The MAGMA package Heckel

Gabor Wiese*
April 13, 2003

Contents

1 Introduction 1

2 What is computed? 2

3 Mathematical interpretation 3

4 Documentation of Heckel 3
4.1 Installation e e e 4
42 Creation functions e 4
4.3 Propertieso e e e 4
4.4 Hecke algebra and operators 5
4.5 Outputfunctions e e e 6
4.6 Database functions 7

5 Examples 8
5.1 Gettingstarted Lo e e 8
5.2 Heckealgebra 8
5.3 Writingtoadatabase L 9
5.4 Reading fromadatabase L 10
5.5 Searchingadatabase 10

1 Introduction

The MAGMA ([1]) package Heckel provides functions for creating a module of the Hecke algebra

of Katz modular forms of weight 1 with coefficients in a finite field. It is accompanied by

*Supported by the European Research Training Network Contract HPRN-CT-2000-00120 “Arithmetic Algebraic
Geometry”. Address: Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The Nether-
lands; http://www.math.leidenuniv.nl/~gabor/,e-mail: gabor@math.leidenuniv.nl

the package CommMatAlg ([4]), which contains some tools for computations with commutative

matrix algebras.

The algorithms used are based on [2]. See also [3].

2 What is computed?

INPUT:

M some space of modular symbols, say for field K, level N, weight p and character
€:(Z/N)* — K*.

The weight p must be a prime, and K must either be a finite field or a number field. See
below, for which values the calculations are known to give the desired result.

COMPUTE:

C' the cuspidal subspace of the space of modular symbols M and D the dimension of C.
Bound = B(p + 2)’ where B = %NHHN,lprime(l + %)

If K is a number field, let Ok be its ring of integers and ‘3 a prime ideal above p. Set
925 : OK - OK/‘B =:F.
If K is a finite field, set [F to be K and take ¢ to be the identity.

Let 7; stand for either the matrix in OQXD representing the i-th integral Hecke operator

acting on C' (generated by the MAGMA command IntegralHeckeOperator, only
available if K = Q) or the matrix in KPP representing the i-th Hecke operator acting on
C' (generated by the MAGMA command HeckeOperator).

Call T; the image of T} under ¢. If in the case of a number field K the matrix does not lie

in O*P, the zero matrix is used instead and a warning is issued.
Let A be the sub-F-vector space of FP*P generated by all T; for 1 < i < Bound.
Let d, D be positive integers and b be a sequence of integers by, ..., bg, b1, ..., bp s.t.:

(1) p|b;forl <i<d,
(i) ptbford+1<i<D,
(i) Ty, ford+1<i < D form a basis of the span of T, for all n < Bound with p { n,

(iv) Ty, for 1 < i < D form a basis of A.

The weight 1 Hecke module we want to work with is

H=A/R,

where R is the sub-F-vector space of A generated by T, ford +1 < i < D.

‘H has dimension d and comes with a natural basis, namely the one given by the images of
T_bi forl < <d.

e The action of the weight 1 Hecke operators TV is as follows.

For [# p a prime, Tl(l) acts by the natural action of 7; on H.

The operator 7,\") acts via the natural action of T, + ¢(e(p))F, where F (the Frobenius) by
definition sends ﬁ to Tp, jp forall 1 <@ < d.

The operator T7§1) with n composite is calculated by the usual formulae from the prime

operators.

3 Mathematical interpretation

We stick to the preceding notations. Let us assume that K is a number field and that M is the full
space (or its cuspidal subspace) of modular symbols of weight p (a prime), level N and character
€:(Z/N)* — K*. In order to obtain a good interpretation, we assume that N > 5 and that p
does not divide N. We can also assume that ¢(—1) = (—1)P, as we only have the zero space
otherwise.

It is known that, with the choice of Bound as above, A contains all 7} for i € N.

Via the natural surjection ¢ :< T; | i < Bound > ®¢, F — A, it follows from [3],
Prop. 2.3.2, that H is a module for the Hecke algebra of Sy (I'1(IV), ¢ o €, F)k .-

If ¢ = 1 is the trivial character and if there exists a prime ¢ dividing N such that ¢ = 3

modulo 4, it is proved in Cor. 2.3.3 that
(<T;|i<Bound > ®o,F)/ <T;®1|pti,i <Bound >

is a faithful Hecke module. Hence, if ¢ is an isomorphism, H is also faithful and its dimension
equals the dimension of S;(I';(V), ¢ o €, F),,,- In any case a warning is issued, whenever ¥ is
not an isomorphism.

If K is a finite field, a similar interpretation should be possible.

4 Documentation of Heckel

The basic function is HeckeAlgebraWt 1. Itis called with a space M of modular symbols as
specified above. The function creates a record containing the basic data such as d, A, b etc. as
explained before. Already the first Bound Hecke operators of weight 1 acting on H are computed
and stored. Hence calling this function may take some time and memory.

The created record should not be printed. Instead, the properties can be accessed by var-
ious functions, such as Dimension, Field, HeckeOperatorWtl, HeckeAlgebra and
HeckePropsToString. Moreover, a rather primitive database handling is provided. Please
see below for a precise documentation of the provided functions.

3

The package Heckel is accompanied by CommMatAlg, which is useful for the study of the

Hecke algebra (and is required by some of the functions of Heckel).

4.1 Installation
If PATH is the directory in which the files Heckel .mg and CommMatAlg.mg are stored, type

> Attach ("PATH/CommMatAlg.mg") ;
> Attach ("PATH/Heckel.mg") ;

in order to use them. By the command

> SetVerbose ("Heckel",1i);
you can determine whether MAGMA informs you on the calculations in progress (1 = 1) or not
(1 = 0).

4.2 Creation functions

e intrinsic HeckeAlgebraWtl (ms :: ModSym :

uselntegral := true) —-> Rec

This command computes the essential data for the characteristic p Hecke algebra of mod-
ular forms of weight 1 of level and character as specified by the space of modular symbols
ms given. If useIntegral is true, then the command IntegralHeckeOperator
is used (if possible) instead of HeckeOperator. Please consult section 2 for the precise

functionality.

The record returned by this function can be used to create the Hecke algebra, Hecke oper-
ators and to determine their properties. Note that the calculations can take some time and

can consume a considerable amount of memory.

4.3 Properties

® intrinsic Dimension (H :: Rec) —-> RngIntElt

Returns the dimension of the Hecke algebra of weight 1 specified by the Hecke algebra
data H.

e intrinsic Level (H :: Rec) —-> RngIntElt

Returns the level of the Hecke algebra of weight 1 specified by the Hecke algebra data H.

e intrinsic Characteristic (H :: Rec) —> RngIntElt

Returns the characteristic of the coefficients of the Hecke algebra of weight 1 specified by
the Hecke algebra data H.

4.4

intrinsic Field (H :: Rec) —> Rng

Returns the coefficient field of the Hecke algebra of weight 1 specified by the Hecke alge-
bra data H.

intrinsic Bound (H :: Rec) —-> RngIntElt

Returns the bound up to which the Hecke operators are to be calculated in order to obtain
the Hecke algebra of weight 1 specified by the Hecke algebra data H.

intrinsic OriginalCharacter (H :: Rec) —-> GrpDrchElt

Returns the Dirichlet character of the space of modular symbols, from which the Hecke

algebra data H have been calculated.

intrinsic Error (H :: Rec) —-> BoolElt

Returns whether an error has occured during one of the calculations of Hecke operators.
An error can e.g. be due to the fact that matrices representing Hecke operators in weight p
need not have coefficients in a ring of integers of a number field. In such a case, the zero
operator is used, and thus the results need not be correct.

intrinsic HeckePropsToString (H :: Rec

format := "TXT") -> MonStgElt

Prints some properties of the Hecke algebra in weight 1 to a string. Currently the formats

"TXT" (human readable) and "CR" (computer readable) are supported.

intrinsic HeckePropsToFile (H :: Rec, file :: MonStgElt
format := "TXT")

Same as HeckePropsToString. The output string is appended to the specified file.

intrinsic CreateFilePropsCR (file :: MonStgElt)

This function creates a file for storing MAGMA readable properties (for use with

HeckePropsToFilein format "CR").

Hecke algebra and operators

intrinsic MyHeckeOperator (C :: ModSym, n :: RngIntElt

uselntegral := true) —-> Any

This command calls IntegralHeckeOperator if useIntegral is true and the
base field of C is Q, and HeckeOperator otherwise.

intrinsic HeckeOperatorWtl (n :: RngIntElt, H :: Rec

uselntegral := true) —-> Mtrx

Computes the nth Hecke operator of weight 1 as element of End(H) for an internal basis,
as specified by the Hecke algebra data H. For the option useIntegral please see above.

5

e intrinsic CalcHeckeOperatorswtl (L :: SegEnum, ~H :: Rec

uselntegral := true)

This function computes the Hecke operators of weight 1 (as elements of End(H) w.r.t. an
internal basis) specified by the list L of indices and stores them among the Hecke algebra

data H. For the option useIntegral please see above.

® intrinsic HeckeOperatorsWtl (H :: Rec) —-> SegEnum

This function returns the list of all Hecke operators of weight 1 that are stored in the
Hecke algebra data H. Note that the operators up to Bound (H) are already computed by
HeckeAlgebraWtl.

e intrinsic HeckeAlgebra (H :: Rec) -> AlgMat

Creates the Hecke algebra of weight 1 as a matrix algebra. As generators the operators of

weight 1 stored in the Hecke algebra data H are used.

4.5 Output functions

The command HeckeAlgebraWt 1 computes the essential data of the Hecke algebra in ques-
tion, which can be extended using CalcHeckeOperatorsWtl. In the present section we
describe functions for storing these data. We distinguish three subsets: The information contains
data such as level, weight, dimension etc. It does not need much memory. The algebra structure
essentially contains a basis of the weight p Hecke algebra, from which the weight 1 operators
can be deduced. Its calculations takes most of the time and much memory. Finally, the Hecke

operators of weight 1 are treated separately.
The stored data can be loaded using

> load "file";

e intrinsic SaveHeckeInfoWtl (file :: MonStgElt,
name :: MonStgElt, H :: Rec)

Saves the basic information on the Hecke algebra of weight 1 specified by H into the file.
Neither the calculated Hecke operators of weight 1 nor the algebra structure are saved. The

string name will be the name of the identifier of the Hecke algebra after reloading.

e intrinsic SaveHeckeOperatorsWtl (file :: MonStgElt,
name :: MonStgElt, H :: Rec)

Saves the calculated list of Hecke operators of weight 1. The usage is as above.

e intrinsic SaveHeckeAlgebraWtl (file :: MonStgElt,
name :: MonStgElt, H :: Rec)

Saves the Hecke algebra structure. The usage is as above.

4.6 Database functions

A rather primitive database handling is provided. As above, the data is divided into information
("info™"), algebra structure ("alg") and Hecke operators of weight I ("ops"). The "what"-
option can be set to these values or to "all". These functions only work on Unix/Linux oper-

ating systems and use gz ip for compression.
Before using the database, type

> H = [];

in each session, as the data of level N will be stored in H[N]. Hence it is also assumed that the
coefficients are in the same field and of the same weight, as the algebras are distinguished by

their levels only.
® intrinsic ExistsInDatabase (N :: RngIntElt,
DatabasePath :: MonStgElt : what := "all") -> BoolElt

Returns whether the specified data of level /V is stored in the database.

e intrinsic SaveToDatabase (H :: Rec,

DatabasePath :: MonStgElt : what := "all")

Saves the specified subset of the Hecke algebra data H to the database.

® intrinsic AddToDatabase (N :: RngIntElt,
DatabasePath :: MonStgElt : what := "all")
intrinsic AddToDatabase (L :: SegEnum,
DatabasePath :: MonStgElt : what := "all")

Computes the Hecke algebra data of level N resp. of all levels in the list L for the trivial
character over the field F, and adds them to the database. The coefficient field of the

modular symbols used is Q.

e intrinsic AccessDatabase (L :: SegEnum,

DatabasePath :: MonStgElt : what := "all") -> MonStgElt

Creates and returns the name of a file, which you 1oad in order to obtain the specified

data for the levels in the list L. See the resp. example below.

® intrinsic SearchDatabase (L :: SegEnum,

DatabasePath :: MonStgElt : what := "info") -> MonStgElt

Please consult the resp. example below for the usage.

S Examples

5.1 Getting started

First you have to attach the packages CommMatAlg and Heckel, which we assume to be stored
in the folder PATH.

> Attach ("PATH/CommMatAlg.mg") ;
> Attach ("PATH/Heckel.mg") ;

Now we create the data of a Hecke algebra.

> MS := ModularSymbols (283,2);
> h := HeckeAlgebraWtl (MS);

The essential data for the Hecke algebra of weight 1, level 283 with coefficients in [F, is calculated

and stored in the record h.
It is then possible to access information on the algebra:

> Dimension (h);
3

> Level (h);

283

> Field(h);

Finite field of size 2

5.2 Hecke algebra
In this example we show how the Hecke algebra can be obtained as a matrix algebra.

> Attach ("PATH/CommMatAlg.mg") ;
> Attach ("PATH/Heckel.mg") ;
> h := HeckeAlgebraWtl (ModularSymbols (491,2));

We can create the Hecke algebra as a matrix algebra as follows:

> H := HeckeAlgebra(h); H;
Matrix Algebra of degree 6 with 164 generators over GF (2)

Let us study its structure by decomposing it into local factors over .

> L,S := LocalDecomposition (H);
> #L;
2

So there are 2 local factors. We can generate the matrix algebra corresponding to the first factor
like this:

> H1 := MatrixAlgebra(H,L[1]); HI1;
Matrix Algebra of degree 3 with 26 generators over GF (2)

Now we take its maximal ideal.

> ml := MaximalIdeals (H1)[1]; ml;
Matrix Algebra [ideal of H1] of degree 3 and dimension 0 over
GF (2)

Since it has dimension 0, we know that H1 is the field with 8 elements.
Let us now also look at the second factor and take its maximal ideal.

> H2 := MatrixAlgebra(H,L[2]); H2;

Matrix Algebra of degree 3 with 26 generators over GF (2)

> m2 := MaximalIdeals (H2)[1]; m2;

Matrix Algebra [ideal of H2] of degree 3 and dimension 2 over
GF (2)

It follows that the residue field is [F5. We also see that only the third power of m2 vanishes:

> Dimension (m2*m2); Dimension (m2*m2*m2) ;
1
0

5.3 Writing to a database

In this example we show, how data on Hecke algebras can be stored in a database. As path of the
database we will use "data/".
We first want to store just one algebra.

> Attach ("PATH/CommMatAlg.mg") ;

> Attach ("PATH/Heckel.mg") ;

> h := HeckeAlgebraWtl (ModularSymbols (143,2));
> SaveToDatabase (h, "data/");

Saving Hecke algebra information...

Saving Hecke algebra structure...

Zipping Hecke algebra...

Saving Hecke operators...

Zipping Hecke operators...
Alternatively, we could you use

> AddToDatabase (143, "data/");
The required data for the level 143 is already in the
database. Nothing done.

If you want to add several algebras, you can use
> AddToDatabase ([(2*n+1) : n in [2..50]],"data/");

Options are provided to specify which data are to be stored. If for instance the structure is not
required (i.e. no further weight 1 Hecke operators are needed), you can only store the information
and all calculated weight 1 Hecke operators as follows:

9

> AddToDatabase ([(2*n+1) : n in [100..110]],"data/"

what := "ops");

5.4 Reading from a database
We now present an example on accessing the database.

> Attach ("PATH/CommMatAlg.mg") ;
> Attach ("PATH/Heckel.mg") ;

The algebras will be stored in the list H, which has to be created first.
> H := [];
Now we can load the algebra of level 143 as follows:

> AccessDatabase ([143],"data/");

data/Access

> load "data/Access";

Loading "data/Access"

Loading information on Hecke algebra of level 143...
Loading "data/infol43"

Unzipping Hecke algebra structure of level 143...
Loading Hecke algebra structure of level 143...
Loading "data/LoadIn"

Unzipping Hecke operators of level 143...

Loading Hecke operators of level 143...

Loading "data/LoadIn"
The algebra data are now storedin H[143]:

> Dimension (H[1431);
4

Of course, you can also load several algebras at once:

> AccessDatabase ([(2*n+1) : n in [40..50]],"data/");
data/Access

> load "data/Access";

5.5 Searching a database

The following example lists the dimensions of the Hecke algebras of weight 1, for the levels
81,83, 85,...,101.

> Attach ("PATH/CommMatAlg.mg") ;
> Attach ("PATH/Heckel.mg") ;

Since the data is loaded into the sequence H, it has to be created first.

10

Next you need to provide a function, named SEARCH, which will be called as SEARCH
(H[N]), for N running through the specified levels. In this example, we return a string con-
taining the level and the dimension.

> SEARCH := function (h)
function> return "Level = " * Sprint (Level(h)) * " has
dimension " * Sprint (Dimension (h));

function> end function;
Since we only want to see what we print, we set
> SetVerbose ("Heckel",O0);

Now the search can be performed as follows. We note that all we need to know on the algebras
is contained in the information.

> SearchDatabase ([(2*n+l1) : n in [46..50]],"data/"
what := "info");
data/Search
> load "data/Search";
Loading "data/info93"
Level = 93 has dimension 2
Loading "data/info95"
Level = 95 has dimension 3
Loading "data/info97"
Level = 97 has dimension O
Loading "data/info99"
Level = 99 has dimension O
Loading "data/infolO1"

Level = 101 has dimension 0

References

[1] Bosma, W., Cannon, J. J., Playoust, C.: The Magma Algebra System I: The User Language,
J. Symbolic Comput. 24 (1997), pp. 235-265

[2] Edixhoven, S. J.: Comparison of integral structures on spaces of modular forms of weight
two, and computation of spaces of forms mod 2 of weight 1.

[3] Wiese, G.: Computing Hecke algebras of weight 1 in MAGMA, Appendix to [2]

[4] Wiese, G.: The Magma package CommMatAlg, documentation and source are available

from the author’s homepage

11

