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CM-types acting on class groups
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These are (modified) notes and slides of a talk given in the Leiden number theory seminar,
whose general topic are Shimura varieties.

The aim of the talk is to formulate a purely number theoretic question (of Brauer-Siegel
type), whose (partial) answer might lead to progress on the so-called André-Oort conjecture on
special subvarieties of Shimura varieties (thus the link to the seminar).

The question ought to be considered as a special case of problem 14 in [EMO], which was
proposed by Bas Edixhoven and which we recall now.

Let g be a positive integer and let A, be the moduli space of principally polarized
abelian varieties of dimension g.

Do there exist C', § > 0 such that for every CM-point z of A, (i.e. the corresponding
abelian variety has CM) one has

|Go.x| > C|discr(R,)|°,

where R, is the centre of the endomorphism ring of the abelian variety correspond-
ing to 77?7

What we will call the Siegel question in the sequel, is obtained by restricting to simple
abelian varieties.

In the talk I will prove everything that seems to be known on the question up to this moment,
namely the case of dimension 2. This was worked out by Bas Edixhoven in [E].

The arguments used are quite “ad hoc” and I will try to point out, where obstacles to gener-
alisations seem to lie.

The boxes correspond more or less to the slides I used.

*gabor@math.leidenuniv.nl



Open problems:
CM-types acting on class groups

Gabor Wiese
Leiden, 22/10/2003

Aims of the talk:

e Present a question supposed to imply higher dimen-
sional cases of the André-Oort conjecture.

Relate it to other questions.

Present and prove known results.

Try to show the problems.

ASK YOUR HELP!

The result in dimension 2 is actually obtained by reducing to the image of multiplication by
4 on the class group of the CM field in question. Thus the “other question” I am referring to is
to estimate the size of the image of multiplication by a (fixed) integer on the class group.

Let us start the talk by explaining all essential notions, although they are “generally well-
known”...



A number field K is a CM field if

e K is a totally imaginary,

e [K: KT]=2with K the max. tot. real subfield.
Examples:

e Q)

e imaginary quadratic fields.

e Produce more with prop. below.
Let o : K — C embedding. Then the map

cia e at(a2)

is in G(K|K™), indep. of «: the complex conjugation.

Over every real embedding o™ : KT < R there are pre-
cisely two complex embeddings

a,aoc: K — C.

The thing of crucial importance for us will be the last point, namely that the embeddings of
a CM field into C come in pairs.

I should remark that the complex conjugation is indeed well-defined, because K| K™ is nor-
mal as it is of degree 2. Moreover, as K is totally imaginary, the map ¢ will not be the identity.
But it is an element in G(K|K ™), which proves the independence of the chosen embedding .

On the next slide we shall look at the “group theory” of a CM field that is Galois over Q.



Proposition 1 Let K|Q be CM and Galois, group G.
(a) c € G is central of order 2.

(b) K*|Q is Galois with G = G(K*|Q).

(c¢) Central extension 0 —< ¢ >— G—G—0.

(d) IfH < G withe € H, then < ¢ > xH < G and KH
is CM with totally real subfield K <¢>*#

(e) If L|Q is totally real and Galois with group H, then LK
is CM with totally real subfield LK *. Moreover, LK

is Galois with group contained in Gx H.

Moreover, composites and Galois closures of CM fields are
CM fields.
Given KT totally real, Kummer theory gives:

{K|[K*CM } &

{<z,(KT)? > |2 € (K")" tot. negative }.

Some remarks on the proof. That complex conjugation is an involution is clear. That c is
central is precisely the fact that c does not depend on the embedding into C. So in the definition
of ¢, one can replace a by g, where ¢ is an arbitrary element of G.

(b) is clear as Kt = K<° and < ¢ > is normal, as it is central.

(c) is only a reformulation. But let’s remark that central extensions are well-understood.
E.g. they are classified by the group cohomology group H*(G, Z/2).

(d) and (e) follow from Galois theory.

That Galois closures of CM fields are CM follows from the fact that composites of CM
fields are CM. That can be obtained from the fact that a totally imaginary field is CM if and
only if it has a unique complex conjugation via embeddings into C.

The remark on Kummer theory is supposed to suggest that in general one can obtain in-
finitely many CM fields with a fixed totally real subfield. In the sequel we shall be concerned
with such infinite sets of CM fields.

On the next slide we shall introduce one of the words in the title, namely a CM type.



Given a CM field K|Q. A CM type is a subset
& C Hom(K,C)
such that x LI & o ¢ = Hom (K, C).

If K|Q is Galois, then we consider ®j as a subset of @,

resp. as a split (not nec. hom.) G — G.
In this case we say that @ is essentially the same as $og
(elementwise for fixed g € G).

Let M|K be CM fields and 5 a CM type. We define the
induced CM type by

A CM type that is not (non-trivially) induced is said to be
primitive.

Let K|Q be a Galois CM field with group G. For every CM
type @ we define a CM element

A CM type is thus a choice of one embedding out of each pair.

In the Galois case the identification of the set of embeddings with the Galois group does, of
course, depend on the choice of one embedding. But for two different choices the resulting sets
are essentially the same.

The fact that we take inverses in the definition of the CM element comes from the application
(see [E]). It only makes a difference, when considering induced CM types (the elementwise
inverse of a CM type is also a CM type).

On the next slide we shall consider low dimensional cases to illustrate the definitions. How-
ever, we will also use them in the proof to come.



e d =1, K imaginary quadratic:
CM types: &L = {1}, ®% = {c}
(“essentially the same”: ®L o c = ®%).
Sot; =1andty, = c.

o d =2, K|QGalois, G = Z/4 =< ¢ >:
Then ¢ = 2. Only one essentially different CM type:

(I)K = {1,0’}.
It is primitive and t = 1 + o3,

o d =2, K|QGalois, G = Z/2 x 7,/2:

Say G =< c¢> x < o >. Then essentially all CM
types are:

3 = {1,0},®% = {1,co}.

They are induced from K <7~ resp. K <“~.
CMelements: 1 =1+ ocandty =1 + co.

Here d denotes the degree of the totally real subfield over Q. We want to consider all cases
with d = 2. There is one more, namely the one of a non-Galois extension of degree 4.

e d =2, K|Q not Galois of degree 4:
M1Q Galois closure.
a:D4:<O'7T|0'4:7'2:1,7'07'20_1 > .
Thenc=02% K = M<™, KT = M<7c>,
Essentially all CM types of K are

) = {Ur, olx} % = {1k, 0’|k}
The induced CM types are

(I)}w ={1,7,0,07}, CID?V[ ={1,, 03,70}.

They are essentially the same.
CMelement: t = 147+ 03 + o7. (Note 70 = 0°7.)

Higher dimensions become much more complicated!

We are now ready for the questions.



SQ (= strong question = Siegel question):

Fix an integer d > 1. Are there §,C' € R.q such that the
following holds?

For all CM fields K|Q of degree 2d and all primitive CM
types @, with Galois closure M |Q, induced CM type P,
and CM element ¢ = ) g~! we have:

geEP N

IIm(CLy = CLyy)| > Cldgl’.

HQ (= weak question = Hilbert question):
The same, except that K is fixed.

nSQ and nHQ:

The same as SQ resp. HQ, except that ¢ is replaced by an
integer n, i.e. we consider the image of

CLy = CLjy. Note: independent of CM type.

In the Siegel question the primitivity of the CM types is necessary as one sees from the
following example. Consider the infinite series of CM fields for d = 2 obtained by Q(i, v/n)
for n running through the positive square-free integers. The discriminants tend to infinity as n
does. The group structure is Z/2 X Z/2 =< ¢ > X < ¢ > and as in the corresponding example
above one can choose the CM type {1,0}, hence t = 1 + o. So the map given by applying
1 + o factorises over the class group of Q(4), which is trivial. So the image is trivial, whereas
the discriminants tend to infinity, contradicting the question.

Although this counter example does not work in the case of a fixed totally real subfield, it
seems safer to assume primitivity in that case, too.

In his proof of the André-Oort conjecture for Hilbert modular surfaces Bas Edixhoven also
treated the case of the induced CM types arising from the Z /2 x Z/2-situation in order to avoid
the general question how to deduce a lower bound for the Galois orbit of a CM point of a general
abelian variety from the result on its simple factors (up to isogeny).

One might hope to treat SQ or HQ by reducing to some nSQ resp. nHQ. That’s why I
mention the last question, which in all generality certainly seems beyond reach at the moment.
For powers of 2 it can be solved as we will see later in the talk. Maybe, one can often reduce
HQ to a known case of nHQ?

Let us look at what is known.



Motivating hope:

e SQ = André-Oort conj. for Siegel modular var.

e HQ = André-Oort conj. for Hilbert modular var.
Results:

e d =1 HQ=SQ.¢t = 1ort = c. Soimage equals
CLk. Brauer-Siegel gives result.

e d = 2: HQ done by Bas Edixhoven by reducing to
4HQ, also for non-primitive CM types.

He used this to show the André-Oort conjecture for
Hilbert modular surfaces, assuming GRH.

Here and now I give a proof, which actually shows

SQ.
e d > 2: SQ, HQ seem VERY DIFFICULT!

e For (d,n) = 1,nHQ seems VERY DIFFICULT!

The hopeful implications above certainly require some work. As pointed out before the
passage from simple abelian varieties to non-simple ones has to be worked out. Moreover, also
on the Shimura variety side certain generalisations are required.

The state of the art is so bad (to my knowledge) that I can prove everything known (to me)
in the remainder of this talk.

Following Bas Edixhoven we will first reduce HQ (resp. SQ) to 4HQ (resp. 4SQ). In a
second step we will apply a corollary of the Brauer-Siegel theorem to give a positive answer to

4S5Q.

Let’s prepare the proof.



e Given L| K, one has homomorphisms CLx — CL
(induced by K — L) and Ny : CL; — CLg
(induced by the norm Ny, ).

o If L|K is Galois, the index (CLg : NpjxCLy)
divides |G(L|K)®.

o If K|KTis CM, |Ker(CLg+ — CLg)| € {1,2}.
e If K|KT is CM, exact sequence

NK\K+

0 — CL; - CLgk ——— CLg+ — 0
and on CL, we have ¢3 = —.

e Relative class number 1, := |CLy| = hg/hk+.

e L|K CM fields. Then homomorphisms CL;; — CL,
and NL|K . CLZ — CLI_(

Whenever we have a field extension L|K we have two conceptual maps between the class
groups, the first being induced by a chosen embedding K — L and the other one by the norm.
In the case of CM fields these maps respect the minus class group.

For general number fields these maps will be neither surjective nor injective. But in the CM
case one can say a little more.

The surjectivity in the exact sequence follows from [Wa], Thm. 10.1. In fact, that theorem
is a result of global class field theory. It can be obtained by slightly extending the following
argument that we give in order to prove the statement on the index of the image of the norm.

If Ck denotes the idele class group of K, global reciprocity fits into the exact sequence

0— NL‘KCL — CK — G(L|K)ab — 0,
whence (Cx : NpxC},) equals the order of G(L|K)*. Now one only uses that one has compat-
ible (w.r.t. the norm) surjections C'x — CLg and C', — CLy, to get that the index of Ny xCLy,
in CL divides the order of G(L|K)®™.
The statement on the kernel of CL i+ — CLg is [Wa], Thm. 10.3.

We continue with the reduction of the principal question to multiplication by 4.



Standard tricks:

e Reduce to (Galois) CM subfields (i.e. identify part of
CM element as a norm)

e Look at CL}; and replace c by —1.

Proposition 2 [Case d = 2] Let K|Q be a CM field of de-
gree 4 and i a CM type of K. Let M|Q be a Galois
closure of K with group G and t € Z[G)] the CM element
of the induced CM type ® ;.

(a) IfG = 7/4 or G = D,, then

. 1 .
Im(CLy; & CLy)| > 5 Im(CLy = CLy)).

() IfG = (Z/2)* =< ¢ > x < 0 >, then

: 1 .
IIm(CLy; -5 CLy)| > QHHKCLZ—acmZH

for some L. C M imaginary quadratic.

In this proposition we shall not assume that the CM type of K is primitive. However, as we
have seen before in case (b) all CM types are induced.

I should maybe point out that in SQ the primitivity refers to the CM type of A and not to
the one of M (which is necessarily induced). But it would already be a big step to prove SQ for
all K of some degree that are Galois over Q.

Now I will give a proof of the proposition. Since I would also like to point out where
trouble can come from, I will not restrict to the three cases above, but discuss some more.
These examples will illustrate the “standard tricks” mentioned on top of the slide.

o G=7/4=<0>:
Then ¢ = o2 and as seen above essentially the only CM element is t = 1 + o>.

An ad hoc method is to compose ¢ with 1 — o3 in the group ring Z[G] to get (1 + ¢3)(1 —
03) = 1—0?. The size of the image of a composition is less or equal the size of the image
of a single map. Now we consider the commutative diagram

(1=02)

CLK CLK

J J

CL; —2—CLy

where the bottom arrow is multiplication by 2, as o acts as —1 on CLy. In the sequel I
will always implicitly use a similar diagram to reduce to the minus part of the class group.
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So this case reduces to finding a lower bound for the multiplication by 2 on CL ., which
is a little stronger than the claim in (a).

G=7/8=<0>:
Then ¢ = o*. This case also reduces to multiplication by 2 on the minus part. However,
now there are several essentially different CM types and each one seemed to require mul-

tiplication by an especially chosen element. It seems already significantly more difficult
than the case Z/4.

G=7/2X7/5=<c>x <0 >:
Here I'd like to illustrate a cyclic case, which is not of 2-power order, by looking only at
two different CM elements, namely ¢, = 1+co+024co+o* and ty = c+o+o?+o3+ot.

The first one can be treated as we have seen before, namely as

t1-(1—co)=(14co+(co)*+ (co)’ + (co))(1 —co) =1 (co)’ =1 —c.

The element ¢, shows a different behaviour. Namely, it is not invertible in the group ring

Q[G]. So there does not exist any element s € Z[G] such that s - ¢ is multiplication by an
integer.

If we restrict to CL, the element acting is —1 + o + 02 + % + o, It is invertible in
Q[< o >] with inverse §(—2 + 0 + 02 + 0® 4 ). So we necessarily get multiplication
by 6, which is bad because it seems that one can only control multiplication by powers of
2 on the class group of a CM field.

Alternatively, one could also consider the diagram

to:

CLy CLy

lNL\K lNL\K

CL; —2—CL;,

where L is the imaginary quadratic field K <?~. Let us recall that we can control the
cokernel of the norm map (its size divides the degree of K |L). So we get that the image
of multiplication by ¢, on CLg is greater equal one fifth of the size of the image of
multiplication by 3 on CL .

@:Z/QXH:<C> xH:

Here H is an arbitrary finite group. In this case I am unable to make any statement on
invertibility of CM elements in Q[H], so the only thing I seem to have is to imitate the
last approach in the previous point.

In that way one can reduce to multiplication by n on CL; for the imaginary quadratic
field K. Here n is an integer in the range from —|H| to |H|. If the order of H is even,
it can happen that the integer is actually 0, and then this approach is, of course, useless.

@:ZﬂxZﬂ:<c>x<a>
That’s part (b) of the proposition. The CM elements t; = 1 + ¢ and {3 = 1 + co are not
invertible. It seems that I have to use the previous point.

So, one reduces to multiplication by 2 on CL - in the first and on CL < in the second
case. This gives the claim in (b).
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e G=Dy=<o,7|ot=m2=1,707r=0"">.
We have ¢ = 0% and K = M<">. The essentially only CM element is

t=1+7+*+or=(1+7)+0(c®>+7).
We consider the commutative diagram

cL;, — 7 oLy, —t Ly,

l/NIW\K lNL\K

CLy CLj.

The top arrow is
(1+7)+o(@®+m)A+7)=21+7)+o(l+T7+0*+0%7) =21+ 1),

where in the last step we used that o2 acts as —1 on CL;,. The claim in the proposition
now follows because 7 acts trivially on K and because the size of the cokernel of the
norm is bounded by 2.

The arguments used above all seem very much “ad hoc”. A conceptual generalisation seems
essential for any progress.

We have now reduced to multiplication by 2 resp. 4 on class groups of CM fields. Now we
will try to settle this question.

Using class field theory and Galois cohomology (Bas used
étale cohomology), it is not difficult to show:

Proposition 3 Let K|F be a Galois extension of number
fields of prime degree p. Let r p be the number of finite

primes of F' that ramify in K. Then

1k,CLg < (p+ 1)rgip +p+p - 1k,CLE.

Corollary 1 (a) There is a C' > 0 such that for all number
fields L|Q of degree 2:

[Ker(CL, 2 CL.)| < C - 812,

(b) There is a C' > 0 such that for all number fields K|Q of
degree 4 that have a quadratic subfield:

[Ker(CLx = CLg)| < C - 5127%12,
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Let us first note that the corollary is immediate from the proposition. It seems that one can
get better constants than those above (with a different approach).

Now I give a proof of the proposition.
Let S a finite set of primes of F'. By F¢" and F§® we mean the maximal extension of F',
which is unramified outside S, resp. everywhere unramified and completely split in S.

The S-ideal class group CLg(K) can be defined as the abelian group generated by the prime
ideals outside S modulo principal ideals.

Using the description above one obtains from class field theory that CLg(/K) is isomorphic
to the Galois group of the maximal unramified abelian extension, which is completely split in
S. Hence there is the isomorphism

CLs(K) =2 G(KS|K)™.

We denote by G, < G(K¥|K) a decomposition group of a prime p and note that it is
naturally isomorphic to the Galois group of a completion at p. Let H be the closed normal
subgroup of G(K¥|K) generated by the decomposition groups of the primes in S. Then there
is the isomorphism G(K{|K)/H = G(K$|K).

We have equalities
(CLs(K)/p)” = Hom(CLs(K), F,) = Homes(G(KG|K), F,) = Home (G(K§|K)/H, Fp),
where H is defined as above. They can be rewritten as follows

(CLs(K)/p)" = shas(K) := Ker( H'(G(KE|K), F,) > [[ H'(Gy. F,) ).
S

The group shag(K) is called the Tate-Shafarevich group.
From the idelic description one immediately obtains the exact sequence

II K;/0% — CLk — CLs(K) — 0.
peS, ptoo

Using the exact sequence 0 — Ozxq, — K,° — Z — 0 induced by the valuation, one gets the
inequality
rk,CLg <r1k,CLg(K) + #15S,

by tensoring the exact sequence above over Z with IF,,.

After these generalities let us now consider our Galois extension K| F' of prime degree p.
We denote by S the finite set of finite primes of F' that ramify in the extension. This choice of
S implies that K§ equals F§'. If we now call G = G(K¥|F) and H = G(K¥|K), then clearly
H is an open normal subgroup of G of index p. For simplicity we set R = G/ H.

We note that the group R = GG/ H acts trivially on the set S, as there is just one prime of K
lying above a ramified prime of F'.
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From this it follows that we have an exact commutative diagramme

0 0 0

0O —— 4 — As — [1s Asp

0 —— shag(F) —— Home(G,Fy) —— [[gHom (G, Fp)

0 —— shag(K)® —— Hom(H,F,)® —— [[gHomes(Hy, Fp)*

0 —— A4 —_— A5 —— HS Aﬁ’p

0 0 0,

in which the A; are defined as the kernels resp. cokernels of the vertical maps in the centre.

The inflation-restriction sequence shows that Ay = A3, = F,, and A;, A, € {0,F,}, from
which we see dim, A; < 1 and dim, Ay < 1+ #S5. In conclusion, we get

dim, shag(K)® < 1+ #S + dim, shag(F) = 1 + #S + rk,CLg(F).
Lemma 1 Let R =< 0 >= Z/p and consider an F,|R]-module M. Then
dim, M < p - dim, M*.

Proof. Define submodules M* := (o — 1)"M. Then clearly M° = M and M? = 0 as the
characteristic is p. There are the exact sequences

0 — (Mz')R o ME O i 0,
from which the result is immediate. U
Now it suffices to put the inequalities together to conclude the proposition. 0

We have thus found upper bounds for the kernel of multiplication by 2, hence also for fixed
powers of 2. Now we can proceed to statements on the size of the image.
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Theorem 1 (Cor. of Brauer-Siegel) Fix an integerd > 1.
For all ¢ > 0 there is a C' > 0 such that for all CM-fields K
of degree 2d one has

hi > C - |dg/dg+ V> > C - |dg| V4.

Corollary 2 Let d be 1 or 2 and n an integer. For all 0 <
0 < 1/2d there exists a C' > 0 such that for all CM fields
K |Q of degree 2d one has

IIm(CLy 25 CLg)| > C - |dk|’.
That follows because for all ¢ > 0 the number

5127519 /| dc |

goes to 0, as |d x| tends to oco.

The corollary of Brauer-Siegel is proved as Lemma 4 in [HH]. In his article [E] Bas Edix-
hoven used a result by Stark apparently to avoid the use of GRH. With the above corollary it
seems that we can also do without invoking GRH.

Let us now put things together.
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Proposition 4 In case d = 2, the question SQ is true for
any exponent 0 < § < 1/4. If we allow non-primitive CM

types, HQ is still true for the same exponents.

Proof.

o IfG = D, or G=17 /4, it suffices to combine corol-
lary 2 and proposition 2 (a).

If one restricts to this case, the constants do not de-
pend on K.

o IfG =7 /2 x 7./2, proceeding as above gives
Im(CLg -5 CLg)| > C - |dp |/
with . C K quadratic imaginary. Now we use

x| < ldgc+ |- |di |

and get the result, but also a dependence on K.
OJ

We just need to recall that in the case G = (Z/2)? there are no non-induced CM types. The
rest is immediate from proposition 2 and corollary 2.

On the next slide, I’d like to quickly come back to the question nSQ.
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On the question nSQ:

Theorem 2 (Loubotin, Okazaki) Assume GRH. Fix d.
There exists a C' > 0 such that for all CM fields K|Q of

degree 2d the exponent e of CLk satisfies

e log |d|
* = Tloglog |dk|

This gives the best result on nSQ known to me. Fix some
integer n. Then

In(CLy ™ CLy)| > 028 1]

loglog |dx|

Other approaches:

e Bloch-Kato conjecture??

e Cohen-Lenstra heuristics??

The theorem above is [LO], Thm. 1.

If the exponent of an abelian group is e, then we know that there is an element of order e in
the group. So the image of multiplication by a fixed n will be a group containing an element of
order greater equal e/n.

So assuming GRH one can get logarithmic growth, but one would like (and probably expect)
exponential growth. There is thus a big gap.

Recent results by Andrei Yafaev seem to suggest that one can get arbitrary (fixed) powers
of the logarithm of the discriminant.

The Bloch-Kato conjecture suggests that the class group ought to decompose into pieces,
according to the irreducible representations of the Galois group. It would suffice to obtain a big

image on one of the pieces.

Let’s now come to an end...
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Concluding remarks:

e Fix d. Does nH () imply H(Q for a finite collection of
n’s?

I considered the non-trivial central extension

O—><C>—>z/4\5—>A5—>0.

I generated random CM types ®x and looked at
to, € @[;1\5]/(0 + 1). Every such tg, was invert-
ible! So image of multiplication by ¢ is greater equal
the image of multiplication by n, some n.

e [ mostly took a group theoretic point of view (com-
putations in the group ring). More number theoreti-
cally?

It seems that good ideas are necessary!

I have quickly tried to prove that one cannot always reduce to multiplication by an integer.
To my surprise I obtained the result stated on the slide.

If we take non-simple groups, actually any one of those discussed in this talk will do, one
finds non-invertible CM elements. But we were always able to conclude by passing to CM
subfields, which I want to exclude (at least normal ones).

Let’s finish this talk by reading aloud, everyone for himself, the last line on the slide.
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