
The MAGMA package Hecke1

Gabor Wiese∗

April 13, 2003

Contents

1 Introduction 1

2 What is computed? 2

3 Mathematical interpretation 3

4 Documentation of Hecke1 3
4.1 Installation . 4
4.2 Creation functions . 4
4.3 Properties . 4
4.4 Hecke algebra and operators . 5
4.5 Output functions . 6
4.6 Database functions . 7

5 Examples 8
5.1 Getting started . 8
5.2 Hecke algebra . 8
5.3 Writing to a database . 9
5.4 Reading from a database . 10
5.5 Searching a database . 10

1 Introduction

The MAGMA ([1]) package Hecke1 provides functions for creating a module of the Hecke algebra
of Katz modular forms of weight 1 with coefficients in a finite field. It is accompanied by

∗Supported by the European Research Training Network Contract HPRN-CT-2000-00120 “Arithmetic Algebraic
Geometry”. Address: Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The Nether-
lands; http://www.math.leidenuniv.nl/∼gabor/, e-mail: gabor@math.leidenuniv.nl

1

the package CommMatAlg ([4]), which contains some tools for computations with commutative
matrix algebras.

The algorithms used are based on [2]. See also [3].

2 What is computed?

INPUT:

• M some space of modular symbols, say for field K, level N , weight p and character
ε : (Z/N)∗ → K∗.

The weight p must be a prime, and K must either be a finite field or a number field. See
below, for which values the calculations are known to give the desired result.

COMPUTE:

• C the cuspidal subspace of the space of modular symbols M and D the dimension of C.

• Bound = B(p+ 2), where B = 1
12
N

∏

l|N,l prime(1 + 1
l
).

• If K is a number field, let OK be its ring of integers and P a prime ideal above p. Set
φ : OK � OK/P =: F.

If K is a finite field, set F to be K and take φ to be the identity.

• Let Ti stand for either the matrix in OD×D
K representing the i-th integral Hecke operator

acting on C (generated by the MAGMA command IntegralHeckeOperator, only
available if K = Q) or the matrix in KD×D representing the i-th Hecke operator acting on
C (generated by the MAGMA command HeckeOperator).

Call Ti the image of Ti under φ. If in the case of a number field K the matrix does not lie
in OD×D

K , the zero matrix is used instead and a warning is issued.

• Let A be the sub-F-vector space of FD×D generated by all Ti for 1 ≤ i ≤ Bound.

• Let d, D̃ be positive integers and b be a sequence of integers b1, . . . , bd, bd+1, . . . , bD̃ s.t.:

(i) p | bi for 1 ≤ i ≤ d,

(ii) p - bi for d+ 1 ≤ i ≤ D̃,

(iii) Tbi
for d+ 1 ≤ i ≤ D̃ form a basis of the span of Tn for all n ≤ Bound with p - n,

(iv) Tbi
for 1 ≤ i ≤ D̃ form a basis of A.

• The weight 1 Hecke module we want to work with is

H = A/R,

2

where R is the sub-F-vector space of A generated by Tbi
for d+ 1 ≤ i ≤ D̃.

H has dimension d and comes with a natural basis, namely the one given by the images of
Tbi

for 1 ≤ i ≤ d.

• The action of the weight 1 Hecke operators T (1)
n is as follows.

For l 6= p a prime, T (1)
l acts by the natural action of Tl on H.

The operator T (1)
p acts via the natural action of Tp +φ(ε(p))F , where F (the Frobenius) by

definition sends Tbi
to Tbi/p for all 1 ≤ i ≤ d.

The operator T (1)
n with n composite is calculated by the usual formulae from the prime

operators.

3 Mathematical interpretation

We stick to the preceding notations. Let us assume thatK is a number field and that M is the full
space (or its cuspidal subspace) of modular symbols of weight p (a prime), levelN and character
ε : (Z/N)∗ → K∗. In order to obtain a good interpretation, we assume that N ≥ 5 and that p
does not divide N . We can also assume that ε(−1) = (−1)p, as we only have the zero space
otherwise.

It is known that, with the choice of Bound as above, A contains all Ti for i ∈ N.
Via the natural surjection ψ :< Ti | i ≤ Bound > ⊗OK

F � A, it follows from [3],
Prop. 2.3.2, that H is a module for the Hecke algebra of S1(Γ1(N), φ ◦ ε,F)′Katz.

If ε = 1 is the trivial character and if there exists a prime q dividing N such that q ≡ 3

modulo 4, it is proved in Cor. 2.3.3 that
(

< Ti | i ≤ Bound > ⊗OK
F
)

/ < Ti ⊗ 1 | p - i, i ≤ Bound >

is a faithful Hecke module. Hence, if ψ is an isomorphism, H is also faithful and its dimension
equals the dimension of S1(Γ1(N), φ ◦ ε,F)′Katz. In any case a warning is issued, whenever ψ is
not an isomorphism.

If K is a finite field, a similar interpretation should be possible.

4 Documentation of Hecke1

The basic function is HeckeAlgebraWt1. It is called with a space M of modular symbols as
specified above. The function creates a record containing the basic data such as d,A, b etc. as
explained before. Already the first Bound Hecke operators of weight 1 acting on H are computed
and stored. Hence calling this function may take some time and memory.

The created record should not be printed. Instead, the properties can be accessed by var-
ious functions, such as Dimension, Field, HeckeOperatorWt1, HeckeAlgebra and
HeckePropsToString. Moreover, a rather primitive database handling is provided. Please
see below for a precise documentation of the provided functions.

3

The package Hecke1 is accompanied by CommMatAlg, which is useful for the study of the
Hecke algebra (and is required by some of the functions of Hecke1).

4.1 Installation

If PATH is the directory in which the files Hecke1.mg and CommMatAlg.mg are stored, type

> Attach("PATH/CommMatAlg.mg");

> Attach("PATH/Hecke1.mg");

in order to use them. By the command

> SetVerbose ("Hecke1",i);

you can determine whether MAGMA informs you on the calculations in progress (i = 1) or not
(i = 0).

4.2 Creation functions

• intrinsic HeckeAlgebraWt1 (ms :: ModSym :

useIntegral := true) -> Rec

This command computes the essential data for the characteristic p Hecke algebra of mod-
ular forms of weight 1 of level and character as specified by the space of modular symbols
ms given. If useIntegral is true, then the command IntegralHeckeOperator
is used (if possible) instead of HeckeOperator. Please consult section 2 for the precise
functionality.

The record returned by this function can be used to create the Hecke algebra, Hecke oper-
ators and to determine their properties. Note that the calculations can take some time and
can consume a considerable amount of memory.

4.3 Properties

• intrinsic Dimension (H :: Rec) -> RngIntElt

Returns the dimension of the Hecke algebra of weight 1 specified by the Hecke algebra
data H.

• intrinsic Level (H :: Rec) -> RngIntElt

Returns the level of the Hecke algebra of weight 1 specified by the Hecke algebra data H.

• intrinsic Characteristic (H :: Rec) -> RngIntElt

Returns the characteristic of the coefficients of the Hecke algebra of weight 1 specified by
the Hecke algebra data H.

4

• intrinsic Field (H :: Rec) -> Rng

Returns the coefficient field of the Hecke algebra of weight 1 specified by the Hecke alge-
bra data H.

• intrinsic Bound (H :: Rec) -> RngIntElt

Returns the bound up to which the Hecke operators are to be calculated in order to obtain
the Hecke algebra of weight 1 specified by the Hecke algebra data H.

• intrinsic OriginalCharacter (H :: Rec) -> GrpDrchElt

Returns the Dirichlet character of the space of modular symbols, from which the Hecke
algebra data H have been calculated.

• intrinsic Error (H :: Rec) -> BoolElt

Returns whether an error has occured during one of the calculations of Hecke operators.
An error can e.g. be due to the fact that matrices representing Hecke operators in weight p
need not have coefficients in a ring of integers of a number field. In such a case, the zero
operator is used, and thus the results need not be correct.

• intrinsic HeckePropsToString (H :: Rec :

format := "TXT") -> MonStgElt

Prints some properties of the Hecke algebra in weight 1 to a string. Currently the formats
"TXT" (human readable) and "CR" (computer readable) are supported.

• intrinsic HeckePropsToFile (H :: Rec, file :: MonStgElt :

format := "TXT")

Same as HeckePropsToString. The output string is appended to the specified file.

• intrinsic CreateFilePropsCR (file :: MonStgElt)

This function creates a file for storing MAGMA readable properties (for use with
HeckePropsToFile in format "CR").

4.4 Hecke algebra and operators

• intrinsic MyHeckeOperator (C :: ModSym, n :: RngIntElt :

useIntegral := true) -> Any

This command calls IntegralHeckeOperator if useIntegral is true and the
base field of C is Q, and HeckeOperator otherwise.

• intrinsic HeckeOperatorWt1 (n :: RngIntElt, H :: Rec :

useIntegral := true) -> Mtrx

Computes the nth Hecke operator of weight 1 as element of End(H) for an internal basis,
as specified by the Hecke algebra data H. For the option useIntegral please see above.

5

• intrinsic CalcHeckeOperatorsWt1 (L :: SeqEnum, ∼H :: Rec :

useIntegral := true)

This function computes the Hecke operators of weight 1 (as elements of End(H) w.r.t. an
internal basis) specified by the list L of indices and stores them among the Hecke algebra
data H. For the option useIntegral please see above.

• intrinsic HeckeOperatorsWt1 (H :: Rec) -> SeqEnum

This function returns the list of all Hecke operators of weight 1 that are stored in the
Hecke algebra data H. Note that the operators up to Bound(H) are already computed by
HeckeAlgebraWt1.

• intrinsic HeckeAlgebra (H :: Rec) -> AlgMat

Creates the Hecke algebra of weight 1 as a matrix algebra. As generators the operators of
weight 1 stored in the Hecke algebra data H are used.

4.5 Output functions

The command HeckeAlgebraWt1 computes the essential data of the Hecke algebra in ques-
tion, which can be extended using CalcHeckeOperatorsWt1. In the present section we
describe functions for storing these data. We distinguish three subsets: The information contains
data such as level, weight, dimension etc. It does not need much memory. The algebra structure
essentially contains a basis of the weight p Hecke algebra, from which the weight 1 operators
can be deduced. Its calculations takes most of the time and much memory. Finally, the Hecke
operators of weight 1 are treated separately.

The stored data can be loaded using

> load "file";

• intrinsic SaveHeckeInfoWt1 (file :: MonStgElt,

name :: MonStgElt, H :: Rec)

Saves the basic information on the Hecke algebra of weight 1 specified by H into the file.
Neither the calculated Hecke operators of weight 1 nor the algebra structure are saved. The
string name will be the name of the identifier of the Hecke algebra after reloading.

• intrinsic SaveHeckeOperatorsWt1 (file :: MonStgElt,

name :: MonStgElt, H :: Rec)

Saves the calculated list of Hecke operators of weight 1. The usage is as above.

• intrinsic SaveHeckeAlgebraWt1 (file :: MonStgElt,

name :: MonStgElt, H :: Rec)

Saves the Hecke algebra structure. The usage is as above.

6

4.6 Database functions

A rather primitive database handling is provided. As above, the data is divided into information
("info"), algebra structure ("alg") and Hecke operators of weight 1 ("ops"). The "what"-
option can be set to these values or to "all". These functions only work on Unix/Linux oper-
ating systems and use gzip for compression.

Before using the database, type

> H := [];

in each session, as the data of level N will be stored in H[N]. Hence it is also assumed that the
coefficients are in the same field and of the same weight, as the algebras are distinguished by
their levels only.

• intrinsic ExistsInDatabase (N :: RngIntElt,

DatabasePath :: MonStgElt : what := "all") -> BoolElt

Returns whether the specified data of level N is stored in the database.

• intrinsic SaveToDatabase (H :: Rec,

DatabasePath :: MonStgElt : what := "all")

Saves the specified subset of the Hecke algebra data H to the database.

• intrinsic AddToDatabase (N :: RngIntElt,

DatabasePath :: MonStgElt : what := "all")

intrinsic AddToDatabase (L :: SeqEnum,

DatabasePath :: MonStgElt : what := "all")

Computes the Hecke algebra data of level N resp. of all levels in the list L for the trivial
character over the field F2 and adds them to the database. The coefficient field of the
modular symbols used is Q.

• intrinsic AccessDatabase (L :: SeqEnum,

DatabasePath :: MonStgElt : what := "all") -> MonStgElt

Creates and returns the name of a file, which you load in order to obtain the specified
data for the levels in the list L. See the resp. example below.

• intrinsic SearchDatabase (L :: SeqEnum,

DatabasePath :: MonStgElt : what := "info") -> MonStgElt

Please consult the resp. example below for the usage.

7

5 Examples

5.1 Getting started

First you have to attach the packages CommMatAlg and Hecke1, which we assume to be stored
in the folder PATH.

> Attach("PATH/CommMatAlg.mg");

> Attach("PATH/Hecke1.mg");

Now we create the data of a Hecke algebra.

> MS := ModularSymbols (283,2);

> h := HeckeAlgebraWt1 (MS);

The essential data for the Hecke algebra of weight 1, level 283 with coefficients in F2 is calculated
and stored in the record h.

It is then possible to access information on the algebra:

> Dimension(h);

3

> Level(h);

283

> Field(h);

Finite field of size 2

5.2 Hecke algebra

In this example we show how the Hecke algebra can be obtained as a matrix algebra.

> Attach("PATH/CommMatAlg.mg");

> Attach("PATH/Hecke1.mg");

> h := HeckeAlgebraWt1(ModularSymbols(491,2));

We can create the Hecke algebra as a matrix algebra as follows:

> H := HeckeAlgebra(h); H;

Matrix Algebra of degree 6 with 164 generators over GF(2)

Let us study its structure by decomposing it into local factors over F2.

> L,S := LocalDecomposition(H);

> #L;

2

So there are 2 local factors. We can generate the matrix algebra corresponding to the first factor
like this:

> H1 := MatrixAlgebra(H,L[1]); H1;

Matrix Algebra of degree 3 with 26 generators over GF(2)

8

Now we take its maximal ideal.

> m1 := MaximalIdeals(H1)[1]; m1;

Matrix Algebra [ideal of H1] of degree 3 and dimension 0 over

GF(2)

Since it has dimension 0, we know that H1 is the field with 8 elements.
Let us now also look at the second factor and take its maximal ideal.

> H2 := MatrixAlgebra(H,L[2]); H2;

Matrix Algebra of degree 3 with 26 generators over GF(2)

> m2 := MaximalIdeals(H2)[1]; m2;

Matrix Algebra [ideal of H2] of degree 3 and dimension 2 over

GF(2)

It follows that the residue field is F2. We also see that only the third power of m2 vanishes:

> Dimension(m2*m2); Dimension(m2*m2*m2);

1

0

5.3 Writing to a database

In this example we show, how data on Hecke algebras can be stored in a database. As path of the
database we will use "data/".

We first want to store just one algebra.

> Attach("PATH/CommMatAlg.mg");

> Attach("PATH/Hecke1.mg");

> h := HeckeAlgebraWt1(ModularSymbols(143,2));

> SaveToDatabase (h,"data/");

Saving Hecke algebra information...

Saving Hecke algebra structure...

Zipping Hecke algebra...

Saving Hecke operators...

Zipping Hecke operators...

Alternatively, we could you use

> AddToDatabase(143,"data/");

The required data for the level 143 is already in the

database. Nothing done.

If you want to add several algebras, you can use

> AddToDatabase([(2*n+1) : n in [2..50]],"data/");

Options are provided to specify which data are to be stored. If for instance the structure is not
required (i.e. no further weight 1 Hecke operators are needed), you can only store the information
and all calculated weight 1 Hecke operators as follows:

9

> AddToDatabase([(2*n+1) : n in [100..110]],"data/" :

what := "ops");

5.4 Reading from a database

We now present an example on accessing the database.

> Attach("PATH/CommMatAlg.mg");

> Attach("PATH/Hecke1.mg");

The algebras will be stored in the list H, which has to be created first.

> H := [];

Now we can load the algebra of level 143 as follows:

> AccessDatabase ([143],"data/");

data/Access

> load "data/Access";

Loading "data/Access"

Loading information on Hecke algebra of level 143...

Loading "data/info143"

Unzipping Hecke algebra structure of level 143...

Loading Hecke algebra structure of level 143...

Loading "data/LoadIn"

Unzipping Hecke operators of level 143...

Loading Hecke operators of level 143...

Loading "data/LoadIn"

The algebra data are now stored in H[143]:

> Dimension (H[143]);

4

Of course, you can also load several algebras at once:

> AccessDatabase ([(2*n+1) : n in [40..50]],"data/");

data/Access

> load "data/Access";

5.5 Searching a database

The following example lists the dimensions of the Hecke algebras of weight 1, for the levels
81, 83, 85, . . . , 101.

> Attach("PATH/CommMatAlg.mg");

> Attach("PATH/Hecke1.mg");

Since the data is loaded into the sequence H, it has to be created first.

10

> H := [];

Next you need to provide a function, named SEARCH, which will be called as SEARCH

(H[N]), for N running through the specified levels. In this example, we return a string con-
taining the level and the dimension.

> SEARCH := function (h)

function> return "Level = " * Sprint(Level(h)) * " has

dimension " * Sprint (Dimension(h));

function> end function;

Since we only want to see what we print, we set

> SetVerbose ("Hecke1",0);

Now the search can be performed as follows. We note that all we need to know on the algebras
is contained in the information.

> SearchDatabase ([(2*n+1) : n in [46..50]],"data/" :

what := "info");

data/Search

> load "data/Search";

Loading "data/info93"

Level = 93 has dimension 2

Loading "data/info95"

Level = 95 has dimension 3

Loading "data/info97"

Level = 97 has dimension 0

Loading "data/info99"

Level = 99 has dimension 0

Loading "data/info101"

Level = 101 has dimension 0

References

[1] Bosma, W., Cannon, J. J., Playoust, C.: The Magma Algebra System I: The User Language,
J. Symbolic Comput. 24 (1997), pp. 235-265

[2] Edixhoven, S. J.: Comparison of integral structures on spaces of modular forms of weight
two, and computation of spaces of forms mod 2 of weight 1.

[3] Wiese, G.: Computing Hecke algebras of weight 1 in MAGMA, Appendix to [2]

[4] Wiese, G.: The Magma package CommMatAlg, documentation and source are available
from the author’s homepage

11

