughout the essay, and then list
two important results from the representation theory of finite groups.
Let k be any field.

2.2.1 Definition. Let G be any group. A function
c:G—k
is called a class function on G over k, if c(g-'hg) = c(h) for all g,h € G.

2.2.2 Definition. For a topological group G we let

o Ci.c be the category of finite dimensional k-vector spaces, endowed with the discrete topology,
on which G acts continuously. We often refer to its objects as G-modules.

o Y. be a set of representatives of the simple objects in Cy .

If G is a finite group, the topology on the G-modules, of course, does not play any role. We
shall then also call elements in Cj, ¢ k[G]-modules.

2.2.3 Theorem. Let k be any field and G a finite group.
(i) The irreducible characters xg for E € Ci ¢ are linearly independent over k.

(ii) Let exp(G) = m. If char(k) = 0 and k contains all m-th roots of 1, then the irreducible
characters of G form a k-basis of the space of class functions on G.

Proof. For (1) see e. g. [1], theorem 17.3, and for (2) e. g. [1] chapter 9C. O



3. Euler-Poincaré distributions for discrete modules

3.1. Representations of profinite groups

In this section we introduce the concept of an Euler-Poincaré map in quite a general way. It is in
that generality, however, that we will find a distribution describing it.
Let k be any field and consider a profinite group GG. The action map

p: G — End(A)

for A € Ci ¢ is continuous and, as A is discrete, locally constant, say modulo U for U € Ug (by
proposition 2.1.12). Hence p factors through G/U and we obtain an action map

pv : G/U — End(A),

which makes A into a G/U-module Ay. We note that the order of every p(g) in End(A) is finite.
Let now in addition A be simple. Suppose Ay is not simple, say By < Ay (Bu € Cyq/v)- Bu
becomes a G-module under the natural projection G — G/U, contradicting the fact that A is
simple. This establishes the first half of the next

3.1.1 Proposition. (i) For all A € ¥, ¢ there exists U € Ug such that A € ¥y, ¢ /v
(i) For all U € Ug the projection G — G /U gives us an injection
Yrau = Xk,G-

Proof. We regard A € ¥, /7 as a G-module via the projection. Any G-submodule of A then
is automatically also a G/U - module because the action on it is inherited from A. This proves
the second part. O

We now introduce the concept of Grothendieck groups.

3.1.2 Definition. Let C be a category of (left) A-modules for a k-algebra A. The Grothendieck
group of C, denoted G(C), is the free abelian group with the simple objects of C (written [E]) as
generators.

Because of the uniqueness of composition series of A-modules by the Jordan-Ho6lder theorem,
this is equivalent to defining the Grothendieck group to be the abelian group with the objects of
C as generators, subject to the relations

0—-FE —FE—E'"—-0=[E]=[F]+][E",

where the left hand side is any exact sequence of objects in C. By splitting exact sequences we
get the following

3.1.3 Remark. Let E1,...,E, € C such that
0O—F—F —---—F,—0
is an eract sequence. Then > . (—1)'[E;] = 0.
We are now in the position to define the objects we are interested in.

3.1.4 Definition. Let K be any field of characteristic 0, not necessarily the same as k. Following
Lang ([4], III, §8) we call a homomorphism of abelian groups

c:G(C) — (K,+),

where (K,+) denotes the additive group of K, an Euler-Poincaré map.



To express this less technically, an Euler-Poincaré map c is any map from the objects of C to
K, which is additive with respect to exact sequences in the following way

0—>FE —-FE—E"-0=cE)=cE)+c(E").

We will, of course, later see that the Euler-Poincaré characteristic of a profinite group is indeed
an Euler-Poincaré map.

Returning to profinite groups we can rewrite the second part of the last proposition in terms of
Grothendieck groups. To simplify notation we write G(G) for G(Cx,) and G(G/U) for G(Cy /v )-
The next corollary is a reformulation of the second part of the last proposition.

3.1.5 Corollary. For every U € Ug there is a natural injection
w:G(G/U) — G(Q).

We will denote the set of all Euler-Poincaré maps of the category C ¢ by EPr(Cr ), or just
EP(G). For these we state a characterization.

3.1.6 Proposition. An Euler-Poincaré map ¢ € EP(G) is uniquely determined by a collection
(CU)UeuG; where cy € EP(G/U) such that for all U € Ug with V < U we have cy o wyy = cp-
Here wyy : G(G/U) — G(G/V') denotes the natural injection defined analogously to vy from last
corollary.

Proof. That every ¢ defines such a collection is clear. Since every simple G-module A comes
from a G/U-module for some U € Ug by the last proposition, we must set ¢(A) := cy(A). The
commutativity relation tells us that this is well defined. O

3.2. Brauer characters

For a field k of characteristic p > 0 some of the “nice” properties fail that characters over fields
of characteristic zero have. Brauer characters are “lifts” into a field of characteristic zero and,
indeed, help restore some of the desired properties.

Following [1] we make the following

3.2.1 Definition. Let R be a discrete valuation ring with quotient field K, mazimal ideal p and
residue field k = R/p. If char(k) = p > 0 and (in addition to the definition in [1]) char(K) =0,
we call the triple (R, K, k) a p-modular system. We call the map

R—kx—T=2xp
reduction modulo p.

3.2.2 Example. (Z,,Q,,F,) is a p-modular system. This will be the most important p-modular
system for our purposes.

Now we fix a p-modular system (R,K,k). Let m be a positive integer with m = p"m/,
(p,m’) = 1. Furthermore, let w be a primitive m-th root of 1 in K and therefore in R. We put

K = Kw),k = k®).
Denote by p+ resp. s the set of m-th roots of 1 contained in K’ resp. k.
3.2.3 Remark. Reduction modulo p defines a surjective homomorphism
MK — Pgr, W W

with kernel < wP" >.



This is clear. If m is now a positive integer, which is not divided by p, we get an isomorphism.
We denote the inverse image of { € g in ugs by 6 and call it the lift of (.

Now we also have an isomorphism between the Galois groups G(K'/K) and G(k’/k), since all
K'- resp. k’-automorphisms are determined by their actions on pg+ resp. ux. This now implies
the following remark, which is an important ingredient in the definition of Brauer characters.

3.2.4 Remark. If a sum of @'’s is in k, then the respective sum of the w'’s is in R.

Returning to the study of groups we first have the following

3.2.5 Proposition. Let G be a finite group. For every g € G there are unique s,u €< g > with
the properties: (p,ord(s)) =1, ord(u) is a p-power and g = su = us.

Proof. ord(g) = p™m with (p,m) = 1. Therefore there are integers a, b such that ap™+bm = 1.
Set u := ¢"™ and s := g®". These clearly satisfy the properties. Given any other such pair «’, s,
we have w/u"! = ss'~'. Since all elements concerned commute with one another as they are in
< g >, the order of the left hand side is divisible by a power of p (including 1) and the right hand
side is not. Therefore s = s’ and v = u/'. O

3.2.6 Definition. Let G again be a finite group and p a prime.
e An element g € G is called a p-element if its order is a power of p.

e An element g € G is called o p’-element or o p-regular element if its order is not divisible
by p.

o The set of all p-reqular elements in G is denoted G .g.

e s and u from the last proposition are called the p’-component resp. the p-component of
qg.

We now generalize this notion to profinite groups.

3.2.7 Definition. Let G now be a profinite group and p a prime. An element g € G is called
p-regular if its image under all natural projections G — G /U for U € Ug 1is p-regular in the
above sense. The set of all p-reqular elements is again denoted G.cq.

In the language of supernatural numbers an element g is in G.¢4 if and only if its order is not
divisible by p.
We have lim (G/U)

limit of compact spaces is compact (cf. [6], IV, §2).

reg = Greg, from which we conclude that G4 is compact, as a projective

Let for the moment G be finite again and F € C; ¢ a finite dimensional G-module. For a
p-regular element g € G of order m the value of its character xg(g) is a sum of m-th roots of 1 in
k. Remark 3.2.4 thus allows us to lift this value.

3.2.8 Definition. We define the Brauer character of the G-module £ € Cy ¢ with character
XE by )
. Zz >\z fO?" g e Greg with XE(g) = 27, Ai
quGHR? g'_){o forggGreg

The fact already stated in the last section, that the action map of any representation with
module in C, ¢ of profinite groups is locally constant, allows us to extend this definition as follows:



3.2.9 Definition. Let G be a profinite group and E € Ci, ¢ a discrete G-module with action map
being constant modulo U for some U € Ug such that E is also a G/U-module, denoted Er;. Define
the Brauer character

(gU) fO’/' g€ Greg
fO’I‘ g g Greg

where gy is the image of g under the natural projection G — G/U.

65 G — R, gH{ngU

The Brauer character is well defined. Let us suppose that the action map is also locally
constant modulo V for V € Ug. Then G/U and G/V act on E in the same way, meaning for

x € F we have
st =sUx=sVe (Vo€ E, Vs € Greg).

Therefore the “usual” characters are the same and hence so are their lifts.
We also point out that this definition is equivalent to the one used by Serre in [9].

The following remark is a direct consequence of the definition.

3.2.10 Remark. The Brauer characters are locally constant functions G — R.

Next we collect some basic properties of Brauer characters.
3.2.11 Proposition. Let G be a profinite group and E,E',E" € C;, . Then
(i) ¢(1) = dimy,(E)
(ii) ¢p(t~tst) = ¢p(s) for all s,t € G. ¢g therefore is a class function.

(113) Given an ezact sequence 0 — E' — E — E"” — 0, we have ¢ = ¢ + ¢pr. This implies in
particular that ¢ only depends on the composition factors of E. In other words, we receive

a well defined map G(Cr.c) — R.

(iv) ¢pe.E) = OB OB/

(v) For g € G with decomposition from proposition 3.2.5 g = su we have

where xg 1S the “usual” character of E.
(vi) Let k =F,. For s € Greq we have xg(s) = xg(sP) and ¢p(s) = ¢pp(s?).

(vii) Let H be a finite (closed) subgroup of G. Denote by EX the submodule fized by all elements
of H. Then

. 1

Proof. First we remark that it suffices to consider the case of a finite group G, for we have
defined the value at g € G by the Brauer character of the image of ¢ in a finite group G/U.

(i) The Brauer character here is clearly the sum on dimy(E) 1’s since the endomorphism cor-
responding to 1 is the identity.

(ii) Analogously to the proof in characteristic zero the \; appearing in xg(s) only depend on
the conjugacy class of s and therefore so do their lifts.

(iii) As in characteristic zero.

(iv) As in characteristic zero.



(v) By definition we have xg(s) = ¢p(s). The rest follows because any element of End(E) with
order a power of p has, written in upper diagonal form, only 1’s on the diagonal, as there
are no other p-th roots of 1. Therefore xg(s) = xg(su).

(vi) For A € F), we have that \? = \. Therefore
XE(s) = Z)‘i = Z)xf = xg(s?).

Thus their lifts are also equal.

(vii) As in characteristic zero.

3.3. The decomposition map and an application

In this section we introduce the decomposition map, which allows us to “move” from G-modules
over K to ones over k, their “decompositions”. We will establish a relation between the “usual”
characters over K and the Brauer characters of their decompositions. This we will do in some
generality.

Fix a p-modular system (R, K, k), where K is a finite extension of Q,, and a profinite group
G. We wish to drop the assumption of discreteness for our modules over K for the time being.

3.3.1 Definition. Let Mg g be the category of finite dimensional K -vector spaces, endowed with
the ultrametric topology coming from the discrete valuation ring R, on which G acts continuously.

3.3.2 Definition. Let ' € Mg . L C E is an R-lattice of E, if

e L is a finitely generated R-submodule of E such that L®p K = KL = E (allowing denomi-
nators)

e [ is stable under the action of G.

3.3.3 Remark. Let £ € Mg ¢ and L an R-lattice of E.
e L is a free R-module.
e xnm(9) = xr(g) for all g € G, where xa and x1 denote the characters of M resp. L.

Proof. L as a submodule of a vector space is torsion free, and, as R is a principal ideal
domain, free.

The matrix associated (with respect to some basis of L) to the endomorphism of x — gz for
x € L also represents the action of g on M with respect to the same basis embedded in M. Hence
the second result. O

3.3.4 Proposition. For any E' € Mg g an R-lattice L exists.

Proof. Pick a K-basis {e1,...,e,} of E and put N :=< eq,...,e, >p its R-span. This is in
general not G-stable. Therefore we consider the subgroup

U=={geG | gNCN}

Denote by «; the continuous map G — E, g — ge;. We clearly have



From general facts about ultrametric vector spaces we know that N C F is open. Therefore
U C G is open. This yields a decomposition of GG into cosets modulo U:

G= U ng
j=1

for representatives g;. Now we set [; := Z;”:l gje; and L :=<ly,...,l, >R, which by construction
is stable under the action of G. O

Any R-lattice L can now be regarded as a G-module over k, which we denote L, by reducing
scalars modulo p:
L=L®rk=L/pL.

From our assumptions on the p-modular system we get that L has the discrete topology and
therefore is an element of Cj, g.
We recall that we denote by [A] the image of the G-module A in the Grothendieck group

G(Cr,c)-

3.3.5 Proposition. Let E € Mg, with two R-lattices L, M. Then L and M have the same
composition factors over k, i.e. [L] = [M].

Proof.

e special case: pL C M C L
Hence pM C oL C M C L. Therefore L/M and oL/pM can be regarded as isomorphic
G-modules over k.

It is clear that the following sequence of G-modules over k is exact.
0— oL/oM — M/poM — L/pL — L/M — 0
Therefore we receive
[pL/pM] — [M/pM] + [L/pL] — [L/M] =0
by remark 3.1.3. Thus [M/pM] = [L/pL] and the proposition is proved in this special case.

e general case: Let < mq,...,m, >pr be a generating set for M. From the relation M C KL,
we conclude that there are x; € K such that z;m; € L for all <. Multiplying these we see
that a scalar multiple of M is contained in L. Since xtM = M, we can assume M C L.

With the same arguments we see that there is an n € N such that
"L C M C L.

Now let N := " 'M + L. This implies p" 'L C N C L and pN C L C N. From our
special case we receive [L| = [N]. Repeating the above procedure with N and M, we finally
arrive at [L] = [M], finishing this proof.

The above proposition now allows us to make the following

3.3.6 Definition. The map
d:G(Mga) — G(Cra)

sending a G-module over K to the composition factors of the reduction modulo p of any of its
R-lattices is called the decomposition map.



This gives us the following useful consequence for the relation between “usual” and Brauer
characters, which we first prove for finite groups and later generalize to profinite groups in the
special case of the p-modular system (Z,, Q,, F,).

3.3.7 Proposition. Let G be a finite group and M € Mg g a G-module over K with character
xXnv- Then

XM(Q) = ¢d(M) (g) Vg € Greg-

Proof. Choose a G-stable lattice L of M. By remark 3.3.3 we have xas = xr. Denote by p
the action map of G on L. We consider its combination with the reduction modulo p

a:G— GL(L) — GL(L/pL).

Let g € Gyreg- Thus (p,m) = 1 for m := ord(g). The “usual” character therefore looks like
XL/pL = 2_; Ai with A; m-th roots of 1 in a suitable finite extension of .

Suppose x1.(g) = >, wi with w; m-th root of 1 in a suitable finite extension of K. Then w; = \;
and the definition of the lift w; = X;. Hence xm(9) = b (9)- O

3.3.8 Lemma. Let L = Z, X --- X Zy, (m factors). Then the order of GL(L) is a supernatural
number, whose part prime to p is finite.

Proof. Consider a;j = 1o, ai,jvkpk € Zjy subject to the condition 0 < k <m = a; ;1 = 0; ;-
Therefore the matrix A = (a; ;) has determinant 1 4+ p™x # 0 (in fact, reducing modulo p™ it is
the identity matrix). For each a; j , we have p choices, if £ > m. Since the index of the subgroup
defined by all such A has finite index in GL(L), the lemma is proved. O

3.3.9 Corollary. Consider the p-modular system (Z,,Qp,,Fp). Let G be a profinite group and
M € Mq,.c¢ a G-module over Q, with character xas. Then

XM(Q) = ¢d(M) (g) Vg € Greg-

Proof. We use the notation of the proof of the proposition. The lemma now implies that

m = ord(p(g)) is finite and prime to p. Hence we can use the same arguments, namely the
bijective correspondence of the m-th roots of 1, as in the proposition and obtain the desired
result. O

A striking consequence is that the “usual” characters over QQ, are thus also locally constant.

3.4. Relations between Brauer characters and class functions

In this section let G be a finite group.

3.4.1 Proposition. The Brauer characters of the simple G-modules E € Ci ¢ are linearly inde-
pendent over R and K.

Proof. It is enough to show this over R, since any linear relation of the Brauer characters
over K defines a relation over R by clearing denominators. For simplicity, we number the Brauer
characters in question ¢q, ..., ¢, and the “usual” ones x1,..., x,. Assume we are given a relation

n
Zrmﬁi =0 r, €R.
=1

By dividing by a generator of o we can assume that not all r; are in p. Reducing modulo p we
therefore get a non-trivial relation over k:

Z""_quz(g) =0 Vge Greg
=1



Using part 5 of proposition 3.2.11 we see
n
> Tixilg) =0 Vgeda.
i=1

Theorem 2.2.3 now yields 7; = 0 for all ¢, implying r; € p. Contradiction. O

3.4.2 Proposition. Let exp(G) = m. Assume K contains all m-th roots of 1. Then the Brauer
characters ¢ for E € X ¢ form a K-basis of the space of class function on G, ey over K.

Proof. Let f be a class function defined on G,.,. We can extend it to f’ class function on G,
by setting f’(g) = 0 for g & Gyeq. By theorem 2.2.3 we find a; € K such that

n

/

f= E aiX M,
=0

where My, ..., M, are the simple G-modules in X . Restricting again to G4 and using propo-
sition 3.2.11, we find

[ = Zai¢d(Mi)-
i=0

As every ¢g(yy,) is a linear combination of Brauer characters of simple G-modules over k, namely
of the composition factors of d(M;), and keeping in mind their linear independence, the proof is
complete. O

We now come to the observation which is central for our purposes. As p-modular system we
now consider the special case (Zp,Qp,F,). Part 6 of propostion 3.2.11 tells us ¢pa(s?) = ¢a(s)
and x(s?) = xa(s) for all s € Greg and A € Cp, g-

We thus know that the above proposition is not true for Q,. We will, however, be able to
describe the subspace of the class functions (restricted to G,q) generated by the Brauer characters
over Q, explicitly. The next corollary shows that it is given by

He :=A{f: Greg = Qp | fclass function and f(s”) = f(s) Vs € Greg}-

We will, however, first prove the following proposition.

3.4.3 Proposition. Hq is generated as a Q,-vector space by the restrictions to Greq of the char-
acters xy for'V € Xg, q.
Proof. This proof is an adaption of Serre’s proof in [9], given for the next corollary.

e Let K be a finite extension of Q, containing all m-th roots of 1, where m := exp(G) = m/p"

with (m’,p) = 1. Further put X := G(K/Q,) and |X| = tp" with (¢,p) = 1.
Consider the linear surjection

a: K —Qp x— ZO‘(QZ‘).

ceX

e Suppose w is a primitive m/-th root of 1 in K, then wP' for i = 0,...,t—1 are all the other
primitive ones.

Galois automorphisms clearly preserve the (multiplicative) order of elements. Thus there
are p" distinct o € X such that o(w) = w?" for each i =0,...,t — 1.

Hence we conclude that i
o(w) =p" Y Wt
i=0

which is the main ingredient in this proof.



o Let f € Hg. We can extend it to f’ class function on G, by setting f'(g) = 0 for g € Geg-
By theorem 2.2.3 we find ar € K such that

fr=">" arxr.

TeXk,a

e Suppose we are given T € Ck . Denote by T° the Q,[G]-module obtained by restriction
scalars via o from T, i. e. T = T ® Qp.-

Let now A be the matrix corresponding to the endomorphism of 7' given by x — sz for
8 € Greg- Then the respective endomorphism of TV is given by a/(A4), meaning the application
of a to the entries of A.

Suppose the character of 7" has value on s € Gy¢q given by xr(s) = 22:1 wj. Then
i 1 2
xr(s?) = 3o wy

Now we look at the value at s of the character of 7°. From the discussion above, it is given
by

(3

l

-1 t—1 _
Xro(s) =D alw) =Y _p" Y o =p"> xr(s”).
j j i=0 i=0

j=1 =1

e We make a simple calculation:

Srarxpo(s) = parp™ Sy xr(s”) = pt g S arxr(s”)
=p" S0 f(s7) = |X|f(s)

e We can decompose the Q,[G]-modules T into simple ones and choose a linearly independent
subset of their characters. As f and all characters take values in @, the coefficients must
now be elements of Q,. This completes the proof.

|

3.4.4 Corollary. (Serre [9]) The Brauer characters ¢s for S € Xr, g form a Q,-basis of Hg.

Proof. Take f € Hg. By the proposition it can be written

F= > avxvic.,

VGEK’G

with ay € Q,. Now we apply proposition 3.2.11 and see

[= Z ay Qaev)-

VEZK,G

Since every ¢gq(y) is an integral linear combination of simple Brauer characters and since the simple
Brauer characters are linearly indepent by proposition 3.4.1, the corollary is proved. O

At this point we introduce some useful objects, which allow us to find yet another basis of Hg.
We will, however, not give proofs, as they involve the introduction of more “machinery”. Complete
treatments can be found in [11] and [1].

First consider the general situation of a finite dimensional algebra over a field.

3.4.5 Definition. A module homomorphism f : E — F is called essential if f(F) = F, but
f(E") # F for all proper submodules E' < E.

A projective cover of a module E is a projective module Py; together with an essential
module homomorphism Py — M.



It turns out that for every module there is a projective cover, which is unique up to isomorphism

Let us now consider a p-modular system (R, K, k). Using “idempotent lifting”, one can show
the following

3.4.6 Lemma. Let Py, be a projective k[G]-module. There is a projective R|G]-module Pr, which
is unique up to isomorphism, such that Pr ®r k = Py (reduction modulo p).

3.4.7 Definition. We define the map e that sends (an isomorphism class of ) a projective k[G]-
module Py, to (the isomorphism class of ) the projective K|[G]-module Pr ®p K.

In a certain sense e and the decomposition map d are adjoint.
We list some properties:

3.4.8 Proposition. (i) Let P be a projective k[G]-module. Then x.(py(s) =0 for all s € Gey.
(i) Let S,T € ¥y ¢ and put ds = dimy(End(S)). Denote by Ps the projective cover of S. Then
1 _
€] D Xepe) (s (s) = ds b7
seG

We can regard the sum in (2) as a scalar product and thus conclude that the x.(py) for S € ¥y ¢
are linearly independent. This implies the

3.4.9 Corollary. The Xc(pg)lG,., for S € X, ¢ form a basis of Hg.

For use later on we record the following

3.4.10 Remark. Take f € Hg and extend it to all of G by f(s) = 0 for s € Gyey. Then there
are as € Qp for S € g, ¢ such that f =) asxe(ps)-
3.5. Application to distributions

In this section we will see how the last corollary enables us to describe Euler-Poincaré maps by
certain distributions.

First we will introduce distributions on a totally disconnected compact Hausdorff space X.
By LC(X, K) we denote the K-vector space of locally constant functions on X with values in the
field K.

3.5.1 Definition. A distribution on X is a K-linear map
i LC(X,K) = K, frop(f) =< fu> .

We wish to give to some examples, which will be used for the applications to Galois theory
given in chapter 6.

3.5.2 Example. e Define the Dirac distribution of x € X by

e Let G be a profinite group. For f € LC(X, K), which is locally constant modulo U € Ug, we

set
1
p(f) = m Z f(z).

z€G/U

This definition does not depend on the choice of U as a brief calculation shows. We call p
the Haar distribution of G.



Now consider a profinite group G' and the p-modular system (Z,, Qp,F,). We recall that G4
is compact.
The following is clear.

3.5.3 Remark. The maps Greqg — Greg defined by
e si— g lsg forge G
o 55— sP

are homeomorphisms.

We will now introduce the space of distributions we are interested in and relate it to Hg.

3.5.4 Definition. We define Dg to be the space of distributions p on Gy with values in Qp,
such that < foa,u >=< f,u > for a any of the homeomorphisms of the above remark. We say
u € D¢ is invariant under s — g 'sg for g € G and s — sP.

3.5.5 Proposition. Let G be a finite group. A distribution p € Dg is uniquely defined by its
values on Hg and thus on the simple Brauer characters.

Proof. Denote by «, the conjugation by g € G and by 3 the map s ~— sP. There is a
positive integer n such that 3" is the identity on G,ey. Given p € Dg we must find its value on
f € LC(Greg,Qp,) . This we do by averaging over all homeomorphisms in question:

|G|+n Zf Oég—i-Zf °F)

g is clearly an element of Hg and < g, u >=< f, 4 >. a

In the last section we noted different bases of Hg. Expressing the simple Brauer characters in
terms of them, we receive the following

3.5.6 Remark. Let G be a finite group. A distribution u € Dg is uniquely determined by its
values on xv|a,., for V € Cg,,c and even on X(pg)|G,., for the projective covers of S € X, .

We can reformulate the proposition and take a slightly different point of view.

3.5.7 Remark. For a finite group G, the Euler-Poincaré maps in EP(G) are in a bijective cor-
respondence with the distributions in Dg.

For an Euler-Poincaré map is uniquely defined by its values on the simple G-modules and a
distribution in Dg by its values on the Brauer characters of these simple G-modules. O

We also observe the following characterization of invariant distributions, which is more explicit:

3.5.8 Remark. (Serre [9]) Let G be a finite group. For u € D¢ there is one and only one
0 € Hg such that for all f : Greg — Q)

< fipu>= \G|Ze

geG

(For g & Greq we set §(g) =0 and give f(g) any value.)



Proof. As we have seen above, i is uniquely defined on the simple Brauer characters. We use
the homeomorphisms from remark 3.5.3 to form an equivalence relation on Gy¢,. The number of
equivalence classes clearly is the Q,-dimension of H¢, and hence equal to the number of simple
Brauer characters. We therefore have to solve the following square system of inhomogeneous linear
equations

< Pp =) ||G]|
=1

where n is the number of equivalence classes and C; is the ¢ — th one with representative g;. F;
denotes the j-th simple k[G]-module. Since the simple Brauer characters are linearly independent,
this system of equations has one and only one solution in the variables 6(g;). O

j(gi)e(gi)a

In view of corollary 3.4.9, we can express the function 6 as a linear combination of characters.
(We use the notation from section 3.4.)

3.5.9 Remark. (Serre [9]) 0 = ESEEF . (¢5) < Xe(Ps)*> where * denotes the dual module.
D

Proof. Due to the uniqueness of 6 proved above, the result follows from the following calcu-
lation. Let S € Yr, ¢

a1 Leec 0(8)0s(s) = G Lsea 2 resy, o M 1(67) = Xe(Ps) (s )b (5)
= ZTGEFP’G N(‘Z’T)le (|G\ ZseG Xe(Ps) (s~ )¢S( )
1(9s)

|

We now return to a profinite group G. We recall that for V < U with U,V € Ug we have a
natural injection Xy, ¢/ < Xy g/v. By identifying the basis of Brauer characters of H /; with the
corresponding Brauer characters of H v/, a natural injection of Qp-vector spaces Hg/y — Hg v
arises.

Since we are only concerned with locally constant functions, a distribution p € D¢ is uniquely
determined by a collection (ug,u € Daju)vueus subject to the “commutativity relations”

VU = peyvlngy = o

where we use the above embedding Hg /iy — Heg v -

By proposition 3.1.6, remark 3.5.7 and the correspondence between a basis of Hg,y and
Yk,q/u, a collection of distributions (1117 )ueu, is uniquely defined by an Euler-Poincaré map in
EP(G). This gives the principal result of this chapter:

3.5.10 Theorem. (Serre [9]) Let ¢ € EP(G) an Euler-Poincaré map. There is one and only
one distribution pu° € Dg such that

< ¢E):U‘C >= C(E)

for all E € Cy .



4. Cohomology of profinite groups

4.1. Definition and basic properties

We introduce continuous cohomolgy in quite a general setting, but will quickly go on to specialize.

Let G be a topological group and A a topological G-module, with the additional property that
the action of G on A is continuous. Such an A is called a continuous G-module. (From now
on the term G-module is often used instead of continuous G-module.)

4.1.1 Definition. Let C"(G, A) be the abelian group of all continuous maps G™ — A, where
G" is the n-fold product of G, equipped with the product topology. f € C™(G,A) is called an
n-cochain.

We wish to form a complex consisting of the C™.

4.1.2 Definition. The coboundary operator
d": C"(G,A) — C" (G, A)
for n > 0 is defined by

(df)(x1,...,xpnt1) =1 f(x2,. s Tnt1)
+ Z?:l(_l)lf(xlv sy L1y L1y Li4-2y -+« 7$n+1)
(=) f (2,0, 2p)

Following the example of most of the books on this subject, I shall take the liberty of skipping
the proof of the following lemma, which shows that the C"(G, A) indeed form a (co-)complex
C(G,A).

4.1.3 Lemma. d"od" 1 =0 Vn > 1

4.1.4 Definition. The cohomology groups of the complex C(G,A) are called the cohomology
groups of G with coefficients in A.

4.1.5 Remark. If G acts trivially on A, then H (G, A) is ezactly the group of continuous group
homomorphisms [ : G — A, as df (z,y) = f(y) — f(xy) + f(x).

Next, we wish to make a step towards the “long exact sequence” coming from an exact sequence
of continuous G-modules A, B, C.

4.1.6 Lemma. Consider the exact sequence
0—-A—B—C—0,

with maps o« : A — B and 0 : B — C being continuous G-homomorphisms subject to the
conditions:

(i) the topology of A is induced by that of B

(1) B has a continuous section v, i.e. 3o~y =idc (v need not be a homomorphism,).

Then for every n € N we get an ezact sequence of complexes

0—C*(G,A) — C*(G,B) — C*(G,C) — 0,

the maps & and 3 being given by composing the cochain with o resp. [3.



Proof. We have foa(f) = Soao f =0 . Further & is injective, since condition (i) allows us
to view A as a sub-G-module of B. Given a cochain g € C"(G, (), define f := o g a cochain in

C"(G, B). [ is surjective, since fo f = fovyog=g. 0

Following Wilson ([16]), we call an exact sequence satisfying both of these conditions well
adjusted.

Due to the lemma, (co-)homological algebra tells us that, for every well adjusted exact se-
quence, there exists a “long exact sequence”

- — H"(G,A) — H"(G,B) — H"(G,C) — H" ™\ (G,A) — ...

(for every n € N) with maps H"(G,A) — H"(G, B) and H"(G, B) — H"(G,C) coming from &
and 3 and the “connecting homomorphisms” § : H*(G,C) — H""Y(G, A).

4.1.7 Example. FEquipping A, B and C' with the discrete topology, we clearly have a well adjusted
ezact sequence.

A large part of this essay is concerned with discrete modules. We are, however, also interested
in the “p-adic” case of Z,-modules and Q,-vector spaces.
We have the

4.1.8 Remark. o Let A < B be an open submodule. Then B/A has as quotient topology the
discrete one and hence the short exact sequence

0—-A—-B—A/B—0

1s well adjusted.

o Suppose A, B are finitely generated Z,-modules or Q,-vector spaces, equipped with the p-adic
topology. Then
0—-A—-B—A/B—0

is well adjusted.

It should be mentioned here that, if we insist on the G-modules to be k-vector spaces, the
same is true for the cohomology groups.

4.2. Maps of cohomology groups

In this section, which is based on [16], we list some important, but very technical results.
We begin with a

4.2.1 Definition. Let G1,Gs be profinite groups and let A; be G;-modules (i = 1,2). A pair of
maps
0,0), 0:G1 — Ga, p:A3— Ay

is called compatible if p(0(x)a) = xp(a) Vo € Gy Va € A,.

4.2.2 Example. (i) 0 = idg : G — G and ¢ : Ay — Ay continuous. Then (idg,p) is
compatible if and only if ¢ is a G-module homomorphism.

(i) Let H < G be a closed subgroup, A a G-module and 0 : H — G the inclusion. Then (0,id)
is a compatible pair.

(iii) Let K <G be a closed normal subgroup and consider § : G — G/K. For a G-module A,
AR s closed under G-action and is a G/K-module. Take the injection ¢ : A% — A. Then
(0, ) are compatible.



4.2.3 Lemma. Let 0 : Gy — G and ¢ : Ay — Ay be a compatible pair, n € N.
(i) There is an induced homomorphism
(0,)" : C" (G2, A2) — C"(G1, A1)
given by ((0,9)" f)(x1,...,2n) = @f(0x1,...,0x,).

(i) The diagram
C"(Ge,A2) — C"(Ga,Az)

! !
C”(Gl, Al) — C”(Gl,Al),

where the horizontal maps are the coboundary operators and the vertical maps the (0,¢)*, is
commutative.

(11i) (0,¢)* induces a homomorphism H" (G2, A2) — H"(G1, A1), which we shall for the sake of
simplicity also call (0, ¢)*.

Proof. (1) and (2) are easy calculations. (3) is a basic fact from cohomological algebra. The
lemma and the proof can be found in [16], 9.2.1. O

We now apply the lemma to the above example and state the following

4.2.4 Definition. Let A be a continuous G-module, H < G a closed and K <G a closed normal
subgroup. The homomorphism

res: H"(G,A) — H"(H, A)
induced by (2) of the example is called the restriction and
inf : H'(G/K, A%) — H"(G, A)
induced by (3) the inflation homomorphism.

4.2.5 Proposition. Let I be a directed set of indices, (G;,0;;) a projective system of profinite
groups, (A, ;i) a direct system of discrete abelian groups with A; being a Gi-module. Set

(G,0;) = liin(Gi,Oi,j) and (A, ;) := liin(Ai,goj’i).
Assume that each pair (0; , ;) is compatible. Then
(i) There is a unique G-module structure on A such that each pair (0;,¢;) is compatible.
(ii) The ablian groups C™(G;, A;) together with the induced maps
Vii = (i g, 050)" : C(Gi, Ai) — C™(Gy, 4;)

form a direct system, and the the induced maps
Vi = (05,0:)" : C(Gi, Ai) — C™(G, A)
satisfy vjvj. = vi for i < j.
(iii) The ablian groups H"(G;, A;) together with the induced maps
i = (0i,050)" : H"(Gi, Ai) — H" (G, Aj)
form a direct system, and the the induced maps
ni = (0i,0:)" : H"(Gi, A;) — H"(G, A)

satisfy nyn;; = n; fori < j.



(iv) (C™(G, A),7i) = lim(C™(Gi, Ai), 75.4)-
(v) (H"(G, A),n;) = Im(H"(Gs, Ai), 1j,)-

Proof. The proof is quite technical, but uses no “deeper” results. The proposition with a
complete proof can be found in [16], 9.7.2. O

The next result is of great importance to us.

4.2.6 Corollary. Let G be a profinite group and A be a discrete G-module, n € N. Then
(a) H*(G, A) = lim H"(G/U, AY), taking the limit over U € Ug.
(b) H"(G, A) = lim H"(G, B), taking the limit over all finitely generated submodules B < A.

Proof. (a) We know G = limG/U. For V < U in Ug we have the inclusions AV — AV

which form a direct system. In fact A = lim AY = |JAY. As we have seen in the example, the

maps are compatible and we can apply the last proposition.
(b) We clearly have A = Jp< 4t , B =lim B. Again the result follows from the example and the

proposition. O

4.3. Coinduced modules

Here we give a short account of coinduced (also called induced) modules for a profinite group G,
culminating in the statement of the Eckmann-Shapiro lemma.
We fix a closed subgroup H < G for the rest of this section.

4.3.1 Definition. Let A be a discrete H-module. We define the coinduced module of A to be
the discrete G-module

M$(A) .= {f : G — A continuous | f(hz) = hf(z)Vh € H Yz € G},
with respect to
o addition: (f1 + fa)(z) := fi(z) + fa(z) for z € G.
e G-action: (gf)(x) = f9(x) := f(zg) for g,z € G.

We have to check the statements made in the definition. Let f € Mg(A) For g,z € G and
h € H we have

F9(ha) = f(hag) = hf(zg) = h(f(x)).

Thus f9 € MG (A).

f € M§(A) is in particular a continuous funtion with values in a discrete space, therefore it
is locally constant, say modulo N € Ug. Hence f*(x) = f(zn) = f(z) for all n € N and all
x € G. Thus the open subgroup N is contained in the stabilizer of f. In a profinite group a
subgroup containing an open subset is open. Hence the stabilizer of f is open in G. This implies
that g — f9Y is continuous, whence the G-action is continuous.

It is now clear that the coinduced module is well defined and has the properties claimed. O

4.3.2 Lemma. The map
m: M(A) — A, f— f(1)

1s a surjective H-module homomorphism.



Proof. 7(fi+f2) = fi(1)+ f2(1) = 7(f1) +7(f2) and h(f) = hf(1) = f(h) = f*(1) = =(f")
for h € H. Therefore 7 is an H-module homomorphism.

It is a fact of profinite groups (cf. [16], 1.3.4) that there is a continuous map 5 : G — H such
that 8(1) =1 and f(hx) = hf(z) for h € H and x € G.

Let a € A. Define f, : G — A, x — [((x)a, which clearly is continuous. Further f,(hz) =
B(hz)a = hB(x)a = hf.(z) and f,(1) = a, whence f € M§(A) and 7(f,) = a, implying that 7 is
surjective. O

We wish to list the following results, which can be proved with the methods developped so
far. Proofs can be found e.g. in [16].

4.3.3 Proposition. (Transitivity of coinduction) Let K < H < G be closed subgroups of G.
Then
Mg (ME(A)) = MK (A).

4.3.4 Proposition. M(.) is an ezact functor.

4.3.5 Proposition. (Eckmann-Shapiro lemma) Let A be a discrete H-module. Then for each
n € N there is an isomorphism

H™(G,M§(A)) — H"(H,A)

induced from the map m: MG(A) — A above.

4.4. Some cohomological considerations

In this section we introduce some language and basic results from cohomological algebra. Our
main reference is [7], IL.5.
Let G be a profinite group. Denote by Ag the abelian category of discrete G-modules, and by
Ab the abelian category of abelian groups.
Proposition 4.2.5 implies that
HY(G,.): Ag — Ab

is a functor.
We would like to be a bit more precise.

4.4.1 Definition. Let A be an abelian category. A cohomological functor H = (H9),cz on
A is a sequence of covariant additive functors H? : A — Ab, which assigns to every short ezact
sequence 0 — A — B — C — 0 in A a connecting homomorphism 6 = 6" : H"(C) — H""1(A)
such that the following two conditions are satisfied:

(a) For every commutative diagram

0O - A - B —- C — 0
Lf Ly Lh
0 - A —- B — C" — 0
in A with ezact rows, the following diagram commutes for every q

aic) & HH(4)
| H(h) L HTHY(f)

ey L gerian.

(b) For each short exact sequence in A

0—-A—B—C—0,



the long sequence
- HY ) °S HY(A) — HY(B) — HI(C) & HFY(4) - ..
18 ezact.

Using the theory developped so far, it is easily seen that H*(G,.) and H*(G/U, (.)V) for U<G
closed are cohomological functors for the category Ag of discrete G-modules, as well as for the
categories of finitely generated Z,-modules and finitely generated QQ,-vector spaces, on which G
acts continuously and linearly, denoted by Mz, ¢ and Mg, q-

4.4.2 Definition. Let H, F' be cohomological functors on A. A morphism of cohomological
functors ¢ : H — F is a family ¢? : HY — F7 (q € 7Z) of morphisms of functors (natural
transformations) such that for every short exact sequence

0—-—A—-B—-C—0

in A the following diagram commutes for all q € Z:

HI(C) & H(4A)

¥1(C) | L T™(4)
Fic)y 5 Feti(a)

It turns out that the restriction for a closed subgroup H < G
res: H*(G,.) — H*(H,.)
and the inflation for a closed normal subgroup U <G
inf : H*(G/U,()Y) — H*(G,.)
are morphisms of cohomological functors on the categories Ag, Mz, ¢ and Mg, c-

4.4.3 Definition. Let H be a cohomological functor on A. H is called positive, if H1 = 0 for
all g < 0. H is called effaceable by a subclass B C A, if H is positive and if for every A € A
there is a monomorphism

€a:A— My, MypeB

with H1(M 4) = 0 for all ¢ > 0.

The following theorem is a very helpful tool, as it carries certain properties from dimension 0
to all other dimensions.

4.4.4 Theorem. Let H, F be positive cohomological functors. Assume H is effaceable by the class
of injectives of A. Suppose ©° : H* — FY is a morphism of functors. Then there is a unique
morphism v : H — F such that ©° = 0.

Proof. [7], theorem I1.5.5 O

Let H, F, E be cohomological functors on 4, such that H and F are effaceable by the class of
injectives, and consider the following morphisms of functors:

7L o, po S po, o £ go
with unique extensions ¢, ¥ and p. Then we have
P=ylop’ & p=ygoyp

and
¢° is an isomorphism < ¢ is an isomorphism.

Here we would like to quote the following theorem, which allows us to apply the results above.



4.4.5 Theorem. Let G be a profinite group and N a closed subgroup. Then the cohomological
functors H*(G,.) and H*(N,.) are effaceable by the injectives of Ag.

Proof. [7], theorems I1.5.10 and II.5.11 O

4.5. G-action on cohomology groups

Let G be a profinite group, K <G an open normal subgroup.
We wish to define a G-action on the cohomology groups H" (K, A) for A € Ag. This we do
by acting on K by inner automorphisms. More precisely, let * € G and

0,: K — K,y— z ‘yzx

be the conjugation homomorphism.
Further consider the homomorphism

Yy A— A a— za.
Asforae Aandy € K

02(02(y)a) = @a(z™ yza) = yra = yo.(a),

the pair (0, p,) is compatible.
From lemma 4.2.3 we receive induced maps

7 HY(K,.) — H"(K,.),

which one checks to form a morphism of cohomological functors.
Now consider n = 0 and = € K. Let a € H°(K, A) = AX. We have 7°(a) = xa = a. Thus 7°
is the identity map on K. By theorem 4.4.4 it follows that " is the identity for all n € N.
Define the maps
G/K x H"(K,A) - H"(K,A), (x,f)— Tf.

As G/K is discrete, due to the strong assumption on K, the above maps make H" (K, A) into
G /K-modules.

We next use theorem 4.4.4 to show that
res™ : H'(G, A) — H"(K,A)%/K,

where res denotes the restriction.
It again suffices to check this for n = 0, which is obvious. We have used that H*(K,.)%/K is
a cohomological functor, which follows from H*(K,.) being one.

Now we wish to define the corestriction. We do this by defining it in dimension 0 and
extending it to the other dimensions using theorem 4.4.4. Here K is an open subgroup of G. Put

cor® : AK — A% a— Z ga.
geG/K

It turns out that cor® is a morphism of functors on Ag. Thus theorem 4.4.4, indeed, gives us
cor : H"(K,A) — H"(G, A)

for n € N.



4.5.1 Proposition. Let K be an open normal subgroup of G. Then
corores" = (G : K)id
and
res" o cor”| g ayorx = (G K) id
for all n € N.
In fact, for the first equation K need not be normal.

Proof. It is clear that (G : K) id is a morphism of cohomological functors. Thus, it is again
enough to check the equalities in dimension 0, where they are obvious. O

We would like to point out that it is possible to consider “only” closed normal subgroups K
for the action of G/K on H"(K,A). Then, however, we have to use extra arguments to see that
the action is continuous. A proof can be found in [16], lemma 10.2.4.

4.6. Cohomological dimension

In this section we fix a profinite group G.

4.6.1 Definition. An abelian group A is called a Z-torsion group if each element of A has
finite order. If in addition the order of each element is a power of the prime p, A is a p-torsion
group.

4.6.2 Definition. e Let p be a prime. The p-cohomological dimension of G is defined to
be
cd,(G) := sup{ 3p-torsion G-module A s.t. H"(G,A) # 0 }.
neN

e The cohomological dimension of G is

cd(G) := sup {cd,(G)}.

p prime

We now collect a few simple remarks for further use.
Since every element in a Z-torsion group has finite order, we receive the

4.6.3 Remark. Finitely generated Z-torsion groups are finite.

4.6.4 Remark. Let A be a discrete G-module. If A is finitely generated as a G-module, then it
is finitely generated as an abelian group.

Proof. Let aq,...,a, be generators of A as a G-module. Since A = UUeuG AYi_ there are

U; € Ug such that a; € AY. Since every U; has finite index in G, a; is only mapped into a finite
number of a; ; € A under the action of G. These generate A as an abelian group. O

4.6.5 Remark. Let A be a finite simple G-module of order |A| = n. Then for every prime p
dividing n we have pA = 0. In particular, every finite simple p-torsion module B satisfies pB = 0.

Proof. There is an element x, whose order is divisible by p” with r maximal with that
property. Then the submodule pA does not contain x, as pA does not contain any element with
order divisible by p". So pA # A and hence by simplicity pA = 0. a

We will not make use of the next proposition. Since, however, it is easily proved with the
methods we have at our disposal, we mention it.



4.6.6 Proposition. Let G be a profinite group. Then

cdg = sup{ 3 discrete Z-torsion module A s.t. H"(G,A) #0 }.
neN

Proof. We must show H"(G, A) = 0 for all Z-torsion modules A and every integer n > cd(G).
By corollary 4.2.6 we have H"(G,A) = lim H"(G, B), the limit being taken over all finitely

generated submodules B < A. This reduces us to show H"(G, B) = 0 for all B finitely generated,
hence by remark 4.6.3, finite submodules.

Assume A is simple, then by remark 4.6.5 there is a prime ¢ with ¢A = 0, hence A is a g-torsion
module and by the definition of ¢d(G) H"(G, A) = 0.

Now we argue by induction on the length of a composition series for A. If B < A is a proper
non-zero submodule, we have the short exact sequence 0 — B — A — B/A — 0. By induction
hypothesis H"(G, B) = 0 = H"(G, A/B). Hence the long exact sequence gives us H"(G,A) =0
as desired. O

4.6.7 Proposition. cd,(G) < n if and only if for all simple G-modules B satisfying pB = 0 we
have H"(G,B) = 0.

Proof. By definition we have that cd,(G) < n is equivalent to H"(G,A) = 0 for all 7 > n
and for all discrete p-torsion modules A.

Using the same argument as in the last proof, the above is equivalent to H" (G, B) = 0 for all
r > n and for all simple discrete p-torsion modules B. By remark 4.6.5 the B’s concerned are
exactly those satisfying pB = 0. O

We collect some properties of the p-cohomological dimension.

4.6.8 Proposition. Let H be a closed subgroup of G and p a prime.
(i) cdp(H) < cdy(G)
(i1) If p does not divide (G : H), then cd,(H) = cd,(G).
(i11) If H is a p-Sylow subgroup of G, then cdy(H) = cdp(G).
() If H is open in G and cdy(G) < oo, then cd,(H) = cd,(G).
(v) A pro-p group G has p-cohomological dimension 0 if and only if G = 1.
(vi) cdp(G) =0 if and only if p f|G]|.
(vii) If cdp(G) # 0,00, then p™ | |G|.
(viii) If G is a pro-p-group, then cdy(G) = 0 for every prime q # p.
(iz) If G is finite and p | |G|, then cd,(G) = oo.

(z) Assume cd,(G) < co. If H < G is a closed finite subgroup, then p [ |G|. In particular, G
has no element of order p. Further, if G is a pro-p group, then it does not have any finite
closed subgroups.

Proof. (1) If B is a discrete p-torsion H-module, then so is Mg(B) by the definition of its
elements. For n > cd,(G) we conclude using the Eckmann-Shapiro lemma that H"(G, M§(B)) =
H"(H,B) = 0. Thus cd,(H) < n.

(2) ¢dp(G) = n. Then there is a discrete p-torsion module A such that H"(G, A) # 0. The
assumption on the index implies by proposition 4.5.1 that res : H"(G,A) — H™(H,A) is an
injection. Consequently H"(H, A) # 0, hence cd,(H) > n.

(3) Follows immediately from (2).



(4) Let cd,(G) = n and A be a discrete p-torsion G-module with H"(G, A) # 0. Fix coset
representatives {g; = 1,¢2,...,9,} and define G-homomorphisms

a: M{(A) = A, fr) g7 flgr) and B:A— M{(A), ar fo,
=1

where we set f,(1) = a and f,(g;) =0 for i = 2,...,n and extend to cosets.
It is clear that these maps are well defined and that we have co3 = id 4. Hence « is surjective.
Consider the short exact sequence

0—B— M§(A) — A—0,

where the last map is given by « and B is the corresponding kernel. Now we have the following
part of the long exact sequence

H"(G,M§(A)) — HY(G,A) — H" (G, A) = 0.

Since H™(G, A) # 0, H"(G, M§(A)) # 0 and hence by the Eckmann-Shapiro lemma H"(H, A) #
0 implying cd,(H) > n.

(5) Assume cdy(G) = 0. Consider [, as a G-module under the trivial action. By remark 4.1.5
H!(G,F,) = 0 means that there are no continuous homomorphisms G — F,. This, however, is
not true for G # 1: Let U € Ug, thus G/U is a finite p-group. It is a fact from finite group
theory that a finite non-trivial p-group has a normal subgroup of index p. Take such N < (G/U).
Consider G — G/U — (G/U)/N =T, — F,, where the first two maps are the natural continuous
projections, and the last is a non-trivial group homomorphism of F,,.

(6) Let H be a p-Sylow subgroup of G, thus by (3) ¢d,(G) = cd,(H). Furthermore, p does
not divide the order of G if and only if H = 1. The result now follows from (5).

(7) - (10) follow immediately. 0

Without proofs we list some examples.

4.6.9 Example. o cdy(Zy) =1
e cd,(L) =n for L =17, % --- x Z, with n factors ([16], 11.3.1)
o cdy(Z) =1

We wish to mention at this stage the following important theorem by Serre.

4.6.10 Theorem. (Serre [12]) Let G be a profinite group that does not contain any element of
order p. Then for every open subgroup U < G we have cd,(U) = cd,(G).

In view of (10) of the above proposition, the condition that G does not contain an element of
order p is reasonable, as otherwise cd)(G) = oo.

An important application of this is to p-adic analytic groups (cf. Lazard [5]). We state the
following corollary of Serre’s theorem.

4.6.11 Corollary. (Serre, [12]) Let G be a compact p-adic analytic group of dimension n and
without an element of order p. Then cd,(G) = n.

This implies in particular the

4.6.12 Corollary. Let G = GL4(Zy), where d and p are chosen such that G does not contain an
element of order p. Then cd,(G) = d>.



4.7. Euler-Poincaré characteristic and distribution

We now wish to define the Euler-Poincaré characteristic for a profinite group G. Fix a prime p.
As G-modules we use the objects of Cp, g, i.e. [Fj-vector spaces with the discrete topology, on
which G acts continuously.

(4.7.1) For the definition to make sense, we have to subject our profinite group G to a finiteness
condition:

(1) edp(G) < 00
(ii) dimp,H"(G,A) < oo for all n € N and all A € Cr, ¢

4.7.2 Remark. Let H < G be a closed subgroup. If G satisfies the finiteness conditions above,
then so does H.

Proof. (i) was proved in proposition 4.6.8. Let A € Cp, g be an H-module. Then the
Eckmann-Shapiro lemma implies

H™(G, Mfj(A)) = H"(H, A),
whence we conclude the finite dimensionality of H"(H, A). O

For B € Cp, ¢ we note that B is finite and pB = 0. Hence proposition 4.6.7 implies that
H"(G,B) =0 for all n > cd,(G).
Thus the sum in the following definition is finite.

4.7.3 Definition. For a profinite group G subject to the above finiteness condition we define the
Euler-Poincaré characteristic of A € Cy, ¢ to be

e(G,A) = (~1)'dimg,(H' (G, A)).

i
As announced earlier we have
4.7.4 Lemma. The Euler-Poincaré characteristic e(G,.) is an Euler-Poincaré map.

Proof. Let 0 — A — B — C — 0 be a short exact sequence of objects in Cr, ¢ (automatically
well adjusted). We get the long exact sequence

- — H"(G,A) — H"(G,B) — H"(G,C) — H" " (G, A) — ...
and therefore e.g. by splitting it

0="> (~1)!(dimg,H (G, A) — dimg, H (G, B) + dimz, H'(G, C)).

7

This immediately gives:
e(G,B) =¢(G,A) +¢(G,C)

We can now apply theorem 3.5.10 to get the first main theorem from [9].

4.7.5 Theorem. For a profinite group G subject to the finiteness condition 4.7.1 there is one and
only one distribution ug € Dg such that

e(G,A) =< da,ug > VAECF, G-

We call ¢ the Euler-Poincaré distribution.



5. p-adic cohomology of profinite groups

5.1. Cohomology with coefficients in Z,-modules

Up to now we have only considered cohomology with coefficients in discrete modules. We will
now extend (parts of) the theory to Z,-modules.

Let L € Mz, be a finitely generated Z,-module equipped with the p-adic topology and
G a profinite group, which acts on L continuously and Z,-linearly. We have already defined the
cohomology groups H"(G, L) in 4.1 and remarked (4.1.8) that long exact sequences exist for every
short one.

For the rest of this chapter we insist that G satisfies:

dim]pp(H"(G,A)) <oo VneNVAe C]Fp,G

Under this hypothesis we can state a useful equivalent formulation of the cohomology groups.
First, however, we introduce some technical notation (cf. 3], 13.1).

5.1.1 Definition. Let (A;, fij) be a projective system of topological groups with its indices being
natural numbers. It satisfies the Mittag-LefHer property, if for all n € N there is m > n such
that for all k > m froi(Ak) = fam(Am).

5.1.2 Lemma. (i) The projective system of complexes of abelian groups C*(G,L/p™L) satis-
fies the Mittag-Leffler property.

(ii) Leti € N. The projective system H'(G,L/p"L) satisfies the Mittag-Leffler property.
Proof. For (1) we remark that the maps
CYG,L/p"L) — CY(G,L/p"L), f — Tnmo f

are surjective, where 7, ,, is the natural projection L/p™L — L/p"L.

(2) Our finiteness assumption implies that H*(G,L/p"L) are finite for all 4,n € N.

In general, the Mittag-Lefller property is satisfied if all groups concerned are finite. This can
be seen using a combinatorial argument. We use the notation of the preceding definition.

Given n € N, put A := A,,. For every element a € A either of the following is true: (i) there is
mg > n such that a &€ fr,,n(Am,) or (ii) for all k > n a € fin(Ag). Let m be the maximum of the
myg’s from (i). Then f,,x(A) is surjective for all k£ > m, and m satisfies the requirements. O

Now we can prove the reformulation mentioned.

5.1.3 Proposition. ' '
H'(G,L) =lim H'(G,L/p"L),
where the projective limit is taken over n € N.

Proof. We have L = lim L/p"L, the limit being taken for the natural projections L/p™L —

L/p™L for m > n and n,m € N. A map f from a topological space X to L is continuous, if and
only if 7, o f is continuous for all n € N, where 7, : L — L/p™L is the natural projection. Hence

CYG, L) =1lim C'(G, L/p"L).

Having established this, the above lemma contains the conditions necessary for applying [3],
13.2.3., resulting in
H'(G,L) =lim H'(G,L/p"L).



|

By our finiteness assumption, the H'(G, L/p™L) are finite dimensional vector spaces over F,,
and hence p-groups. Consequently, H*(G, L) is an abelian pro-p-group.

5.1.4 Proposition. The H (G, L) are finitely generated Z,-modules.

Proof.

e Denote by L;, the torsion submodule of L and consider the short exact sequence 0 —
Lyoy — L — L/Ly, — 0. This gives the long exact sequence

.o — H"YG,L/Ltp,) — H™G,Liy) —
— H"(G,L) — H"(G,L/Liyy) — ...

Since L is finitely generated, L;o, is finite. If Ly, in addition is simple, then by remark 4.6.5
pLior = 0 and thus it is an F,-vector space. The finiteness assumption implies in this case
that H™(G, Lyo,) is finite. By induction on the length of a composition series of a general
Ly, using the short exact sequence 0 — M — Ly — Ly /M — 0 and its associated long
one, we conclude that H™(G, Ly, ) is finite.

Now assume that H"(G, L/ Ly, ) is finitely generated. Then we conclude from the long exact
sequence above that H"(G, L) is finitely generated.

This reduces us to show that H"(G, L) is a finitely generated Z,-module for every torsion
free L.

e Now assume L is torsion free. We therefore have the short exact sequence 0 - L — L —
L/pL — 0, where the first map is multiplication by p. The associated long exact sequence
is

--— H"(G,L) - H"(G,L) — H"(G,L/pL) — ...,
where the first map is multiplication by p of n-cochains.
By our finiteness assumption H"™(G, L/pL) is finite and thus H™/pH™ is, too, for H" :=
H™(G, L).

The result now follows from the following lemma. O

5.1.5 Lemma. Let L be a Z,-module such that L/pL is finite and thus a finite dimensional
[F,-vector space. Then rkz, (L) < dimy,(L/pL).

Proof. Let {l1,...,l,} be a Z,-linearly independent subset of L. Assume 0 = > a;l; with
a; € F, and with T denoting the reduction modulo p of x. Take b; € Z, with b; = a;. Then
>, bil; € pL, hence there are ¢; € Z,, with >, (b; — p¢;)l; = 0. Thus b; = pc;, whence b; € (p) and
a; = 0. Od

5.1.6 Remark. For n > cd,(G) we have H"(G,L) = 0.
Proof. By the last proposition H(G, L) = lim H'(G, L/p"L) = lim 0 = 0. O

5.2. Cohomology with coefficients in Q,-vector spaces

Let V be a finite dimensional Q,-vector space with (Q,-linear continuous action by the profinite
group G.

Again under the finiteness assumption from the last section we establish a reformulation of
H™(G,V).

By proposition 3.3.4 we can choose a G-stable Zy-lattice L for V,i. e. V =Q, ®z, L.



5.2.1 Proposition. For every n € N we have
HZ(Gv V)= Qp Xz, HZ(Gv L).

Proof. We have V. = |J, p L. Let f : G* — V be a continuous map. Then G! =
U, f~Y(p™™L) is an open covering. As G is compact, for every f there is an n € N such that
f:G* — p~™L is continuous. Hence p"f : G* — L is continuous.

Further, f is a cocycle (coboundary) if and only if p"f is a cocycle (coboundary). Hence
HY(G,V)=U,p "H'(G,L) =Q,®z, H(G,L). 0

5.2.2 Remark. For n > cd,(G) we have H"(G,V) = 0.
Proof. By remark 5.1.6 and last proposition
H"(G,V)=Q,®z, H"(G,L) = Q, ®z,0 = 0.
O

As for every Z,-module A its rank is equal to the dimension of the Q,-vector space Q, ®z, A,
we can conclude from proposition 5.1.4 the following

5.2.3 Remark. dimq,(H"(G,V)) = rkz,(H"(G,L)) < o0
5.2.4 Lemma. Let G act trivially on Q,. Then G acts trivially on V and
H'(G, V)=V ®q, H(G,Q)).

Proof. Let g € G and v € V. For all € Q, we have by the linearity of the G-action
z(gv) = g(zv) = (9z)v = zv. Hence gv = v.

Choose a Qp-basis {vi,...,v,} of V. Let f : G' — V. We can write it uniquely as f =
> j=1 fjvj with f; G' — Qp. Due to the trivial action f is a cocycle (coboundary) if and only if
each f; is for the complex C(G,Q,). Hence the result. O

5.3. Euler-Poincaré characteristic and distribution

We can now define the Euler-Poincaré characteristic for cohomology with coefficients in Z,- and
Qp-modules and express it as a distribution.

We must, however, again impose the finiteness condition 4.7.1.

We first prove a general

5.3.1 Lemma. Let L be a finitely generated Z,-module and consider the map ¢ : L — L,l — pl.
Denote its kernel by L,. Then

rkz,(L) = dimg,(L/pL) — dimg,(Lyp).
Proof.

e We first note that for Z,-modules the terms “free”, “torsion free” and “p-torsion free” are
equivalent; the first equivalence being a general fact for modules over principal ideal domains
and the second because every element in Z, — (p) is a unit. Also L, is an F)-vector space.

e case 1: L p-torsion module
We show: dimg,(L/pL) = dimg,(Ly)

Suppose first that L is simple. By remark 4.6.5 we know that pL = 0. Thus L, = L and
L/pL = L, yielding the result in this special case.



Next we proceed by induction on the length of a composition series of L. Let M < L be
a proper non-zero submodule. We have the following two IF,-vector space isomorphisms:
Ly/My = (L/M)p and (L/pL)/(M/pM) = (L/M)/p(L/M). Hence

dimp, (Lp) = dimp, (Mp) + dimp, ((L/M)p)
dims, (L/pL) = dime,(M/pM) + dims, ((LJM)/p(L/M)),

which implies the result.
e case 2: L (torsion) free module
We show rkz, L = dimp,(L/pL).
In lemma 5.1.5, we have shown rkz, L < dimp, L/pL.

Let now {l1,...,l.} be an F,-basis of L/pL. Suppose 0 = Y. a;l; with a; € Z, not all 0.
Thus 0 = ), @;l; and hence a; € (p) for all i. Choose the integer ¢ maximal such that
a; = p's; for s; € R. In particular, there is an index j with s; € (p). We have 0 = p' > sil;
and as L is free, 0 = ), s;l;, from which we conclude as above, that for all i s; € (p).
Contradiction.

e general case:
We can write L = Ly, © F with Ly, a torsion module and F free.

dimg,(L/pL) = dimp,(L ®z, F,) = dimg,((Lior © F) @z, Fp)
Loy ®z, Fp) + dime (F Xz, Fp)
Ltor/thor) + dime (F/pF)

(
g
(Ltor),) + dims, (F/pF)

Hence
rkz,(L) = rkz,(F) = dimg,(F/pF') = dimg,(L/pL) — dimg,(Ly).

5.3.2 Proposition. Suppose that L is torsion free. Then

> (=1) rkz, (H(G, L)) = Y (~1)" dimg,(H (G, L/pL)) = e(G, L/pL).

i i
Proof.
e Since L is torsion free, we have the short exact sequence
0—L—L— L/pL—0,
where the first map is multiplication by p. Therefore there is the long exact sequence

— H"YG,L) — HYY(G,L) —...,

where the first and the last map are also multiplication by p (of the cochains).

e Write H' := H'(G,L). Introducing H*! := ker(H't! — H'*!) (multiplication by p),
which is by exactness the image of the connecting homomorphism, we receive short exact
sequences

0— H'/pH" — H'(G, L/pL) — H,"" — 0.



e We make a brief calculation:

e(G,L/pL) = 3_,( 1

= Zz( 2
>4 3
>4

4

)

1)* dimg,(H (G, L/pl))

1)" (dimg, (H'/pH") + dimg, (H))
1)’ dime(‘Hi/pHi) — dimr,(H}))

1) rkz, (H")

2

—~

2

7

A~ N N /N
~— — — —

)
)y
)
)

We have reordered the (finite) sum to get from (2) to (3) and have applied the lemma above
for (3) = (4).

a

With this proposition, the fact that Z,-lattices are free (remark 3.3.3) and the equality
dimp,(H'(G,V)) = rkz,(H'(G, L)) in mind, we make the following

5.3.3 Definition. o Let L be a torsion free Z,-module, on which G acts continuously. Define
the Euler-Poincaré characteristic of L to be

e(G,L) =Y (—1)' rkg, (H'(G,L)).
o Let V be a Qp-vector space, on which G acts Qp-linearly and continuously. Set
e(G,V) =Y (=1) dimg,(H(G,V)).

Note that by remarks 5.1.6 and 5.2.2, all sums appearing are finite under the conditions on G.
We can now rewrite this in terms of the Euler-Poincaré distribution ug introduced in section
4.7.

5.3.4 Corollary. In the notation of the definition we have

o (G, L) =< XL|Gyeg: >

o ¢(G,V) =< XV|Gregs G >

Proof. By corollary 3.3.9 we have x1(9) = xv(9) = dqqv)(g) for all g € Grey. The rest is
clear by the remarks made above. O

5.4. Relating Euler-Poincaré distribution to H*(U, Q,)

Let G be a profinite group satisfying the finiteness conditions 4.7.1. Then so does every closed
subgroup (by remark 4.7.2). Let U € Ug act trivially (hence also continuously) on Q.
In this section we study
Hy; = H'(U, Qp),

which are finite dimensional Q,-vector spaces (by remark 5.2.3). We will relate them to the
Euler-Poincaré distribution.

In 4.5 we defined an action of G/U on H*(U, A) by inner automorphisms of G on U. Using
H'(U,V) = Q, ®z, lim H'(U,L/p"L),

we extend this action to the case of a Q,-vector space V' with Z,-lattice L, on which G acts
Qp-linearly and continuously.
By the same means we define a corestriction. It is clear that proposition 4.5.1 stays valid.



5.4.1 Lemma. Let U € Ug. Then
Hi(G, V) =Hiwu,v)".

Proof. AsV as a vector space is torsion free, so are H(G, V), H'(U,V)%/V . From proposition
4.5.1 we thus get that res : H/(G,V) — H (U, V)%V and cor : H(U,V)¢/V — H(G,V) are
injective. Hence the lemma. u

Consider the special case V = Q,. The H"s are finite dimensional representations of G/U.
Denote by h%] their characters and put

hy == Z(—w’ h;.

This has the striking consequence that we can calculate the Euler-Poincaré distribution for
Qy-vector spaces alone from the knowledge of the hy's.

5.4.2 Theorem. (Serre [9]) Let f : Greg — Qp be a function, which is locally constant modulo
U e Uqg. Then

1
< fipg >= W 86%;[] hu(s)f(s),

where we take f(s) =0 for s € Gpegq-
Proof.

e Take V as above. By definition we have

<XV Gregs G >= Z(—l)i dimg, (H'(G,V)).

2

Lemma 5.2.4 implies that the representation of G/U on H'(U,V) has character h{,xv .

Using lemma 5.4.1 for the first equality and a simple fact from the representation theory of
finite groups for the second, we have

Gy _ ﬁ D hig(s)xv(s).

seG/U

dim(HY(G,V)) = dim(H (U, V)

Taking the alternating sum of these terms, we receive

1
< XV|GT6g’ /.lG >= . h‘U(S)XV(S)
G :U) 2
seG/U

By remark 3.4.10 we can write f : G,y — Qp, which we extend as zero to all of G, as a
linear combination of x.(py) for S € ¥, ¢. This completes the proof.

From remark 3.5.9 we immediately receive the
5.4.3 Corollary. (Serre [9]) hy(s) =0 for s & Greg.
5.4.4 Corollary. (Serre [9]) If H < G is an open subgroup of G, then

pr = (G H)pclo.



Proof. We have to show
< fopg >=(G:H) < f,pe >

for all f: Hyeqg — Q, (we take f to be zero outside H,.g).
Let U € Ug, U C H such that f is constant modulo U. From the theorem we now receive the
following formulae:

S hu(s)/(s)

seG/U

1
< fipg >= G 0)

< fopmg >= ﬁ > hu(s)f(s)

s€eH/U

We have used that the action of H/U on H'(U,Q,) is the restriction of the one of G/U. We now
immediately see, using (G :U) = (G : H) (H : U), that

< fipg> = (GIH)ﬁ ZSEH/U hU(S)f(S)

(GIH) <fnuH >

5.4.5 Corollary. Let H € Ug such that (G : H) = p". Then
e(H,A) =p"e(G, A)
for all A € Cp, .

This corollary is a generalization of the respective result for a pro-p-group G, as proved e.g.
in 7], IV.5.2.

Proof. Since (G : H) = p", Greg = Hyey. Let A € X, . Via the natural injection H — G,
we can regard A as an H-module Ay, which is also simple.

Thus the Brauer characters ¢4 and ¢4, are the same. By definition we have e(H, A) =<
GAy,pr > and e(G, A) =< ¢a, ug >. The last corollary now implies the result. |



6. Applications to Galois cohomology

6.1. Euler-Poincaré distribution of a p-adic field

In this section we state the Euler-Poincaré distribution of the Galois group of a p-adic number
field. The result was originally obtained by Tate (cf. [14]).

Let K/Q, be a finite extension of degree d. Set G = G(K /K ), where K denotes an algebraic
closure of K.

We have the following important

6.1.1 Proposition. cd,(G) =2
Proof. [8], Corollary I1.4.3 O

This, together with theorem 2.1 in [14], implies that the finiteness conditions 4.7.1 necessary
for the definition of the Euler-Poincaré characteristic are satisfied.
We can now state the

6.1.2 Theorem. Let G be as above. Then

HG = —d 617
where 61 denotes the Dirac distribution of the unit element.

As announced, we shall not prove the theorem here. We will, however, conclude it from the
following proposition, for the proof of which we refer to [9], proposition 6.2.1.

6.1.3 Proposition. Let G = G(Q,/Q,). For all U € Ug we have
h([)] =1, h(1] = 1+TG/U7 h2U:07
where 7/ denotes the character of the regular representation of G//U.

Proof of the theorem. Consider first G = G(Q,/Q,) as in the proposition. The proposition
now implies hyy = hY; — hi, + hZ, = —rgu- Thus hy(1) = —(G : U) and hy(s) =0 for s # 1.
Take f: G — Qp, which is constant modulo U € Ug. By theorem 5.4.2 we have

1
< fipg>= ———= h = —f(l) =< f,—01 >.
e >= gy 2 i) = —f1) =<f-&
seG/U
This clearly proves the theorem in the special case.
For the general case we observe that Gx = G(Q,/K) has index d in Gy, = G(Q,/Q).
Corollary 5.4.4 now implies

HGx = d BGg, = —d d1.

6.2. Euler-Poincaré distribution for a number field

In the last section we treated the “local” case of a p-adic field. Here we give an account of another
result by Tate (cf. [15]) for a number field, the “global” case.

Let K/Q be a number field of degree d. Fix a prime p. Further consider a finite set S of places
of K, containing all archimedean places and all places, whose residue class fields have characteristic
p- This allows us to study Kg, the maximal Galois extension of K, which is unramified outside
S, 1. e. for all places not in S. Put G = G(Kg/K).

In [9], 6.3, we find the following



6.2.1 Proposition. If p # 2 or K is totally imaginary (i. e. K cannot be embedded into R),
then cd,(G) = 2.

Moreover, theorem 3.1 in [14], implies that the finiteness condition 4.7.1 is also satisfied in this
situation, so that it makes sense to define the Euler-Poincaré characteristic.

According to [9], 6.3, theorem 2.2 of [15], can be stated as follows.

6.2.2 Theorem. Let G be as above and A € Cp, . Then the Euler-Poincaré characteristic is
given by

e(G,A) = e(A).

v arch

For an archimedean place v we use following the notations.
e Ifv is a complex place, set e,(A) = —dim(A).

o Ifv is a real place, denote by c, € G the Frobenius automorphism corresponding to it.

Further let A, denote the submodule of A fized by c,. Put e,(A) = dim(A,) — dim(A).

For this we will prove a reformulation in terms of the Euler-Poincaré distribution.
First, however, we have to provide one more

6.2.3 Definition. Consider two totally disconnected topological spaces X and Y, and a continu-
ous map h: X — Y.

Let p be a distribution on X (with values in some commutative ring), cf. section 3.5. By the
image hy of p w.r.t. h we mean the distribution on Y given by

< fihu>=< foh,u>
for all functions f onY.
Let v be a real archimedean place with Frobenius ¢, as above. Consider the continuous map
hy : G — G, g— g teyg.

We denote by i, the image of the Haar distribution w.r.t h,. For f: G — Q,, which is constant
modulo U € Ug, this gives explicitly:

<f7,uv>:<fohv,,U/Haar> Z f
seG/U

If in particular f is a class function, then this becomes
< fipw >= f(ew).

6.2.4 Theorem. For G as above, we have

ucz——51+ Z fo-

v real

Proof.

e Denote by ¢4 the Brauer character of A. Thus dim(A) = ¢4(1). As A, is the submodule
of A fixed by ¢,, which has order 2, (7) of proposition 3.2.11 implies dim(A,) = ((;5 A(l) +

pa(c))-



e For a place v we have by [6], Korollar 8.4,

[K : @] = Z[Kw : Qv]a

wlv

where w runs through all places over v. Applying this to the only archimedean place co of

Q we see
d=[K:Q = Y [Ky,:Rl= > 2+ > L

w arch w compl w real

e The theorem above implies:

e(G7 A) = EU arch eU(A)

Zv arch _¢A(1) =+ Zv real %(¢A(l) + (Z)A(CU))
_%qu(l)(Zv compl 2+ Zv real 1) + % Zv real qu(CU)
_%QSA(D =+ % EU real ¢A(CU)

_%51(¢A) + % Zv real Nv(¢A)
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