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Preface

In number theory one is naturally led to study more general numbers thathgustassical integers
and, thus, to introduce the concept of integral elements in number fields.rifigs of integers in
number fields have certain very beautiful properties (such as the ufsicueeisation of ideals) which
characterise them as Dedekind rings. Parallely, in geometry one stufilies\afrieties through their
coordinate rings. It turns out that the coordinate ring of a curve is &Ked ring if and only if the

curve is non-singular (e.g. has no self intersection).

With this in mind, we shall work towards the concept and the characterisdtidadekind rings.
Along the way, we shall introduce and demonstrate through examples lmasiepts of algebraic
geometry and algebraic number theory. Moreover, we shall be naturdllp lgeat many concepts
from commutative algebra.

The lecture covers the following topics:

e General concepts in the theory of commutative rings

Rings, ideals and modules

Noetherian rings

Tensor products

Localisation

— Krull Dimension
e Number rings

— Integral extensions
— Noether’s normalisation theorem

— Dedekind rings



e Plane Curves

— Affine space
— Coordinate rings and Zariski topology
— Hilbert’s Nullstellensatz

— Singular points
Good books are the following. But, there are many more!

e E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry.

e Dino Lorenzini. An Invitation to Arithmetic Geometry, Graduate Studies in Mathes\atial-
ume 9, American Mathematical Society.

e M. F. Atiyah, I. G. Macdonald. Introduction to Commutative Algebra, Addistlesley Pub-
lishing Company.

In preparing these lectures, | used several sources. The most impamtais the lecturdlgebra
2, which | taught at the Universitat Duisburg-Essen in the summer term, 2@tiéh, in turn, heavily
relies on a lecture for second year students by B. H. Matzat at the tditéuedHeidelberg from summer
term 1998.
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1 Rings and modules

Definition 1.1. A setR, containing two element$ and 1 (not necessarily distinct), together with
maps
+:RxXR— R, (x,y)—x+yand-: RXxR— R, (x,y)—x-y

is called aunitary ringif the following properties are satisfied:

(@) (R,+,0) is an abelian group with respect tb and neutral elemert,

(b) (R\{0},-,1) is a semi-group with respect t@and neutral element and
© a-(b+c)=a-b+a-cforall a,b,c e R (distributivity).

The attributeunitary refers to the existence of the elemernh the ring. We only consider such
rings, and will thus usually not mention the word unitary.

If (R\ {0}, ) is an abeliansemi-group, therk is called acommutative ring Most (but not all)
of the lecture will only treat commutative rings; hence, the n&oenmutative AlgebraBy a ring |
shall usually mean to a commutative ring (should be clear from the contexiot, iisk!).

If Ris a commutative ring and if in additiofR \ {0},-,1) is an abelian group (not only semi-
group) andl # 0, thenR is called afield.

A subsetS C R is called a(commutative) subringf 0,1 € S and+ and- restrict to.S making it
into a ring.

[We recall the definition of a semi-group and a group: A Setontaining an element denotédtogether
withamap-: S x S — S, (s,t) — s -t is called asemi-grougf the following hold:

@) s-(t-u)=(s-t)-uforall s,t,u € S (associativity,
(b) 1-s=s=s-1forall s € S (neutral element
If in addition, it holds that

(c) forall s € Sthere aret,u € Ssuchthats-¢t = 1 = u- s (notations~! for both) xistence of inversgs

thensS is called a group. Ifs- ¢t = ¢ - s for all s,t € S, then the (semi-)group is callebelianor commutative]
Example 1.2. (a) Z, Q.

(b) My (Q) (IV x N-matrices).

(©) Z[X], QX].

(d) {0} is called thezero-ring(with 1 = 0 and the only possible definitions ef and -, nhamely
0+0=0and0-0=0).

(e) F,, Fy- for a prime numbep andr € N.

In this lecture, we shall motivate many of the properties of commutative ringsatbastudy
by examples coming from rings of integers of number fields and plane uidere’s already the
definition of a number field. Rings of integers and plane curves will be intred later.
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Definition 1.3. A finite field extensiok of Q is called anumber field

[We recall some definitions from field theory: Liebe a field. A subringq C L is called asubfieldif K
is also a field. In that case, one also speakd afs afield extensiorof K, denoted ad./K or K — L. If
L/K is a field extension, theh is a K-vector space with respect to the naturaland -, i.e.+ : L x L — L,
(z,y) — x + y (the+ is the+ of the fieldL) and scalar multiplicationt : K x L — L, (z,y) — « - y (the-
is the- of the fieldL). Thedegreeof L/K is defined a$L : K] := dimg (L), the dimension of as K-vector
space. One says that/ K is afinite field extension ifL : K] < co.]

Example 1.4. (a) Q (but: R is not a number field).
(b) Q[X]/(f(X)) with an irreducible non-constant polynomifle Q[X].

(¢) Q(vVd) = {a+bVd | a,b € Z} for 0,1 # d € Z square-free, is a number field of degrzéa
quadratic field).

The latter two examples will be explained shortly.

Definition 1.5. Let R, S be rings. Amag : R — S is called aring homomorphisnif the following
properties are satisfied:

(@) ¢(1) =1,

(b) o(r+s) =@(r) + ¢(s) forall r,;s € R,

(©) o(r-s)=(r)-p(s)forall r,s € R.

Example 1.6.(a) Z — Fp,a — a.

(b) LetR be aring andS a subring ofR. The inclusion : S — R defines a ring homomorphism.

Definition 1.7. Let R be a ring. An abelian group)M, +, 0) together with a map
S RXM— M, (r,z)— rz

is called a(left) R-moduleif the following properties are satisfied:

(@) L.z =xforall x € M.

(b) r(x+y)=rax+ryforalre Randallz,y € M.

() (r+s)x=rx+sxforalr,se Randallx € M.

d) (r-s)x=r(sz)foralr,sec Randallx € M.

In a similar way one defines right modules and two-sided modules.
A subsetV < M is called anR-submoduleof M if 0 € M and+ and. restrict to N making it
into an R-module.

Example 1.8.(a) LetK be afield and/ a K-vector space. TheWl is a K-module.

(b) LetR be aring. TherR is an R-module (naturak- and. = ).
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(c) LetRbearing. Then := R x R x --- x Ris an R-module (naturak- and diagonal).
Lemma 1.9. An abelian groug M, +, 0) is an R-module if and only if the map

R — End(M), r+ (z+— r.x)
is a ring homomorphism. Hedénd (M) denotes the endomorphism ring/af as an abelian group.

Definition 1.10. Let R be aring andM, N be R-modules. Amap : M — N is called anR-module
homomorphisn{or short: R-homomorphismor: R-linear (map) if

e p(m1+m2) = p(mi)+ p(mse) forall mi,my € M and
o o(r.m) =r.p(m)forallm e M and allr € R.

Lemma 1.11. Thekernelker(y) := {m € M | p(m) = 0} is an R-submodule of\/.
Theimageim(y) := {p(m) | m € M} is an R-submodule ofV.
By the way, the quotient (see belolV) im(y) is called thecokernel ofip.

Proof. Simple checking. O

Definition 1.12. Let R be aring andN, M be R-modules. Lep : M — N be anR-homomorphism.
We say thatp is a monomorphismif ¢ is injective. It is called arepimorphismif ¢ is surjective.
Finally, it is called anisomorphismif it is bijective.

If N = M, then anR-homomorphisnyp : M — M is also called anR-endomorphism

We letHomp(M, N) (or Hom(M, N) if R is understood) be the set of a@i-homomorphisms
¢: M — N.If M = N, then one let&ndg(M) := Homg (M, M).

Lemma 1.13. Let R be a ring andN, M be R-modules. Theflomp (M, N) is itself an R-module
with respect to pointwise defingdand., i.e.(f+g)(m) := f(m)+g(m)and(r.f)(m) := r.(f(m))
forall f,g € Homg(M,N),allm € M and allr € R.

Proof. Simple checking (Exercise on Sheet 2). O

Definition 1.14. A subsetl C R is called a(left/right/two-sided) ideaif [ is a (left/right/two-sided)
R-module (w.r.t4+ from R and. = - from R). Notation/ <« R (or I < R).

Example 1.15.(a) {0}, R are both trivially ideals.
(b) {nm|m € Z} < Z.
(c) Lety : R — S be aring homomorphism. Théwar(y) is an ideal ofR.

Definition 1.16. Let M a an R-module and letn; € M for i € I (some ‘indexing’ set). Denote
by (m;|i € I) the smallest submodule 8f containing allm, for i € I; it is called the submodule
generated by the;, i € I.

An R-moduleM is calledfinitely generatedf there arer € N and elementsny,...,m, € M
such thatim,...,m,) = M.

Notation: ifm; € R, we write(m;|i € I) := (m;|i € I) for the ideal ofR generated by the,
fori e I.

An ideal of the forn{r) < R withr € R is called aprincipal ideal
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Example 1.17.(a) (0) = {0}, (1) = R.
(b) (n) ={nm|m € Z} < Z.
(€) (n,m) = (g) with g the greatest common divisor of m € Z.

(d) Every ideal ofZ is principal (Z is a principal ideal domain). To see this, we give a proof that
generalises immediately to Euclidean rings (see next section)l hetany non-zero ideal &.
Letn be the smallest positive integer In

Claim: I = (n). Letx € I be any element. Using division with remainder we wiite- an + r
with0 <r < n and some: € Z. Asz € [ andn € [, alsor = x — an € I. Asn is the smallest
positive element id, the remainder has to be zero, whenee= an andx € (n). This shows
I C (n). The converse inclusion is trivial.

Lemma 1.18.Let R be aring andN < M be R-modules. The relation ~ y :< = —y € N defines
an equivalence relation of/. The equivalence classgs= =+ N form theR-module denoted/ /N
with

e +: M/NxM/N— M/N, (x+N,y+ N)—z+y+ N,
e 0=0=0+ N = N as neutral element w.r.t-,
o :RxM/N— MJ/N, (r,x+ N)—rz+ N.
The R-moduleM /N is calledthe quotient of\/ by (or modulo)N (also calledfactor modulé.

Proof. Simple checking. The main point is thatand. indeed define maps , i.e. are well-defined.
The other properties then follow immediately from thoseRof O

Lemma 1.19. Let R be a commutative ring an< R be an ideal. Then the quotient modut¢! is
a commutative ring with multiplication

tR/IXxR/I - R/I, (r+1,s+1)—rs+]1,
thequotient ring orR by I (also calledfactor ring.
Proof. Simple checking, as for the previous lemma. Ol
Example 1.20.(a) Q(i) = Q[X]/(X?2 + 1).
(b) F, = Z/(p) for p a prime.
(€) Fy = Fo[X]/(X2 + X +1).

Definition 1.21. Let R be aring and! < R, I # R an ideal.
The ideall is calledmaximalif there is no ideal/ < R such that/ C J C R.
The ideall is calledprimeif, wheneveub € I, thena € T orb € I.

Proposition 1.22. The prime ideals of. are precisely(0) and (p) for p a prime number (using the
‘school definition’: a natural numbep is prime if its only positive divisors areandp).
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Proof. First we see that0) is a prime idealub =0 = a=00rb= 0.

Now we check thatp) is a prime ideal ifp is a prime number. Let, b € Z such thaub € (p).
This means that there existse Z such thatab = np. Here comes the non-trivial part. Now, we
assume that ¢ (p), i.e.p 1 a. This means that the greatest common divisop @hda is 1 and by
the (extended) Euclidean algorithm we det ra + sp with somer, s € Z. Multiplying by b gives
b= rab+ bsp = rnp + bsp = (rn + bs)p, whenceb € (p), as was to be shown.

Let now (n) be a prime ideal. I were not prime, them = ab with a,b # 1, -1, soab € (n),
buta ¢ (n) andb ¢ (n), contradicting the prime-ness (f). O

Definition 1.23. Let R be aring. An element € R is called azero-divisorif there iss € R, s # 0
s.t.rs = 0.
Aring is called anintegral domair(or domain, for short) if) is its only zero divisor.

Proposition 1.24. Let R be aring and/ < R an ideal.
(a) Thenl is a prime ideal if and only i?/I is an integral domain.
(b) ThenI is a maximal ideal if and only iR/ is a field.

Proof. (a) Let be a prime ideal and let+ I,b+ I € R/I suchthatfa + I)(b+ 1) = ab+ I =
0+ 1 =0,i.e.ab € I. By the property ofl being a prime idealy € I orb € I, which immediately
translatesta + I =0orb+ I = 0.

Conversely, assume th&Y/ I is an integral domain and let b € R such thaub € I. This means
(a+1I)(b+1I)=0,whencea + I =00rb+1=0sothata € [ orb € I, proving thatl is a prime
ideal.

(b) Suppose that is a maximal ideal and let + I # 0 be an element iiR/I. We must show it
is invertible. The conditior: + I # 0 meansr ¢ I, whence the ideal = (I, x) is an ideal strictly
bigger than/, whenceJ = R by the maximality of/. Consequently, there aie= I andr € R such
thatl = i + zr. This means that + [ is the inverse of + I.

Now let us assume thdt/I is a field and let/ O I be an ideal ofR strictly bigger thar/. Letx
be an arbitrary element ifi but notin/. As R/I is a field, the element + I is invertible, whence
there isy € Rsuchtha(z + I)(y+ 1) =2y +I1=1+1C J. So,1 € J, whenceR C .J, showing
thatJ = R, whencel is maximal. Ol

Corollary 1.25. Every maximal ideal is a prime ideal.
Proof. Every field is an integral domain. O
Example 1.26. A ring R is an integral domain if and only {f0) is a prime ideal ofR.

Definition 1.27. Let R and.S be rings. We say thé is an R-algebra if there is a ring homomorphism
p:R—S.

Example 1.28.Let K be a field. Then the polynomial ring|[X] is a K-algebra.
ConsiderEnd g (V') for a K-vector spacé’. ThenEndg (V) is a K-algebra (K embeds into the
scalar matrices).
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2 Factorial rings

Principal ideal domains and factorial rings are the ‘nicest’ commutativesrikfnfortunately, many
of the rings one encounters naturally (e.g. rings of integers in numbes faldings of functions on
affine plane curves) are not that ‘nice’. We shall in later sections beeraed with finding substitutes
for the ‘nice’ properties of factorial rings and prinicipal ideal domaiHere, we shall as a start de-
velop these ‘nice’ properties, so that we can more appreciate them agdesefor similar properties
in more general cases.

Euclidean rings, principal ideal domains and factorial rings are allrgéisations of the integer
ring Z. It was apparently Gaul3 who was the first to notice that ‘obvious’ statisnike the one that
every positive integer can be uniquely (up to ordering) written as a ptadyprime elements needed
proof. In this section we give these proves in more generality.

Euclidean rings

Definition 2.1. An integral domainR is called aEuclidean ringf there isamap) : R\ {0} — Ny
such thatR has a division with remainder w.rd, i.e. if for all a,b € R, b # 0, there areq,r € R
satisfying

a=gb+rand(r=0o0rd(r) < dob)).

Example 2.2. (a) Z w.r.t.§ = | - | (absolute value).

(b) The Gaussian integei®[i] := {a +bi € C | a,b € Z} with + and- coming fromC, w.r.t.
§(a +ib) = a® + V2.

(c) K[X]with K afield (but notZ| X]) w.r.t.§ = deg.

Principal ideal domains

Definition 2.3. An integral domainR is called aprincipal ideal domaiif every ideal ofR is principal.
Proposition 2.4. Every Euclidean ring is a principal ideal domain.

Proof. Let R be a Euclidean ring w.r.h and let/ <« R be an ideal. We want to show that it is
principal. If I = {0}, then it is already principal, so that we may suppbsé (0). Consider the set
M = {6(i) e N|ie I\ {0}}. Asa non-empty subset &f it has a smallest element (induction
principal, well-ordering principle, ...). Let be this smallest element. It is of the form= §(z) with
0+#xz el Note(z) CI.

Let now: € I be any element. By the Euclidean property theregarec R such that = gx + r
with r = 0 or §(r) < d(n). Sincei € I andx € I, it follows thatr = ¢ — gz € I. Due to the
minimality of n = §(x), we must have = 0. Thusi = gz € (x). We have shown? C (z) C I,
hence,l = (z) is a principal ideal. O

Example 2.5. (a) Z, Z][i]

(b) K[X] with K afield, but noZ[X].
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(c) There are principal ideal domains which are not Euclidean. Exenfp[-4—2], the proof that
the ring is not Euclidean is quite hard.

Definition 2.6. Let R be an integral domain.

(&) An element € R is called aunit if there iss € R such thatrs = 1. The set of units forms a
group w.r.t.-, denoted af?*.

(b) An element € R\ (R* U {0}) is calledirreducibleif, whenevenr = st with s,¢ € R, then
s€ R orte R”.

(c) Anelement € R dividesan element € R (in symbols:r | s) if there ist € R such thats = rt.

(d) Two elements, s € R are associatéf there is a unitt € R* such thatr = ts (note that being
associate is an equivalence relation).

(e) Anelement € R\ (R* U {0}) is called aprime elemenif, whenever | st with s,¢ € R, then
r|sorr|t.

Proposition 2.7. Let R be an integral domain.

(a) Letr € R. Then
re R < (r)=R.

(b) Letr,s € R. Then
rls<(r)2(s).

(c) Letr,s € R. Thenr ands are associate if and only {fr) = (s).
(d) Letr € R\ (R* U{0}). Thenr is a prime element if and only ) is a prime ideal ofR.
(e) Letr € R be a prime element. Theris irreducible.

Proof. (a), (b), (c) and (d) are simple checking.

(e) Letr € R be a prime element. In order to check thas irreducible, let = st with s, ¢ € R.
This means in particular that | st. By the primality ofr, it follows r | s or | ¢. Without loss
of generality assume | s, i.e.s = ru for someu € R. Then we haver = st = rut, whence
r(1 — ut) = 0, which impliesl — ut = 0 by the property thaR is an integral domain and # 0.
Thust € R*, as was to be shown. O

Proposition 2.8. Let R be a principal ideal domain and let € R\ (R* U {0}). Then the following
are equivalent:

() xisirreducible.
(i) (x)is a maximal ideal.
(iii) (x)is aprime ideal.

(iv) z is a prime element.
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In particular, the non-zero prime ideals are the maximal ideals.

Proof. ‘(i) =(ii):" If (x) were nota maximal ideal, thén) C (y) € Rforsomey € R\ (R*U{0}),
whencey | z, so thatr would not be irreducible. We have already seen the other implicationg.]

We shall use two consequences all the time:

e Let K be afield andf € K[X] a non-constant irreducible polynomial. Thef) is a maximal
ideal of the principal ideal domaif’ [ X | and the quotienk [ X]/(f) is a field.

e If pis a prime number (iZ), thenZ/(p) =: I, is a field.
Definition 2.9. Aring R is calledNoetherianif all ideal chains

a1 CagCazC...

become stationary. More formally, whenevwek: R for i € N are ideals with the property; C a;1,
then there is: € N such that for alli > n one hasy,, = q;.

More on Noetherian rings and modules will be said in later sections.
Proposition 2.10. Every principal ideal domain is a Noetherian ring.

Proof. Let a; = (a;) with a; € R be such an ascending ideal chaip C a;,; for all i € N, or,
equivalently,a; 1 | a; for all i € N). Then form the ideah = J;.y a;. It is a principal ideal, i.e.
a = (a) for somea € R. Of coursea € (a), i.e.a € |J;cy %, Whence there is € N such that
a € (ay). Thismeanga) C (a;) C (a) forall i > n, whence(a) = (a;) for all i > n. O

Factorial rings

Definition 2.11. A Noetherian integral domaif is called afactorial ring(or a UFD — unique fac-
torisation domaihif every irreducible elemente R\ (R* U {0}) is a prime element.

Proposition 2.12. Every principal ideal domain is a factorial ring.

Proof. We have seen both Noetherian-ness and the property that everycilrledelement is prime.
O

Hence we have the implications:
Euclidean=- PID = UFD.

We shall see later that being factorial is a property that is too strong in nzs®sc They will be
replaced by Dedeking rings (which daeally PIDs — definitions come later; examples are the rings
of integers in number fields).

Lemma 2.13. Let R be a Noetherian integral domain ande R\ (R* U {0}). Then there are
irreduciblezy,...,z, € R\ (R*U{0})suchthat =z - 29 zp.
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Proof. We first show that every € R\ (R* U {0}) has an irreducible divisor. Suppose this is not
the case and pick any non-unit diviser | r s.t. (r) € (ry). If not suchr, existed, then- would

be irreducible itself. Of course; is not irreducible. So we can pick a non-unit diviser| r; s.t.
(r1) € (r2). Like this we can continue and obtain an infinite ascending ideal chain,acgrntr the
Noetherian hypothesis.

Now, we have an irreducible non-unit diviser | r s.t.(r) C (x1). If r/x; is a unit, then we are
done. Otherwise/x; has an irreducible non-unit divises | /z;. If r/(x122) is a unit, then we are
done. Otherwise/(x1x2) has an irreducible non-unit divisor.

Like this we continue. This process must stop as otherwise we would haaérdte ascending
ideal chain

() G (—
Z1 T1X2

C....

Proposition 2.14. Let R be a Noetherian integral domain. The following are equivalent:
(i) Ris afactorial ring.

(i) Everyr € R\ (R* U {0}) can be written uniquelyup to permutation and up to associate

elements) as a product of irreducible elements, ie4fx - 29 --- - Tp = Y1 Yo Ym With
irreducible elements;, y; € R\ (R* U {0}), thenn = m and there is a permutation in the
symmetric group oR1, . ..,n} such thatr; is associate withy,; foralli = 1,...,n.

Proof. (i) = (ii): See Lemma 2.13 for the existence. We now show the uniqueness. Retalhe
prime elements are precisely the irreducible ones. This is what we are gaisg.thet

It follows thatzx,, dividesy; -y2-- - - ym. By the primality ofz it must divide one of the’s, say after
renumberinge,, | y.,. But, sincey,, is irreducible, we must have,, ~ y,, (associate!). Dividing by
z, on both sides, we obtain a shorter relation:

wheree € R* is a unit. Now it follows thatz,,_; divides the right hand side, and, after renumbering,
we have again,, 1 ~ y.,_1. Dividing by x,,_1 (and possibly replacing the urity a different one)
we obtain an even shorter relation:

x1.$2 ..... xn72:€y1y2ym72

Like this we continue, and conclude = m and that, after the above renumbering, ~ y; are
associate forall =1,...,n.

(i) = (i): We need to show that every irreducible element is prime. Se, etk \ (R* U {0})
be irreducible and suppose that st with s,t € R, i.e.ru = st for someu € R. We may write
s, t andwu uniquely (up to ordering and associateskas s; - s -+ Sy, t =t1 - to - -+ -t and
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u=1uy-ug-----u Withirreducible elements;, ¢t;, u, ¢ =1,...,n; j=1,....m;k=1,...,0).
The uniqueness of irreducible elements occurring in the equation

implies thatr must be equal to one of th#s or one of the’s. This means that dividess or it divides
t, as was to be shown. O

We now want to see that not every ring is factorial.

Example 2.15. Consider the ringZ[\/—5] = {a + b\/—5 | a,b € Z} with + and- from C. We have
6=2-3=(1+v=5)-(1—v=5).

All four element2, 3,1 + /=5, 1 — /=5 are irreducible elements &[/—5]:

Supposéa + by/—5)|2. It follows that(a + bv/=5) - (a +by/=5) = a®> +5b* | 4 = 2-2. We
obtainb = 0 anda = +2. It works similarly with the other three numbers.

Hence, this example shows thatZi/—5] not every element can be written as a product of
irreducible elements in a unique way! In other wordg,/—5] is not a factorial ring (but, it is a
Noetherian integral domain).

Corollary 2.16. Let R be a principal ideal domain. Then it satisfies the ‘unique ideal factorisation
property’: Every non-zero idedl <t R can be written in a unique way (up to permutation) as

I =pips...pn
with p; prime ideals.
Proof. This is obvious. O

The unique ideal factorisation property will be the most important propdriyealekind rings,
which are to be studied later. This unique ideal factorisation replaces theeufactorisation into
prime elements, which fails very easily (as we have seen).

We finish this section with the remark that it makes sense to define greatest oaivisors and
lowest common multiples in all rings. But, they need not exist, in general. borfatrings they
always do!

3 Algebraic elements and algebraic field extensions

We now introduce (recall) important notions from field theory. They insp&réo generalise them in
order to ‘integral’ notions in the next section, i.e. in spirit we shall later glaby Z. That will add
some extra technicalities, but many of the concepts will be very parallel.

Lemma 3.1(Multiplicativity of field degrees) Let K’ C L C M be finite field extensions. Then
[M: K]=[M:L]L: K]

(in other words:dimg M = (dimg L)(dimz, M).).
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Proof. Exercise. O]
Definition 3.2. Let K be a field and./ K a field extension (see earlier definition).

(a) Anelement € L is calledalgebraic ovelX if there is a non-zero polynomigl € K[X] such
that f(a) = 0 (i.e.a is a zero (also called root) of).

An element, € L that is not algebraic ovek is also calledranscendental ovex'.

(b) The field extensioh/K is calledalgebraidalternatively,L is called analgebraic field extension
of K) if everya € L is algebraic overK.

If L/K is not algebraic, it is calledranscendental

Example 3.3.(a) Let K be a field. Every: € K is algebraic overK. Indeed,a is a zero of the
polynomialX — a € K[X].

(b) V2 is algebraic overQ. Indeed,\/2 is a zero of the polynomiak? — 2 € Q[X]. Note that the
polynomialX? — /2 may not be used here, since its coefficients are n@tlin

(c) = is transcendental ovef). This is the theorem of Lindemann (from analysis). It implies by
Galois theory that the circle cannot be squared using compass and Byethis we refer to the
ancient problem of constructing a square whose area is equal to thagofen circle, just using
a (non-marked) ruler and a compass.

(d) = is algebraic oveiR (special case of first item).
(e) i = v/—1is algebraic overQ.
Lemma 3.4. Let K be afield and./ K a field extension and € L.

(a) Theevaluation map
o, K[X|— L, f— f(a)

is a homomorphism of rings.
(b) @, isinjective if and only if: is transcendental ovek .

(c) If a is algebraic overK, then there is a unique monic (i.e. highest coefficiert, ise. X% +
cg—1 X1+ 4 ¢o) polynomialm,, € K[X] such that'm,) = ker(®,) (i.e. the principal ideal
(m,) is equal to the kernel of the evaluation map).

The polynomialn, is called theminimal polynomial ofa over K.
(d) Leta be algebraic ovet<. Then the induced map
D, : K[X]/(ma) = L, [+ (ma) — f(a)

is an injective field homomorphism. Its image is denotefy) and is called thdield generated
by a over K or K adjoineda.
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Proof. (a) Exercise. Just check the definition.

(b) If a is algebraic ovels, then there is a non-zero polynomijéle K|[X] such thatf(a) = 0.
This just means thaf is in the kernel of the evaluation map, gds not injective. Conversely, if
is not injective, then there is some non-zero polynonfial the kernel of the evaluation map. That,
however, just meang(a) = 0, whenceu is algebraic.

(c) We know thatK'[X] is a principal ideal domain. Hence, the kerneliofis a principal ideal,
S0, it is generated by one elemeghtAs ®,, is not injective & is assumed to be algebraic, see (),
is non-zero. A generator of a principal ideal is unique up to units in the 8@ f is unique up to
multiplication by a unit ofK, i.e. up to multiplication by an element frofd \ {0} (see exercise on
Sheet 3). Iff is of the formrg X4 + ry_1 X1 + .. 4 rg € K[X] with 74 # 0, thenm,, := éf =
X4 4 4L X471 4 ... 4 0 is the desired unique polynomial.

(d) We know thatK' [X]/(m,) is a field, sincgm,) is a maximal ideal, which is the case due to
the irreducibility ofm,,. For, if m, were reduciblen, = fg with f, g € K[X] both of smaller degree
than the degree of,, then0 = m,(a) = f(a)g(a) implies thatf(a) = 0 or g(a) = 0. Suppose
without loss of generality thaf(a) = 0. Thenf € ker(®,) = (m,), so thatm, | f, which is
impossible for degree reasons.

The injectivity follows because we just ‘modded out’ by the kernel (homginism theorem —
see exercise on Sheet 3). (Alternatively, you can also recall thatimgnhomomorphism between
fields is necessarily injective.)

O

In words, the minimal polynomiah, € K[X] of a (algebraic over) is the monic polynomial
of smallest degree annihilating Compare this to the minimal polynomial of a matrix (the map from
Exercise 4 on Sheet 1 is the analogue of the evaluation dgapnd the minimal polynomial of a
matrix is the unique monic polynomial generating the kernel of the map in theisserc

Note that (d) says non-trivial things, namely that the subsétaffthe form{Zf;(]l riat | r; € K}
is a subfieldof L (and not just a subring?!).

If the minimal polynomial ofa is of the formm, = X% 4+ c¢4_1 X% ! + ... 4 o, then K (a)
can be represented ag&avector space with basis a, a?, a®, ..., a%!. Suppose we have two such
elementsy = Y% 1 0’ and B = S s;a’ (with 7, 5; € K). Of course, the addition if (a) is
the addition inL. and comes down to:

d—1
o+ ﬂ = Z(Tz + Si)ai.
=0
But, how to multiply them and express the result in terms of the basis? Of ¢coweseve to multiply

out, yielding
2(d—1)

a-f= Z ( Z risj)a”.

n=0 ijsti+tj=n

But, what to do witha™ for n > d? Apply the minimal polynomial!

a’ = _(Cd—lad_l + -+ Co)-
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We can use this to eleminate all for n > d. Suppose the highest occuring powerds o™ with
m > d. Then, we multiply the above equation through with~¢ and obtain:

a™ = _(Cd_lam—l —|—"'—|-C()am_d).

Using this, we are left with powerg™ ! at worst, and can apply this process again and again until
only powersa™ with n < d — 1 occur.

Example 3.5. Return to the exampl@(1/5). The minimal polynomial of/5 over Q (say, as an
element oR) is X2 — 5, soQ(+/5) is the image of)[X]/(X2 — 5) in R. The above)-basis isl, /5.
So, we express any elemen@Qh/5) asa + bv/5 witha, b € Q.

Now let two such elements be giver= ay + a1v/5 and 3 = by + by/5. Then

a+ B = (ao+bo) + (a1 + b1)V5
and

a-f= (GO + al\/g)(bo + bl\/g) = apby + \/5(a0b1 + albo) + albl(\/g)Q
= (aobo + ba1by) + V/5(aght + aiby).

The discussion above yields, in particular:

Corollary 3.6. Let K be a field,./ K a field extension and € L algebraic overK with minimal
polynomialm, € K[X] of degreel. The fieldK (a) is the subfield

d—1
{Zriai |rie K} C L.
1=0

It can also be viewed as the smallest subfield ebntaininge and K. The field extensiok (a)/ K
has degreel, i.e.[K(a) : K| = d.

A word of explanation about ‘smallest subfield’. One should convinaeself that given two
subfieldsi/; C L andMsy C L, their intersectionV/; N M5 is also a subfield of.. Hence, one can
formally define the smallest subfield 6fcontainingK” anda is the intersection of all such.

Of course, we shouldn't limit ourselves to considering a single element.. Instead, let's look
ata; € L fori € I (some indexing set; could be finite or infinite).

Definition 3.7. Let K be a field,L/K a field extension and; € L for i € I elements. We define
K (ai|i € I) to be the smallest subfield bfcontaining K" and alla;, i € 1.

If L = K(ay,...,ay,) for somen, we say that the field extensidr K is finitely generatednot
to be mixed up with finite field extension!).

Note that for a single element both definitions ofK’(a) coincide, as we have already observed.
One might also want to verify thdt (a,b) = (K(a))(b). That equality immediately comes down to
the following statement: A field. containsK anda if and only if L containsK (a). That statement
is clear.

We shall next develop a different point of view on algebraic elementabgabraic extensions. It
is this point of view that turns out very useful in the upcoming ‘integral’lagae of the theory.
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Proposition 3.8. Let K a field andL /K a field extension.

(a) Letay,...,a, € L be finitely many elements.

Then the field extensiali (a1, as, . . ., a,)/ K is finite if and only if alla; are algebraic over'.

(b) If L/K is finite, then it is algebraic (i.e. all its elements are algebraic of&rsee Definition
above).

Proof. (a) Suppose first that all; are algebraic ovek'. As
K(ay,az,...,an—1)(an) = K(ai,az,...,a,)

and due to the multiplicativity of degrees, it suffices thafa)/ K is finite for any element that is
algebraic overs. That we already know.

Now suppose that one of thg (say, a; possibly after renumbering) is transcendental aifer
ThenK (a;) contains the image dk [ X ] under the injective evaluation mdp,,. As alreadyK'[X] is
infinite dimensional ag(-vector space, it follows thak (a1 ) is of infinite degree ovek.

(b) Leta € L be any element. Consider the set= {1,a,a?,a?,...}. Now consider thex-
subspacé’ of L spanned by this set. Ak is finite dimensional ag{-vector space, als¥ has to
be finite dimensional. Hencé, contains ak -basisB of V. Leta™ € S a power ofa that is not in
the basis. But, of course, it can be expressed in terms of the basism&hat we have a non-zero
polynomial annihilating:, henceg is algebraic overs'. O

Corollary 3.9. Let K be afield andL/K a field extension. Then the following statements are equiv-
alent:

(i) L/K is afinite field extension.
(i) L/K is afinite and algebraic field extension.
(i) L/K can be generated by finitely many elements that are algebraicidver

Proof. (i) = (ii): Every finite field extension is algebraic (proved above).

(i) = (iii): We give a constructive proof. Take amyy € L \ K. It is algebraic overk” and
K C K(a1) C L. Note[L : K| > [L : K(a1)]. If K(a1) # L, then takeny € L\ K(ay). Itis
also algebraic ovek'. We getK (a;) € K(aj,az) C L. Note[L : K(ay)] > [L : K(a1,az)]. Like
this we continue. As the degree is a positive integer greater than or equahts process will end at
some point and theK (ay, as, ...,a,) = L.

(iii) = (i): Proved above. O]

Proposition 3.10. Let M/ /L /K be field extensions.
(a) Assumd./K is algebraic andu € M is algebraic overL. Thena is algebraic overk.

(b) (Transitivity of algebraicity)\// K is algebraic if and only if\//L and L/ K are algebraic.
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Proof. (a) Letm, = Zfzo c; X' € L[X] be the minimal polynomial ofi over L. The coefficients
¢; € L are algebraic oveK. Hence, the field extensiol := K(co,c1,...,cq—1) Of K is finite.
Of courseyq is algebraic oved/, henceM (a) is a finite field extension al/. By multiplicativity of
degrees) (a) is a finite field extension ok, hence algebraic. In particular,s algebraic ovei.
(b) One direction is trivial, the other follows from (a). O

Definition 3.11. (a) LetL/K be a field extension. The set
Ky, :={a € L | ais algebraic ovef }

is called thealgebraic closure oK in L.
Note that./ K is algebraic if and only ifK;, = L.

(b) AfieldK is calledalgebraically closed for any field extensiod./ K one hask = K.

Note that this means that there is no proper algebraic field extensién of

Proposition 3.12. (a) LetL/K be a field extension. The algebraic closurdofn L is an algebraic
field extension of.

(b) AfieldK is algebraically closed if and only if any non-constant polynonfia K[X| has a zero
in K.

Proof. (a) Firstly,0,1 € Ky is clear. Leta,b € K. We know thatK (a, b) is an algebraic field
extension ofK. Thus,K(a,b) C K. Consequently—a, 1/a (if a # 0), a + b anda - b are in
K (a,b), hence, also ii;,. This shows thak(;, is indeed a field.

(b) AssumeXK is algebraically closed and l¢t ¢ K[X] be a non-constant polynomial. Let=
E?:o ¢; X" be a non-constant irreducible divisor pf The natural injectiork — K[X]/(g) =: M
is a finite field extension of{ (remember thafg) is a maximal ideal of the principal ideal domain
K[X]). Now, the class := X + (g) € M is a zero ofg, since

d d
g9(@) = g(X +(9)) = D_ci(X +(9))' =YX +(9) =0+ (g)-
i=0 i=0
As K is algebraically closedy/ = K, whencen € K.

Conversely, suppose that is such that any non-constant polynomjfa¢é K[X] has a zero irk.
This means that there are no irreducible polynomial&’jX | of degree strictly bigger thah. Let
L/K be a field extension and € L algebraic overs. The minimal polynomiain, € K[X] is an
irreducible polynomial admitting as a zero. Hence, the degreenaf is 1, whencem, = X — a, SO
thata € K, showingK; = K. O

Proposition 3.13. Let K be a field. Then there exists an algebraic field extensigiik such thatk’
is algebraically closed.
The fieldK is called analgebraic closure ok (it is not unique, in general).

The proof is not so difficult, but, a bit long, so | am skipping it.

Example 3.14.(a) C is algebraically closedR is not. R¢c = C.



4 INTEGRAL ELEMENTS AND INTEGRAL RING EXTENSIONS 19

(b) Qc = {z € C | zis algebraic ovef)} =: Q. We have) is an algebraic closure of.

(c) Both@Q and C are algebraically closed, bu€ is not an algebraic closure of because the
extensiorC/Q is not algebraic.

(d) Note thatQ is countable (Exercise), since we can count the set of polynomials véfficients
in Q and each polynomial only has finitely many zeros; but, as we kidasvnot countable.

4 Integral elements and integral ring extensions

Integral elements are generalisations of algebraic elements, when th& figldplaced by a ringg.
For algebraic elements the minimal polynomial is the uniquanic polynomial of minimal degree
annihilating the element; but, in fact, we do not really care whether the polyh@mzonic, since
we can always divide by the leading coefficient. So, the choice of dgfithi@ minimal polynomial
of an algebraic element as a monic polynomial is actually quite arbitrary, ond doghdifferently
without changing anything in the theory. Over rings the situation is diffesdémte we cannot divide
by the leading coefficient in general.

Why are monic minimal polynomials useful? We want to construct extensiond: A€ be a field
extension and < L be algebraic ove® with minimal polynomiabn, = X" +c¢, 1 X" '+ -+ co.
This just means

a" = —(cp_1a™t + -+ o),

so that we can expres$ in terms of linear combinations with coefficients i of powers ofa of
lower exponents. This is precisely what we need in order for

{rp1a" Pt e Kie{l,...,n—1}}

to be aring.
Suppose now we work over a rirfginstead of a field<. Let S be a ring containing?. Assume
for a moment that, € S satisfies

cpa” = —(cp_1a" "t 4+ cp),

i.e. a non-monic linear combination with coefficientsiin Note that we now cannot expres$ as a
linear combination of lower powers afwith coefficients inR, unlessc,, € R*. Hence, the set

1

{rp—1a™” " 4+---+ro|rmeRie{l,....n—1}}

is not stable under multiplication!

The morale is that we must use monic minimal polynomials (at least polynomials @dautirg
coefficient is a unit), when we work over rings and want to construiereskons similar to those over
fields.

Finally, consider the following examples. L&t = Z be the ring over which we work. We look
at: f(X) = X —2andg(X) = 3X — 2. The zero off is 2 and the zero of is % so that the minimal
polynomial of% seen as an algebraic element offeis X — % The latter polynomial is not i X |
anymore! That just indicates thétis not an integer. We see that each elemendias a linear
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polynomial with integer coefficients annihilating it. The integers are preciselsetielements of)
that have a monic integer polynomial annihilating it.
This motivates the following fundamental definition.

Definition 4.1. Let R be a ring andS an extension ring of? (i.e. a ring containingR as a subring).
An element: € S is calledintegral overR if there exists a monic polynomigl € R[X] such that

fla) =0.
Note that integrality is also a relative notion; an element is intemrat some ring. Also note the

similarity with algebraic elements; we just added the requirement that the polyinaenmaonic, for
the reasons explained above.

Example 4.2. (a) The elements @ that are integral ovefZ are precisely the integers @.
(b) V2 € Ris integral overZ becauseX? — 2 annihilates it.
(c) ”2—‘/5 € R is integral overZ becauseX? — X — 1 annihilates it.

(d) a:= ”gj € R is not integral ovelZ becausef = X2 — X + % annihilates it. If there were
a monic polynomiah € Z[X] annihilating a, then we would havé = fg with some monic
polynomialg € Q[X]. But, now it would follow that botlf and g are in Z[X] (see Sheet 4),
which is a contradiction.

(e) LetK be a field andS a ring containingK (e.g.L = S a field as in the previous chapter) and
a € L. Thena is integral overK if and only ifa is algebraic overk.

Indeed, ask is a field any polynomial with coefficients ki can be made monic by dividing by
the leading coefficient. So, if we work over a field, then the new notion gfatity is just the
notion of algebraicity from the previous section.

Definition 4.3. Let.S be aring andR C S a subring.

(a) The setRg = {a € S | ais integral overR} is called theintegral closure of? in S (compare
with the algebraic closure ak in S — the two notions coincide R is a field).

An alternative name isnormalisation ofR in S.

(b) S'is called anintegral ring extension oR if Rg = S, i.e. if every element f is integral overRR
(compare with algebraic field extension — the two notions coincidieaihd S are fields).

(c) Ris calledintegrally closed inS if Rg = R.
[We will see in a moment that the integral closureffn S is integrally closed inS, justifying

the names].

(d) An integral domainR is calledintegrally closedi.e. without mentioning the ring in which the
closure is taken) iRk is integrally closed in its fraction field.

Our next aim is to show in an elegant way tli&j is a ring. The idea is the same as for algebraic
elements; we showed thai(a) is a finite extension ok if and only if a is algebraic ovefs. Then
it is clear that sums and products of algebraic elements are algebraisbdbauinitess property is
clear.
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Definition 4.4. LetS be aring andR C S a subring andi; € S for ¢ € I (some indexing set).
We letR[a; | i € I] (note the square brackets!) be the smallest subring§ cbntainingR and all
thea;, i € 1.
Note that as before we can sB&| insideS as the image of the ring homomorphism

d d

o, : R[X]— S, ZciXi — Zciai.

i=0 i=0
Recall from Linear Algebra:

Proposition 4.5(Cramer’s rule) Let R be a ring andM = (m; j)1<i,j<n D€ @ann x n-matrix with
entries inR. Theadjoined matrixs defined as\/* = (m; ;)1<; j<, with entries

mi; = (—1)" det(M;),

wherelM; ; is the matrix obtained from/ by deleting the&-th column and thg-th row.
Then the following equation holds:

M-M*=M*"-M =det(M) - id;xn.
We can now state and prove the following equivalent description of irtggra

Proposition 4.6. Let S be aring, R C S a subring andz € S. Then the following statements are
equivalent:

(i) aisintegral overR.
(i) Rla] C Sis afinitely generated&?-module.
(ii) RJa] is contained in a subring” C S such thatT is a finitely generated?-module.

(iv) There is a finitely generate®-modulel” C S which containsl and such that multiplication by
a sendsT” into itself.

Proof. (i) = (ii): As « is integral overR, a relation of the form
a" = —(cp_1a™ N Fcp0a" 4 F o)

holds. HenceR[a] can be generated as &module by{1,a,a?,...,a" '}.

(i) = (iii): Just takeT := RJa).

(iii) = (iv): Take the samé".

(iv) = (i): We must make a monic polynomial with coefficientsRnannihilatinga. For this we
use Cramer’s rule. A is finitely generated as aR-module, we may pick a finite generating set
{t1,...,tn}, i.e. any element of € T can be represented as= > "_, r;t; with somer; € R for
jed{l,...,n}.

In particular, as multiplication by sendsI” to itself, at; can be written as

n
ati = Z dj,itj-
j=1
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Form the matrixD = (d; ;)i<i j<n- It has coefficients irR. Let M := aid,x, — D be a matrix with
coefficients inS. Note that we have "

to

. 1=0

tn
By Cramer's rule, it follows

t1 t1 t1
to t2

t
MM || = det(M)idusn | . | =des(M) | ] =0,
tn t tn

so thatdet(M)t; = 0forall j € {1,...,n}. But,asl = 37, e;t; for somee; € R, it follows

det(M) = det(M) -1 =" e;det(M)t; = 0.
j=1

Hence,
f(X) :=det(X -idyxn — D)
is @ monic polynomial with entries iR such thatf(a) = 0, whenceu is integral overR. O
Corollary 4.7. LetS be aring andR a subring. Furthermore, let,,...,a, € S be elements that
are integral overR.
ThenR[aq,...,a,] C Sisintegral overR and it is finitely generated as aR-module.

Proof. Note that due to the implication (iigs (i) of the Proposition it suffices to prove finite genera-
tion. We do this by induction. The case= 1 is the implication (i)=- (ii) of the Proposition.

Assume the corollary is proved faer— 1. Then we know thaR|ay, . . ., a,—1] is finitely generated
as anR-module, say, generated by, ..., b,. As a, is integral overR, we have thatR|a,] is
generated byt, a,,a?, ..., a” for somer € N. Now, R[a1, ..., a,_1,ay] iS generated by;a?, with
ie{l,...,m}andj € {0,...,r}. O

Corollary 4.8. Let R C S C T be rings. Then ‘transitivity of integrality’ holds:
T/Risintegral < T/S isintegral andS/R is integral.

Proof. This works precisely as for algebraic field extensions!

The direction = is trivial. Conversely, let € 7. By assumption it is integral ove¥, i.e.t is
annihilated by a monic polynomial™ +s,,_1 X"~ 1 +- - -+ s¢ € S[X]. SinceS is integral overR, all
the coefficients lie in the finitely generatéttmoduleU := R][so, s1,. .., Sn—1]. As the coefficients
of the minimal polynomial of all lie in U, it follows thatt is integral overl/, whencel/[¢] is finitely
generated ovelt/. But, asU is finitely generated oveR, it follows thatU[¢] is finitely generated
over R (a generating system is found precisely as in the previous proof). rticyar, ¢ is integral
overR. O

Corollary 4.9. Let R C S be rings.

(8) Rgis asubring ofs.
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(b) Anyt € S that is integral overRg lies in Rg. In other words,Rg is integrally closed inS
(justifying the name).

Proof. (a) Just as for algebraic extensions! keb € Rg. As both of them are integral ovét, the
extensionR|[a, b] is finitely generated as aR-module, hence integral. Thus+ b, a - b are integral,
whencea + b anda - b are inRg, showing that it is a ring (sincdgand1 are trivially in Rg).

(b) Any s € S that is integral ovelRg is also integral oveR (by the transitivity of integrality),
whences € Rg. O

Definition 4.10. Recall that anumber fieldK is a finite field extension d@. Thering of integers
of K is the integral closure d. in K, i.e.Zx. An alternative notation i€ .

Example 4.11.Letd # 0, 1 be a squarefree integer. The ring of integer€gh/d) is
(1) Z[Vd],ifd=2,3 (mod 4),

(2) Z[5Y4,ifd =1 (mod 4).

(Proof as an exercise.)
Proposition 4.12. Every factorial ring is integrally closed.

Proof. Let R be factorial with fraction fieldx. Letz = % € K be integral oveR. We assume that
andc are coprime (i.e. do not have a common prime divisor). We want to show: thak.
Start with the equation annihilating

i bn—l

0:$n+an_1$nil+"'+a0:07+an—1w7_1+"'+a0.

Multiply through with¢™ and move™ to the other side:
" = —c(an_lbn_1 +cap "2+ c”_lao),

implying ¢ € R* (otherwise, this would contradict the coprimeness ahdc), so thatr = bc=! €
R. O

Proposition 4.13. Let R be an integral domainK = Frac(R), L/K a finite field extension and
S := Ry, the integral closure of? in L. Then the following statements hold:

(@) Everya € L can be written ag = > withs € Sand0 # r € R.
(b) L = Frac(S) andS is integrally closed.
(c) If Risintegrally closed, thes N K = R.

Proof. (a) Leta € L have the minimal polynomial

C?l;an—1+%;2Xn_2+...+c—0€K[X}

ma(X) =X dnfl dn72 dO
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with ¢;, d; € Randd; # 0 (fori = 0,...,n—1). We form a common denominatdr=dg-dy - - - - -
dn—1 € R, plug ina and multiply through withd":

Codn
do

Cn_2d2
dn—2

Cn_ld

0=d"mg(a) = (da)" +
dn—l

(da)" ' + (da)" 2 + -+

€ R[X],

showing that/a is integral overR, i.e.da € S, or in other wordsq = 7 for somes € S.

(b) By (a) we know that. is contained in the fraction field ¢f. As S is contained inl, itis clear
that also the fraction field 0§ is contained inZ, showing the claimed equality. Thatis integrally
closed means that it is integrally closed/inWe have already seen that the integral closur® of L
is integrally closed in..

(c) This is just by definition: Ifs € S, then it is integral oveR; if s is also inK, then asR is
integrally closed (inK), it follows thats € R. The other inclusiort N K O R is trivial. O

We now add two propositions for whose proof one needs more field thkarywhat we have
developed in this lecture. The kind of field theory we need is taught in atyréeon Galois theory.

Proposition 4.14. Let R be an integral domain which is integrally closed (recall: that means inte-
grally closed inK = Frac(R)). Let K be an algebraic closure ok and leta € K. Then the
following statements are equivalent:

(i) aisintegral overR.
(i) The minimal polynomiain, € K[X] of a over K has coefficients imR.

Proof. ‘(i) = (i)": Since by assumptiom, € R[X] is a monic polynomial annihilating, by defini-
tion a is integral overR.
‘(i) = (ii): Let L := K(a) C K. Consider the set

S:={a1 = a,as,...,a,} :={o(a) | o : L — K field homomorphism s.tz(z) = = Vx € K }.

From field theory it is known that the minimal polynomial@has the shape

n
fa(X) =[(X = @) € K[X].

i=1
Let us recall how this is proved. Of coursg,(a) = 0 becauser = a;. But, a priori, f, only has
coefficients inK (the normal closure of. in K would suffice). Let nowsr : K — K be any field
homomorphism which is the identity dd. Theno permutes the elements in the SetHence, letting
o act on (the coefficients offj,, we see that it fixeg,, i.e. it fixes all the coefficients of,. This means
that all the coefficients of, are inK. If f, were not irreducible, then it would factor as (possibly
renumbering theo, ..., a,)

7)) = ([I(x —an) - ( I (X —an)
i=1 i=r+1

where both factors are polynomials Ki[X| and we assume the first factor to be irreducible. Then
K(a,asg,...,a,) would be a normal field extension &f. This, however, means that the sebnly
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consists ols = ay, ay,...,a,, contradiction. Sof, = m, € K[X] is the minimal polynomial ot
overK.

We assume thatis integral overR, so there is some monic polynomigl € R[X] annihilatinga.
It follows that f,, dividesg,. Consequentlyg,(a;) = 0 for all : = 1,...,n, proving that also
as,as, . - ., a, are integral oveR. Hence,f, has integral coefficients ovét (they are products and
sums of thes;). As R is integrally closed inf, the coefficients lie irR. Ol

Proposition 4.15. Let R be an integral domainik’ = Frac(R), L/K a finite Galois extension with
Galois groupG = Gal(L/K) and S := Ry, the integral closure o in L.
Theno(S) = S for all o € G. Moreover, ifR is integrally closed, then

SY.={seS|o(s)=sVo e G}
is equal toR.

Proof. Leta € S andg € R[X] monic such thag(a) = 0. A0 = ¢(0) = o(g(a)) = g(o(a)) for
allo € G, itfollows thato () is also integral oveR, i.e. thato(a) € S, showingo(S) C S. Equality
follows from o being invertible.

To see the final statement, just consider

S¢=8NLY=SNK=R

because of (c) in Proposition 4.13 ahff = K. HereL¢ is, of course, the set of elementsbthat
are fixed by alb € G. O

5 Affine plane curves

Definition 5.1. Let K be a field and./ K a field extension. Let € N. The set of_-points of affine
n-spaceds defined as\" (L) := L" (i.e.n-dimensionalL-vector space).
LetS C K[Xy,...,X,] be asubset. Then

Vs(L) :={(z1,...,zn) € A"(L) | f(21,...,2) =0forall f € S}

is called the set of.-points of the affine (algebraic) set belongingsto

If L = K is an algebraic closure ok’, then we also callVs(K) theaffine set belonging t&.

If the setS consists of a single non-constant polynomial, theiiK) is also called ahyperplane
in A(K).

If n =2andS = {f} with non-constanf, thenVs(K) is called aplane curvgbecause it is a
curve in the plane\?(K). Its L-points are defined ags (L) for L/ K a field extension.

Convention: When the number of variables is clear, we wiif&X'] for K[X7,..., X,]. In the
same way a tupléxy, ..., z,) € A"(K) is also abbreviated asif no confusion can arise.

The letter ‘V’ is chosen because of the word ‘variety’. But, we will defitfigne varieties below
as ‘irreducible’ affine sets.
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Example 5.2.(a) K =R,n =2, K[X,Y] > f(X,Y) = aX +bY +cnon-constant. Thel; , (R)
isaline y = —%x — % if b # 0; if b = 0, then it is the line withc-coordinate—g and any
y-coordinate).

(b) K=R,n=2K[X,Y]> f(X,Y) = X*+Y? — 1. ThenV{(R) is the circle inR* around
the origin with radiusl.

(€©) K =Q, f(X,Y):= X2+ Y2 +1. NoteV sy (R) = 0, but(0,4) € Vi, (C).

(d) K =TFy, f(X,Y):=X?+Y2+1=(X+Y +1)? € F3[X]. Because of (a,b) = 0 &
a+b+1=0foranya,b e L, L/Fy, we have

Viry(L) = Vixyy1y(L),
which is a line.

Lemma 5.3. A plane curve has infinitely many points over any algebraically closed fisldre
precisely, letK be a field, K an algebraic closure of{ and f(X,Y) € K[X,Y] a non-constant
polynomial.

ThenVy sy (K) is an infinite set.

Proof. Any algebraically closed field has infinitely many elements. This can be prmiad Euclid’s
argument for the infinity of primes, as follows. Suppdsenly has finitely many elements, . . . , a,,.
Form the polynomiah(X) := 1 + [, (X — a;). Note thatg(a;) = 1 # Oforalli =1,...,n.
Hence, we have made a polynomial of positive degree without a zertsadartion.

Back to the proof. We considgras a polynomial in the variable with coefficients inK'[X], i.e.

d
FX,Y) =) ai(X)Y" with a;(X) € K[X].
=0

First cased = 0, i.e. f(X,Y) = ao(X). Letz € K be any zero ofiy(x), which exists agy is
algebraically closed. Nowr, y) satisfiesf for anyy € K, showing the infinity of solutions.

Second casel > 0. Thenay(z) # 0 for all but finitely manyz € K, hence, for infinitely many:.
Note that the polynomiaf(z,Y) = Z?:o a;(z)Y* has at least one zeig so that(z, y) satisfiesf,
again showing the infinity of solutions. O

Example 5.4. Let K be a field and considef(X,Y) = X2 + Y2,

The only solution of the forrfx, 0) is (0,0) in any field K. Suppose nov, y) is a solution with
y # 0. Thenz? = —y2, or 22 = —1 with z = %

Hence Vs (K) = {(0,0)} ifand only if X* = —1 has no solution ink..

In particular, Vs (R) = {(0,0)} (but: V#,(C) = Vix_iv1(C) U V(x4:v}(C), union of two
lines) andV 4, (F,) = {(0,0)} if and only ifp = 3 (mod 4).

Example 5.5. Let K be afield andf(X) = X3+ aX?+4bX 4+ c be a separable polynomial (meaning
that it has no multiple zeros ovéf).

Any plane curve of the forVy»_;x)y is called arelliptic curve It has many special properties
(see e.g. lectures on cryptography).
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Definition 5.6. Let X’ be a set and) a set of subsets ¥ (i.e. the elements @ are sets; they are
called theopen sets
ThenQ is called atopology onX (alternatively: (X', O) is called atopological spaceif

(1) 0, X € O (in words: the empty set and the whole space are open sets);

(2) if A; € Ofori e I, thenlJ,.; A; € O (in words: the union of arbitrarily many open sets is an
open set);

(3) if A, B € O,thenAN B € O (in words: the intersection of two (and, consequently, finitely many)
open sets is an open set).

A setC C X is calledclosedif X \ C' € O (in words: the closed sets are the complements of the
open sets).

Proposition 5.7. Let K be a field and: € N. Define
O = {A"(K)\ Vs(K) | § € K[X1,..., X,]}.

Then(A"(K), Q) is a topological space. The thus defined topology is calle@#reski topology on
A"(K).

Note that, in particular, the closed subsetsASf(K) for the Zariski topology are precisely the
affine sets.

Before we prove this proposition, we include the following lemma. Recall tieastim and the
product of two ideals, b of some ringR are defined as
at+b={a+blacabecblanda-b={> ai-bi|meNa cabecblori=1,...,m}
=1
It is clear that both are ideals.
Lemma 5.8. Let K be afield,L./ K a field extension and € N.
(a) V{(O)}(L) = An(L) andV{(l)}(L) = 0.
(b) LetS C T C K[Xy,...,X,] be subsets. Thewr(L) C Vs(L).

(c) LetsS;, € K[X;,...,X,] for i € I (some indexing set) be subsets. ThQJniEISi(L) =
ﬂie[ VSz‘ (L)

(d) LetS C K[Xy,...,X,]andleta:= (s |s € S) < K[Xy,...,X,] be the ideal generated k8.
ThenVs(L) = Vu(L).

(e) Leta,b < K[Xy,...,X,] beideals such that C b. ThenVy.,(L) = V4(L) U Ve(L).
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Proof. (a) and (b) are clear.
(c) Letz € A"(L). Then

zeW,, s (L) evVfel S fla)=0eViel:VfeS: flz)=0
i€l
eViel:zeVs(L)eze()Vs(L).
iel

(d) The inclusionVy(L) C Vg(L) follows from (b). Let nowx € Vs(L), meaning thajf (z) = 0
forall f € S. Since any € a can be written as a sum of products of elements f&nt follows that

g(z) = 0, proving the reverse inclusion.
(e) Sinceab C a andab C b, (b) gives the inclusion¥,(L), Vs(L) C Vqap(L), henceVy(L) U
Vo(L) C Vao(L). For the reverse inclusion, let¢ Vq(L) U Vy(L), meaning that there exisfse a
andg € b such thatf(z) # 0 # g(z). Thus, f(z) - g(x) # 0, whencez & Vs (L). O

Proof of Proposition 5.7 We need to check the axioms (1), (2) and (3). Note that (1) is Lemma 5.8 (a).
(2) For open setd™ (L) \ Vg, (L) with S; € K[X] fori € I, we have:J,.; A"(L) \ Vs, (L) =
AM(L)\ Mgy Vs, (L) 25Oy \ Wy, (D).
(3) By Lemma 5.8 (d), any two open sets are of the faxt{(L) \ V,(L) and A™(L) \ Vy(L)
with idealsa, b <« K[X]. It follows: (A™(L) \ V4(L)) N (A™(L) \ Vp(L)) = A™(L) \ (Vo(L) U
Vo(L)) 2O (1) \ V(L. O

Definition 5.9. Let X be a subset oA™ (K'). We define theanishing ideal oft’ as
Iy :={fe K[X]| f(z)=0forallz € X}.
The quotient ringK [X] := K[X]/Zx is called thecoordinate ring oft’.
Lemma 5.10. (a) The vanishing ideal is indeed an ideal6fX].
(b) The ring homomorphism
¢ K[X] — Maps(X,K), [+ ((z1,...,20) = f(z1,...,20))

(with + and- on Maps(X, K') defined pointwise(f + ¢)(z) := f(z) + g(z) and(f - g)(z) :=
f(z) - g(z)) induces an injection of the coordinate rikg[X'] into Maps(&X', K).

Proof. (a) is trivial. (b) is the homomorphism theorem. O

We may even replacklaps(X, K) by C(X, A'(K)), the continuous maps for the Zariski topol-
ogy (see exercise on Sheet 6).

The coordinate ring consists hence of the polynomial functions ftomo K. There are some
special ones, namely, the projection to tkta coordinate, i.e(x1, . . ., z,,) — x;; this clearly deserves
the name-th coordinate functionlet us denote it by;. The nameoordinate ringis hence explained!
Note that any functiorf (X1,..., X)) +Zxy = > a4y, Z-anl ... X 4 Ty is a combination of the
coordinate functions, namely; a;, . r'' ...

Lemma 5.11. Let K be a field and: € N. Then the following statements hold:
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(a) Letx C Y C A™(K) be subsets. Thefy O Zy.

(b) Zy = K[X].

(c) If K has infinitely many elements, th&g. xy = (0).

(d) LetS C K[X] be asubset. Theh, k) 2 S.

(e) Letx C A"(K) be a subset. TheW, (K) O X.

(f) LetS C K[X] be a subset. Thevr, (K) = Vg(K).

(g) Letx C A"(K) be a subset. Théﬁ,,(IX)(K) =Tx.

Proof. Exercise on Sheet 6. O]

Lemma 5.12. Let (X, Ox) be a topological space an@# C X be a subset. Defin®@y := {U N
Yy ‘ U e O;\{}.
ThenQy is a topology onY, called therelative topologyor the subset topology

Proof. Exercise on Sheet 6. O

Definition 5.13. Let X be a topological space (we do not always mentidexplicitly).

A subsey C X is calledreducibleif there are two closed subselg, ), C Y for the relative
topology onY such thaty = Yy U )s.

If ) is not reducible, it is calledrreducible

An affine seft C A"(K) is called anaffine varietyif X is irreducible.

At the end of this section we are able to formulate a topological statement dfinaredgebraic set
as a purely algebraic statement on the coordinate ring! This kind of phemoméll be encountered
all the time in the sequel of the lecture.

Proposition 5.14. Let) # X C A™(K) be an affine set. Then the following statements are equiva-
lent:

() X isirreducible (i.e.X is a variety).
(i) Zx is aprimeideal ofK[X,..., X,].
(iii) The coordinate ringK [X'] is an integral domain.

Proof. The equivalence of (ii) and (iii) was shown directly after the definition ofienp ideal (recall
K[X] = K[X]/Tx).

(i) = (ii): SupposeZy is not a prime ideal. Then there are two elemefitss € K[X]\Zx such
that f, - fo € Zy. This, however, implies:

X = (Vi) (K)NX)U (Vi (K) N X) = (Vi) (K) UV, (K)) N A,

sinceV ;) (K) U V5, (K) = Vy,.5,) () 2 X. Note thatf, ¢ Zy precisely means that there is
z € X such thatf,(z) # 0. Hence,X' # V(K ) N X. Of course, the same argument applies with
f1 replaced byf,, proving thatX is reducible, contradiction.
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(i) = (i): Supposet’ is reducible, i.eX = X} U X, with X1 € X andX, C X closed subsets of
X (and hence closed subsetsAdf( K'), since they are the intersection of some closed sét"df<)
with the closed se&’). This mean<y, 2 Zy fori = 1,2 as otherwise¥ = X; by Lemma 5.11.
Hence, there ar¢; € Ty, and fo € Zx, such thatf,, fo & Zy. Note thatf(z)f2(z) = 0 for all
r € X, as at least one of the two factorisThus, f1 - fo € Zy. This shows thafy is not a prime
ideal, contradiction. m

6 Direct sums, products and free modules

We first define direct products, then direct sums of modules.

Definition 6.1. Let R be a ring andM; for i € I (some setR-modules.

An R-moduleP together withR-homomorphisms; : P — M; (called projection$ for i € I
is called adirect product of the\/; for i € I, notation][,_; M;, if the following universal property
holds:

For all R-modulesN together withR-homomorphisms, : N — M, for i € I there is
one and only oné-homomorphisnp : N — P such thatr; o ¢ = ¢; for all 7 € I (draw
diagram).

Don't worry; although the definition is abstract, the direct product is tieymu expect:

Proposition 6.2. Let R be a ring and)M; for i € I (some setR-modules.

(@ P := [[;c; M; with component-wise defined addition aRdmultiplication together withr; :
P — M;, the projection on the-th component, is a direct product of tié; in the sense of the
definition.

(b) If P’ together withr’ : P’ — M; is any other direct product of th&/; then there is a unique
R-isomoprhismP — P’.

Proof. (a) We have to check the universal property. Détand¢; be as in the definition. Define
¢ : N — P by sendingn € N to the element of?, whosei-th component ig;(n). Then clearly,
i 0 ¢ = .

Conversely, if we have any: N — P such thatr; o ¢ = ¢;, then thei-th component of(n) for
n € N has to bep;(n), showing the uniqueness.

(b) We do not use the special form &% just the defining properties. Consideriftgas a direct
product and the”’ as the moduleV from the definition, we obtain a unique-homomorphismy’ :
P’ — P such that’” = 7; o ¢/. Exchanging the roles d? and P’ we get a uniquéz-homomorphism
¢ : P — P’ suchthatr = 7} o ¢.

The main point to remember is that: P 2 p 4, P satisfies

Toa=mod op=1"0¢d=m.
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Now considerP as a direct product and as the modddrom the definition. Then there is a unique
R-homomorphismP — P satisfying the requirements. Our calculation has shown thatRhis
homomorphism igx. Of course, the identity o is another one, whenceis the identity, implying
that¢ is injective andy’ surjective. Exchanging the roles 8fand P’ we get thatp is surjective and
¢’ injective, whence both are isomorphisms. O

Next we define direct sums. The universal property definition is thefamdirect products with
reversed arrows.

Definition 6.3. Let R be a ring and)M; for ¢ € I (some setR-modules.
An R-moduleS together withR-homomaorphisms; : M; — S for i € I is called adirect sum of
the M; for i € I, notation@, . ; M;, if the following universal property holds:

For all R-modulesN together withR-homomorphisms; : M; — N for i € I there is
one and only onéz-homomorphisn : S — N such thaip o ¢; = ¢, forall i € I (draw
diagram).

Don’t worry; although the definition is abstract, also the direct sum is tieeyon expect:

Proposition 6.4. Let R be a ring and)M; for i € I (some setR-modules.

(@) S := {(ms)ier € [Lie; M; | m; = 0 for all but finitely manyi € I} withe; : M; — S, sending
m € M to the elementm; );cr such thatn; = m andm; = 0forall j € I'\ {i}, is adirect sum
of the M; in the sense of the definition.

(b) If S’ together withe, : M; — S’ is any other direct sum of th&/;, then there is a unique
R-isomoprhismS — 5.

Proof. (a) We have to check the universal property. Detand¢; be as in the definition. We define
¢ : S — N by sending(m;);c; € Sto) ,.;m;. Here we use that only finitely many of the; are
non-zero, so that we have a finite sum. Of courseg; = ¢;.

On the other hand, givepr: S — N such thatp o €; = ¢; for j € I it follows with (1m;);cr with
m; = m andm; = 0 fori # j thatg;(m) = ¢ o €j(m) = ¢((m;)icr). However, element&n;);cr
of the chosen form generatt whencep is uniquely determined.

(b) This is a formal matter and works as in Proposition 6.2 with reversediasee also Exercise
on Sheet 7). O

Corollary 6.5. Let R be a ring andM, ..., M, be R-modules. Then there is aR-isomorphism
@?:1 M; = H?:l M;.
Proof. This is obvious from the explicit descriptions given in Propositions 6.2 asd 6 O

Definition 6.6. Let R be a ring andl be a set. AmR-moduleF; together withamap : I — F7yis
calleda free R-module overl if the following universal property holds:

For all R-modulesM and all maps) : I — M there is one and only onB-homomor-
phism¢ : Fr — M such thatp o e = ¢ (draw diagram).
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Also here, free modules over a set are what you expect.

Proposition 6.7. Let R be a ring and/ be a set. Defind; := @, ; R ande : I — Fj by sending
j € Itothe elementm;);c; such thatn; = 1andm; =0foralli € I\ {j}.

(a) Fyis afreeR-module over.
(b) If G is any other freekR-module over, then there is a uniqu&-isomorphismF’ — G.

Proof. Exercise on Sheet 7. O

Definition 6.8. Let R be a ring andM an R-module.
Recall the definition of a generating set: A sub8etC M is called agenerating set of/ as

R-moduleif for everym € M there aren € N, by,...,b, € B andry,...,r, € R such that
m = Z?:l Tibi.

A subsetB C M is called R-free (or: R-linearly independent)f for any n € N and any
bi,...,b, € Bthe equatiord = " | ;b impliesO =ry =rp = --- =1y,

A subsetB C M is called anR-basis ofM if B is a free generating set.

A moduleM having a basisB is called afree R-module (Note that at the moment we are making
a distinction between freB-modules, and fre&-modules over a sdt We see in a moment that this
distinction is unnecessary.)

Lemma 6.9. Let R be aring.

(a) Let! be a set and'; be the freeR-module over. ThenFy is R-free with basisB = {¢(i) | i €
I}.

(b) LetM be anR-module andB C M agenerating set. Then there is a surjectidhomomorphism
Fp — M, whereFg is the freeR-module over the sdB. In other words M is a quotient off'z.

(c) LetM be a freeR-module with basi€3. ThenM is isomorphic toF'z.

Proof. (a) is clear.

(b) Considers : B — M given by the identity, i.e. the inclusion @ into M. The universal
property of F'g gives anR-homomorphismp : Fg — M. As ¢ o e = §, B is in the image ofp.
As the image contains a set of generators for the whole madylthe image is equal td/, i.e. ¢ is
surjective.

(c) Let us identifyF'z with B, 5 R, as in the proposition showing the existence®f Then¢
is given by(ry)sen — D _pep Tob- If (13)ep is in the kernel ofp, then , _ z ryb = 0. The freeness
of B now impliesr, = 0 for all b € B, showing(r,)scp = 0, i.e. the injectivity. O

Lemma 6.10. Let R be a ring andM a finitely generated fre&2-module. Then alR-bases of\M
have the same length.
This length is called thé&-rankor the R-dimensionof M.



7 EXACT SEQUENCES 33

Proof. We prove this using linear algebra. LBt= {b1,...,b,} andC = {C}, ..., Cy,} withn <m
be two R-bases of\/. Of course, we can express one basis in terms of the other one:

m n
b; = Zti’jcj andcj = Z S; kb
j=1 k=1

Writing this in matrix form withT = (¢; j)1<i<n,1<j<m @NAS = (8 1) 1<j<m,1<k<n Yields
b=Tcandc = Sb.

Hence, we havéT = id,,x.,. Assumen < m. Then we can adeh — n columns with entrie$ to
S on the right andn — n columns with entrie® to T' on the bottom without changing the product.
However, the determinant of these enlarged matricesighence also the determinant of their product
is zero, which contradicts the fact that their product is the identity, whistdieéerminant. Ol

Example 6.11.(a) Let R = K be a field. ThenR-modules areK -vector spaces. Hence, alt-
modules are free. Their rank is the dimension &s aector space.

(b) LetR = Z. ThenZ" is a freeZ-module of ranka.

(c) LetR =Z and M = Z/27Z. ThenM is not free.

7 Exact sequences

Definition 7.1. Let R be a ring and lets < b € Z U {—o0,00}. Foreacha < n < b, let M,, be an
R-module. Also let,, : M, — M, be anR-homomorphism. l.e. if,b € Z, then we have the
sequence

¢b2Mb2¢b1Mb1—>Mb

Ma ¢a+l Ma+1 ¢(L+2 Ma+2 ¢a+3 B

If @ € Z andb = oo, then we have

ba+1 ba+2 ba+3
My —— Mgy —— Mgy — ...,

with the sequence being unbounded on the right.3#f —oo andb = oo, we have
' Pn—1 M, ¢_n> M, Pnt1 Mn+1 Pnt2 .

with the sequence being bounded on both sides. The remaining ease>c andb € Z is unbounded
on the left and should now be obvious.

Such a sequence is calledcamplexif im(¢,,—1) C ker(¢,,) for all n in the range. That is the
case if and only ifp,, o ¢,,_1 = 0 for all n in the range.

The sequence is callexkactif im(¢,_1) = ker(¢,,) for all n in the range (of course, this implies
that it is also a complex).
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We will often consider finite sequences, mostly of the form
(¥) 0— M; — My — M3 — 0.
If a sequence of the forrfx) is exact, then it is called short exact sequence

Lemma 7.2. Let R be aring.

(@) LetA % B be anR-homomorphism. Themis injective if and only if the sequenée— A — B
is exact.

(b) LetB LN C be anR-homomorphism. Thefis surjective if and only if the sequenBei C—0
is exact.

(c) Leto - A5 B 5.0~ obea complex. It is an exact sequence if and only i im(/3) and
ais an isomorphism fromt to ker(3).

Proof. (a) Just noteker(a) = im(0 — A) = {0}.
(b) Just note”' = ker(C — 0) = im(«).
(c) Combine (a) and (b) with the exactness3at O

Proposition 7.3. Let R be a ring andM;, N; for i = 1,2, 3 be R-modules.

(a) Let
0— N, 2 Ny 2 Ny

be a sequence. This sequence is exact if and only if

0 — Homp(M, N1) 2% Homp(M, Na) 2% Homp(M, N3)

is exact for allR-modules). TheR—homomorphisn&i sendsy € Homp(M, N;_1)t0p;0ax €
Homp(M, N;) fori = 2,3.

(b) Let
My 22 My 2 My — 0

be a sequence. This sequence is exact if and only if
0 — Homp(Ms, N) 2 Homp(Ms, N) 22 Homp(M;, N)

is exact for allR-modulesN. The R-homomorphism); sendse € Homp(M;, N)to o v; €
I‘IOIIlB(]\fl‘,l7 N) fori=2,3.

For the directions=>’ one also says that in case (a) that the funétompz (), -) is covariant (pre-
serves directions of arrows) and left-exact and in case (b) thatticgditHom (-, V) is contravariant
(reverses directions of arrows) and left-exact.

Proof. (a) '=":
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e We know thatgs is injective. Ifa € ker(qBQ), then by definitionps o « is the zero map. This
implies thatw is zero, showing thap, is injective.

e We know thatps o ¢ is the zero map. This implies thag (d2(a)) = @3 o ¢2 o « is the zero
map for alla € Homp(M, Ny). Hencejm(¢ps) C ker(¢s).

e Letf € ker(g?)g), i.e.¢3 o [ is the zero map. This means(3) C ker(¢s), hence, we obtain
that
q§2_1 of3: M LN im(3) C ker(¢3) = im(¢2) ¢2—> N
is an element ifHomp(M, Ny). It satisfiesgo(dy 0 ) = ¢ 0 ¢;' o B = 3, whence
B € im(¢y), showingim(¢s) D ker(¢s).

<

o We know thatgs is injective for all R-modules)M. ChooseM := ker(¢s), and consider the
inclusion. : ker(¢2) — N;. Note that

&20) = (bg oL : ker(@) L> N1 ¢—2> N2

is the zero-map. But, a8, is injective, it follows that already is the zero map, meaning that
ker(¢2) is the zero module, so tha is injective.

e We want to showps o ¢ = 0. For this takeM := Nj, and consideidy, the identity onV;.
We know thatps o ¢, is the zero map. In particular,

0 = @30 pa(idn,) = d3 0 2 0 idn, = b3 0 .

e We want to show thaker(¢s) C Im(¢p2). For this takeM := ker(¢s) and consider the
inclusion: : ker(¢3) — N2. Note that

0= g3(t) = p3 01 : ker(ghs) — Ny kiR N3

is the zero map. We know thatr(¢s) C Im(¢2). Hence, there is someé : ker(¢s) — N
such that = ¢3(3) = ¢ o . In particular, the image of, which is equal tder(¢3), equals
the image ofps o 3, which is certainly contained in the image®f, as was to be shown.

(b) Exercise. O

Definition 7.4. Let R be aring. AnkR-moduleP is calledprojectiveif the following universal property
holds:

For all R-modulesM, N, all surjective R-homomorphism® : M — N and all R-
homomorphismg) : P — N there is anR-homomorphism) : P — M such that
¢ o 1) = 1 (draw diagram).

)M

In other words, the?-homomorphisnilom (P, M Homp(P, N) is surjective.
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An R-modulel is calledinjectiveif the following universal property holds (note: same property
as for projective modules, but, with arrow directions reversed and stivgeeplaced by injective):

For all R-modulesM, N, all injective R-homomorphismg® : N — M and all R-
homomorphismsg) : N — P there is anR-homomorphism) : M — P such that
¥ o ¢ = 9 (draw diagram).

In other words, the?-homomorphisnilom g (M, I) Yovod, Homp(N, I) is surjective.
Corollary 7.5. Let R be aring andP, I R-modules.

1. P is projective if and only if the covariant functéfomp(P,-) is exact (i.e. maps exact se-
guences to exact sequences).

2. Iisinjective if and only if the contravariant functéfomp(-, ) is exact.

Proof. Both follow immediately from Proposition 7.3 and the ‘In other words’ part ef definition.
O

Corollary 7.6. Let R be aring.

(a) LetP be a projectiveR-module. Then every short exact sequenci-afiodules
0-A%BL P o

is split, i.e. there is arR-homomorphism : P — B such thatj o -y is the identity onP.
(b) LetI be an injectiveR-module. Then every short exact sequenci-afiodules
014582 oo
is split, i.e. there is arR-homomaorphisnd : B — I such that) o « is the identity or/.
Proof. Just apply the universal property to the identity®yrespectively or. Ol
Note that by an Exercise on Sheet 7, (a) meansBhat A & P and (b) mean® = [ ¢ C.

Proposition 7.7. Let R be aring,M, N, M; and N; for i € I (some set) bé&-modules. Then there
are natural R-isomorphisms:

(@ @ : Hompg(M,[[;c; Ni) — [l;c; Homgr(M, N;) and
(b) ¥ : Homp(B,c; Mi, N) — []ie; Homp(M;, N).
Proof. (a) Letr; : []

.c1 Ni — N; be thej-th projection. Defineb as follows:

S(p: M — HNZ) = (mop: M — Nyer.
i€l

It is clear that® is an R-homomorphism.
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Lety € Hompg(M, [[;c; N;) such thatb(p) = 0. This meansr; o o = 0 for all 7 € I. Now we
use the universal property ¢f,_; V;. Namely, there is a uniquB-homomorphism\/ — []..; N;
for given M — N;. As these maps are all zero, certainly the zero map- [[,.; IV; satisfies the
universal property. Consequently,= 0. This shows tha® is injective.

Now for the surjectivity. Suppose hence that we are givenM — N; for eachi € I. Then the
universal property of [, ; IV; tells us that there is a uniquye: M — [[,.; N; such thatp; = ;0 ¢
forall i € I. This is precisely the required preimage. Actually, we could have skippedrgof of
injectivity because the uniquenessofjives us a unique preimage, which also implies injectivity.

(b) Exercise on Sheet 7. Ol

Lemma 7.8. Let R be a ring andM an R-module. Then the map
®: Homp(R,M) - M, ®(a:R— M):=a(l)
is an R-isomorphism.
Proof. Clear. 0
Proposition 7.9. Let R be a ring andF' a free R-module. TherF is projective.

Proof. Let B be anR-basis ofF’, so that we can identify’ with F'gz; we have the inclusioa: B —
Fp. We check that satisfies the universal property of a projective module. Let hencé/ — N
be a surjectiveR-homomorphism ang : F' — N an R-homomorphism. For eadhe B choose an
my € M such thatp(my,) = 1(b), using the surjectivity ob.

Consider the map : B — M sendingh € B to m;. By the universal property df'z there exists
the required). O

Corollary 7.10. Let R be aring andP an R-module. Then the following statements are equivalent:
(i) P is projective.
(i) P isadirect summand of a free-moduleF’, i.e. there is anR-moduleX such thatP ® X = F.

Proof. ‘(i) = (ii): Let F be a freeR-module havingP as a quotient. In other words, we have an
exact sequence
0—-X—->F—P—0.

As this exact sequence splits, we géet2 X ¢ P.

‘(i) = (i): Let F' = X @ P be afreeR-module. We check the universal property of a projective
module forP. Let hencep : M — N be a surjectiveR-homomorphism and> : P — N an R-
homomorphism. Consider now the surjectidg © ¢ : X & M — X & N and theR-homomorphism
idy®y : F=XaP — X®N. AsF isfree, itis projective, givingsome : FF = X®&P — XM
such thatidx @ ¢) o = idy @ 1. Letp € P and(z,m) := «((0,p)). Let us seth(p) := m; this
defines amkR-homomorphism. Then we have

(idx ® ¢) 0 a((0, p)) = (idx & ¢)((z,m)) = (2, d(m)) = (0,%(p))-

Hence, o 1/?(p) = 9 (p), as was to be shown. O
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8 Tensor products

In this section we shall for the sake of generality consider general ynitags, i.e. not necessarily
commutative ones.

Definition 8.1. Let R be a ring,M a right R-module andV a left R-module.
Let P be aZ-module (note that this just means abelian group}.-Ailinear map

fiMxN-—P
is calledbalancedf for all » € R, all m € M and alln € N one has

f(mr,n) = f(m,rn).

In this case, we call P, f) a balanced product af/ andN.
A balanced productM ®r N, ®) is called atensor product of\/ and N over R if the following
universal property holds:

For all balanced product$P, f) there is a unique group homomorphigm M @z N —
P such thatf = ¢ o ® (draw diagram).

Of course, we have to show that tensor products exists. This is whaavtevih.

Proposition 8.2. Let R be a ring,M a right R-module andV a left R-module.
Then a tensor produdtM @i N,®) of M and N over R exists. If(P, f) is any other tensor
product, then there is a unique group isomorphismM ®r N — P such thatf = ¢ o ®.

Proof. The uniqueness statement is a consequence of the uniqueness in trealivoperty (Exer-
cise Sheet 8).

Let F' := Z[M x NJ, i.e. the fre€Z-module with basis\/ x N, that is the finitéZ-linear combi-
nations of pairgm,n) form € M andn € N.

DefineG as theZ-submodule of” generated by the following elements:

(m1+m27n)_(ml7n)_(m27n) vmthEMa \V/TLEN,
(m,n1 4+ ng) — (m,n1) — (m, ng) VYm € M, Vni,ng € N,
(mr,n) — (m,rn) Vr e R, Vm € M, Vn € N.

Define M ®r N := F/G, asZ-module. We shall use the notatien © n for the residue class
(m,n) + G. Define the mam as

K :MxN-—->M®rN, (m,n)—maen.

It is Z-bilinear and balanced by construction.
We now need to check the universal property. Let héite) be a balanced product 8f and V.
First we use the universal property of the free modtlle- Z[M x N]. Forthatlett : M x N — F
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denote the inclusion. We obtain a unique group homomorphisri’ — P such thatpoe = f (draw
diagram).

Claim: G C ker(¢). Note first thatf (m,n) = ¢ o e(m,n) = ¢((m,n)) for all m € M and all
n € N. In particular, we have due to the bilinearity pfor all m,, mo € M and alln € N:

o((m1+ma,n)) = f(m1 +ma,n) = f(mi,n) + f(me,n) = ¢((m1,n)) + ¢((m2, n)),

whence(my + ma,n) — (mq,n) — (mg,n) € ker(¢). In the same way one shows that the other two
kinds of elements also lie iker(¢), implying the claim.

Due to the claimg induces a homomorphism: F/G — P such that) o ® = f (note that is
juste composed with the natural projectidgh— F/G).

As for the uniqueness @f. Note that the image ab is a generating system &f/G. Its elements
are of the formm ® n. As we havep o @(m,n) = ¢(m @ n) = f(m,n), the values ofp at the
generating set are prescribed ahi$ hence unique. O

Example 8.3.(a) LetR =7Z, M = Z/(m) and N = Z/(n) with gcd(m,n) = 1. ThenM @ N =
Z/(m) @z Z/(n) = 0.

Reason: As the gcd is there area, b € Z such thatl = am + bn. Then for allr € Z/(m) and
all s € Z/(n) we have:

res=r-1®@s=rlam+bn)@s=ram® s+ (ron ® s)
=00s+rb@ns=000+rb®0=0®0+0®0=0.

(b) LetR=7Z,M =7Z/(m)andN = Q. ThenM @ N =Z/(m) ®z Q = 0.
Reason: Let € Z/(m) and§ € Q. Then we have

rol —rom-Lt —rme L =09 -2 =090=0.
b m mb mb

(c) LetR =7, M = Q and N anyZ-module. Thef® ®z N is aQ-vector space.

Reason: Itis an abelian group. Tk@scalar multiplication is defined by.(r ® n) := gr @ n.

r@m—rm
—_

(d) LetM be anyR-module. ThelR @ p M M is an isomorphism.

(rym)—rm

Reason: It suffices to show thaf together with the maR x M M is a tensor

product. That is a very easy checking of the universal property.
Next we need to consider tensor products of maps.

Proposition 8.4. Let R be aring,f : M; — M a homomorphism of righR-modules and : N; —
Ny a homomorphism of lefR-modules. Then there is a unique group homomorphism

f®g: M ®r Ny — My @ N

such thatf ® g(m ®n) = f(m) ® g(n).
The mapf ® g is called thetensor product of andg.
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Proof. The map® o (f,g) : M1 x Ny t9, My x Ny 2, My ®r No makesMsy; ®pr Ny into a
balanced product oM, and V; (draw diagram). By the universal property there is thus a unique
homomorphism\/; ® zp N1 — My ®g N2 with the desired property. O

Lemma 8.5. Let M; - M, %2 My be homomorphisms of righit-modules andV; 25 Ny 2 N
homomorphisms of leR-modules.

Then(fo ® g2) o (fi ®g1) = (fao f1) @ (g2 091).

Proof. (f20 f1) ® (20 g1)(m @n) = (f20 fi(m)) @ (920 91(n)) = f2 ® g2(f1(m) ® g1(n)) =
(f2®g2) o (f1 ® g1)(m @ n). O

Corollary 8.6. Let f : My — My be a homomorphism of righR-modules andy : Ny — N, be a
homomorphism of lefR-modules.
Thenf ®g= (idMQ ®g) o (f ® ile) - (f ® idNQ) o (idM1 ® g)'

Proof. This follows immediately from the previous lemma. O

Proposition 8.7. Let R be a ring.

(a) Let M; for ¢ € I be right R-modules andV a left R-module. Then there is a unique group
isomorphism
o: (P M) er N — P(M;®r N)
el el
such that(m;);e; @ n +— (m; @ n)ier.

(b) LetN; for i € I be left R-modules andV/ a right R-module. Then there is a unique group
isomorphism
o: Mar (@ N) - P e N)
iel icl
such thatn ® (n;)icr — (m @ n;)ier-

Proof. We only prove (a), as (b) works in precisely the same way.
First we show the existence of the claimed homomorphishy using the universal property of
the tensor product. Define the map

F( @ M)xN—- @M N), ((mi)icr,n) — (mi,n)icr.
iel icl

This map makeép,;(M;®rN) into a balanced product ép,; M; andN, whence by the universal
property of the tensor product the claimed homomorphism exists (and isa)niqu

Next we use the universal property of the direct sum to constructneohmrphism®¥ in the
opposite direction, which will turn out to be the inversedofLet j € I. By ¢; denote the embedding
of Mj into the j-th component ofp,_; M;. From these we further obtain maps; ®r N %y,
(B,cr M;) ®r N. Further consider the embeddingsof M; @ N into the j-th component of
@, (M; ®r N) from the definition of a direct sum. The universal property of direchsunow
yields a homomorphisn¥ : @, ;(M; ®r N) — (P,c; M;) ®r N suchthatl o 1; = ¢; ® idy for
aljelJ.

Now it is easy to compute on generators tat ¥ = id and¥ o & = id. O
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Lemma 8.8. Let R be a commutative ring , antl/, N R-modules. Thed/ @ g N = N Qr M.
Proof. Exercise. O
Example 8.9.Let L/ K be afield extension. Thdnz ;- K[ X is isomorphic tal.[ X| as anL-algebra.

Lemma 8.10. Let R and S be rings. LetM be a right R-module, P a left S-module, N a right
S-module and a lefR-module such thatrn)s = r(ns) forall r € R, all s € Sand alln € N.

() M ®g N is arightS-module via(m @ n).s = m ® (ns).
(b) N ®g P is aleft R-module viar(n @ p) = (rn) @ p.
(c) There is an isomorphism

(M®rN)®sP=M®eg (N ®sP).

Proof. Exercise. O
Lemma 8.11. Let R be aring,M a right R-module,N a left R-module andP a Z-module.

(a) Homgz (N, P) is aright R-module via(¢.r)(n) := ¢(rn) forr € R,n € N, ¢ € Homz(N, P).
(b) There is an isomorphism of abelian groups:

Homp(M,Homy(N, P)) =2 Homyz(M &g N, P).

(c) Homgz(P, M) is aleft R-module via(r.)(m) := ¢(mr) forr € R,m € M, ¢ € Homz(P, M).
(d) There is an isomorphism of abelian groups:

Homp(Homz (P, M), N) = Homz(P, M @ N).

Proof. (a) and (c): Simple checking.
(b) The key point is the following bijection:

{Balanced mapg : M x N — P} — Hompg(M,Homg(N, P)),

which is given by

fe (m — (n— f(m,n)))
To see that it is a bijection, we give its inverse:

= ((m,n) = (¢(m))(n)).

Now it suffices to use the universal property of the tensor produat.deails are dealt with in an
exercise.
(d) is similar to (b). O

Proposition 8.12. Let R be a ring.
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(a) LetN be a leftR-module andV/1, Ms, M3 be right R-modules. If the sequence
f g
My — My = M3z — 0
is exact, then so is the sequence
foid g®id
My ®@p N —— My ®@r N —— M3 ®r N — 0.

One says that the functerx r N is right-exact.

(b) LetM be arightR-module andVy, N2, N3 be left R-modules. If the sequence
ML Ny SNy 0

is exact, then so is the sequence

M &g Ny 220 M @p Ny 999 M @p Ny — 0.

One says that the functdr/ ®p, - is right-exact.

Proof. We only prove (a), since (b) works precisely in the same way. We usgoBitmn 7.3 and
obtain the exact sequence:

0 — Homp (M3, Homz(N, P)) — Homp(Ms, Homz(N, P)) — Hompg(M;, Homz(N, P))
for anyZ-module P. By Lemma 8.11 this exact sequence is nothing else but:
0 — Homyz (M3 @ N, P) — Homy(Ms @ N, P) — Homy(M; @z N, P).
As P was arbitrary, again from Proposition 7.3 we obtain the exact sequence
My ®@r N — My ®@r N — M3 ®@r N — 0,

as claimed. O

9 More on modules

In this section we collect and prove important ‘basic’ statements on modules.
We first need the existence of maximal ideals.

Proposition 9.1. Let R be a ring different from the zero-ring. Thétihas a maximal ideal.

Proof. This proof uses Zorn’s Lemma (which one also needs for the existerzeses in general (i.e.
not finite dimensional) vector spaces).

Let M := {a C Rideal} be the set of all proper ideals &. Of course(0) € M (here we use
that R is not the zero ring), s # 0.

InclusionC gives a partial ordering oM: by definition this means:

e aCaforallaec M,
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o If a C bandb C g, thena = b.

But, for generah, b € M, we do not necessarily haweC b orb C a. A subseta;);c; C M (where
I'is any set) is called totally ordered if for anyj € I one hasy; C a; ora; C a;.

Claim: Any totally ordered subsefa;);c; € M has an upper bound, namely:= | J;.; a;,
meaninga C M anda; C aforalli € I.

The claim is very easy to see. The last statenagidit a for ¢ € [ is trivial. In order to see that
is an ideal, letr,y € a. Then there aré, j € I such thatr € a; andy € a;. Because of; C a; or
a; C a;, we have thak +y € aj orz + y € a;, so thatr + y € a in both cases. Given € R and
x € a, thereisi € I such thatr € a;, whencerx € a;, thusrz € a, showing thati is an ideal ofR.
If a were equal to the whole ring, then there would bée< I such thafl € a;. This, however, would
contradicta; # R. Consequentlys € M, as claimed.

Zorn's Lemma is the statement that a partially ordered set has a maximal elemesnyitotally
ordered set of subsets has an upper bound.

S0, M has a maximal element, i.e. ane M such that ifm C a for anya € M, thenm = a.
This is precisely the definition of a maximal ideal. Ol

Corollary 9.2. (a) Everyideak C R is contained in some maximal idealof R.
(b) Every non-unit- € R\ R* is contained in a maximal ideat of R.

Proof. (a) Consider the natural projectian: R — R/a. Letm be a maximal ideal of?/a, which
exists by Proposition 9.1. Then := 7~!(m) (preimage) is a maximal ideal @t, becausek /m =
(R/a)/mis afield.

(b) If z is a non-unit, therix) is a proper ideal oR, so we can apply (a). O

Definition 9.3. Aring R is calledlocalif it has a single maximal ideal.
Example 9.4. (a) Every fieldK is a local ring, its unique maximal ideal being the zero ideal.

(b) Letp be a prime number. The ring/(p™) is a local ring with unique maximal ideal generated
by p.
Reason:(p) is a maximal ideal, the quotient beirty), a field. Ifa C Z/(p") is a proper ideal
andz € a, thenz = py + (p™), as otherwise: would be a unit. This shows thate (p), whence
a C (p).

Lemma 9.5. Let R be a ring,M an R-module andh <t R an ideal. ThemM = {> " a;m; | n €
N,a; €a, m; € Mfori=1,...,n} C M is an R-submodule of\/.

Proof. Easy checking. O

Lemma 9.6. Let R be a local ring with unique maximal ideat. Then the set of unit®* of R is
precisely the seR \ m.

Proof. The statement is equivalent to the following: The maximal idea& equal to the set of non-
units.

We already know from Corollary 9.2 (b) that every non-unit lies in someimalideal, whence
it lies in m. On the other hand, every elementwis a non-unit, as otherwise = R. O
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We will now introduce/recall the process of localisation of rings and moduleish makes mod-
ules/rings local.

Proposition 9.7. Let R be aring,S C R a multiplicatively closed subset (i.e. fef, s2 € S we have
s189 € S) containingl.

(&) An equivalence relation ofi x R is defined by
(81,7“1) ~ (82,7“2) & Jte S t(T‘lsg — 7”281) =0.
The equivalence class 61, 1) is denoted by%.

(b) The set of equivalence class®s! R is a ring with respect to
+iSTIRx SR §IR, Ly 2 T
S1 S92 5182

and
_ _ _ Lo T2  TIT2
ST'RxS'R— SR, —.=2="=,
51 S2 8182

Neutral elements aré := 2 and1 := 1.

(c) Themap : R — S™'R, r — %, is aring homomorphism with kemnét € R | 3s € S : rs =
0}. In particular, if R is an integral domain, then this ring homomorphism is injective.

Proof. Exercise. O

Note that for an integral domaiR, the equivalence relation takes the easier form
(s1,71) ~ (82,72) < 1189 — 1981 =0,
provided0 ¢ S (if 0 € S, thenS—! R is always the zero ring, as any element is equivale|$t)to
Example 9.8. (a) LetR be an integral domain. Theti = R\ {0} is a multiplicatively closed subset.

ThenFrac(R) := S~ R s the field of fractions of:.

Subexamples:

(1) For R = Z, we haveracZ = Q.

(2) LetK be afield and? := K[X]. ThenFrac K[X]| =: K(X) is thefield of rational functions
over K (in one variable) Explicitly, the elements df (X) are equivalence classes written as
% with f, g € K[X], g(X) not the zero-polynomial. The equivalence relation is, of course,
the one from the definition; a&’[ X ] is a factorial ring, we may represent the cla%% asa
‘lowest fraction’, by dividing numerator and denominator by their greatesnmon divisor.

(b) LetR be aring andy < R be a prime ideal. The§ := R\ p is multiplicatively closed and € S
and0 ¢ S.
ThenR, := S™'Ris called thelocalisation ofR atp.

Subexamples:
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(1) LetR = Z andp a prime number, so thdip) is a prime ideal. Then the localisation @f
at(p) isZ, and its elements arg; € Q | p1 s, ged(r, s) = 1}.

(2) LetK be afield and considek™(K). Leta = (ay,...,a,) € A"(K).
Letp be the kernel of the ring homomorphism

K[Xy,...,Xn] = K, fw fla,...,an).

Explicitly, p = {f € K[X1,...,X,] | f(a) = 0}. As this homomorphism is clearly surjec-
tive (take constant maps as preimages), we havehha,, ..., X,,]/p is isomorphic tok,
showing thap is a maximal (and, hence, a prime) ideal.

The localisationK [ X1, ..., X,], is the subring of (X}, ..., X,,) consisting of elements

77777

This is the same as the set of rational functidgfgX, . . ., X,,) that are defined in a Zariski-
open neighbourhood af. Namely, Ietg € K[Xi,...,Xn]p such thatg(a) # 0. Then the
functionz — % is well-defined (i.e. we don'’t divide 1)) on the Zariski-open sef™ (K) \
V(g (]), which containsa. On the other hand, if forg € K[Xi,...,X,] the function
T — % is well-defined in some Zariski-open neighbourhood,dhen, in particular, it is
well-defined at, implyingg € K[X1,..., Xl
(c) LetR be aring and letf € R be an element which is not nilpotent (i = 0 for all n € N).
ThenS := {f" | n € N} (use0 € N) is multiplicatively closed and we can for§it ' R. This ring
is sometimes denotdd; (Attention: easy confusion is possible).

Subexample:
(1) LetR =Zand0 #a € N. LetS = {a" |[n € N}. ThenS™'Z = {1 € Q|r € R,n €
N, ged(r,a™) = 1}.
Proposition 9.9. Let R be a ring andS C R a multiplicatively closed subset with € S. Let
p: R — STR, given byr — I.
(a) The map
{b< S 'Rideal} — {a< Rideal}, b pu '(b)<R
is an injection, which preserves inclusions and intersections. Moreifver S~ R is a prime
ideal, then so igi ' (b) < R.

(b) Leta < R be an ideal. Then the following statements are equivalent:

(i) a=p~'(b)for someb <t S~IR (i.e.ais in the image of the map in (a)).
(i) a=p"'(aS7'R) (hereaS~!R is short for the ideal o6~ R generated by:(a), i.e. by all
elements of the forr for a € a).
(iii) Every s € S is a non-zero divisor modul@, meaning that it € R andrs € a, thenr € a.

(c) The map in (a) defines a bijection between the prime idea$s bR and the prime idealg of R
such thatS Np = 0.
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Proof. Exercise. O

Corollary 9.10. Let R be aring andp < R be a prime ideal. Then the localisatidgy, of R atp is a
local ring with maximal ideals—'p.

Proof. LetS = R\ p. Note that) = an S =an (R p) is equivalent tar C p.
Hence, Proposition 9.9 (c) gives an inclusion preserving bijection betthee prime ideals of
S~ R and the prime ideals a® which are contained ip. The corollary immediately follows. [

Definition 9.11. Let R be a ring. Thelacobson radicas defined as the intersection of all maximal
ideals ofR:

J(R) := N m

m<R maximal ideal

Lemma 9.12. Let R aring and leta < R be an ideal which is contained if( R). Then for any: € a,
one hasl —a € R*.

Proof. If 1 — a were not a unit, then there would be a maximal ideatontainingl — a. Since
a € J(R), it follows thata € m, whencez € m, contradiction. O

Proposition 9.13(Nakayama’s Lemma)Let R be a ring andM a finitely generated?-module. Let
a < R be an ideal such that C J(R). SupposeM = M. ThenM = 0.

Proof. Exercise. O
The following corollary turns out to be very useful in many applications.

Corollary 9.14. Let R be a local ring with maximal ideah and let M be a finitely generated-

module. Letnq, ..., m, € M be elements such that their images := m,; + mM are generators of
the quotient moduld//mM .

Thenmg, ..., m, generateM as anR-module.
Proof. Exercise. O

Proposition 9.15. Let R be aring,S C R a multiplicatively closed subset containihgLet M be an
R-module.

(&) An equivalence relation ofi x M is defined by
(sl,ml) ~ (Sg,mg) S dte S t(s1m2 — ngl) =0.

(b) The set of equivalence classes' M is an S~! R-module with respect to

FeSTIM xS sy, Ty T ST T
S1 52 5189

and scalar-multiplication

o STIRx STIM — sy, LT T

The neutral element i := 9.
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(c) Themags : M — S™'M, m — T, is an R-homomorphism with kerngln € M | 3s € S :
sm = 0}.

Proof. Easy checking. O

Lemma 9.16. Let R be aring,S C R multiplicatively closed containing. Let M, N be R-modules
and¢ : M — N an R-homomorphism.

(@) The map
¢S . SflM N S*lN @ — ¢(m>

S S

is an S~! R-homomorphism.
(b) ¢s is injective (surjective, bijective) i is injective (surjective, bijective).

Proof. (a) Easy checking.

(b) Suppose is injective and letys (%) = #””) = 0; then there i € S such thal) = s¢(z) =
¢(sz), whencesz = 0 and, thus% = Y.

Supposes is surjective and let < S—IN. There isz € M such thaty(z) = v, thusgs(%) =

) — ¥, showing thatys is surjective. O

s

Lemma 9.17.Let R be aring,S C R multiplicatively closed containingand M an R-module. The
map

1
$:S M-S RerM, D -om
S S

is an.S~! R-isomorphism, wher§ 'R @z M is an S~ R-module viaZ.(¥ ® m) := (%) ® m.

Proof. First we check that is well-defined: Let™: = =2, i.e. there isu € S such thatu(tm; —

smg) = 0. NOW%@ml:Q—“u®m1:ﬁ@tuml:$®sum2:%®m2:%®mg.Thaf[¢

is anS~!' R-homomorphism is easily checked.
We now construct an inverse tbusing the universal property of the tensor product. Define

f:STIRx M — S™M, (g,m) — %

This is a balanced map ov&. Hence, there is a uniq@&homomorphismp : ST'R@ M — S~1M
such thaip(£ ® m) = “*.
It is clear thatp is anS—! R-homomorphism and thato ) andy o ¢ are the identity. O

Lemma 9.18. Let R be a ring andm a maximal ideal.

(@) The natural mag: : R — Ry, r — § induces a ring isomorphism
R/m = Ry /mRy,.

(b) LetM be anR-module and denote by/,, its localisation atm. Then:

M/mM 2= My /MRy Mg,

Proof. Exercise on Sheet 10. O
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10 Flat modules
Definition 10.1. Let R be a not necessarily commutative ring.
(a) Aright R-moduleM is calledflat over R if for all injective homomorphisms of leR-modules
@: N1 — N
also the group homomorphism
idy®p: M®r N1 — M ®g N2
is injective.
(b) A left R-moduleN is calledflat over R if for all injective homomorphisms of righlR-modules
o My — Mo
also the group homomorphism
p®idy : M1 g N — My ®r N
is injective.

(c) A right R-module M is calledfaithfully flat over R if M is flat over R and for all R-homo-
morphisms of leflR-modulesy : N1 — Ns, the injectivity ofidy; ® ¢ implies the injectivity
of .

(d) AleftR-moduleN is calledfaithfully flat over R if N is flat overR and for all R-homomorphisms
of right R-modulesy : M; — Mo, the injectivity ofp @ id; implies the injectivity ofp.

(e) A ring homomorphism : R — S is called(faithfully) flat if .S is (faithfully) flat asR-module
via ¢.

Lemma 10.2. Let R be a not necessarily commutative ring andlétbe a right R-module andV be
a left R-module.

(a) M isflat overR < M ®p e preserves exactness of sequences.

(b) Nisflat overk < e @ N preserves exactness of sequences.

Proof. Combine Definition 10.1 and Proposition 8.12. O

Example 10.3.(a) Q is flat asZ-module.

Reason: We don't give a complete proof here (since we haven’tsdisduthe module theory
overZ). The reason is that any finitely generated abelian group is the directduta torsion
elements (that are the elements of finite order) and a free module. Tegsuith Q kills the
torsion part and is injective on the free part (we will see that below).
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(b) Q is not faithfully flat asZ-module.
Reason: Considet./(p?) — Z/(p), the natural projection (fop a prime), which is not injective.
Tensoring withQ kills both sides (see Example 8.3), sowelygt Z/ (p?) 2 Q — Z/(p) @zQ =
0, which is trivially injective.

(c) I, is not flat asZ-module (forp a prime).
Reason: The homomorphisth =2 7 (multiplication byp) is clearly injective. But, after
tensoring it with[F,, overZ, we obtain the zero map, which is not injective.

Proposition 10.4. Let R be a ring andM; for i € I be R-modules. Then the following statements are
equivalent:

(i) M;isflatoverR foralli € I.
(i) B,c; M;is flat overR.

Proof. Exercise. This follows from Proposition 8.7 and the injectivity of the direch ®f injective
homomorphisms. O

Lemma 10.5. Let R be a ring (commutative again) and an R-module.
(a) Leta < Rbeanideal. TheR/a ®r N = N/aN.
(b) The following statements are equivalent:

(i) N is faithfully flat.
(i) N is flat and for allR-modulesM # 0 one has:M @r N # 0.

Proof. (a) Start with the trivial exact sequence
0—-a—R—R/a—0
of R-modules. Now tensor ovet with N and get

aor N L Ropr N % Rla@p N — 0.

rN—Trn

Use the isomorphislR Qg N N, to placeN into the previous exact sequence. Exactness at
the centre precisely meahsr(y) = im(v), butim(¢) = aN. Hence, the homomorphism theorem
yieldsN/aN = R/a ®pr N, as claimed.

(b) ‘(i) = (ii): Let N be faithfully flat. Now letAM be an arbitraryR-module and consider the
zero mapM % 0. Of course, this gives rise to the zero mapoz N FEAN o If M ®r N =0,
theny ® idy is injective. By faithful flatness, it follows that is injective, but that is only possible if
M is the zero module.

‘(i) = (i)": Let N be flat and consider anjg-homomorphismp : M; — Ms. Let K := ker(yp),
so that we have the exact sequence

0— K — M, 2 M.
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Flatness ofV implies that also the sequence

0—>K®RN—>M1®RN%MQ®RN.
is exact. Ify ® idy is injective, thenK ®@p N is the zero-module. By assumptioR, is the zero
module, whence is injective, showing the faithful flatness &f. Ol

Proposition 10.6. Let R be a ring and/N a flat R-module. The following statements are equivalent:
(i) N is faithfully flat.
(ii) For all maximal idealsm <« R we havem N # N.

Proof. ‘(i) = (ii)": Let m be a maximal ideal oR. By the previous lemma we know thB/ m®@z N =
N/mN. Hence, it suffices to show th&/m ®r N is not the zero module. But, by the faithful flatness
of N, the contrary would mean th#t/m is the zero module (also, by the previous lemma), which it
clearly is not (asn # R).

‘(i) = (i): Let M be an arbitrary non-zer&-module. We want to show/ ®r N # 0; this
suffices because of the previous lemma. Let m € M be an arbitrary element and consider the
homomorphism

p:R—M, r—1rm.

Its kernela is a proper ideal of? (sincelm = m # 0); write M; for im(y). By the homomorphism
theorem, we thus have
R/Cl = M1 - M.

Now we have
M, ®@r N = R/a®r N = N/aN,

by the previous lemma. Let be a maximal ideal of containinga. BecauseV/m N is non-zero by
assumption, it follows tha¥/aV is non-zero, since we have the natural surjecfight N — N/mN.
So, we have showi/; @z N # 0. However, the flatness d¥ implies thatM; ®pr N injects into
M ®pr N, which is consequently also non-zero, as was to be shown. Ol

Corollary 10.7. Let R be a ring.
(a) ProjectiveR-modules are flat oveR.

(b) Non-zero freeR-modules are faithfully flat oveR.

Proof. (a) First note that? is a flat R-module because of the isomorphising g N ~22="", N.

Hence, freeR-modules are flat by Proposition 10.4.

Let P be projective. We know that there is &amodule X such thatP & X is R-free, and hence
flat. Proposition 10.4 ‘(ii}= (i)’ now gives thatP is flat.

(b) Let F = Fr = @,.; R be R-free (with basid). Let N be anR-module. We compute:

ForN=(PR e@rN=PRerN)=HN.

el el iel

Hence, ifF @z N = 0, thenN = 0. By Lemma 10.5 we conclude thatis faithfully flat overr. [
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Corollary 10.8. Let R be a local ring with maximal ideah and M a finitely generated?-module.
Then the following statements are equivalent:

(i) M is free overR.
(i) M is a projectiveR-module.
(i) M is flat overR.

Proof. The implications ‘(i)=- (i)’ and ‘(ii) = (iii)’ have already been shown. So, we now prove
(iii) = (i). Let M be flat overR and letn = dimpg/, M/mM. Using the corollary of Nakayama’s
Lemma, anyR/m-basis of thek /m-vector spacé//mM can be lifted to a set of generators/af as

an R-module. Consequently, there is a surjection from the ffemoduleF of rankn to M, let G be

its kernel. Hence, we have the exact sequence

0—-G—-F—->M-—NO.
Claim: mF'NG = mG. Tensor the above sequence wiitover R and obtain the exact sequence:
MAIRG—-mRJRF->mer M — 0.

Using the flatness af’ and M and the resulting identifications of ® g F' with mF' and ofm @ p M
with mM, we obtain thatmF' N G is the image oin ® G — F', which ismG, as claimed.
Claim: The following sequence is exact:

0 - G/mG — F/mF — M/mM — 0.
We apply the isomorphism theorems:
M/mM = (F/G)/m(F/G) = (F/G)/((mF + G)/G) =2 F/(mF + G).

Hence, the kernel of the natural surjectiBimF' — M /mM is isomorphic tonF' + G /mF, which
is isomorphic to7/(mF N G). The previous claim now gives this claim.

But, both F//mF and M /mM are R/m-vector spaces of the same dimension, so the surjectivity
of the natural mag'/mF — M /mM implies that it is in fact an isomorphism, when€gmG is
zero by the exactness. Now, again the corollary to Nakayama'’s Lemnatga#: can be generated
by 0 elements, whenc& = 0. Consequently, the surjectidn — M is an isomorphism and/ is
free. O

Lemma 10.9. Let R be aring andS C R be a multiplicatively closed subset containing_et M be
a (faithfully) flat R-module.
ThenS—!'M is a (faithfully) flatS—! R-module and a flaR-module.

Proof. Let N be anS—!R-module. Then we have by the transitivity of tensoring (Lemhma 8.10 and
Lemma 9.17)

N ®g-1pg STIM =2 N®@g-15 (SRR M) = (N ®g-15 ST'R) @r M = N @p M.
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Thus, the (faithful) flatness &f —! M is obvious.

Next we show thaS—' R is flat overR. Let M — M’ be an injection ofR-modules. Because
of Lemma 9.16 thes—!' R-module homomorphism§~'M — S~'M’ is also injective. Using again
Lemma 9.17), we rewrite this injection & 'R ®r M — S™'R ®g M’, proving the flatness of
S—'R overR.

Finally, invoking Exercise 4(c) from Sheet 10, gives that' M is a flat R-module. O

The next two propositions give local characterisations, i.e. they gitariersaying that a certain
property (injectivity, surjectivity, flatness, faithful flatness) holds ifélamly if it holds in all localisa-
tions. We first start with a lemma that gives a local characterisation of a modoéezero.

Lemma 10.10.Let R be aring andM an R-module. Then the following statements are equivalent:

(i) M is the zero module.
(i) For all prime idealsp <1 R, the localisation),, is the zero module.

(iii) For all maximal idealsm <1 R, the localisationM,, is the zero module.

Proof. ‘(i) = (ii)": Clear.

‘(if) = (iii)" is trivial because all maximal ideals are prime.

(i) = (i) Let T := @, Rm, where the sum runs over all maximal idealsAs mR, # Ry,
for any maximal ideatn, it follows thatmT # m. By Proposition 10.6 and the fact that &l},, are
flat overR, it follows thatT is faithfully flat overR.

The assumption implies that= @, M. We rewrite this as follows:

0= Mo = P (R @r M) = (P Be) @ M =T @5 M.
m m m

By Lemma 10.5 it follows thal/ = 0. O

Proposition 10.11.Let R be aring andy : M — N an R-homomorphism. For a prime idepl< R,
denote byp, : M, — N, the localisation ap. Then the following statements are equivalent:

(i) o is injective (surjective).
(i) For all prime idealsp <1 R, the localisationy, is injective (surjective).
(i) For all maximal idealsm <1 R, the localisationy, is injective (surjective).

Proof. ‘(i) = (ii)’: Lemmal[9.16.

‘(if) = (iii)" is trivial because all maximal ideals are prime.

‘(iiiy = (i)": We only show this statement for the injectivity. The surjectivity is very similzet
K be the kernel ofy, so that we have the exact sequence

0—K— M2 N.
As R, is flat overR, also the sequence
0 — Ky — My 2= Ny

is exact. Aspy, is injective, it follows thatK,,, = 0. By Lemma 10.10K = 0, showing thatp is
injective. O
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Proposition 10.12. Let R be a ring andM an R-module. Then the following statements are equiva-
lent:

(i) M is (faithfully) flat overR.
(i) For all prime idealsp <1 R, the localisation),, is (faithfully) flat overR.
(iif) For all maximal idealsm <1 R, the localisationM,, is (faithfully) flat overR.

Proof. ‘(i) = (ii): Lemma|10.9.
‘(if) = (iii)" is trivial because all maximal ideals are prime.
‘(i) = (i)": We start with a preliminary calculation. LéY be anR-module. Then:

N®RMmgN®R(M®RRm)g(N®RM)®Rng(N®RM)m-

Now let N — N’ be an injection ofkR-modules. By the flatness dff,,, and the preliminary
calculation, we obtain the injection:

(N®RM)m‘—> (N/®RM)m.

The previous proposition yields thaf ® gk M — N’ @z M is injective. Consequently}/ is flat
overR.
Now suppose in addition that/,, is faithfully flat overR,,,. By Lemma 9.18 we have

0 # My/mRgMy = M/mM,

which is equivalent tanM # M. As this holds for all maximal ideals, Proposition 10.6 yields that
M is faithfully flat overR. O

11 Noetherian rings and Hilbert's Basissatz

In this short section, we treat Noetherian and Artinian rings and provetiglbasis theorem.
Recall that in Definition 2.9 we have already defined Noetherian ringse ferrepeat this defi-
nition and extend it to modules

Definition 11.1. Let R be a ring andM an R-module. The modul@/ is called Noetherian(resp.
Artinian) if every ascending (resp. descending) chaiizesubmodules of/

My ©C My C Mg C...

(resp.My O Ms O Mg O ...) becomes stationary, i.e. theres € N such that for alln > N we
haveM,, = My.
The ring R is calledNoetherianresp.Artinian) if it has this property as aR-module.

Lemma 11.2. Let R be a ring andM an R-module.

ThenM is Noetherian (resp. Artinian) if and only if every non-empty$etff submodules of/
has a maximal (resp. minimal) element.

By a maximal (resp. minimal) element $fwe mean anR-moduleN < S such thatN C V;
(resp.N D Np) impliesN = Nj forany Ny € S.
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Proof. We only prove the Lemma for the Noetherian case. The Artinian case is similar.

Let S be a non-empty set adR-submodules of\/ that does not have a maximal element. Then
construct an infinite ascending chain with strict inclusions as follows. &haayM; € S. As M is
not maximal, it is strictly contained in somd, € S. As M, is not maximal, it is strictly contained
in somel; € S, etc. leading to the claimed chain. Hendé,is not Noetherian.

Conversely, letV; C My C M3 C ... be an ascending chain. L8t= {M; | i € N}. This
set contains a maximal elemehfy by assumption. This means that the chain becomes stationary
atN. O

Proposition 11.3. Let R be a ring andM an R-module. The following statements are equivalent:
(i) M is Noetherian.
(i) Every submoduléV < M is finitely generated ag-module.

Proof. ‘(i) = (ii)": Assume thatV is not finitely generated. In particular, there are then elements
n; € N fori € N such thatn;) C (n1,n2) C (n1,n2,n3) < ..., contradicting the Noetherian-ness
of M.

‘(i) = (i): Let M7 € My C M3 C ... be an ascending chain @&-submodules. Forny :=
Uien M;. Itis anR-submodule of\f, which is finitely generated by assumption. bet. .., zq € U
be generators o/. As all z; already lie in somé\/;,, there is anV such thatz; € My for all
1=1,...,d. Hence, the chain becomes stationaryat O

Lemma 11.4.LetR be aringandd — N — M — M/N — 0 be an exact sequence Bfmodules.
The following statements are equivalent:

(i) M is Noetherian (resp. Artinian).
(i) N andM/N are Noetherian (resp. Artinian).

Proof. We only prove this in the Noetherian case. The Artinian one is similar.

‘(i) = (ii): N is Noetherian because every ascending chain of submodul&si®flso an as-
cending chain of submodules 8f, and hence becomes stationary.

To see thatM /N is Noetherian consider an ascending chainlRe$ubmodules\M; C My C
M3 C ... of M/N. Taking preimages for the natural projection M — M /N gives an ascending
chain in M, which by assumption becomes stationary. Because(of!(M;)) = M;, also the
original chain becomes stationary.

‘(i) = (i) Let

My © My C M3 C...

be an ascending chain &submodules. The chain
MiNNCMNNCMsNNC...

becomes stationary (say, at the integ@rbecause its members are submodules of the Noetherian
R-moduleN. Morepver, the chain

(My + N)/N C (Ma+ N)/N C (M3 + N)/NANC ...
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also becomes stationary (say, at the integibecause its members are submodules of the Noetherian
R-moduleM /N. By one of the isomorphism theorems, we h&Vé + N)/N = M;/(M; N N). Let
now i be greater than andm. We hence have for ajl > 0:

Mz/(Mz N N) = Mi+j/(Mi N N)
The other isomorphism theorem then yields:
0= (Miy;/(M; N N))/(M;/(M; N N)) = M /M,
showingM; = M, ;. O

Proposition 11.5. Let R be a Noetherian (resp. Artinian) ring. Then every finitely generdted
module is Noetherian (resp. Artinian).

Proof. Exercise. O

Proposition 11.6(Hilbert's Basissatz)Let R be a Noetherian ring and € N. ThenR[ X1, ..., X,)]
is a Noetherian ring. In particular, every ideal< R[ X1, ..., X, ] is finitely generated.

Proof. By induction it clearly suffices to prove the case= 1. So, leta < R[X] be any ideal. We
show thata is finitely generated, which implies the assertion by Proposition 11.3.
The very nice trick is the following:

ap:={ay€R|ag€a} <R

N

ap:={a1 €R|IpeR: a1 X+b€a}<R

N

ay:={az € R|3bp,by E R: s X* + b1 X +bg€a} <R
N

So,a, is the set of highest coefficients of polynomials of degtégng in a. The inclusiorn,,—; C a,
is true because if we multiply a polynomial of degree 1 by X, we obtain a polynomial of degree
with the same highest coefficient.

The ascending ideal chaig C a; C ay C ... becomes stationary becauBds Noetherian, say
aq = agq4; for all i € N. Moreover, sincer is Noetherian, all the; are finitely generated (as ideals
of R) by Proposition 11.3, say, = (a; 1, .- -, QGim,)-

By construction, for eacla; ; there is a polynomialf; ; € a of degree: with highest coeffi-
cienta; ;. Letb be the ideal ofR[X] generated by the finitely manf;; € afor1 < i < d and
I<j7<m,.

Claim: b = a.

Of courseb C a. We show by induction omn that anyf € a of degreee liesinb. If e = 0, then
f € ap, whencef € b.
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Next we treal) < e < d. Suppose we already know that any polynomiad iof degree at most
e —1liesinb. Let now f € a be of degree. The highest coefficient, of f lies ina.. This means
thata. = > ' rja.,; for somer; € R. Now, the polynomialy(X) = 37" r;fe ; has highest
coefficienta, and is of degree. But, now f — g is in a and of degree at most— 1, whence it lies
in b. We can thus conclude thétlies inb, as well.

Finally we deal withd < e. Just as before, suppose we already know that any polynomiadfin
degree at most — 1 lies in b and let agairy € a be of degree. The highest coefficient, of f lies
in a. = aq and, hence, there arg for j = 1,...,mq such thata, = Z;”:dl rjaq ;. Consequently,
the polynomialy(X) = Z;”:dl r; fa; has highest coefficient. and is of degred. But, now f(X) —
g(X)X° 4isina and of degree at most— 1, whence it lies irb. We can thus conclude thgtlies
in b, as well, finishing the proof of the claim and the Proposition. O

12 Dimension theory

This section has two main parts. The principal corollary of the first partisttie ring of integers of

a number field has dimensidn whereas we will conclude from the second part that the coordinate
ring of a plane curve has dimensiar{(that shouldn’t be too astonishing, but because of the abstract
nature of the definition needs a non-trivial proof).

Definition 12.1. Let R be a ring. Achain of prime ideals of length in R is

pngpnflgpnf2g"'gplgp07

wherep,; < Ris a prime ideal foralk =0, ..., n.
Theheighth(p) of a prime ideab < R is the supremum of the lengths of all prime ideal chains
with pg = p.

TheKrull dimensiondim(R) of the ringR is the supremum of the heights of all prime ideal&of

Example 12.2.(a) The Krull dimension of. is 1.
Reason: Recall that the prime ideals@fre (0) (height0) and (p) for a primep, which is also
maximal. So, the longest prime ideal chair{@$ C (p).

(b) The Krull dimension of any field i
Reason:(0) is the only ideal, hence, also the only prime ideal.

(c) Let K be a field. The polynomial ring([X1, ..., X,] has Krull dimensiom. This needs a
non-trivial proof and is shown below.

In the sequel, we are going to consider ring extensiBns S. If we denote, : R — S the
inclusion andb <1 S an ideal, then—!(b) = b N R (in the obvious sense). In particularpifs a prime
ideal, then so is~1(b) = b N R (see Exercise).

Lemma 12.3. Let R C S be a ring extension such thatis integral overR. Letb < S be an ideal
anda:=bNR<R.
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(@) ThenR/a — S/b is an integral ring extension (note that this is injective because of the homo-
morphism theorem).

(b) Assume thdi is a prime ideal. Them is maximalks b is maximal.

(c) Assume in addition th&f is an integral domain. Thenk is a field< S is a field.

Proof. Exercise. O
Lemma 12.4. Let R C S be an integral ring extension.

(a) Letb < S be an ideal containing: € b which is not a zero-divisor. ThemN R =: a <t R is not
the zero ideal.

(b) LetB; C Po be a chain of prime ideals &f. Thenp; :=P1 N R C Py N R =: po is a chain of
prime ideals ofR.

Proof. (a) SinceS is integral overR, there are: € N andry, ..., ,—1 € R such that

n—1
0=z"+ E rzt.
i=0

As z is not a zero-divisor, it is in particular not nilpotent, i.e. there is some aierfiir; # 0 (for
somei = 0,...,n — 1). Letj be the smallest index{n — 1) such that-; # 0. Now we have

n—1
0=z’ (a:"ij + Z Tixi*j),
=

implying (asx is not a zero-divisor):

n—1
0=2a"7 — E ISR
i—j

Rewriting yields:

n—1
T = x(—x”_j_l — Z rixi_j_l) eERNb=naq,
i=j+1
showing that is non-zero.
(b) Consider the integral (see Lemma 12.3) ring extendigm, — S/9;. The ideal, /P, in
S/ is prime becaus€S/P1)/(B2/P1) = S/P1 (isomorphism theorem) is an integral domain.
This also means thd8 /3, consists of non-zero divisors only (except @r Consequently, by (a),

we have(0) # PBo/P1 N R/p1 = pa/p1. O

Lemma 12.5. Let R C S be an integral ring extension and &t C R be a multiplicatively closed
subset containing. ThenT—'R C T—'S is an integral ring extension.

Proof. Exercise. O
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Lemma 12.6.Let R C S be an integral ring extension and Igt< R be a prime ideal. Then there is
a prime ideaf3 < S lying overp, by which we meap = ¢ N R.

Proof. LetT := R\p so thatR, = T~ R is the localisation of? atp. By Lemma 12.5R, — T~ 1S
is an integral ring extension. Let be a maximal ideal of'~S.
Consider the commutative diagram:

integral
R—S§

«@ B ‘
integral

Ry T-18.

Putp := B~(m). Itis a prime ideal. Note that N R, is maximal by Lemma 12.3, hence,
m N R, = pR, is the unique maximal ideal of the local rirfg,. Consequently, we have due to the
commutativity of the diagram:

p=a t(pRy) =a '(mNRy) =RNE Hm)=RNP,
showing that]3 satisfies the requirements. O

Proposition 12.7(Going up) Let R C S be an integral ring extension. For prime idegls C po
in R and a prime ideaf3; < S lying overp; (i.e.31 N R = py1), there is a prime idedB, in S lying
overp, (i.e. P2 N R = po) such thatP; C PVo.

Proof. By Lemma 12.3,R/p; — S/%; is an integral ring extension. By Lemma 12.6, there is
Py < S/Py lying overp, = po/p; such thatP, N R/p1 = pa/p1. DefinePs as71(Py) for

7w : S — S/P; the natural projection. Clearly3, O B; (asP; is in the preimage, being the
preimage of thé class) andB, N R = p,, also follows. Ol

Corollary 12.8. Let R C S be an integral ring extension. Then the Krull dimensiorRoéquals the
Krull dimension ofS.

Proof. We first note that the Krull dimension @t is at least the Krull dimension &f. Reason: If
PBrn € Pn_1 C --- € Po is an ideal chain irb, thenP, "R T Pr,.1 NRC --- C PpN Risan
ideal chain inR by Lemma 12.4.

Now we show that the Krull dimension 6fis at least that oRk. Letp,, C p,—1 S --- C po be an
ideal chain inR and let]3,, be any prime ideal of lying overyp,,, which exists by Lemma 12.6. Then
Proposition 12.7 allows us to obtain an ideal chgin C B,,_1 < --- € Py such that3; N R = p;
fori =0,...,n, implying the desired inequality. O

Corollary 12.9. Let R be an integral domain of Krull dimensianand letZ be a finite extension of
K := Frac R. Then the integral closure @t in L has Krull dimensior.
In particular, rings of integers of number fields have Krull dimension

Proof. The integral closure oR in L is an integral ring extension d@t. By Corollary 12.8, the Krull
dimension ofS is the same as that @t, whence it isl. O



12 DIMENSION THEORY 59

Our next aim is to compute the Krull dimension B X1, ..., X,] for some fieldK. First we
need Nagata’s Normalisation Lemma, which will be an essential step in the gfrdlafether’'s Nor-
malisation Theorem and of the computation of the Krull dimensioA oX1, ..., X,,].

Proposition 12.10(Nagata) Let K be a field andf € K[X;,...,X,] be a non-constant polyno-
mial. Then there arens, ms, ..., m, € N such that the ring extensioR := K|[f, zo, z3,...,2,] C
K[Xy,...,X,] = Swithz; := X; — X]" € K[Xy,...,X,]is integral.

Proof. First note: S = R[X;]. Reason: The inclusio® is trivial. Forn > i > 1, we have
X; =z + X{" € R[X,], proving the inclusiorc.

It suffices to show thak is integral overRk. The main step is to construct a monic polynomial
h € R[T] such thath(X;) = 0. We take the following general approach: For any € N for
i =2,3,...,nthe polynomial

W(T) = f(T, 20+ T™, 23 + T™, ... 2y +T™) — f(X1,...,X,) € R[T)

obviously hasX; as a zero. But, in order to prove the integrality6f we need the highest coefficient
of htobeinR* = K[X1,...,X,]* = K*, so that we can divide by it, makinfgmonic. We will
achieve this by making a ‘good’ choice of the, as follows.

Let d be the total degree gf in the following sense:

F(X s Xn) = Z a(il,...,in)X? e Xin
(i1,-yn) SL.|1|<d

with one of thea;, . ;) # 0 for [i] := Z;‘Zl i; = d. Now we compute (lettingz; = 1)

hT)
= ( > gy, i T (22 + T™2)2 (25 + T™3)5 L (2 + T™)") — f(X1, ..., Xy)
(1,0nyin) St |1 <d
= > ag,.. iy T>=™ + terms of lower degree .
(i1,0-in) S.t.[i|<d
Now choosen; = (d+1)’~". Thenthe)_"_ i;m; = Y7, i;(d+1)’~" are distinct for all choices
of 0 < i; < d (consider it as théd + 1)-adic expansion of an integer). In particular, among these

numbers there is a maximal one with# a(;, . ;). Then this is the highest coefficient bfand it
lies in K*, as needed. O

Definition 12.11. Let K be afield. A finitely generateld-algebra is also called aaffine K -algebra

Proposition 12.12(Noether’s Normalisation Theoremlet K be a field andR an affineK-algebra,

which is an integral domain. Then thererise N, » < n and there are elements, ...,y € R such
that
(1) R/Kly1,--..,y,| is an integral ring extension and

(2) v1,...,y, are K-algebraically independent (by definition, this means thdy, . . ., y,| is iso-
morphic to the polynomial ring in variables).
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The subringK[ys, . . ., y,| of R is called aNoether normalisation aR.

Proof. By induction onn € N we shall prove: Every affiné’-algebra that can be generatedby
elements satisfies the conclusion of the proposition.

Start withn = 0. ThenR = K and the result is trivially true. Assume now that the result is
proved forn — 1. We show it forn. Letxy,...,z, € R be a set of generators & as K -algebra. So,
we have the surjection dt -algebras:

o: K[Xy,...,X,] > R, X;— x.

Its kernel is a prime ideal := ker(y) sinceR is an integral domain.

We distinguish two cases. Assume fipst= (0). ThenR is isomorphic toK [X1,..., X,] and
the result is trivially true. Now we put ourselves in the second page(0). Let f € p be a non-
constant polynomial. We apply Nagata’s Normalisation Lemma Proposition 12d @lztain ele-
mentszy, ..., 2z, € K[X1,...,X,] suchthat[ X, ..., X,,]/K|f, 22, ..., z»] IS an integral ring ex-
tension. Now, apply to this extension and obtain the integral ring extenstgp (K [f, z2, . . . , zn)),
i.e. the integral ring extensioR/ R’ with R’ := K|[p(22), ..., ¢(z,)]. Now, R’ is generated by, — 1
elements, hence, itis an integral extensiokd#, . . . , y.] with » < n — 1 algebraically independent
elementsyy, ...,y € R’ C R. As integrality is transitiveR is integral overK [y, . .., y], proving
the proposition. O

Note that by Corollary 12.8 one obtains that the Krull dimensioR af equal tor.
Proposition 12.13. Let K be a field. The Krull dimension &€[ X1, ..., X,,] is equal ton.

Proof. We apply induction om to prove the Proposition. H = 0, then the Krull dimension i8 being
the Krull dimension of a field. Let us assume that we have already proaeththKrull dimension of
K[Xl,...,anl] isn— 1.

Let nowm be the Krull dimension o[ X7, ..., X,,]. We first proven > n. The reason simply
is that we can write down a chain of prime ideals of lengtimamely:

(0) € (X1) € (X1,X2) € (X1, X2, X3) C -+ C (X1, Xo,...,Xp).

Now let
) CSP1SP2CSP3C - C P

be a chain of prime ideals d[X1, ..., X,] of maximal length. We pick any non-constafite
B1 and apply Nagata’s Normalisation Lemma Proposition 12.10 yielding elements. , z, €
K[Xi,...,X,] such thatK'[ X1, ..., X,,)]/R with R := K|[f, za,...,z,] is an integral ring exten-
sion. Setting; := R N‘B; we obtain by Lemma 12.4 the chain of prime idealbbf lengthm:

Since the Krull dimension of? equals that ofK [ X7, ..., X,,] by Corollary 12.8, this prime ideal
chain is of maximal length.

Let R := K[f, 22,...,2,]/p1. Note that this is an integral domain, which can be generated (as a
K-algebra) byn — 1 elements, namely, the classes:9f. .., z,. Letm : R = K[f,29,...,2,] —
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K|f, z2,...,2:]/p1 = R be the natural projection. We apply it to the prime ideal chain optrend
get:
(0) =p1/p1 S p2/P1 S 03/P1 & - S Pn/P1,

which is a prime ideal chain oR of lengthm — 1. By Noether's Normalisation Theorem Propo-
sition/12.12 it follows that the Krull dimension @t is at mostn — 1, yielding the other inequality
m < n and finishing the proof. O

Corollary 12.14. Let K be afield andf (X, Y") € K[X, Y] be a non-constantirreducible polynomial.
LetC = V(y)(K) be the resulting irreducible plane curve.
The Krull dimension of the coordinate ring[C] = K[X,Y]/(f(X,Y)) is equal tol.

Proof. Nagata’s Normalisation Lemma Proposition 12.10 yields an elementX [ X, Y| such that
K[f,z] € K[X,Y]is an integral ring extension. Modding oyt), we see thak'[f, z]/(f) C K|[C]
is an integral ring extension, whence the Krull dimensions of the two ringicke and is at most
by Noether's Normalisation Theorem Proposition 12.12 and Propositior3 hddause[f, z|/(f)
is an integral domain that can be generated by one elemenkaalgebra, namely, by the class of
If the Krull dimension ofK'[C] were0, thenK [C] would be a finite field extension df (being a
finitely generated integral extension of a field). Hence, there would anfintiely many embeddings

of K[C] into an algebraic closurE of K. However, we know that each of the infinitely many points
] 9(X,Y)+(f)—g(z,y)

(x,y) of C' (we proved this earlier!) gives a different embedding, namgll,’
K. This contradiction shows that the Krull dimensionfofC] cannot be. O

13 Dedekind rings

Lemma 13.1. Let R be an integrally closed integral domain afdld C R a multiplicatively closed
subset containing. ThenT~! R is integrally closed.

Proof. Let K be the field of fractions oR, it is also the field of fractions o ~!R. Let% e K
be integral ovef’~! R. Then (after choosing a common demoninator of the coefficients) there is an
equation of the form:

0= (g)n Cn—l(a)n—l Cn—2 (g>n—2+ c1a €0

b t ‘b t ‘b

with cg, c1,...,cp—1 € Randt € T. Multiplying through witht™ we obtain:

0= (%t)n + Cn—l(%t)n_l + Cn—Qt(%t)n_Q +- clt”_2%t +cot" L,

showing that%“ is integral overR. As R is integrally closed, it follows thaibﬁ is in R, whence
¢eT'R. O

Corollary 13.2. Let R be an integral domain with field of fractiorfs and7” C R a multiplicatively
closed subset containing Let R be the integral closure oR in K and IetT/—\ﬁ% be the integral
closure of 'R in K.

ThenT 'R = T—'R.
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Proof. By Lemma 1317 'Ris integrally closed. Asé/R is an integral ring extension, by Lem-
ma/12.5 it follows thatr~'R/T~'R is an integral ring extension. This shows that!'R is the
integral closure of ~'R. O

Now we can prove the local characterisation of integrally closed integrahihs.
Proposition 13.3. Let R be an integral domain. Then the following statements are equivalent:
(i) Risintegrally closed.
(i) Ry isintegrally closed for all prime ideals < R.
(i) Ry is integrally closed for all maximal ideala < R.

Proof. ‘(i) = (ii)’: Lemma[13.1.

‘(if) = (iii)": Trivial because every maximal ideal is prime.

‘(iify = (i)’: Let us denote byﬁ the integral closure ofR. By Corollary 13.2, we know that the
localisationR., of R atm is the integral closure QRyy.

Let. : R — R the natural embedding. Of coursg,is integrally closed if and only if is an
isomorphism. By Proposition 10.11 this is the case if and only if the localisationR,, < Ru is
an isomorphism for all maximal ideats. That is, however, the case by assumption and the previous
discussion. O

Lemma 13.4. Let R be a Noetherian local ring angh <1 R its maximal ideal.
(@) m"/m"*! is an R/m-vector space for the natural operation.
(b) dimp/(m/m?) is the minimal number of generators of the ideal

(c) If dimR/m(m/mQ) = 1, thenm is a principal ideal and there are no ideats< R such that
m"*tl C a C m" for anyn € N.

Proof. Exercise on Sheet 12. O

Definition 13.5. A Noetherian local ring with maximal ideat is calledregularif dimp /n(m/m?)
equals the Krull dimension k.

Proposition 13.6. Let R be a regular local ring of Krull dimensiof.

(a) Thereisr € R such that all non-zero ideals are of the fo(ri*) for somen € N.
(b) Every non-zere € R can be uniquely written agz” withu € R* andn € N.
(c) Ris a principal ideal domain (in particular, it is an integral domain).

Proof. By Lemma 13.4 we know that is a principal ideal. Let: be a generator, i.éxz) = m. We
also know that there are no idealss R such tham™*! C a C m” for anyn € N.

Let0 # r» € R. We show that = uz™ with uniqueu € R* andn € N. In order to do so,
we first considenM := ", . m". We obviously havenM = M, whence by Nakayama’'s Lemmma
(Proposition 9.13\/ = 0.
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As r # 0, there is a maximak such that- € (z™). So, we can write- = vz" for somev € R.
As R is alocal ring, we havé&? = R* Um = R* U (z). Consequentlyy € R* because otherwise
r € (z"T1), contradicting the maximality of.

Let0 # a < R be any non-zero ideal. Letz™ (with u; € R*) be generators of the ideal. Put
n := min; n;. Thena = (2") because all other generators are multiples,@f*/, where; is such
thatn; = n.

None of the ideals” for n > 2 is a prime ideal (consider- z"~1). As the Krull dimension id,
it follows that(0) is a (hence, the) minimal prime ideal, showing tiRais an integral domain. [

Our next aim is to prove that regular local rings of Krull dimensioare precisely the local
principal ideal domains and also the local integrally closed integral domains.
The following lemma is proved very similarly to Nakayama’s Lemma (which was arcise).

Lemma 13.7.Let R be aring,a< R an ideal andM a finitely generated?-module. Letp : M — M
be anR-homomorphism such that the imagg\/) is contained i .
Then there arew € N andag, aq,...,a,—1 € a such that

"+ an19" T+ an—29™ + .. a1 + agid
is the zero-endomorphism ad.

Proof. Let x4, ..., z, be generators af/ as R-module. By assumption there aig; € a for 1 <
1,7 < n such that

‘P(x'z) = Zam‘x]u
j=1
Consider the matrix
D(T) :=T -idpxn — (@i j)1<ij<n € Maty,(R[T]).

Note thatD(T') is made precisely in such a way thaty)(z;) = 0 for all 1 < i < n. This means
that D(y) is the zero-endomorphism oY (as it is zero on all generators). We multiply with the
adjoint matrix D(7")* and obtainD(T")*D(T) = det(D(T))id,xn. Consequentlydet(D(y)) is
the zero-endomorphism al/. We are done because the determindt{ D(y)) is of the desired
form. O

Lemma 13.8. Let R be a local Noetherian integral domain of Krull dimensi@nwith maximal
idealm. Let(0) C I < R be anideal. Then there is € N such thatm™ C [.

Proof. Exercise on Sheet 12. O

Proposition 13.9. Let R be a local Noetherian ring of Krull dimensian Then the following state-
ments are equivalent:

(i) Risan integrally closed integral domain.

(i) Risregular.
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(i) R is a principal ideal domain.

Proof. ‘(ii) = (iii)": This was proved in Proposition 13.6.

‘(iiiy = (i): Principal ideal domains are factorial (Proposition 2.12) and faateings are inte-
grally closed (Propositian 4.12).

‘(i) = (i)’: It suffices to show thain is a principal ideal because this means thatR/m(m/mZ) =
1, which is the Krull dimension ofR?, so thatR is regular by definition.

We now construct an elementsuch thatn = (z). To that aim, we start with anyy # a € m.
By Lemmd 13.8 there is € N such thatm” C (a) andm™~! ¢ (a). Take anyp € m"~ 1\ (a). Put
T = % € K, whereK is the field of fractions ofz.

We show thatn = (), as follows:

e ™ ¢ Rforallm € mbecaus€? = 2 andmb € mm" ! = m" C (a).
e ! ¢ R because otherwise= z~! = g € Rwould implyb = ra € (a).

e z~'m Z m because of the following: Assume the contrary, ze'm = m. Then we have the

R-homomorphismp : m =", m. Asm is finitely generated (becauseis Noetherian),
there areig, aq,...,a,—1 € R such that

O 4 19"+ an_20™ 2+ . a1 + apid
is the zero-endomorphism emby Lemma 13.7 (withh = R). This means that
0= (:c_" R S SR S (o R A ao)m.
As R is an integral domain, we obtain
O=z""+ an,lx_(”_l) + an,gsv_(”_Q) + . .arz” + ag,

showing thatz—! is integral overR. As R is integrally closed, we obtain further! € R,
which we excluded before.

So,z~'m is an ideal ofR which is not contained im. Thus,»~'m = R, whencem = Rx = (z), as
was to be shown. O

Definition 13.10. A Noetherian integrally closed integral domain of Krull dimensibis called a
Dedekind ring

Example 13.11.Let K/Q be a number field ané  its ring of integers. We have proved tHag
is an integrally closed integral domain and that its Krull dimension.isSo,Zy is a Dedekind ring
because it is also Noetherian (this is not so difficult, but needs some t#agynthat we have not
introduced; we will show this in the beginning of the lecture on Algebraic Nurheory).

In a lecture on Algebraic Number Theory (e.g. next term) one seeDibdekind rings have
the property that every non-zero ideal is a product of prime ideals imigue way. This replaces
the unique factorisation in prime elements, which holds in a factorial ring, big fa hold more
generally, as we have seen.

Below we shall provide further examples of Dedekind rings coming framggy.
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We can now conclude from our previous work the following local chirdgation of Dedekind
rings.

Proposition 13.12. Let R be a Noetherian integral domain of Krull dimensidnThen the following
assertions are equivalent:

(i) Ris aDedekind ring.
(i) Risintegrally closed.
(i) Ry is integrally closed for all maximal ideala < R.
(iv) Ry isregular for all maximal idealsn <1 R.
(V) Ry, is aprincipal ideal domain for all maximal ideats < R.

Proof. All statements have been proved earlier! But, note that the Krull dimensidi,a$ 1 for all
maximal idealsn. That is due to the fact that any non-zero prime ideal in an integral dorh&irut
dimensionl is maximal and thah R, is also maximal and non-zero. ]

Let us now see what this means for plane curves. fi(éf,Y) € K[X,Y]. Recall the Taylor
expansion:

TC,(a,b) (X> Y) =
of
ax @n (X
Definition 13.13. Let K be a field,f € K[X,Y] a non-constant irreducible polynomial ard =
V() (K) the associated plane curve.
Let(a,b) € C be a point. Theéangent equation t6’ at (a, b) is defined as
_of of
Te(ap)(X,Y) = ﬁ’(a,b) (X —a)+ Iy
If Te (a,p) (X, Y) is the zero polynomial, then we cédl, b) a singular point ofC'.
If (a,b) is non-singular (also calledsmootl), thenVr,, , (K) is a line (instead ofd?(K)),
called thetangent line ta” at (a, ).
A curve all of whose points are non-singular is callesh-singular (or smooth)

Example 13.14.(a) Letf(X,Y) =Y? — X3 € K[X, Y] with K a field (say, of characteristig).

We have?l = —3X2 and 2L = 2Y. Hence,0,0) is a singularity and it is the only one. (Draw
a sketch.)

—a)+ ;];l<a,b>(Y —b) + terms of higher degree (X — a) and(Y — b).

(a,b)(Y — b) S K[X,Y]

This kind of singularity is called ausp(Spitze/pointe) for obvious reasons. The tangents to the
two branches coincide at the cusp.

(b) Letf(X,Y)=Y? - X3 - X2 ¢ K[X,Y]with K afield (say, of characteristi).
We have?l = —3X2 — 2X and 2& = 2Y. Hence,(0,0) is a singularity and it is the only one.
(Draw a sketch.)

This kind of singularity is called aardinary double point The tangents to the two branches are
distinct at the ordinary double point.
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Lemma 13.15.Let K be a field,S C K[X;,...,X,] be a subsetY = Vg(K) the K-points of the
associated affine algebraic set. Let,...,a,) € X be aK-point.
The kernel of thd({-algebra homomorphism

Doy, an)  K[X] = K[X1,.. o, Xp] /Iy — K, g(X1,..., X))+ (f) = gla1, ..., a,)
isequal to(X; —ay,..., X, — ay).

Proof. By a variable transformatiol; := X; — a; (formally, we take thel-algebra isomorphism
K[Yi,...,Y,] Z25%%, KXy, ..., X,]), we may assume tht= a; = as = --- = a,. The
ideal (X1, Xo, ..., X)) is clearly maximal because the quotient by ifis As (X1, Xs,..., X,) C
ker(®(g,... o)) it follows that the two are equal (dgy, ... o is not the zero-map —look at constants).]

Lemma 13.16.Let K be an algebraically closed fieldf, ¢ K[X, Y] a non-constant irreducible poly-
nomial,C' = V) (K) the associated plane curve addC] = K[X,Y]/(f(X,Y)) the coordinate
ring. Let(a,b) € C be apointandn = (X —a+ (f),Y — b+ (f)) < K[C] be the corresponding
maximal ideal (see Lemma 13.15).

Then the following two statements are equivalent:

(i) The point(a,b) is non-singular.
(i) K[C]mis aregular local ring of Krull dimension.

Proof. After a variable transformation (as in the previous lemma) we may as$umg = (0, 0).
Then
f(X,Y) =aX + Y + higher terms

Note thatm? is generated b2 + (), Y2 + (f), XY + (f), so that thek = K[C]/m-vector space
m/m? is generated byX + (f) andY + (f). Hence, the minimal number of generators is at most
but could bel.

Note also thaf# [C] has Krull dimensiorl and is an integral domain becausés irreducible (see
Corollary 12.14). Asn is not the zero ideal, also the localisatiBiC], has Krull dimensiori.

‘(i) = (ii): We assume that0, 0) is not a singular point. Then # 0 or 5 # 0. After possibly
exchangingX andY we may, without loss of generality, assume“ 0. It follows:

X = é(f(X, Y) — BY — higher term$ = gY (mod m?).

S0, X + (f) generatesn/m? as K -vector space, whence the dimension of this spade vehich is
equal to the Krull dimension. This shows th&{C|, is regular.

‘(il) = (i): We now assume that0, 0) is a singular point. Then = 3 = 0. So,X + (f) and
Y + (f) are K-linearly independent im/m?, whence the-dimension ofm/m? is bigger than the
Krull dimension, showing thak'[C]., is not regular. O

We now get another important occurence of Dedekind rings: As caateliimgs of non-singular
plane curves.
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Proposition 13.17. Let K be an algebraically closed field, € K[X, Y] a non-constant irreducible
polynomial,C' = V4 (K) the associated plane curve aidC] = K[X,Y]/(f(X,Y)) the coordi-
nate ring.

Then the following two statements are equivalent:

(i) The curveC is smooth.

(i) K[C]is a Dedekind ring.

14 Hilbert's Nullstellensatz

Proposition 14.1(Hilbert’s Nullstellensatz — weak form)Let K be a field anch < K[ X71,..., X,] a
proper ideal. Then,(K) # ), whereK is an algebraic closure ok.

This will be proved as a consequence of the Proposition.

Proposition 14.2 (Field theoretic weak Nullstellensatz)et K be a field,L/K a field extension

anday,...,a, € L elements such that = Kay,...,a,] (that is, theK-algebra homomorphism
K[X1,...,X,] 2%, [is surjective).

ThenL/K is finite and algebraic.
Lemma 14.3. The statements of Proposition 14.1 and 14.2 are equivalent.

Proof. 14.2 = [14.1": Letm < K[X1,...,X,] be a maximal ideal containing. ThenL :=
K[X1,...,X,]/mis afield extension (we factored out a maximal ideal}gfwhich is, of course, the
image of a surjectives-algebra homomorphism : K[X,..., X,] — L (the natural projection!).
By the statement of 14.2 it follows thax/? is a finite algebraic extension, hende= K because
K is algebraically closed. Writing; := 7(X;), it follows thata; € K fori = 1,...,n. Hence,
(X1—a,...,X, —a,) C ker(m) = m. Due to the maximality of the ide@X; — a4, ..., X,, — ay),
it follows thata C m = (X1 —az,..., X, —a,). ConsequentiWy(K) 2 Vn(K) = {(a1,...,a,)}.
14.1 = [14.2": Consider ak-algebra surjectiony : K[Xi,..., Xn] =% L. Its kernel
m := ker(¢) is a maximal ideal, sincé is a field. By the statement of 14.1, we havg(K) # 0.
Let (by,...,b,) be an element o¥,,(K), which gives rise to the<-algebra homomorphismp :
K[Xi,...,X,] X=h, K. Note thatm is contained in the kernel af (we havef(by,...,b,) =0
for all f € m), whence they are equal. ConsequenllyC L C K, and we conclude that/K is
algebraic. It is finite because it is generated by finitely many algebraic etemen O

Next we are going to prove Proposition 14.2, which by the virtue of Lemma ddt@matically
proves Proposition 14.1, too.

Proof of Proposition 14.2Let L = KJaq,...,a,). Itis an affineK-algebra which is a field (and
hence an integral domain). So, we may apply Noether normalisation Propdk&ib2. We obtain
elementsyy,...,y, € L such thatL/K]Jyi,...,y,] is an integral extension anf [y, ...,y,] is
isomorphic to a polynomial ring in variables. This means, in particular, that there are no relations
between they;.
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Assumer > 1. Thenyf1 € L and hence integral ovéx [y, ..., y,|, SO that it satisfies a monic
equation of the form

yl_n + fn—l(?/h o 7y7")y1_n+1 + -+ fO(y17 o 7y7‘) = 07

wheref;(y1,...,yr) € K[y1, ..., yr]. Multiplying through withy™ we get

1 +fn71(y1;-- ~7y7‘)y1 + -+ fO(yla"' 7y7")yll = 07

i.e. a non-trivial relation between thg. Conclusion:r = 0.
Hence,L/K is integral and hence algebraic. It is a finite field extension because it ésajed
by finitely many algebraic elements. O

Lemma 14.4.Let K be an algebraically closed field andi K[ X1, . .., X,,] a proper ideal. Then the
maximal idealsn < KX, ..., X,] which containa are (X; —ay, ..., X,, — ay) for (a1, ...,a,) €
Va(K).

Proof. We first determine what maximal ideals look like in general. Any ideal of thenfak; —
ai,...,Xn — ay) is clearly maximal (factoring it out givek’). Conversely, ifm < K[X7, ..., X,]
is maximal then the quotierit [ X, ..., X,,]/m is a finite algebraic field extension &f by Proposi-
tion/14.2, hence, equal t§ becauseX is algebraically closed. Consequently, denoting= m(X;)
fori=1,...,nwithr: K[X1,...,X,] Sowr@lprolecion v . X,]/m = K, we find (special
case of Lemma 13.15) that = (X; —aq,..., X, — a,).

Now we prove the assertion. Let= (X; —ay,..., X, —ay), sothat{(ai,...,an)} = V(K).
We have:

aCme {(a1,...,a0)} = Vin(K) CVa(K) < (a1,. .. an) € Va(K).

The direction=-is trivial. To see the other one, note thfdt,,...,a,) = 0for f € aimpliesf € m,
asm is the kernel ofK [ X1, ..., X,] =% K. O

Definition 14.5. Let R be aring anda < R and ideal. Theadical (ideal) ofa is defined as
Va:={reR|IneN:r"€al.

An ideala is called aradical idealf a = /a.
TheJacobson radical af is defined as

J(a) = U m,
aCm<R maximal

i.e. the intersection of all maximal ideals &f containinga (recall the definition of the Jacobson
radical of a ring: intersection of all maximal ideals; it is equal #§0)).

Lemma 14.6. Let K be afield anch <« K[X}, ..., X,,] anideal.
ThenV,y(L) =V /(L) for all field extensiond. / K.
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Proof. The inclusionD is trivial because ofi C /a. Let now (ai,...,a,) € V4(L), that is,
f(ai,...,a,) = Oforall f € a. Let nowg € /a. Then there isn € N such thaty™ € q,
so thatg(aq,...,a,)™ = 0. Since we are in an integral domain, this impligs,...,a,) = 0,
showing the inclusiorc. O

Proposition 14.7(General Hilbert's Nullstellensatz) et K be a field,R an affineK-algebra,a << R
anideal. Then/a = J(a).

Proof. ‘C’: Let m <« R be any maximal ideal containing Let f € v/a. Then there isn € N such
that f™ € /a C m. The prime ideal property afi now gives thatf € m. This implies,/a C m.

‘D Let f € R\ va. We want to showf & J(a).

From f ¢ v/a it follows that f* ¢ a for all n € N. So, the seS{f" | n € N} C R/a =: Ris
multiplicatively closed and does not contdirfthe zero ofR = R/a, of course). We writef for the
classf + a € R. Itis a unitinS—!R because we are allowingin the denominator.

Let g be a maximal ideal o6~ 'R. As f is a unit, f ¢ q. As R is an affineK -algebra, so is the
field S~'R/q =: L (we modded out by a maximal ideal). Proposition 14.2 yields fhdt is a finite
field extension.

Note that the ring?/(R N ) containsK and lies inL. Due to the finiteness df / K, this ring is
itself a field, so thak N q is a maximal ideal of%.

Recall thatf ¢ g, sof does not lie in the maximal ide& N .

Setq := 7~ (1) with the natural projection : R — R = R/a. Itis a maximal ideal containingj
but f ¢ q. Consequentlyf & J(a). O

Proposition 14.8(Hilbert’'s Nullstellensatz) Let K be an algebraically closed field and consider an
ideala < K[X7,...,X,].

ThenIva(K) = \/E

In particular, takingV,(K), the radical ideals o[ X7, ..., X,,] are in bijection with the affine
algebraic sets il\" (K).

Proof. ‘D’: By Lemmata 5.11 and 14.6 we hayéx C Iy o(x) = Ty (k)

‘C": Let m be a maximal ideal oK'[X1, ..., X,] containinga. By Lemma 14.4 we known =
(X1 —a1,..., X, —a,) forsome(ay, ..., a,) € Vo(K). Let f € Ty, (k). Thenf(ay,...,a,) =0
so thatf € m, asm is the kernel ofK [ X1, ..., X,)] Xz g This showsZy, (k) € m, and, hence,

Ty, (k) € J(a). By Proposition 14.7 we thus g&},_ k) € v/a, as was to be shown.
The final statement follows like this:

X = Va(K) = Ty, i) = Va = V5(K) = Va(K) = X

and
a = \/a'—> Va(K) — ZVQ(K) = \/a

This shows the correspondence. Ol
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