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Preface

In number theory one is naturally led to study more general numbers than justthe classical integers
and, thus, to introduce the concept of integral elements in number fields. The rings of integers in
number fields have certain very beautiful properties (such as the uniquefactorisation of ideals) which
characterise them as Dedekind rings. Parallely, in geometry one studies affine varieties through their
coordinate rings. It turns out that the coordinate ring of a curve is a Dedekind ring if and only if the
curve is non-singular (e.g. has no self intersection).

With this in mind, we shall work towards the concept and the characterisation of Dedekind rings.
Along the way, we shall introduce and demonstrate through examples basic concepts of algebraic
geometry and algebraic number theory. Moreover, we shall be naturally led to treat many concepts
from commutative algebra.

The lecture covers the following topics:

• General concepts in the theory of commutative rings

– Rings, ideals and modules

– Noetherian rings

– Tensor products

– Localisation

– Krull Dimension

• Number rings

– Integral extensions

– Noether’s normalisation theorem

– Dedekind rings
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• Plane Curves

– Affine space

– Coordinate rings and Zariski topology

– Hilbert’s Nullstellensatz

– Singular points

Good books are the following. But, there are many more!

• E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry.

• Dino Lorenzini. An Invitation to Arithmetic Geometry, Graduate Studies in Mathematics, Vol-
ume 9, American Mathematical Society.

• M. F. Atiyah, I. G. Macdonald. Introduction to Commutative Algebra, Addison-Wesley Pub-
lishing Company.

In preparing these lectures, I used several sources. The most important one is the lectureAlgebra
2, which I taught at the Universität Duisburg-Essen in the summer term 2009, which, in turn, heavily
relies on a lecture for second year students by B. H. Matzat at the Universität Heidelberg from summer
term 1998.
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1 Rings and modules

Definition 1.1. A setR, containing two elements0 and 1 (not necessarily distinct), together with
maps

+ : R×R→ R, (x, y) 7→ x+ y and· : R×R→ R, (x, y) 7→ x · y

is called aunitary ringif the following properties are satisfied:

(a) (R,+, 0) is an abelian group with respect to+ and neutral element0,

(b) (R \ {0}, ·, 1) is a semi-group with respect to· and neutral element1 and

(c) a · (b+ c) = a · b+ a · c for all a, b, c ∈ R (distributivity).

The attributeunitary refers to the existence of the element1 in the ring. We only consider such
rings, and will thus usually not mention the word unitary.

If (R \ {0}, ·) is an abeliansemi-group, thenR is called acommutative ring. Most (but not all)
of the lecture will only treat commutative rings; hence, the nameCommutative Algebra. By a ring I
shall usually mean to a commutative ring (should be clear from the context – ifnot, ask!).

If R is a commutative ring and if in addition(R \ {0}, ·, 1) is an abelian group (not only semi-
group) and1 6= 0, thenR is called afield.

A subsetS ⊆ R is called a(commutative) subringif 0, 1 ∈ S and+ and · restrict toS making it
into a ring.

[We recall the definition of a semi-group and a group: A setS, containing an element denoted1, together
with a map· : S × S → S, (s, t) 7→ s · t is called asemi-groupif the following hold:

(a) s · (t · u) = (s · t) · u for all s, t, u ∈ S (associativity),

(b) 1 · s = s = s · 1 for all s ∈ S (neutral element).

If in addition, it holds that

(c) for all s ∈ S there aret, u ∈ S such thats · t = 1 = u · s (notations−1 for both) (existence of inverses),

thenS is called a group. Ifs · t = t · s for all s, t ∈ S, then the (semi-)group is calledabelianor commutative.]

Example 1.2. (a) Z, Q.

(b) MN (Q) (N ×N -matrices).

(c) Z[X], Q[X].

(d) {0} is called thezero-ring(with 1 = 0 and the only possible definitions of+ and ·, namely
0 + 0 = 0 and0 · 0 = 0).

(e) Fp, Fpr for a prime numberp andr ∈ N.

In this lecture, we shall motivate many of the properties of commutative rings that we study
by examples coming from rings of integers of number fields and plane curves. Here’s already the
definition of a number field. Rings of integers and plane curves will be introduced later.
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Definition 1.3. A finite field extensionK of Q is called anumber field.
[We recall some definitions from field theory: LetL be a field. A subringK ⊆ L is called asubfieldif K

is also a field. In that case, one also speaks ofL as afield extensionof K, denoted asL/K or K →֒ L. If

L/K is a field extension, thenL is aK-vector space with respect to the natural+ and ·, i.e.+ : L × L → L,

(x, y) 7→ x+ y (the+ is the+ of the fieldL) and scalar multiplication+ : K × L → L, (x, y) 7→ x · y (the ·
is the· of the fieldL). Thedegreeof L/K is defined as[L : K] := dimK(L), the dimension ofL asK-vector

space. One says thatL/K is afinite field extension if[L : K] <∞.]

Example 1.4. (a) Q (but: R is not a number field).

(b) Q[X]/(f(X)) with an irreducible non-constant polynomialf ∈ Q[X].

(c) Q(
√
d) = {a + b

√
d | a, b ∈ Z} for 0, 1 6= d ∈ Z square-free, is a number field of degree2 (a

quadratic field).

The latter two examples will be explained shortly.

Definition 1.5. LetR,S be rings. A mapϕ : R → S is called aring homomorphismif the following
properties are satisfied:

(a) ϕ(1) = 1,

(b) ϕ(r + s) = ϕ(r) + ϕ(s) for all r, s ∈ R,

(c) ϕ(r · s) = ϕ(r) · ϕ(s) for all r, s ∈ R.

Example 1.6. (a) Z → Fp, a 7→ a.

(b) LetR be a ring andS a subring ofR. The inclusionι : S → R defines a ring homomorphism.

Definition 1.7. LetR be a ring. An abelian group(M,+, 0) together with a map

. : R×M →M, (r, x) 7→ r.x

is called a(left) R-moduleif the following properties are satisfied:

(a) 1.x = x for all x ∈M .

(b) r.(x+ y) = r.x+ r.y for all r ∈ R and allx, y ∈M .

(c) (r + s).x = r.x+ s.x for all r, s ∈ R and allx ∈M .

(d) (r · s).x = r.(s.x) for all r, s ∈ R and allx ∈M .

In a similar way one defines right modules and two-sided modules.
A subsetN ≤ M is called anR-submoduleofM if 0 ∈ M and+ and . restrict toN making it

into anR-module.

Example 1.8. (a) LetK be a field andV aK-vector space. ThenV is aK-module.

(b) LetR be a ring. ThenR is anR-module (natural+ and. = ·).
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(c) LetR be a ring. ThenM := R×R× · · · ×R is anR-module (natural+ and diagonal.).

Lemma 1.9. An abelian group(M,+, 0) is anR-module if and only if the map

R→ End(M), r 7→ (x 7→ r.x)

is a ring homomorphism. HereEnd(M) denotes the endomorphism ring ofM as an abelian group.

Definition 1.10. LetR be a ring andM,N beR-modules. A mapϕ : M → N is called anR-module
homomorphism(or short:R-homomorphism, or: R-linear (map)) if

• ϕ(m1 +m2) = ϕ(m1) + ϕ(m2) for all m1,m2 ∈M and

• ϕ(r.m) = r.ϕ(m) for all m ∈M and all r ∈ R.

Lemma 1.11. Thekernelker(ϕ) := {m ∈M | ϕ(m) = 0} is anR-submodule ofM .
Theimageim(ϕ) := {ϕ(m) | m ∈M} is anR-submodule ofN .
By the way, the quotient (see below)N/ im(ϕ) is called thecokernel ofϕ.

Proof. Simple checking.

Definition 1.12. LetR be a ring andN,M beR-modules. Letϕ : M → N be anR-homomorphism.
We say thatϕ is a monomorphismif ϕ is injective. It is called anepimorphismif ϕ is surjective.
Finally, it is called anisomorphismif it is bijective.

If N = M , then anR-homomorphismϕ : M →M is also called anR-endomorphism.
We letHomR(M,N) (or Hom(M,N) if R is understood) be the set of allR-homomorphisms

ϕ : M → N . If M = N , then one letsEndR(M) := HomR(M,M).

Lemma 1.13. LetR be a ring andN,M beR-modules. ThenHomR(M,N) is itself anR-module
with respect to pointwise defined+ and., i.e.(f+g)(m) := f(m)+g(m) and(r.f)(m) := r.(f(m))

for all f, g ∈ HomR(M,N), all m ∈M and all r ∈ R.

Proof. Simple checking (Exercise on Sheet 2).

Definition 1.14. A subsetI ⊆ R is called a(left/right/two-sided) idealif I is a (left/right/two-sided)
R-module (w.r.t.+ fromR and. = · fromR). NotationI �R (or I �R).

Example 1.15. (a) {0},R are both trivially ideals.

(b) {nm|m ∈ Z} � Z.

(c) Letϕ : R→ S be a ring homomorphism. Thenker(ϕ) is an ideal ofR.

Definition 1.16. LetM a anR-module and letmi ∈ M for i ∈ I (some ‘indexing’ set). Denote
by 〈mi|i ∈ I〉 the smallest submodule ofM containing allmi for i ∈ I; it is called the submodule
generated by themi, i ∈ I.

AnR-moduleM is calledfinitely generatedif there arer ∈ N and elementsm1, . . . ,mr ∈ M

such that〈m1, . . . ,mr〉 = M .
Notation: ifmi ∈ R, we write(mi|i ∈ I) := 〈mi|i ∈ I〉 for the ideal ofR generated by themi

for i ∈ I.
An ideal of the form(r) �R with r ∈ R is called aprincipal ideal.
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Example 1.17. (a) (0) = {0}, (1) = R.

(b) (n) = {nm|m ∈ Z} � Z.

(c) (n,m) = (g) with g the greatest common divisor ofn,m ∈ Z.

(d) Every ideal ofZ is principal (Z is a principal ideal domain). To see this, we give a proof that
generalises immediately to Euclidean rings (see next section). LetI be any non-zero ideal ofZ.
Letn be the smallest positive integer inI.

Claim: I = (n). Letx ∈ I be any element. Using division with remainder we writex = an+ r

with 0 ≤ r < n and somea ∈ Z. Asx ∈ I andn ∈ I, alsor = x− an ∈ I. Asn is the smallest
positive element inI, the remainderr has to be zero, whencex = an andx ∈ (n). This shows
I ⊆ (n). The converse inclusion is trivial.

Lemma 1.18. LetR be a ring andN ≤M beR-modules. The relationx ∼ y :⇔ x− y ∈ N defines
an equivalence relation onM . The equivalence classesx = x+N form theR-module denotedM/N

with

• + : M/N ×M/N →M/N, (x+N, y +N) 7→ x+ y +N ,

• 0 = 0 = 0 +N = N as neutral element w.r.t.+,

• . : R×M/N →M/N, (r, x+N) 7→ rx+N .

TheR-moduleM/N is calledthe quotient ofM by (or modulo)N (also calledfactor module).

Proof. Simple checking. The main point is that+ and . indeed define maps , i.e. are well-defined.
The other properties then follow immediately from those ofR.

Lemma 1.19. LetR be a commutative ring andI �R be an ideal. Then the quotient moduleR/I is
a commutative ring with multiplication

· : R/I ×R/I → R/I, (r + I, s+ I) 7→ rs+ I,

thequotient ring orR by I (also calledfactor ring).

Proof. Simple checking, as for the previous lemma.

Example 1.20. (a) Q(i) ∼= Q[X]/(X2 + 1).

(b) Fp = Z/(p) for p a prime.

(c) F4 = F2[X]/(X2 +X + 1).

Definition 1.21. LetR be a ring andI �R, I 6= R an ideal.
The idealI is calledmaximalif there is no idealJ �R such thatI ( J ( R.
The idealI is calledprime if, wheneverab ∈ I, thena ∈ I or b ∈ I.

Proposition 1.22. The prime ideals ofZ are precisely(0) and (p) for p a prime number (using the
‘school definition’: a natural numberp is prime if its only positive divisors are1 andp).
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Proof. First we see that(0) is a prime ideal:ab = 0 ⇒ a = 0 or b = 0.
Now we check that(p) is a prime ideal ifp is a prime number. Leta, b ∈ Z such thatab ∈ (p).

This means that there existsn ∈ Z such thatab = np. Here comes the non-trivial part. Now, we
assume thata 6∈ (p), i.e. p ∤ a. This means that the greatest common divisor ofp anda is 1 and by
the (extended) Euclidean algorithm we get1 = ra + sp with somer, s ∈ Z. Multiplying by b gives
b = rab+ bsp = rnp+ bsp = (rn+ bs)p, whenceb ∈ (p), as was to be shown.

Let now(n) be a prime ideal. Ifn were not prime, thenn = ab with a, b 6= 1,−1, soab ∈ (n),
buta 6∈ (n) andb 6∈ (n), contradicting the prime-ness of(n).

Definition 1.23. LetR be a ring. An elementr ∈ R is called azero-divisorif there iss ∈ R, s 6= 0

s.t.rs = 0.
A ring is called anintegral domain(or domain, for short) if0 is its only zero divisor.

Proposition 1.24. LetR be a ring andI �R an ideal.

(a) ThenI is a prime ideal if and only ifR/I is an integral domain.

(b) ThenI is a maximal ideal if and only ifR/I is a field.

Proof. (a) LetI be a prime ideal and leta + I, b + I ∈ R/I such that(a + I)(b + I) = ab + I =

0 + I = 0, i.e.ab ∈ I. By the property ofI being a prime ideal,a ∈ I or b ∈ I, which immediately
translates toa+ I = 0 or b+ I = 0.

Conversely, assume thatR/I is an integral domain and leta, b ∈ R such thatab ∈ I. This means
(a+ I)(b+ I) = 0, whencea+ I = 0 or b+ I = 0 so thata ∈ I or b ∈ I, proving thatI is a prime
ideal.

(b) Suppose thatI is a maximal ideal and letx + I 6= 0 be an element inR/I. We must show it
is invertible. The conditionx + I 6= 0 meansx 6∈ I, whence the idealJ = (I, x) is an ideal strictly
bigger thanI, whenceJ = R by the maximality ofI. Consequently, there arei ∈ I andr ∈ R such
that1 = i+ xr. This means thatr + I is the inverse ofx+ I.

Now let us assume thatR/I is a field and letJ ) I be an ideal ofR strictly bigger thanI. Let x
be an arbitrary element inJ but not inI. AsR/I is a field, the elementx + I is invertible, whence
there isy ∈ R such that(x+ I)(y + I) = xy + I = 1 + I ⊆ J . So,1 ∈ J , whenceR ⊆ J , showing
thatJ = R, whenceI is maximal.

Corollary 1.25. Every maximal ideal is a prime ideal.

Proof. Every field is an integral domain.

Example 1.26.A ringR is an integral domain if and only if(0) is a prime ideal ofR.

Definition 1.27. LetR andS be rings. We say thatS is anR-algebra if there is a ring homomorphism
ϕ : R→ S.

Example 1.28.LetK be a field. Then the polynomial ringK[X] is aK-algebra.
ConsiderEndK(V ) for aK-vector spaceV . ThenEndK(V ) is aK-algebra (K embeds into the

scalar matrices).
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2 Factorial rings

Principal ideal domains and factorial rings are the ‘nicest’ commutative rings. Unfortunately, many
of the rings one encounters naturally (e.g. rings of integers in number fields, or rings of functions on
affine plane curves) are not that ‘nice’. We shall in later sections be concerned with finding substitutes
for the ‘nice’ properties of factorial rings and prinicipal ideal domains.Here, we shall as a start de-
velop these ‘nice’ properties, so that we can more appreciate them and thequest for similar properties
in more general cases.

Euclidean rings, principal ideal domains and factorial rings are all generalisations of the integer
ring Z. It was apparently Gauß who was the first to notice that ‘obvious’ statements like the one that
every positive integer can be uniquely (up to ordering) written as a product of prime elements needed
proof. In this section we give these proves in more generality.

Euclidean rings

Definition 2.1. An integral domainR is called aEuclidean ringif there is a mapδ : R \ {0} → N0

such thatR has a division with remainder w.r.t.δ, i.e. if for all a, b ∈ R, b 6= 0, there areq, r ∈ R

satisfying
a = qb+ r and(r = 0 or δ(r) < δ(b)).

Example 2.2. (a) Z w.r.t. δ = | · | (absolute value).

(b) The Gaussian integersZ[i] := {a + bi ∈ C | a, b ∈ Z} with + and · coming fromC, w.r.t.
δ(a+ ib) = a2 + b2.

(c) K[X] withK a field (but notZ[X]) w.r.t. δ = deg.

Principal ideal domains

Definition 2.3. An integral domainR is called aprincipal ideal domainif every ideal ofR is principal.

Proposition 2.4. Every Euclidean ring is a principal ideal domain.

Proof. Let R be a Euclidean ring w.r.t.δ and letI � R be an ideal. We want to show that it is
principal. If I = {0}, then it is already principal, so that we may supposeI 6= (0). Consider the set
M := {δ(i) ∈ N | i ∈ I \ {0}}. As a non-empty subset ofN it has a smallest element (induction
principal, well-ordering principle, . . . ). Letn be this smallest element. It is of the formn = δ(x) with
0 6= x ∈ I. Note(x) ⊆ I.

Let nowi ∈ I be any element. By the Euclidean property there areq, r ∈ R such thati = qx+ r

with r = 0 or δ(r) < δ(n). Sincei ∈ I andx ∈ I, it follows thatr = i − qx ∈ I. Due to the
minimality of n = δ(x), we must haver = 0. Thusi = qx ∈ (x). We have shown:I ⊆ (x) ⊆ I,
hence,I = (x) is a principal ideal.

Example 2.5. (a) Z, Z[i]

(b) K[X] withK a field, but notZ[X].
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(c) There are principal ideal domains which are not Euclidean. Example: Z[1+
√
−19

2 ], the proof that
the ring is not Euclidean is quite hard.

Definition 2.6. LetR be an integral domain.

(a) An elementr ∈ R is called aunit if there iss ∈ R such thatrs = 1. The set of units forms a
group w.r.t.·, denoted asR×.

(b) An elementr ∈ R \ (R× ∪ {0}) is called irreducibleif, wheneverr = st with s, t ∈ R, then
s ∈ R× or t ∈ R×.

(c) An elementr ∈ R dividesan elements ∈ R (in symbols:r | s) if there ist ∈ R such thats = rt.

(d) Two elementsr, s ∈ R are associateif there is a unitt ∈ R× such thatr = ts (note that being
associate is an equivalence relation).

(e) An elementr ∈ R \ (R× ∪ {0}) is called aprime elementif, wheneverr | st with s, t ∈ R, then
r | s or r | t.

Proposition 2.7. LetR be an integral domain.

(a) Letr ∈ R. Then
r ∈ R× ⇔ (r) = R.

(b) Letr, s ∈ R. Then
r | s⇔ (r) ⊇ (s).

(c) Letr, s ∈ R. Thenr ands are associate if and only if(r) = (s).

(d) Letr ∈ R \ (R× ∪ {0}). Thenr is a prime element if and only if(r) is a prime ideal ofR.

(e) Letr ∈ R be a prime element. Thenr is irreducible.

Proof. (a), (b), (c) and (d) are simple checking.
(e) Letr ∈ R be a prime element. In order to check thatr is irreducible, letr = st with s, t ∈ R.

This means in particular thatr | st. By the primality ofr, it follows r | s or r | t. Without loss
of generality assumer | s, i.e. s = ru for someu ∈ R. Then we haver = st = rut, whence
r(1 − ut) = 0, which implies1 − ut = 0 by the property thatR is an integral domain andr 6= 0.
Thust ∈ R×, as was to be shown.

Proposition 2.8. LetR be a principal ideal domain and letx ∈ R \ (R× ∪ {0}). Then the following
are equivalent:

(i) x is irreducible.

(ii) (x) is a maximal ideal.

(iii) (x) is a prime ideal.

(iv) x is a prime element.
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In particular, the non-zero prime ideals are the maximal ideals.

Proof. ‘(i)⇒(ii):’ If (x) were not a maximal ideal, then(x) ( (y) ( R for somey ∈ R\ (R×∪{0}),
whencey | x, so thatx would not be irreducible. We have already seen the other implications.

We shall use two consequences all the time:

• LetK be a field andf ∈ K[X] a non-constant irreducible polynomial. Then(f) is a maximal
ideal of the principal ideal domainK[X] and the quotientK[X]/(f) is a field.

• If p is a prime number (inZ), thenZ/(p) =: Fp is a field.

Definition 2.9. A ringR is calledNoetherianif all ideal chains

a1 ⊆ a2 ⊆ a3 ⊆ . . .

become stationary. More formally, wheneverai �R for i ∈ N are ideals with the propertyai ⊆ ai+1,
then there isn ∈ N such that for alli ≥ n one hasan = ai.

More on Noetherian rings and modules will be said in later sections.

Proposition 2.10. Every principal ideal domain is a Noetherian ring.

Proof. Let ai = (ai) with ai ∈ R be such an ascending ideal chain (ai ⊆ ai+1 for all i ∈ N, or,
equivalently,ai+1 | ai for all i ∈ N). Then form the ideala =

⋃
i∈N

ai. It is a principal ideal, i.e.
a = (a) for somea ∈ R. Of course,a ∈ (a), i.e. a ∈ ⋃

i∈N
ai, whence there isn ∈ N such that

a ∈ (an). This means(a) ⊆ (ai) ⊆ (a) for all i ≥ n, whence(a) = (ai) for all i ≥ n.

Factorial rings

Definition 2.11. A Noetherian integral domainR is called afactorial ring(or a UFD – unique fac-
torisation domain) if every irreducible elementr ∈ R \ (R× ∪ {0}) is a prime element.

Proposition 2.12. Every principal ideal domain is a factorial ring.

Proof. We have seen both Noetherian-ness and the property that every irreducible element is prime.

Hence we have the implications:
Euclidean⇒ PID⇒ UFD.

We shall see later that being factorial is a property that is too strong in many cases. They will be
replaced by Dedeking rings (which arelocally PIDs – definitions come later; examples are the rings
of integers in number fields).

Lemma 2.13. Let R be a Noetherian integral domain andr ∈ R \ (R× ∪ {0}). Then there are
irreduciblex1, . . . , xn ∈ R \ (R× ∪ {0}) such thatr = x1 · x2 · · · · · xn.
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Proof. We first show that everyr ∈ R \ (R× ∪ {0}) has an irreducible divisor. Suppose this is not
the case and pick any non-unit divisorr1 | r s.t. (r) ( (r1). If not suchr1 existed, thenr would
be irreducible itself. Of course,r1 is not irreducible. So we can pick a non-unit divisorr2 | r1 s.t.
(r1) ( (r2). Like this we can continue and obtain an infinite ascending ideal chain, contrary to the
Noetherian hypothesis.

Now, we have an irreducible non-unit divisorx1 | r s.t.(r) ⊆ (x1). If r/x1 is a unit, then we are
done. Otherwiser/x1 has an irreducible non-unit divisorx2 | r/x1. If r/(x1x2) is a unit, then we are
done. Otherwiser/(x1x2) has an irreducible non-unit divisor.

Like this we continue. This process must stop as otherwise we would have aninfinite ascending
ideal chain

(
r

x1
) ( (

r

x1x2
) ( . . . .

Proposition 2.14. LetR be a Noetherian integral domain. The following are equivalent:

(i) R is a factorial ring.

(ii) Every r ∈ R \ (R× ∪ {0}) can be written uniquely(up to permutation and up to associate
elements) as a product of irreducible elements, i.e. ifr = x1 ·x2 · · · · ·xn = y1 · y2 · · · · · ym with
irreducible elementsxi, yj ∈ R \ (R× ∪ {0}), thenn = m and there is a permutationσ in the
symmetric group on{1, . . . , n} such thatxi is associate withyσ(i) for all i = 1, . . . , n.

Proof. (i) ⇒ (ii): See Lemma 2.13 for the existence. We now show the uniqueness. Recallthat the
prime elements are precisely the irreducible ones. This is what we are going touse. Let

r = x1 · x2 · · · · · xn = y1 · y2 · · · · · ym.

It follows thatxn dividesy1 ·y2 · · · · ·ym. By the primality ofx1 it must divide one of they’s, say after
renumberingxn | ym. But, sinceym is irreducible, we must havexn ∼ ym (associate!). Dividing by
xn on both sides, we obtain a shorter relation:

x1 · x2 · · · · · xn−1 = ǫy1 · y2 · · · · · ym−1,

whereǫ ∈ R× is a unit. Now it follows thatxn−1 divides the right hand side, and, after renumbering,
we have againxn−1 ∼ ym−1. Dividing byxn−1 (and possibly replacing the unitǫ by a different one)
we obtain an even shorter relation:

x1 · x2 · · · · · xn−2 = ǫy1 · y2 · · · · · ym−2.

Like this we continue, and concluden = m and that, after the above renumbering,xi ∼ yi are
associate for alli = 1, . . . , n.

(ii) ⇒ (i): We need to show that every irreducible element is prime. So, letr ∈ R \ (R× ∪ {0})
be irreducible and suppose thatr | st with s, t ∈ R, i.e. ru = st for someu ∈ R. We may write
s, t andu uniquely (up to ordering and associates) ass = s1 · s2 · · · · · sn, t = t1 · t2 · · · · · tm and
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u = u1 · u2 · · · · · uℓ with irreducible elementssi, tj , uk (i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , ℓ).
The uniqueness of irreducible elements occurring in the equation

s1 · s2 · · · · · sn · t1 · t2 · · · · · tm = r · u1 · u2 · · · · · uℓ

implies thatr must be equal to one of thes’s or one of thet’s. This means thatr dividess or it divides
t, as was to be shown.

We now want to see that not every ring is factorial.

Example 2.15.Consider the ringZ[
√
−5] = {a+ b

√
−5 | a, b ∈ Z} with + and· fromC. We have

6 = 2 · 3 = (1 +
√
−5) · (1 −

√
−5).

All four elements2, 3, 1 +
√
−5, 1 −

√
−5 are irreducible elements ofZ[

√
−5]:

Suppose(a + b
√
−5)|2. It follows that(a + b

√
−5) · (a+ b

√
−5) = a2 + 5b2 | 4 = 2 · 2. We

obtainb = 0 anda = ±2. It works similarly with the other three numbers.
Hence, this example shows that inZ[

√
−5] not every element can be written as a product of

irreducible elements in a unique way! In other words,Z[
√
−5] is not a factorial ring (but, it is a

Noetherian integral domain).

Corollary 2.16. LetR be a principal ideal domain. Then it satisfies the ‘unique ideal factorisation
property’: Every non-zero idealI �R can be written in a unique way (up to permutation) as

I = p1p2 . . . pn

with pi prime ideals.

Proof. This is obvious.

The unique ideal factorisation property will be the most important property of Dedekind rings,
which are to be studied later. This unique ideal factorisation replaces the unique factorisation into
prime elements, which fails very easily (as we have seen).

We finish this section with the remark that it makes sense to define greatest common divisors and
lowest common multiples in all rings. But, they need not exist, in general. In factorial rings they
always do!

3 Algebraic elements and algebraic field extensions

We now introduce (recall) important notions from field theory. They inspireus to generalise them in
order to ‘integral’ notions in the next section, i.e. in spirit we shall later replaceQ by Z. That will add
some extra technicalities, but many of the concepts will be very parallel.

Lemma 3.1(Multiplicativity of field degrees). LetK ⊆ L ⊆M be finite field extensions. Then

[M : K] = [M : L][L : K]

(in other words:dimKM = (dimK L)(dimLM).).
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Proof. Exercise.

Definition 3.2. LetK be a field andL/K a field extension (see earlier definition).

(a) An elementa ∈ L is calledalgebraic overK if there is a non-zero polynomialf ∈ K[X] such
thatf(a) = 0 (i.e.a is a zero (also called root) off ).

An elementa ∈ L that is not algebraic overK is also calledtranscendental overK.

(b) The field extensionL/K is calledalgebraic(alternatively,L is called analgebraic field extension
of K) if everya ∈ L is algebraic overK.

If L/K is not algebraic, it is calledtranscendental.

Example 3.3. (a) LetK be a field. Everya ∈ K is algebraic overK. Indeed,a is a zero of the
polynomialX − a ∈ K[X].

(b)
√

2 is algebraic overQ. Indeed,
√

2 is a zero of the polynomialX2 − 2 ∈ Q[X]. Note that the
polynomialX2 −

√
2 may not be used here, since its coefficients are not inQ!

(c) π is transcendental overQ. This is the theorem of Lindemann (from analysis). It implies by
Galois theory that the circle cannot be squared using compass and ruler. By this we refer to the
ancient problem of constructing a square whose area is equal to that ofa given circle, just using
a (non-marked) ruler and a compass.

(d) π is algebraic overR (special case of first item).

(e) i =
√
−1 is algebraic overQ.

Lemma 3.4. LetK be a field andL/K a field extension anda ∈ L.

(a) Theevaluation map
Φa : K[X] → L, f 7→ f(a)

is a homomorphism of rings.

(b) Φa is injective if and only ifa is transcendental overK.

(c) If a is algebraic overK, then there is a unique monic (i.e. highest coefficient is1, i.e.Xd +

cd−1X
d−1 + · · ·+ c0) polynomialma ∈ K[X] such that(ma) = ker(Φa) (i.e. the principal ideal

(ma) is equal to the kernel of the evaluation map).

The polynomialma is called theminimal polynomial ofa overK.

(d) Leta be algebraic overK. Then the induced map

Φa : K[X]/(ma) → L, f + (ma) 7→ f(a)

is an injective field homomorphism. Its image is denoted byK(a) and is called thefield generated
by a overK or K adjoineda.
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Proof. (a) Exercise. Just check the definition.
(b) If a is algebraic overK, then there is a non-zero polynomialf ∈ K[X] such thatf(a) = 0.

This just means thatf is in the kernel of the evaluation map, sof is not injective. Conversely, iff
is not injective, then there is some non-zero polynomialf in the kernel of the evaluation map. That,
however, just meansf(a) = 0, whencea is algebraic.

(c) We know thatK[X] is a principal ideal domain. Hence, the kernel ofΦa is a principal ideal,
so, it is generated by one elementf . As Φa is not injective (a is assumed to be algebraic, see (b)),f

is non-zero. A generator of a principal ideal is unique up to units in the ring. So,f is unique up to
multiplication by a unit ofK, i.e. up to multiplication by an element fromK \ {0} (see exercise on
Sheet 3). Iff is of the formrdXd + rd−1X

d−1 + · · · + r0 ∈ K[X] with rd 6= 0, thenma := 1
rd
f =

Xd +
rd−1

rd
Xd−1 + · · · + r0

rd
is the desired unique polynomial.

(d) We know thatK[X]/(ma) is a field, since(ma) is a maximal ideal, which is the case due to
the irreducibility ofma. For, ifma were reduciblema = fg with f, g ∈ K[X] both of smaller degree
than the degree ofma, then0 = ma(a) = f(a)g(a) implies thatf(a) = 0 or g(a) = 0. Suppose
without loss of generality thatf(a) = 0. Thenf ∈ ker(Φa) = (ma), so thatma | f , which is
impossible for degree reasons.

The injectivity follows because we just ‘modded out’ by the kernel (homomorphism theorem –
see exercise on Sheet 3). (Alternatively, you can also recall that anyring homomorphism between
fields is necessarily injective.)

In words, the minimal polynomialma ∈ K[X] of a (algebraic overK) is the monic polynomial
of smallest degree annihilatinga. Compare this to the minimal polynomial of a matrix (the map from
Exercise 4 on Sheet 1 is the analogue of the evaluation mapΦa and the minimal polynomial of a
matrix is the unique monic polynomial generating the kernel of the map in the exercise).

Note that (d) says non-trivial things, namely that the subset ofL of the form{∑d−1
i=0 ria

i | ri ∈ K}
is a subfieldof L (and not just a subring!).

If the minimal polynomial ofa is of the formma = Xd + cd−1X
d−1 + · · · + c0, thenK(a)

can be represented as aK-vector space with basis1, a, a2, a3, . . . , ad−1. Suppose we have two such
elementsα =

∑d−1
i=0 ria

i andβ =
∑d−1

i=0 sia
i (with ri, si ∈ K). Of course, the addition inK(a) is

the addition inL and comes down to:

α+ β =
d−1∑

i=0

(ri + si)a
i.

But, how to multiply them and express the result in terms of the basis? Of course, we have to multiply
out, yielding

α · β =

2(d−1)∑

n=0

( ∑

i,j s.t. i+j=n

risj
)
an.

But, what to do withan for n ≥ d? Apply the minimal polynomial!

ad = −
(
cd−1a

d−1 + · · · + c0
)
.
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We can use this to eleminate allan for n ≥ d. Suppose the highest occuring power ofa is am with
m ≥ d. Then, we multiply the above equation through witham−d and obtain:

am = −
(
cd−1a

m−1 + · · · + c0a
m−d).

Using this, we are left with powersam−1 at worst, and can apply this process again and again until
only powersan with n ≤ d− 1 occur.

Example 3.5. Return to the exampleQ(
√

5). The minimal polynomial of
√

5 over Q (say, as an
element ofR) isX2 − 5, soQ(

√
5) is the image ofQ[X]/(X2 − 5) in R. The aboveQ-basis is1,

√
5.

So, we express any element ofQ(
√

5) asa+ b
√

5 with a, b ∈ Q.
Now let two such elements be givenα = a0 + a1

√
5 andβ = b0 + b1

√
5. Then

α+ β = (a0 + b0) + (a1 + b1)
√

5

and

α · β = (a0 + a1

√
5)(b0 + b1

√
5) = a0b0 +

√
5(a0b1 + a1b0) + a1b1(

√
5)2

= (a0b0 + 5a1b1) +
√

5(a0b1 + a1b0).

The discussion above yields, in particular:

Corollary 3.6. LetK be a field,L/K a field extension anda ∈ L algebraic overK with minimal
polynomialma ∈ K[X] of degreed. The fieldK(a) is the subfield

{
d−1∑

i=0

ria
i | ri ∈ K} ⊆ L.

It can also be viewed as the smallest subfield ofL containinga andK. The field extensionK(a)/K

has degreed, i.e. [K(a) : K] = d.

A word of explanation about ‘smallest subfield’. One should convince oneself that given two
subfieldsM1 ⊆ L andM2 ⊆ L, their intersectionM1 ∩M2 is also a subfield ofL. Hence, one can
formally define the smallest subfield ofL containingK anda is the intersection of all such.

Of course, we shouldn’t limit ourselves to considering a single elementa ∈ L. Instead, let’s look
atai ∈ L for i ∈ I (some indexing set; could be finite or infinite).

Definition 3.7. LetK be a field,L/K a field extension andai ∈ L for i ∈ I elements. We define
K(ai|i ∈ I) to be the smallest subfield ofL containingK and allai, i ∈ I.

If L = K(a1, . . . , an) for somen, we say that the field extensionL/K is finitely generated(not
to be mixed up with finite field extension!).

Note that for a single elementa, both definitions ofK(a) coincide, as we have already observed.
One might also want to verify thatK(a, b) = (K(a))(b). That equality immediately comes down to
the following statement: A fieldL containsK anda if and only if L containsK(a). That statement
is clear.

We shall next develop a different point of view on algebraic elements andalgebraic extensions. It
is this point of view that turns out very useful in the upcoming ‘integral’ analogue of the theory.
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Proposition 3.8. LetK a field andL/K a field extension.

(a) Leta1, . . . , an ∈ L be finitely many elements.

Then the field extensionK(a1, a2, . . . , an)/K is finite if and only if allai are algebraic overK.

(b) If L/K is finite, then it is algebraic (i.e. all its elements are algebraic overK, see Definition
above).

Proof. (a) Suppose first that allai are algebraic overK. As

K(a1, a2, . . . , an−1)(an) = K(a1, a2, . . . , an)

and due to the multiplicativity of degrees, it suffices thatK(a)/K is finite for any elementa that is
algebraic overK. That we already know.

Now suppose that one of theai (say,a1 possibly after renumbering) is transcendental overK.
ThenK(a1) contains the image ofK[X] under the injective evaluation mapΦa1 . As alreadyK[X] is
infinite dimensional asK-vector space, it follows thatK(a1) is of infinite degree overK.

(b) Let a ∈ L be any element. Consider the setS := {1, a, a2, a3, . . . }. Now consider theK-
subspaceV of L spanned by this set. AsL is finite dimensional asK-vector space, alsoV has to
be finite dimensional. Hence,S contains aK-basisB of V . Let an ∈ S a power ofa that is not in
the basis. But, of course, it can be expressed in terms of the basis. Thatmeans we have a non-zero
polynomial annihilatinga, hence,a is algebraic overK.

Corollary 3.9. LetK be a field andL/K a field extension. Then the following statements are equiv-
alent:

(i) L/K is a finite field extension.

(ii) L/K is a finite and algebraic field extension.

(iii) L/K can be generated by finitely many elements that are algebraic overK.

Proof. (i) ⇒ (ii): Every finite field extension is algebraic (proved above).
(ii) ⇒ (iii): We give a constructive proof. Take anya1 ∈ L \ K. It is algebraic overK and

K ( K(a1) ⊆ L. Note [L : K] > [L : K(a1)]. If K(a1) 6= L, then takea2 ∈ L \ K(a1). It is
also algebraic overK. We getK(a1) ( K(a1, a2) ⊆ L. Note[L : K(a1)] > [L : K(a1, a2)]. Like
this we continue. As the degree is a positive integer greater than or equal to1, this process will end at
some point and thenK(a1, a2, . . . , an) = L.

(iii) ⇒ (i): Proved above.

Proposition 3.10. LetM/L/K be field extensions.

(a) AssumeL/K is algebraic anda ∈M is algebraic overL. Thena is algebraic overK.

(b) (Transitivity of algebraicity)M/K is algebraic if and only ifM/L andL/K are algebraic.
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Proof. (a) Letma =
∑d

i=0 ciX
i ∈ L[X] be the minimal polynomial ofa overL. The coefficients

ci ∈ L are algebraic overK. Hence, the field extensionM := K(c0, c1, . . . , cd−1) of K is finite.
Of course,a is algebraic overM , henceM(a) is a finite field extension ofM . By multiplicativity of
degrees,M(a) is a finite field extension ofK, hence algebraic. In particular,a is algebraic overK.

(b) One direction is trivial, the other follows from (a).

Definition 3.11. (a) LetL/K be a field extension. The set

KL := {a ∈ L | a is algebraic overK}

is called thealgebraic closure ofK in L.

Note thatL/K is algebraic if and only ifKL = L.

(b) A fieldK is calledalgebraically closedif for any field extensionL/K one hasKL = K.

Note that this means that there is no proper algebraic field extension ofK.

Proposition 3.12. (a) LetL/K be a field extension. The algebraic closure ofK in L is an algebraic
field extension ofK.

(b) A fieldK is algebraically closed if and only if any non-constant polynomialf ∈ K[X] has a zero
in K.

Proof. (a) Firstly, 0, 1 ∈ KL is clear. Leta, b ∈ KL. We know thatK(a, b) is an algebraic field
extension ofK. Thus,K(a, b) ⊆ KL. Consequently,−a, 1/a (if a 6= 0), a + b anda · b are in
K(a, b), hence, also inKL. This shows thatKL is indeed a field.

(b) AssumeK is algebraically closed and letf ∈ K[X] be a non-constant polynomial. Letg =∑d
i=0 ciX

i be a non-constant irreducible divisor off . The natural injectionK → K[X]/(g) =: M

is a finite field extension ofK (remember that(g) is a maximal ideal of the principal ideal domain
K[X]). Now, the classa := X + (g) ∈M is a zero ofg, since

g(a) = g(X + (g)) =
d∑

i=0

ci(X + (g))i =
d∑

i=0

ciX
i + (g) = 0 + (g).

AsK is algebraically closed,M = K, whencea ∈ K.
Conversely, suppose thatK is such that any non-constant polynomialf ∈ K[X] has a zero inK.

This means that there are no irreducible polynomials inK[X] of degree strictly bigger than1. Let
L/K be a field extension anda ∈ L algebraic overK. The minimal polynomialma ∈ K[X] is an
irreducible polynomial admittinga as a zero. Hence, the degree ofma is 1, whencema = X − a, so
thata ∈ K, showingKL = K.

Proposition 3.13. LetK be a field. Then there exists an algebraic field extensionK/K such thatK
is algebraically closed.

The fieldK is called analgebraic closure ofK (it is not unique, in general).

The proof is not so difficult, but, a bit long, so I am skipping it.

Example 3.14. (a) C is algebraically closed;R is not.RC = C.
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(b) QC = {x ∈ C | x is algebraic overQ} =: Q. We haveQ is an algebraic closure ofQ.

(c) Both Q and C are algebraically closed, butC is not an algebraic closure ofQ because the
extensionC/Q is not algebraic.

(d) Note thatQ is countable (Exercise), since we can count the set of polynomials with coefficients
in Q and each polynomial only has finitely many zeros; but, as we know,C is not countable.

4 Integral elements and integral ring extensions

Integral elements are generalisations of algebraic elements, when the fieldK is replaced by a ringR.
For algebraic elements the minimal polynomial is the uniquemonicpolynomial of minimal degree
annihilating the element; but, in fact, we do not really care whether the polynomial is monic, since
we can always divide by the leading coefficient. So, the choice of defining the minimal polynomial
of an algebraic element as a monic polynomial is actually quite arbitrary, one might do it differently
without changing anything in the theory. Over rings the situation is different,since we cannot divide
by the leading coefficient in general.

Why are monic minimal polynomials useful? We want to construct extensions: Let L/K be a field
extension anda ∈ L be algebraic overQ with minimal polynomialma = Xn+cn−1X

n−1 + · · ·+c0.
This just means

an = −(cn−1a
n−1 + · · · + c0),

so that we can expressan in terms of linear combinations with coefficients inK of powers ofa of
lower exponents. This is precisely what we need in order for

{rn−1a
n−1 + · · · + r0 | ri ∈ K, i ∈ {1, . . . , n− 1}}

to be a ring.
Suppose now we work over a ringR instead of a fieldK. LetS be a ring containingR. Assume

for a moment thata ∈ S satisfies

cna
n = −(cn−1a

n−1 + · · · + c0),

i.e. a non-monic linear combination with coefficients inR. Note that we now cannot expressan as a
linear combination of lower powers ofa with coefficients inR, unlesscn ∈ R×. Hence, the set

{rn−1a
n−1 + · · · + r0 | ri ∈ R, i ∈ {1, . . . , n− 1}}

is not stable under multiplication!
The morale is that we must use monic minimal polynomials (at least polynomials whoseleading

coefficient is a unit), when we work over rings and want to construct extensions similar to those over
fields.

Finally, consider the following examples. LetR = Z be the ring over which we work. We look
at: f(X) = X − 2 andg(X) = 3X − 2. The zero off is 2 and the zero ofg is 2

3 , so that the minimal
polynomial of 2

3 seen as an algebraic element overQ isX − 2
3 . The latter polynomial is not inZ[X]

anymore! That just indicates that2
3 is not an integer. We see that each element ofQ has a linear
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polynomial with integer coefficients annihilating it. The integers are precisely those elements ofQ
that have a monic integer polynomial annihilating it.

This motivates the following fundamental definition.

Definition 4.1. LetR be a ring andS an extension ring ofR (i.e. a ring containingR as a subring).
An elementa ∈ S is called integral overR if there exists a monic polynomialf ∈ R[X] such that
f(a) = 0.

Note that integrality is also a relative notion; an element is integraloversome ring. Also note the
similarity with algebraic elements; we just added the requirement that the polynomial be monic, for
the reasons explained above.

Example 4.2. (a) The elements ofQ that are integral overZ are precisely the integers ofZ.

(b)
√

2 ∈ R is integral overZ becauseX2 − 2 annihilates it.

(c) 1+
√

5
2 ∈ R is integral overZ becauseX2 −X − 1 annihilates it.

(d) a := 1+
√
−5

2 ∈ R is not integral overZ becausef = X2 − X + 5
2 annihilates it. If there were

a monic polynomialh ∈ Z[X] annihilating a, then we would haveh = fg with some monic
polynomialg ∈ Q[X]. But, now it would follow that bothf and g are in Z[X] (see Sheet 4),
which is a contradiction.

(e) LetK be a field andS a ring containingK (e.g.L = S a field as in the previous chapter) and
a ∈ L. Thena is integral overK if and only ifa is algebraic overK.

Indeed, asK is a field any polynomial with coefficients inK can be made monic by dividing by
the leading coefficient. So, if we work over a field, then the new notion of integrality is just the
notion of algebraicity from the previous section.

Definition 4.3. LetS be a ring andR ⊆ S a subring.

(a) The setRS = {a ∈ S | a is integral overR} is called theintegral closure ofR in S (compare
with the algebraic closure ofR in S – the two notions coincide ifR is a field).

An alternative name is:normalisation ofR in S.

(b) S is called anintegral ring extension ofR if RS = S, i.e. if every element ofS is integral overR
(compare with algebraic field extension – the two notions coincide ifR andS are fields).

(c) R is calledintegrally closed inS if RS = R.

[We will see in a moment that the integral closure ofR in S is integrally closed inS, justifying
the names].

(d) An integral domainR is called integrally closed(i.e. without mentioning the ring in which the
closure is taken) ifR is integrally closed in its fraction field.

Our next aim is to show in an elegant way thatRS is a ring. The idea is the same as for algebraic
elements; we showed thatK(a) is a finite extension ofK if and only if a is algebraic overK. Then
it is clear that sums and products of algebraic elements are algebraic because the finitess property is
clear.
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Definition 4.4. LetS be a ring andR ⊆ S a subring andai ∈ S for i ∈ I (some indexing set).
We letR[ai | i ∈ I] (note the square brackets!) be the smallest subring ofS containingR and all

theai, i ∈ I.

Note that as before we can seeR[a] insideS as the image of the ring homomorphism

Φa : R[X] → S,
d∑

i=0

ciX
i 7→

d∑

i=0

cia
i.

Recall from Linear Algebra:

Proposition 4.5(Cramer’s rule). LetR be a ring andM = (mi,j)1≤i,j≤n be ann × n-matrix with
entries inR. Theadjoined matrixis defined asM∗ = (m∗

i,j)1≤i,j≤n with entries

m∗
i,j := (−1)i+j det(Mi,j),

whereMi,j is the matrix obtained fromM by deleting thei-th column and thej-th row.
Then the following equation holds:

M ·M∗ = M∗ ·M = det(M) · idn×n.

We can now state and prove the following equivalent description of integrality.

Proposition 4.6. Let S be a ring,R ⊆ S a subring anda ∈ S. Then the following statements are
equivalent:

(i) a is integral overR.

(ii) R[a] ⊆ S is a finitely generatedR-module.

(iii) R[a] is contained in a subringT ⊆ S such thatT is a finitely generatedR-module.

(iv) There is a finitely generatedR-moduleT ⊆ S which contains1 and such that multiplication by
a sendsT into itself.

Proof. (i) ⇒ (ii): As a is integral overR, a relation of the form

an = −(cn−1a
n−1 + cn−2a

n−2 + · · · + c0)

holds. Hence,R[a] can be generated as anR-module by{1, a, a2, . . . , an−1}.
(ii) ⇒ (iii): Just takeT := R[a].
(iii) ⇒ (iv): Take the sameT .
(iv) ⇒ (i): We must make a monic polynomial with coefficients inR annihilatinga. For this we

use Cramer’s rule. AsT is finitely generated as anR-module, we may pick a finite generating set
{t1, . . . , tn}, i.e. any element oft ∈ T can be represented ast =

∑n
j=1 rjtj with somerj ∈ R for

j ∈ {1, . . . , n}.
In particular, as multiplication bya sendsT to itself,ati can be written as

ati =
n∑

j=1

dj,itj .
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Form the matrixD = (di,j)1≤i,j≤n. It has coefficients inR. LetM := aidn×n −D be a matrix with
coefficients inS. Note that we have

M




t1
t2
...
tn


 = 0

By Cramer’s rule, it follows

M∗M




t1
t2
...
tn


 = det(M)idn×n




t1
t2
...
tn


 = det(M)




t1
t2
...
tn


 = 0,

so thatdet(M)tj = 0 for all j ∈ {1, . . . , n}. But, as1 =
∑n

j=1 ejtj for someej ∈ R, it follows

det(M) = det(M) · 1 =
n∑

j=1

ej det(M)tj = 0.

Hence,
f(X) := det(X · idn×n −D)

is a monic polynomial with entries inR such thatf(a) = 0, whencea is integral overR.

Corollary 4.7. LetS be a ring andR a subring. Furthermore, leta1, . . . , an ∈ S be elements that
are integral overR.

ThenR[a1, . . . , an] ⊆ S is integral overR and it is finitely generated as anR-module.

Proof. Note that due to the implication (iii)⇒ (i) of the Proposition it suffices to prove finite genera-
tion. We do this by induction. The casen = 1 is the implication (i)⇒ (ii) of the Proposition.

Assume the corollary is proved forn−1. Then we know thatR[a1, . . . , an−1] is finitely generated
as anR-module, say, generated byb1, . . . , bm. As an is integral overR, we have thatR[an] is
generated by1, an, a2

n, . . . , a
r
n for somer ∈ N. Now,R[a1, . . . , an−1, an] is generated bybia

j
n with

i ∈ {1, . . . ,m} andj ∈ {0, . . . , r}.

Corollary 4.8. LetR ⊆ S ⊆ T be rings. Then ‘transitivity of integrality’ holds:

T/R is integral ⇔ T/S is integral andS/R is integral.

Proof. This works precisely as for algebraic field extensions!
The direction ‘⇒’ is trivial. Conversely, lett ∈ T . By assumption it is integral overS, i.e. t is

annihilated by a monic polynomialXn+sn−1X
n−1+ · · ·+s0 ∈ S[X]. SinceS is integral overR, all

the coefficients lie in the finitely generatedR-moduleU := R[s0, s1, . . . , sn−1]. As the coefficients
of the minimal polynomial oft all lie in U , it follows thatt is integral overU , whenceU [t] is finitely
generated overU . But, asU is finitely generated overR, it follows thatU [t] is finitely generated
overR (a generating system is found precisely as in the previous proof). In particular, t is integral
overR.

Corollary 4.9. LetR ⊆ S be rings.

(a) RS is a subring ofS.
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(b) Any t ∈ S that is integral overRS lies in RS . In other words,RS is integrally closed inS
(justifying the name).

Proof. (a) Just as for algebraic extensions! Leta, b ∈ RS . As both of them are integral overR, the
extensionR[a, b] is finitely generated as anR-module, hence integral. Thus,a + b, a · b are integral,
whencea+ b anda · b are inRS , showing that it is a ring (since0 and1 are trivially inRS).

(b) Any s ∈ S that is integral overRS is also integral overR (by the transitivity of integrality),
whences ∈ RS .

Definition 4.10. Recall that anumber fieldK is a finite field extension ofQ. Thering of integers
of K is the integral closure ofZ in K, i.e.ZK . An alternative notation isOK .

Example 4.11.Letd 6= 0, 1 be a squarefree integer. The ring of integers ofQ(
√
d) is

(1) Z[
√
d], if d ≡ 2, 3 (mod 4),

(2) Z[1+
√
d

2 ], if d ≡ 1 (mod 4).

(Proof as an exercise.)

Proposition 4.12. Every factorial ring is integrally closed.

Proof. LetR be factorial with fraction fieldK. Letx = b
c ∈ K be integral overR. We assume thatb

andc are coprime (i.e. do not have a common prime divisor). We want to show thatx ∈ R.
Start with the equation annihilatingx:

0 = xn + an−1x
n−1 + · · · + a0 =

bn

cn
+ an−1

bn−1

cn−1
+ · · · + a0.

Multiply through withcn and movebn to the other side:

bn = −c
(
an−1b

n−1 + can−2b
n−2 + · · · + cn−1a0

)
,

implying c ∈ R× (otherwise, this would contradict the coprimeness ofb andc), so thatx = bc−1 ∈
R.

Proposition 4.13. Let R be an integral domain,K = Frac(R), L/K a finite field extension and
S := RL the integral closure ofR in L. Then the following statements hold:

(a) Everya ∈ L can be written asa = s
r with s ∈ S and0 6= r ∈ R.

(b) L = Frac(S) andS is integrally closed.

(c) If R is integrally closed, thenS ∩K = R.

Proof. (a) Leta ∈ L have the minimal polynomial

ma(X) = Xn +
cn−1

dn−1
Xn−1 +

cn−2

dn−2
Xn−2 + · · · + c0

d0
∈ K[X]
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with ci, di ∈ R anddi 6= 0 (for i = 0, . . . , n− 1). We form a common denominatord := d0 · d1 · · · · ·
dn−1 ∈ R, plug ina and multiply through withdn:

0 = dnma(a) = (da)n +
cn−1d

dn−1
(da)n−1 +

cn−2d
2

dn−2
(da)n−2 + · · · + c0d

n

d0
∈ R[X],

showing thatda is integral overR, i.e.da ∈ S, or in other words,a = s
d for somes ∈ S.

(b) By (a) we know thatL is contained in the fraction field ofS. AsS is contained inL, it is clear
that also the fraction field ofS is contained inL, showing the claimed equality. ThatS is integrally
closed means that it is integrally closed inL. We have already seen that the integral closure ofR in L
is integrally closed inL.

(c) This is just by definition: Ifs ∈ S, then it is integral overR; if s is also inK, then asR is
integrally closed (inK), it follows thats ∈ R. The other inclusionS ∩K ⊇ R is trivial.

We now add two propositions for whose proof one needs more field theorythan what we have
developed in this lecture. The kind of field theory we need is taught in any lecture on Galois theory.

Proposition 4.14. LetR be an integral domain which is integrally closed (recall: that means inte-
grally closed inK = Frac(R)). LetK be an algebraic closure ofK and leta ∈ K. Then the
following statements are equivalent:

(i) a is integral overR.

(ii) The minimal polynomialma ∈ K[X] of a overK has coefficients inR.

Proof. ‘(ii) ⇒ (i)’: Since by assumptionma ∈ R[X] is a monic polynomial annihilatinga, by defini-
tion a is integral overR.

‘(i) ⇒ (ii)’: Let L := K(a) ⊆ K. Consider the set

S := {a1 = a, a2, . . . , an} := {σ(a) | σ : L→ K field homomorphism s.t.σ(x) = x ∀x ∈ K}.

From field theory it is known that the minimal polynomial ofa has the shape

fa(X) =
n∏

i=1

(X − ai) ∈ K[X].

Let us recall how this is proved. Of course,fa(a) = 0 becausea = a1. But, à priori,fa only has
coefficients inK (the normal closure ofL in K would suffice). Let nowσ : K → K be any field
homomorphism which is the identity onK. Thenσ permutes the elements in the setS. Hence, letting
σ act on (the coefficients of)fa, we see that it fixesfa, i.e. it fixes all the coefficients offa. This means
that all the coefficients offa are inK. If fa were not irreducible, then it would factor as (possibly
renumbering thea2, . . . , an)

f(X) =
( r∏

i=1

(X − ai)
)
·
( n∏

i=r+1

(X − ai)
)

where both factors are polynomials inK[X] and we assume the first factor to be irreducible. Then
K(a, a2, . . . , ar) would be a normal field extension ofK. This, however, means that the setS only



5 AFFINE PLANE CURVES 25

consists ofa = a1, a2, . . . , ar, contradiction. So,fa = ma ∈ K[X] is the minimal polynomial ofa
overK.

We assume thata is integral overR, so there is some monic polynomialga ∈ R[X] annihilatinga.
It follows that fa divides ga. Consequently,ga(ai) = 0 for all i = 1, . . . , n, proving that also
a2, a3, . . . , an are integral overR. Hence,fa has integral coefficients overR (they are products and
sums of theai). AsR is integrally closed inK, the coefficients lie inR.

Proposition 4.15. LetR be an integral domain,K = Frac(R), L/K a finite Galois extension with
Galois groupG = Gal(L/K) andS := RL the integral closure ofR in L.

Thenσ(S) = S for all σ ∈ G. Moreover, ifR is integrally closed, then

SG := {s ∈ S | σ(s) = s ∀σ ∈ G}

is equal toR.

Proof. Let a ∈ S andg ∈ R[X] monic such thatg(a) = 0. As 0 = σ(0) = σ(g(a)) = g(σ(a)) for
all σ ∈ G, it follows thatσ(a) is also integral overR, i.e. thatσ(a) ∈ S, showingσ(S) ⊆ S. Equality
follows fromσ being invertible.

To see the final statement, just consider

SG = S ∩ LG = S ∩K = R

because of (c) in Proposition 4.13 andLG = K. HereLG is, of course, the set of elements ofL that
are fixed by allσ ∈ G.

5 Affine plane curves

Definition 5.1. LetK be a field andL/K a field extension. Letn ∈ N. The set ofL-points of affine
n-spaceis defined asAn(L) := Ln (i.e.n-dimensionalL-vector space).

LetS ⊆ K[X1, . . . , Xn] be a subset. Then

VS(L) := {(x1, . . . , xn) ∈ An(L) | f(x1, . . . , xn) = 0 for all f ∈ S}

is called the set ofL-points of the affine (algebraic) set belonging toS.
If L = K is an algebraic closure ofK, then we also callVS(K) theaffine set belonging toS.
If the setS consists of a single non-constant polynomial, thenVS(K) is also called ahyperplane

in A(K).
If n = 2 andS = {f} with non-constantf , thenVS(K) is called aplane curve(because it is a

curve in the planeA2(K). ItsL-points are defined asVS(L) for L/K a field extension.

Convention: When the number of variables is clear, we writeK[X] for K[X1, . . . , Xn]. In the
same way a tuple(x1, . . . , xn) ∈ An(K) is also abbreviated asx if no confusion can arise.

The letter ‘V’ is chosen because of the word ‘variety’. But, we will defineaffine varieties below
as ‘irreducible’ affine sets.
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Example 5.2. (a) K = R, n = 2,K[X,Y ] ∋ f(X,Y ) = aX+ bY + c non-constant. ThenV{f}(R)

is a line (y = −a
bx − c

b if b 6= 0; if b = 0, then it is the line withx-coordinate− c
a and any

y-coordinate).

(b) K = R, n = 2, K[X,Y ] ∋ f(X,Y ) = X2 + Y 2 − 1. ThenV{f}(R) is the circle inR2 around
the origin with radius1.

(c) K = Q, f(X,Y ) := X2 + Y 2 + 1. NoteV{f}(R) = ∅, but(0, i) ∈ V{f}(C).

(d) K = F2, f(X,Y ) := X2 + Y 2 + 1 = (X + Y + 1)2 ∈ F2[X]. Because off(a, b) = 0 ⇔
a+ b+ 1 = 0 for anya, b ∈ L, L/F2, we have

V{f}(L) = V{X+Y+1}(L),

which is a line.

Lemma 5.3. A plane curve has infinitely many points over any algebraically closed field.More
precisely, letK be a field,K an algebraic closure ofK and f(X,Y ) ∈ K[X,Y ] a non-constant
polynomial.

ThenV{f}(K) is an infinite set.

Proof. Any algebraically closed field has infinitely many elements. This can be provedusing Euclid’s
argument for the infinity of primes, as follows. SupposeK only has finitely many elementsa1, . . . , an.
Form the polynomialg(X) := 1 +

∏n
i=1(X − ai). Note thatg(ai) = 1 6= 0 for all i = 1, . . . , n.

Hence, we have made a polynomial of positive degree without a zero, contradiction.
Back to the proof. We considerf as a polynomial in the variableY with coefficients inK[X], i.e.

f(X,Y ) =
d∑

i=0

ai(X)Y i with ai(X) ∈ K[X].

First case:d = 0, i.e.f(X,Y ) = a0(X). Let x ∈ K be any zero ofa0(x), which exists asK is
algebraically closed. Now(x, y) satisfiesf for anyy ∈ K, showing the infinity of solutions.

Second case:d > 0. Thenad(x) 6= 0 for all but finitely manyx ∈ K, hence, for infinitely manyx.
Note that the polynomialf(x, Y ) =

∑d
i=0 ai(x)Y

i has at least one zeroy, so that(x, y) satisfiesf ,
again showing the infinity of solutions.

Example 5.4. LetK be a field and considerf(X,Y ) = X2 + Y 2.
The only solution of the form(x, 0) is (0, 0) in any fieldK. Suppose now(x, y) is a solution with

y 6= 0. Thenx2 = −y2, or z2 = −1 with z = x
y .

Hence,V{f}(K) = {(0, 0)} if and only ifX2 = −1 has no solution inK.
In particular, V{f}(R) = {(0, 0)} (but: V{f}(C) = V{X−iY }(C) ∪ V{X+iY }(C), union of two

lines) andV{f}(Fp) = {(0, 0)} if and only ifp ≡ 3 (mod 4).

Example 5.5.LetK be a field andf(X) = X3 +aX2 +bX+c be a separable polynomial (meaning
that it has no multiple zeros overK).

Any plane curve of the formV{Y 2−f(X)} is called anelliptic curve. It has many special properties
(see e.g. lectures on cryptography).
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Definition 5.6. LetX be a set andO a set of subsets ofX (i.e. the elements ofO are sets; they are
called theopen sets).

ThenO is called atopology onX (alternatively:(X ,O) is called atopological space) if

(1) ∅,X ∈ O (in words: the empty set and the whole space are open sets);

(2) if Ai ∈ O for i ∈ I, then
⋃
i∈I Ai ∈ O (in words: the union of arbitrarily many open sets is an

open set);

(3) ifA,B ∈ O, thenA∩B ∈ O (in words: the intersection of two (and, consequently, finitely many)
open sets is an open set).

A setC ⊆ X is calledclosedif X \ C ∈ O (in words: the closed sets are the complements of the
open sets).

Proposition 5.7. LetK be a field andn ∈ N. Define

O := {An(K) \ VS(K) | S ⊆ K[X1, . . . , Xn]}.

Then(An(K),O) is a topological space. The thus defined topology is called theZariski topology on
An(K).

Note that, in particular, the closed subsets ofAn(K) for the Zariski topology are precisely the
affine sets.

Before we prove this proposition, we include the following lemma. Recall that the sum and the
product of two idealsa, b of some ringR are defined as

a + b = {a+ b | a ∈ a, b ∈ b} anda · b = {
m∑

i=1

ai · bi | m ∈ N, ai ∈ a, bi ∈ b for i = 1, . . . ,m}.

It is clear that both are ideals.

Lemma 5.8. LetK be a field,L/K a field extension andn ∈ N.

(a) V{(0)}(L) = An(L) andV{(1)}(L) = ∅.

(b) LetS ⊆ T ⊆ K[X1, . . . , Xn] be subsets. ThenVT (L) ⊆ VS(L).

(c) Let Si ⊆ K[X1, . . . , Xn] for i ∈ I (some indexing set) be subsets. ThenVS

i∈I Si
(L) =⋂

i∈I VSi
(L).

(d) LetS ⊆ K[X1, . . . , Xn] and leta := (s | s ∈ S) �K[X1, . . . , Xn] be the ideal generated byS.
ThenVS(L) = Va(L).

(e) Leta, b �K[X1, . . . , Xn] be ideals such thata ⊆ b. ThenVa·b(L) = Va(L) ∪ Vb(L).
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Proof. (a) and (b) are clear.
(c) Letx ∈ An(L). Then

x ∈ VS

i∈I Si
(L) ⇔ ∀f ∈

⋃

i∈I
Si : f(x) = 0 ⇔ ∀i ∈ I : ∀f ∈ Si : f(x) = 0

⇔ ∀i ∈ I : x ∈ VSi
(L) ⇔ x ∈

⋂

i∈I
VSi

(L).

(d) The inclusionVa(L) ⊆ VS(L) follows from (b). Let nowx ∈ VS(L), meaning thatf(x) = 0

for all f ∈ S. Since anyg ∈ a can be written as a sum of products of elements fromS, it follows that
g(x) = 0, proving the reverse inclusion.

(e) Sinceab ⊆ a andab ⊆ b, (b) gives the inclusionsVa(L),Vb(L) ⊆ Vab(L), henceVa(L) ∪
Vb(L) ⊆ Vab(L). For the reverse inclusion, letx 6∈ Va(L) ∪ Vb(L), meaning that there existsf ∈ a

andg ∈ b such thatf(x) 6= 0 6= g(x). Thus,f(x) · g(x) 6= 0, whencex 6∈ Vab(L).

Proof of Proposition 5.7.We need to check the axioms (1), (2) and (3). Note that (1) is Lemma 5.8 (a).
(2) For open setsAn(L) \ VSi

(L) with Si ⊆ K[X] for i ∈ I, we have:
⋃
i∈I An(L) \ VSi

(L) =

An(L) \ ⋂
i∈I VSi

(L)
Lemma 5.8(c)

= An(L) \ VS

i∈I Si
(L).

(3) By Lemma 5.8 (d), any two open sets are of the formAn(L) \ Va(L) andAn(L) \ Vb(L)

with idealsa, b � K[X]. It follows: (An(L) \ Va(L)) ∩ (An(L) \ Vb(L)) = An(L) \ (Va(L) ∪
Vb(L))

Lemma 5.8(e)
= An(L) \ Va·b(L).

Definition 5.9. LetX be a subset ofAn(K). We define thevanishing ideal ofX as

IX := {f ∈ K[X] | f(x) = 0 for all x ∈ X}.

The quotient ringK[X ] := K[X]/IX is called thecoordinate ring ofX .

Lemma 5.10. (a) The vanishing ideal is indeed an ideal ofK[X].

(b) The ring homomorphism

ϕ : K[X] → Maps(X ,K), f 7→
(
(x1, . . . , xn) 7→ f(x1, . . . , xn)

)

(with + and · onMaps(X ,K) defined pointwise:(f + g)(x) := f(x) + g(x) and(f · g)(x) :=

f(x) · g(x)) induces an injection of the coordinate ringK[X ] into Maps(X ,K).

Proof. (a) is trivial. (b) is the homomorphism theorem.

We may even replaceMaps(X ,K) by C(X ,A1(K)), the continuous maps for the Zariski topol-
ogy (see exercise on Sheet 6).

The coordinate ring consists hence of the polynomial functions fromX to K. There are some
special ones, namely, the projection to thei-th coordinate, i.e.(x1, . . . , xn) 7→ xi; this clearly deserves
the namei-th coordinate function; let us denote it byxi. The namecoordinate ringis hence explained!
Note that any functionf(X1, . . . , Xn) + IX =

∑
ai1,...,inX

i1
1 . . . Xin

n + IX is a combination of the
coordinate functions, namely,

∑
ai1,...,inxi11 . . . x

in
n .

Lemma 5.11. LetK be a field andn ∈ N. Then the following statements hold:
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(a) LetX ⊆ Y ⊆ An(K) be subsets. ThenIX ⊇ IY.

(b) I∅ = K[X].

(c) If K has infinitely many elements, thenIAn(K) = (0).

(d) LetS ⊆ K[X] be a subset. ThenIVS(K) ⊇ S.

(e) LetX ⊆ An(K) be a subset. ThenVIX (K) ⊇ X .

(f) LetS ⊆ K[X] be a subset. ThenVIVS(K)
(K) = VS(K).

(g) LetX ⊆ An(K) be a subset. ThenIV(IX )(K) = IX .

Proof. Exercise on Sheet 6.

Lemma 5.12. Let (X ,OX ) be a topological space andY ⊆ X be a subset. DefineOY := {U ∩
Y | U ∈ OX }.

ThenOY is a topology onY, called therelative topologyor thesubset topology.

Proof. Exercise on Sheet 6.

Definition 5.13. LetX be a topological space (we do not always mentionO explicitly).
A subsetY ⊆ X is calledreducibleif there are two closed subsetsY1,Y2 ( Y for the relative

topology onY such thatY = Y1 ∪ Y2.
If Y is not reducible, it is calledirreducible.
An affine setX ⊆ An(K) is called anaffine varietyif X is irreducible.

At the end of this section we are able to formulate a topological statement on an affine algebraic set
as a purely algebraic statement on the coordinate ring! This kind of phenomenon will be encountered
all the time in the sequel of the lecture.

Proposition 5.14. Let ∅ 6= X ⊆ An(K) be an affine set. Then the following statements are equiva-
lent:

(i) X is irreducible (i.e.X is a variety).

(ii) IX is a prime ideal ofK[X1, . . . , Xn].

(iii) The coordinate ringK[X ] is an integral domain.

Proof. The equivalence of (ii) and (iii) was shown directly after the definition of a prime ideal (recall
K[X ] = K[X]/IX ).

(i) ⇒ (ii): SupposeIX is not a prime ideal. Then there are two elementsf1, f2 ∈ K[X]\IX such
thatf1 · f2 ∈ IX . This, however, implies:

X =
(
V(f1)(K) ∩ X

)
∪

(
V(f2)(K) ∩ X

)
=

(
V(f1)(K) ∪ V(f2)(K)

)
∩ X ,

sinceV(f1)(K) ∪ V(f2)(K) = V(f1·f2)(K) ⊇ X . Note thatf1 6∈ IX precisely means that there is
x ∈ X such thatf1(x) 6= 0. Hence,X 6= V(f1)(K) ∩ X . Of course, the same argument applies with
f1 replaced byf2, proving thatX is reducible, contradiction.
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(ii) ⇒ (i): SupposeX is reducible, i.e.X = X1 ∪X2 with X1 ( X andX2 ( X closed subsets of
X (and hence closed subsets ofAn(K), since they are the intersection of some closed set ofAn(K)

with the closed setX ). This meansIXi
) IX for i = 1, 2 as otherwiseX = Xi by Lemma 5.11.

Hence, there aref1 ∈ IX1 andf2 ∈ IX2 such thatf1, f2 6∈ IX . Note thatf1(x)f2(x) = 0 for all
x ∈ X , as at least one of the two factors is0. Thus,f1 · f2 ∈ IX . This shows thatIX is not a prime
ideal, contradiction.

6 Direct sums, products and free modules

We first define direct products, then direct sums of modules.

Definition 6.1. LetR be a ring andMi for i ∈ I (some set)R-modules.
AnR-moduleP together withR-homomorphismsπi : P → Mi (called projections) for i ∈ I

is called adirect product of theMi for i ∈ I, notation
∏
i∈IMi, if the following universal property

holds:

For all R-modulesN together withR-homomorphismsφi : N → Mi for i ∈ I there is
one and only oneR-homomorphismφ : N → P such thatπi ◦φ = φi for all i ∈ I (draw
diagram).

Don’t worry; although the definition is abstract, the direct product is the one you expect:

Proposition 6.2. LetR be a ring andMi for i ∈ I (some set)R-modules.

(a) P :=
∏
i∈IMi with component-wise defined addition andR-multiplication together withπi :

P → Mi, the projection on thei-th component, is a direct product of theMi in the sense of the
definition.

(b) If P ′ together withπ′ : P ′ → Mi is any other direct product of theMi then there is a unique
R-isomoprhismP → P ′.

Proof. (a) We have to check the universal property. LetN andφi be as in the definition. Define
φ : N → P by sendingn ∈ N to the element ofP , whosei-th component isφi(n). Then clearly,
πi ◦ φ = φi.

Conversely, if we have anyφ : N → P such thatπi ◦φ = φi, then thei-th component ofφ(n) for
n ∈ N has to beφi(n), showing the uniqueness.

(b) We do not use the special form ofP , just the defining properties. ConsideringP as a direct
product and theP ′ as the moduleN from the definition, we obtain a uniqueR-homomorphismφ′ :

P ′ → P such thatπ′ = πi ◦ φ′. Exchanging the roles ofP andP ′ we get a uniqueR-homomorphism
φ : P → P ′ such thatπ = π′i ◦ φ.

The main point to remember is thatα : P
φ−→ P ′ φ′−→ P satisfies

π ◦ α = π ◦ φ′ ◦ φ = π′ ◦ φ = π.
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Now considerP as a direct product and as the moduleN from the definition. Then there is a unique
R-homomorphismP → P satisfying the requirements. Our calculation has shown that thisR-
homomorphism isα. Of course, the identity onP is another one, whenceα is the identity, implying
thatφ is injective andφ′ surjective. Exchanging the roles ofP andP ′ we get thatφ is surjective and
φ′ injective, whence both are isomorphisms.

Next we define direct sums. The universal property definition is the onefor direct products with
reversed arrows.

Definition 6.3. LetR be a ring andMi for i ∈ I (some set)R-modules.
AnR-moduleS together withR-homomorphismsǫi : Mi → S for i ∈ I is called adirect sum of

theMi for i ∈ I, notation
⊕

i∈IMi, if the following universal property holds:

For all R-modulesN together withR-homomorphismsφi : Mi → N for i ∈ I there is
one and only oneR-homomorphismφ : S → N such thatφ ◦ ǫi = φi for all i ∈ I (draw
diagram).

Don’t worry; although the definition is abstract, also the direct sum is the one you expect:

Proposition 6.4. LetR be a ring andMi for i ∈ I (some set)R-modules.

(a) S := {(mi)i∈I ∈
∏
i∈IMi | mi = 0 for all but finitely manyi ∈ I} with ǫj : Mj → S, sending

m ∈Mj to the element(mi)i∈I such thatmi = m andmj = 0 for all j ∈ I \ {i}, is a direct sum
of theMi in the sense of the definition.

(b) If S′ together withǫ′i : Mi → S′ is any other direct sum of theMi, then there is a unique
R-isomoprhismS → S′.

Proof. (a) We have to check the universal property. LetN andφi be as in the definition. We define
φ : S → N by sending(mi)i∈I ∈ S to

∑
i∈I mi. Here we use that only finitely many of themi are

non-zero, so that we have a finite sum. Of course,φ ◦ ǫi = φi.
On the other hand, givenφ : S → N such thatφ ◦ ǫj = φj for j ∈ I it follows with (mi)i∈I with

mj = m andmi = 0 for i 6= j thatφj(m) = φ ◦ ǫj(m) = φ((mi)i∈I). However, elements(mi)i∈I
of the chosen form generateS, whenceφ is uniquely determined.

(b) This is a formal matter and works as in Proposition 6.2 with reversed arrows (see also Exercise
on Sheet 7).

Corollary 6.5. LetR be a ring andM1, . . . ,Mn beR-modules. Then there is anR-isomorphism⊕n
i=1Mi

∼=
∏n
i=1Mi.

Proof. This is obvious from the explicit descriptions given in Propositions 6.2 and 6.4.

Definition 6.6. LetR be a ring andI be a set. AnR-moduleFI together with a mapǫ : I → FI is
calleda freeR-module overI if the following universal property holds:

For all R-modulesM and all mapsδ : I → M there is one and only oneR-homomor-
phismφ : FI →M such thatφ ◦ ǫ = δ (draw diagram).
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Also here, free modules over a set are what you expect.

Proposition 6.7. LetR be a ring andI be a set. DefineFI :=
⊕

i∈I R andǫ : I → FI by sending
j ∈ I to the element(mi)i∈I such thatmj = 1 andmi = 0 for all i ∈ I \ {j}.

(a) FI is a freeR-module overI.

(b) If G is any other freeR-module overI, then there is a uniqueR-isomorphismF → G.

Proof. Exercise on Sheet 7.

Definition 6.8. LetR be a ring andM anR-module.
Recall the definition of a generating set: A subsetB ⊆ M is called agenerating set ofM as

R-module if for everym ∈ M there aren ∈ N, b1, . . . , bn ∈ B and r1, . . . , rn ∈ R such that
m =

∑n
i=1 ribi.

A subsetB ⊆ M is calledR-free (or: R-linearly independent)if for any n ∈ N and any
b1, . . . , bn ∈ B the equation0 =

∑n
i=1 ribi implies0 = r1 = r2 = · · · = rn.

A subsetB ⊆M is called anR-basis ofM if B is a free generating set.
A moduleM having a basisB is called afreeR-module. (Note that at the moment we are making

a distinction between freeR-modules, and freeR-modules over a setI. We see in a moment that this
distinction is unnecessary.)

Lemma 6.9. LetR be a ring.

(a) LetI be a set andFI be the freeR-module overI. ThenFI isR-free with basisB = {ǫ(i) | i ∈
I}.

(b) LetM be anR-module andB ⊆M a generating set. Then there is a surjectiveR-homomorphism
FB →M , whereFB is the freeR-module over the setB. In other words,M is a quotient ofFB.

(c) LetM be a freeR-module with basisB. ThenM is isomorphic toFB.

Proof. (a) is clear.
(b) Considerδ : B → M given by the identity, i.e. the inclusion ofB into M . The universal

property ofFB gives anR-homomorphismφ : FB → M . As φ ◦ ǫ = δ, B is in the image ofφ.
As the image contains a set of generators for the whole moduleM , the image is equal toM , i.e.φ is
surjective.

(c) Let us identifyFB with
⊕

b∈B R, as in the proposition showing the existence ofFB. Thenφ
is given by(rb)b∈B 7→ ∑

b∈B rbb. If (rb)b∈B is in the kernel ofφ, then
∑

b∈B rbb = 0. The freeness
of B now impliesrb = 0 for all b ∈ B, showing(rb)b∈B = 0, i.e. the injectivity.

Lemma 6.10. LetR be a ring andM a finitely generated freeR-module. Then allR-bases ofM
have the same length.

This length is called theR-rankor theR-dimensionofM .
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Proof. We prove this using linear algebra. LetB = {b1, . . . , bn} andC = {C1, . . . , Cm} with n ≤ m

be twoR-bases ofM . Of course, we can express one basis in terms of the other one:

bi =
m∑

j=1

ti,jcj andcj =
n∑

k=1

sj,kbk.

Writing this in matrix form withT = (ti,j)1≤i≤n,1≤j≤m andS = (sj,k)1≤j≤m,1≤k≤n yields

b = Tc andc = Sb.

Hence, we haveST = idm×m. Assumen < m. Then we can addm − n columns with entries0 to
S on the right andm − n columns with entries0 to T on the bottom without changing the product.
However, the determinant of these enlarged matrices is0, whence also the determinant of their product
is zero, which contradicts the fact that their product is the identity, which has determinant1.

Example 6.11. (a) LetR = K be a field. ThenR-modules areK-vector spaces. Hence, allR-
modules are free. Their rank is the dimension as aK-vector space.

(b) LetR = Z. ThenZn is a freeZ-module of rankn.

(c) LetR = Z andM = Z/2Z. ThenM is not free.

7 Exact sequences

Definition 7.1. LetR be a ring and leta < b ∈ Z ∪ {−∞,∞}. For eacha ≤ n ≤ b, letMn be an
R-module. Also letφn : Mn−1 → Mn be anR-homomorphism. I.e. ifa, b ∈ Z, then we have the
sequence

Ma
φa+1−−−→Ma+1

φa+2−−−→Ma+2
φa+3−−−→ . . .

φb−2−−−→Mb−2
φb−1−−−→Mb−1

φb−→Mb.

If a ∈ Z andb = ∞, then we have

Ma
φa+1−−−→Ma+1

φa+2−−−→Ma+2
φa+3−−−→ . . . ,

with the sequence being unbounded on the right. Ifa = −∞ andb = ∞, we have

. . .
φn−1−−−→Mn−1

φn−→Mn
φn+1−−−→Mn+1

φn+2−−−→ . . .

with the sequence being bounded on both sides. The remaining casea = −∞ andb ∈ Z is unbounded
on the left and should now be obvious.

Such a sequence is called acomplexif im(φn−1) ⊆ ker(φn) for all n in the range. That is the
case if and only ifφn ◦ φn−1 = 0 for all n in the range.

The sequence is calledexactif im(φn−1) = ker(φn) for all n in the range (of course, this implies
that it is also a complex).
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We will often consider finite sequences, mostly of the form

(∗) 0 →M1 →M2 →M3 → 0.

If a sequence of the form(∗) is exact, then it is called ashort exact sequence.

Lemma 7.2. LetR be a ring.

(a) LetA
α−→ B be anR-homomorphism. Thenα is injective if and only if the sequence0 → A→ B

is exact.

(b) LetB
β−→ C be anR-homomorphism. Thenβ is surjective if and only if the sequenceB

β−→ C → 0

is exact.

(c) Let0 → A
α−→ B

β−→ C → 0 be a complex. It is an exact sequence if and only ifC = im(β) and
α is an isomorphism fromA to ker(β).

Proof. (a) Just note:ker(α) = im(0 → A) = {0}.
(b) Just note:C = ker(C → 0) = im(α).
(c) Combine (a) and (b) with the exactness atB.

Proposition 7.3. LetR be a ring andMi, Ni for i = 1, 2, 3 beR-modules.

(a) Let

0 → N1
φ2−→ N2

φ3−→ N3

be a sequence. This sequence is exact if and only if

0 → HomR(M,N1)
φ̃2−→ HomR(M,N2)

φ̃3−→ HomR(M,N3)

is exact for allR-modulesM . TheR-homomorphism̃φi sendsα ∈ HomR(M,Ni−1) to φi ◦ α ∈
HomR(M,Ni) for i = 2, 3.

(b) Let

M1
ψ2−→M2

ψ3−→M3 → 0

be a sequence. This sequence is exact if and only if

0 → HomR(M3, N)
ψ̃3−→ HomR(M2, N)

ψ̃2−→ HomR(M1, N)

is exact for allR-modulesN . TheR-homomorphism̃ψi sendsα ∈ HomR(Mi, N) to α ◦ ψi ∈
HomR(Mi−1, N) for i = 2, 3.

For the directions ‘⇒’ one also says that in case (a) that the functorHomR(M, ·) is covariant (pre-
serves directions of arrows) and left-exact and in case (b) that the functorHomR(·, N) is contravariant
(reverses directions of arrows) and left-exact.

Proof. (a) ‘⇒’:



7 EXACT SEQUENCES 35

• We know thatφ2 is injective. Ifα ∈ ker(φ̃2), then by definitionφ2 ◦ α is the zero map. This
implies thatα is zero, showing that̃φ2 is injective.

• We know thatφ3 ◦ φ2 is the zero map. This implies thatφ̃3

(
φ̃2(α)

)
= φ3 ◦ φ2 ◦ α is the zero

map for allα ∈ HomR(M,N1). Hence,im(φ̃2) ⊆ ker(φ̃3).

• Let β ∈ ker(φ̃3), i.e.φ3 ◦ β is the zero map. This meansim(β) ⊆ ker(φ3), hence, we obtain
that

φ−1
2 ◦ β : M

β−→ im(β) ⊆ ker(φ3) = im(φ2)
φ−1

2−−→ N1

is an element inHomR(M,N1). It satisfiesφ̃2(φ
−1
2 ◦ β) = φ2 ◦ φ−1

2 ◦ β = β, whence
β ∈ im(φ̃2), showingim(φ̃2) ⊇ ker(φ̃3).

‘⇐’:

• We know thatφ̃2 is injective for allR-modulesM . ChooseM := ker(φ2), and consider the
inclusionι : ker(φ2) → N1. Note that

φ̃2(ι) = φ2 ◦ ι : ker(φ2)
ι−→ N1

φ2−→ N2

is the zero-map. But, as̃φ2 is injective, it follows that alreadyι is the zero map, meaning that
ker(φ2) is the zero module, so thatφ2 is injective.

• We want to showφ3 ◦ φ2 = 0. For this takeM := N1, and consideridN1 the identity onN1.
We know thatφ̃3 ◦ φ̃2 is the zero map. In particular,

0 = φ̃3 ◦ φ̃2(idN1) = φ3 ◦ φ2 ◦ idN1 = φ3 ◦ φ2.

• We want to show thatker(φ3) ⊆ Im(φ2). For this takeM := ker(φ3) and consider the
inclusionι : ker(φ3) → N2. Note that

0 = φ̃3(ι) = φ3 ◦ ι : ker(φ3)
ι−→ N2

φ3−→ N3

is the zero map. We know thatker(φ̃3) ⊆ Im(φ̃2). Hence, there is someβ : ker(φ3) → N1

such thatι = φ̃2(β) = φ2 ◦ β. In particular, the image ofι, which is equal toker(φ3), equals
the image ofφ2 ◦ β, which is certainly contained in the image ofφ2, as was to be shown.

(b) Exercise.

Definition 7.4. LetR be a ring. AnR-moduleP is calledprojectiveif the following universal property
holds:

For all R-modulesM , N , all surjectiveR-homomorphismsφ : M → N and all R-
homomorphismsψ : P → N there is anR-homomorphismψ̃ : P → M such that
φ ◦ ψ̃ = ψ (draw diagram).

In other words, theR-homomorphismHomR(P,M)
ψ̃ 7→φ◦ψ̃−−−−−→ HomR(P,N) is surjective.
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AnR-moduleI is calledinjective if the following universal property holds (note: same property
as for projective modules, but, with arrow directions reversed and surjective replaced by injective):

For all R-modulesM , N , all injectiveR-homomorphismsφ : N → M and all R-
homomorphismsψ : N → P there is anR-homomorphismψ̃ : M → P such that
ψ̃ ◦ φ = ψ (draw diagram).

In other words, theR-homomorphismHomR(M, I)
ψ̃ 7→ψ̃◦φ−−−−−→ HomR(N, I) is surjective.

Corollary 7.5. LetR be a ring andP, I R-modules.

1. P is projective if and only if the covariant functorHomR(P, ·) is exact (i.e. maps exact se-
quences to exact sequences).

2. I is injective if and only if the contravariant functorHomR(·, I) is exact.

Proof. Both follow immediately from Proposition 7.3 and the ‘In other words’ part of the definition.

Corollary 7.6. LetR be a ring.

(a) LetP be a projectiveR-module. Then every short exact sequence ofR-modules

0 → A
α−→ B

β−→ P → 0

is split, i.e. there is anR-homomorphismγ : P → B such thatβ ◦ γ is the identity onP .

(b) LetI be an injectiveR-module. Then every short exact sequence ofR-modules

0 → I
α−→ B

β−→ C → 0

is split, i.e. there is anR-homomorphismδ : B → I such thatδ ◦ α is the identity onI.

Proof. Just apply the universal property to the identity onP , respectively onI.

Note that by an Exercise on Sheet 7, (a) means thatB ∼= A⊕ P and (b) meansB ∼= I ⊕ C.

Proposition 7.7. LetR be a ring,M , N , Mi andNi for i ∈ I (some set) beR-modules. Then there
are naturalR-isomorphisms:

(a) Φ : HomR(M,
∏
i∈I Ni) →

∏
i∈I HomR(M,Ni) and

(b) Ψ : HomR(
⊕

i∈IMi, N) → ∏
i∈I HomR(Mi, N).

Proof. (a) Letπj :
∏
i∈I Ni → Nj be thej-th projection. DefineΦ as follows:

Φ(ϕ : M →
∏

i∈I
Ni) := (πi ◦ ϕ : M → Ni)i∈I .

It is clear thatΦ is anR-homomorphism.
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Let ϕ ∈ HomR(M,
∏
i∈I Ni) such thatΦ(ϕ) = 0. This meansπi ◦ ϕ = 0 for all i ∈ I. Now we

use the universal property of
∏
i∈I Ni. Namely, there is a uniqueR-homomorphismM → ∏

i∈I Ni

for givenM → Ni. As these maps are all zero, certainly the zero mapM → ∏
i∈I Ni satisfies the

universal property. Consequently,ϕ = 0. This shows thatΦ is injective.
Now for the surjectivity. Suppose hence that we are givenϕi : M → Ni for eachi ∈ I. Then the

universal property of
∏
i∈I Ni tells us that there is a uniqueϕ : M → ∏

i∈I Ni such thatϕi = πi ◦ ϕ
for all i ∈ I. This is precisely the required preimage. Actually, we could have skipped the proof of
injectivity because the uniqueness ofϕ gives us a unique preimage, which also implies injectivity.

(b) Exercise on Sheet 7.

Lemma 7.8. LetR be a ring andM anR-module. Then the map

Φ : HomR(R,M) →M, Φ(α : R→M) := α(1)

is anR-isomorphism.

Proof. Clear.

Proposition 7.9. LetR be a ring andF a freeR-module. ThenF is projective.

Proof. LetB be anR-basis ofF , so that we can identifyF with FB; we have the inclusionǫ : B →
FB. We check thatF satisfies the universal property of a projective module. Let henceφ : M ։ N

be a surjectiveR-homomorphism andψ : F → N anR-homomorphism. For eachb ∈ B choose an
mb ∈M such thatφ(mb) = ψ(b), using the surjectivity ofφ.

Consider the mapδ : B →M sendingb ∈ B tomb. By the universal property ofFB there exists
the requiredψ̃.

Corollary 7.10. LetR be a ring andP anR-module. Then the following statements are equivalent:

(i) P is projective.

(ii) P is a direct summand of a freeR-moduleF , i.e. there is anR-moduleX such thatP ⊕X ∼= F .

Proof. ‘(i) ⇒ (ii)’: Let F be a freeR-module havingP as a quotient. In other words, we have an
exact sequence

0 → X → F → P → 0.

As this exact sequence splits, we getF ∼= X ⊕ P .
‘(ii) ⇒ (i)’: Let F = X ⊕ P be a freeR-module. We check the universal property of a projective

module forP . Let henceφ : M ։ N be a surjectiveR-homomorphism andψ : P → N anR-
homomorphism. Consider now the surjectionidX⊕φ : X⊕M ։ X⊕N and theR-homomorphism
idX⊕ψ : F = X⊕P → X⊕N . AsF is free, it is projective, giving someα : F = X⊕P → X⊕M
such that(idX ⊕ φ) ◦ α = idX ⊕ ψ. Let p ∈ P and(x,m) := α((0, p)). Let us setψ̃(p) := m; this
defines anR-homomorphism. Then we have

(idX ⊕ φ) ◦ α((0, p)) = (idX ⊕ φ)((x,m)) = (x, φ(m)) = (0, ψ(p)).

Hence,φ ◦ ψ̃(p) = ψ(p), as was to be shown.
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8 Tensor products

In this section we shall for the sake of generality consider general unitary rings, i.e. not necessarily
commutative ones.

Definition 8.1. LetR be a ring,M a rightR-module andN a leftR-module.
LetP be aZ-module (note that this just means abelian group). AZ-bilinear map

f : M ×N → P

is calledbalancedif for all r ∈ R, all m ∈M and alln ∈ N one has

f(mr, n) = f(m, rn).

In this case, we call(P, f) a balanced product ofM andN .
A balanced product(M ⊗R N,⊗) is called atensor product ofM andN overR if the following

universal property holds:

For all balanced products(P, f) there is a unique group homomorphismφ : M ⊗RN →
P such thatf = φ ◦ ⊗ (draw diagram).

Of course, we have to show that tensor products exists. This is what we start with.

Proposition 8.2. LetR be a ring,M a rightR-module andN a leftR-module.
Then a tensor product(M ⊗R N,⊗) of M andN overR exists. If(P, f) is any other tensor

product, then there is a unique group isomorphismφ : M ⊗R N → P such thatf = φ ◦ ⊗.

Proof. The uniqueness statement is a consequence of the uniqueness in the universal property (Exer-
cise Sheet 8).

Let F := Z[M ×N ], i.e. the freeZ-module with basisM ×N , that is the finiteZ-linear combi-
nations of pairs(m,n) for m ∈M andn ∈ N .

DefineG as theZ-submodule ofF generated by the following elements:

(m1 +m2, n) − (m1, n) − (m2, n) ∀m1,m2 ∈M, ∀n ∈ N,

(m,n1 + n2) − (m,n1) − (m,n2) ∀m ∈M, ∀n1, n2 ∈ N,

(mr, n) − (m, rn) ∀r ∈ R, ∀m ∈M, ∀n ∈ N.

DefineM ⊗R N := F/G, asZ-module. We shall use the notationm ⊗ n for the residue class
(m,n) +G. Define the map⊗ as

⊗ : M ×N →M ⊗R N, (m,n) 7→ m⊗ n.

It is Z-bilinear and balanced by construction.
We now need to check the universal property. Let hence(P, f) be a balanced product ofM andN .

First we use the universal property of the free moduleF = Z[M ×N ]. For that letǫ : M ×N → F
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denote the inclusion. We obtain a unique group homomorphismφ : F → P such thatφ◦ ǫ = f (draw
diagram).

Claim:G ⊆ ker(φ). Note first thatf(m,n) = φ ◦ ǫ(m,n) = φ((m,n)) for all m ∈ M and all
n ∈ N . In particular, we have due to the bilinearity off for all m1,m2 ∈M and alln ∈ N :

φ((m1 +m2, n)) = f(m1 +m2, n) = f(m1, n) + f(m2, n) = φ((m1, n)) + φ((m2, n)),

whence(m1 +m2, n) − (m1, n) − (m2, n) ∈ ker(φ). In the same way one shows that the other two
kinds of elements also lie inker(φ), implying the claim.

Due to the claim,φ induces a homomorphismφ : F/G → P such thatφ ◦ ⊗ = f (note that⊗ is
just ǫ composed with the natural projectionF → F/G).

As for the uniqueness ofφ. Note that the image of⊗ is a generating system ofF/G. Its elements
are of the formm ⊗ n. As we haveφ ◦ ⊗(m,n) = φ(m ⊗ n) = f(m,n), the values ofφ at the
generating set are prescribed andφ is hence unique.

Example 8.3. (a) LetR = Z, M = Z/(m) andN = Z/(n) with gcd(m,n) = 1. ThenM ⊗N =

Z/(m) ⊗Z Z/(n) = 0.

Reason: As the gcd is1, there area, b ∈ Z such that1 = am+ bn. Then for allr ∈ Z/(m) and
all s ∈ Z/(n) we have:

r ⊗ s = r · 1 ⊗ s = r(am+ bn) ⊗ s = ram⊗ s+ (rbn⊗ s)

= 0 ⊗ s+ rb⊗ ns = 0 ⊗ 0 + rb⊗ 0 = 0 ⊗ 0 + 0 ⊗ 0 = 0.

(b) LetR = Z,M = Z/(m) andN = Q. ThenM ⊗N = Z/(m) ⊗Z Q = 0.

Reason: Letr ∈ Z/(m) and a
b ∈ Q. Then we have

r ⊗ a

b
= r ⊗m

a

mb
= rm⊗ a

mb
= 0 ⊗ a

mb
= 0 ⊗ 0 = 0.

(c) LetR = Z,M = Q andN anyZ-module. ThenQ ⊗Z N is aQ-vector space.

Reason: It is an abelian group. TheQ-scalar multiplication is defined byq.(r ⊗ n) := qr ⊗ n.

(d) LetM be anyR-module. ThenR⊗RM
r⊗m7→rm−−−−−−→M is an isomorphism.

Reason: It suffices to show thatM together with the mapR × M
(r,m) 7→rm−−−−−−→ M is a tensor

product. That is a very easy checking of the universal property.

Next we need to consider tensor products of maps.

Proposition 8.4. LetR be a ring,f : M1 →M2 a homomorphism of rightR-modules andg : N1 →
N2 a homomorphism of leftR-modules. Then there is a unique group homomorphism

f ⊗ g : M1 ⊗R N1 →M2 ⊗R N2

such thatf ⊗ g(m⊗ n) = f(m) ⊗ g(n).
The mapf ⊗ g is called thetensor product off andg.



8 TENSOR PRODUCTS 40

Proof. The map⊗ ◦ (f, g) : M1 × N1
f,g−−→ M2 × N2

⊗−→ M2 ⊗R N2 makesM2 ⊗R N2 into a
balanced product ofM1 andN1 (draw diagram). By the universal property there is thus a unique
homomorphismM1 ⊗R N1 →M2 ⊗R N2 with the desired property.

Lemma 8.5. LetM1
f1−→M2

f2−→M3 be homomorphisms of rightR-modules andN1
g1−→ N2

g2−→ N3

homomorphisms of leftR-modules.
Then(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2 ◦ f1) ⊗ (g2 ◦ g1).

Proof. (f2 ◦ f1) ⊗ (g2 ◦ g1)(m ⊗ n) = (f2 ◦ f1(m)) ⊗ (g2 ◦ g1(n)) = f2 ⊗ g2(f1(m) ⊗ g1(n)) =

(f2 ⊗ g2) ◦ (f1 ⊗ g1)(m⊗ n).

Corollary 8.6. Let f : M1 → M2 be a homomorphism of rightR-modules andg : N1 → N2 be a
homomorphism of leftR-modules.

Thenf ⊗ g = (idM2 ⊗ g) ◦ (f ⊗ idN1) = (f ⊗ idN2) ◦ (idM1 ⊗ g).

Proof. This follows immediately from the previous lemma.

Proposition 8.7. LetR be a ring.

(a) LetMi for i ∈ I be rightR-modules andN a left R-module. Then there is a unique group
isomorphism

Φ : (
⊕

i∈I
Mi) ⊗R N →

⊕

i∈I
(Mi ⊗R N)

such that(mi)i∈I ⊗ n 7→ (mi ⊗ n)i∈I .

(b) LetNi for i ∈ I be leftR-modules andM a right R-module. Then there is a unique group
isomorphism

Φ : M ⊗R (
⊕

i∈I
Ni) →

⊕

i∈I
(M ⊗R Ni)

such thatm⊗ (ni)i∈I 7→ (m⊗ ni)i∈I .

Proof. We only prove (a), as (b) works in precisely the same way.
First we show the existence of the claimed homomorphismΦ by using the universal property of

the tensor product. Define the map

f : (
⊕

i∈I
Mi) ×N →

⊕

i∈I
(Mi ⊗R N), ((mi)i∈I , n) 7→ (mi, n)i∈I .

This map makes
⊕

i∈I(Mi⊗RN) into a balanced product of
⊕

i∈IMi andN , whence by the universal
property of the tensor product the claimed homomorphism exists (and is unique).

Next we use the universal property of the direct sum to construct a homomorphismΨ in the
opposite direction, which will turn out to be the inverse ofΦ. Let j ∈ I. By ǫj denote the embedding

of Mj into thej-th component of
⊕

i∈IMi. From these we further obtain mapsMj ⊗R N
ǫj⊗idN−−−−→

(
⊕

i∈IMi) ⊗R N . Further consider the embeddingsιj of Mj ⊗R N into the j-th component of⊕
i∈I(Mi ⊗R N) from the definition of a direct sum. The universal property of direct sums now

yields a homomorphismΨ :
⊕

i∈I(Mi ⊗R N) → (
⊕

i∈IMi) ⊗R N such thatΨ ◦ ιj = ǫj ⊗ idN for
all j ∈ J .

Now it is easy to compute on generators thatΦ ◦ Ψ = id andΨ ◦ Φ = id.
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Lemma 8.8. LetR be a commutative ring , andM ,N R-modules. ThenM ⊗R N ∼= N ⊗RM .

Proof. Exercise.

Example 8.9.LetL/K be a field extension. ThenL⊗KK[X] is isomorphic toL[X] as anL-algebra.

Lemma 8.10. Let R and S be rings. LetM be a rightR-module,P a left S-module,N a right
S-module and a leftR-module such that(rn)s = r(ns) for all r ∈ R, all s ∈ S and alln ∈ N .

(a) M ⊗R N is a rightS-module via(m⊗ n).s = m⊗ (ns).

(b) N ⊗S P is a leftR-module viar(n⊗ p) = (rn) ⊗ p.

(c) There is an isomorphism

(M ⊗R N) ⊗S P ∼= M ⊗R (N ⊗S P ).

Proof. Exercise.

Lemma 8.11. LetR be a ring,M a rightR-module,N a leftR-module andP a Z-module.

(a) HomZ(N,P ) is a rightR-module via(ϕ.r)(n) := ϕ(rn) for r ∈ R, n ∈ N , ϕ ∈ HomZ(N,P ).

(b) There is an isomorphism of abelian groups:

HomR(M,HomZ(N,P )) ∼= HomZ(M ⊗R N,P ).

(c) HomZ(P,M) is a leftR-module via(r.ϕ)(m) := ϕ(mr) for r ∈ R,m ∈M , ϕ ∈ HomZ(P,M).

(d) There is an isomorphism of abelian groups:

HomR(HomZ(P,M), N) ∼= HomZ(P,M ⊗R N).

Proof. (a) and (c): Simple checking.
(b) The key point is the following bijection:

{Balanced mapsf : M ×N → P} −→ HomR(M,HomZ(N,P )),

which is given by
f 7→

(
m 7→ (n 7→ f(m,n))

)
.

To see that it is a bijection, we give its inverse:

ϕ 7→
(
(m,n) 7→ (ϕ(m))(n)

)
.

Now it suffices to use the universal property of the tensor product. The details are dealt with in an
exercise.

(d) is similar to (b).

Proposition 8.12. LetR be a ring.
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(a) LetN be a leftR-module andM1,M2,M3 be rightR-modules. If the sequence

M1
f−→M2

g−→M3 → 0

is exact, then so is the sequence

M1 ⊗R N
f⊗id−−−→M2 ⊗R N

g⊗id−−−→M3 ⊗R N → 0.

One says that the functor· ⊗R N is right-exact.

(b) LetM be a rightR-module andN1,N2,N3 be leftR-modules. If the sequence

N1
f−→ N2

g−→ N3 → 0

is exact, then so is the sequence

M ⊗R N1
id⊗f−−−→M ⊗R N2

id⊗g−−−→M ⊗R N3 → 0.

One says that the functorM ⊗R · is right-exact.

Proof. We only prove (a), since (b) works precisely in the same way. We use Proposition 7.3 and
obtain the exact sequence:

0 → HomR(M3,HomZ(N,P )) → HomR(M2,HomZ(N,P )) → HomR(M1,HomZ(N,P ))

for anyZ-moduleP . By Lemma 8.11 this exact sequence is nothing else but:

0 → HomZ(M3 ⊗R N,P ) → HomZ(M2 ⊗R N,P ) → HomZ(M1 ⊗R N,P ).

As P was arbitrary, again from Proposition 7.3 we obtain the exact sequence

M1 ⊗R N →M2 ⊗R N →M3 ⊗R N → 0,

as claimed.

9 More on modules

In this section we collect and prove important ‘basic’ statements on modules.
We first need the existence of maximal ideals.

Proposition 9.1. LetR be a ring different from the zero-ring. ThenR has a maximal ideal.

Proof. This proof uses Zorn’s Lemma (which one also needs for the existence ofbases in general (i.e.
not finite dimensional) vector spaces).

Let M := {a ( R ideal} be the set of all proper ideals ofR. Of course,(0) ∈ M (here we use
thatR is not the zero ring), soM 6= ∅.

Inclusion⊆ gives a partial ordering onM: by definition this means:

• a ⊆ a for all a ∈ M,
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• If a ⊆ b andb ⊆ a, thena = b.

But, for generala, b ∈ M, we do not necessarily havea ⊆ b or b ⊆ a. A subset(ai)i∈I ⊆ M (where
I is any set) is called totally ordered if for anyi, j ∈ I one hasai ⊆ aj or aj ⊆ ai.

Claim: Any totally ordered subset(ai)i∈I ⊆ M has an upper bound, namelya :=
⋃
i∈I ai,

meaninga ⊆ M andai ⊆ a for all i ∈ I.
The claim is very easy to see. The last statementai ⊆ a for i ∈ I is trivial. In order to see thata

is an ideal, letx, y ∈ a. Then there arei, j ∈ I such thatx ∈ ai andy ∈ aj . Because ofai ⊆ aj or
aj ⊆ ai, we have thatx + y ∈ aj or x + y ∈ ai, so thatx + y ∈ a in both cases. Givenr ∈ R and
x ∈ a, there isi ∈ I such thatx ∈ ai, whencerx ∈ ai, thusrx ∈ a, showing thata is an ideal ofR.
If a were equal to the whole ringR, then there would bei ∈ I such that1 ∈ ai. This, however, would
contradictai 6= R. Consequently,a ∈ M, as claimed.

Zorn’s Lemma is the statement that a partially ordered set has a maximal element ifevery totally
ordered set of subsets has an upper bound.

So,M has a maximal element, i.e. anm ∈ M such that ifm ⊆ a for anya ∈ M, thenm = a.
This is precisely the definition of a maximal ideal.

Corollary 9.2. (a) Every ideala ( R is contained in some maximal idealm ofR.

(b) Every non-unitx ∈ R \R× is contained in a maximal idealm ofR.

Proof. (a) Consider the natural projectionπ : R 7→ R/a. Let m be a maximal ideal ofR/a, which
exists by Proposition 9.1. Thenm := π−1(m) (preimage) is a maximal ideal ofR, becauseR/m ∼=
(R/a)/m is a field.

(b) If x is a non-unit, then(x) is a proper ideal ofR, so we can apply (a).

Definition 9.3. A ringR is calledlocal if it has a single maximal ideal.

Example 9.4. (a) Every fieldK is a local ring, its unique maximal ideal being the zero ideal.

(b) Letp be a prime number. The ringZ/(pn) is a local ring with unique maximal ideal generated
byp.

Reason:(p) is a maximal ideal, the quotient beingFp, a field. Ifa ( Z/(pn) is a proper ideal
andx ∈ a, thenx = py + (pn), as otherwisex would be a unit. This shows thatx ∈ (p), whence
a ⊆ (p).

Lemma 9.5. LetR be a ring,M anR-module anda � R an ideal. ThenaM = {∑n
i=1 aimi | n ∈

N, ai ∈ a, mi ∈M for i = 1, . . . , n} ⊆M is anR-submodule ofM .

Proof. Easy checking.

Lemma 9.6. LetR be a local ring with unique maximal idealm. Then the set of unitsR× of R is
precisely the setR \ m.

Proof. The statement is equivalent to the following: The maximal idealm is equal to the set of non-
units.

We already know from Corollary 9.2 (b) that every non-unit lies in some maximal ideal, whence
it lies in m. On the other hand, every element ofm is a non-unit, as otherwisem = R.
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We will now introduce/recall the process of localisation of rings and modules,which makes mod-
ules/rings local.

Proposition 9.7. LetR be a ring,S ⊂ R a multiplicatively closed subset (i.e. fors1, s2 ∈ S we have
s1s2 ∈ S) containing1.

(a) An equivalence relation onS ×R is defined by

(s1, r1) ∼ (s2, r2) ⇔ ∃t ∈ S : t(r1s2 − r2s1) = 0.

The equivalence class of(s1, r1) is denoted byr1s1 .

(b) The set of equivalence classesS−1R is a ring with respect to

+ : S−1R× S−1R→ S−1R,
r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2

and
· : S−1R× S−1R→ S−1R,

r1
s1

· r2
s2

=
r1r2
s1s2

.

Neutral elements are0 := 0
1 and1 := 1

1 .

(c) The mapµ : R → S−1R, r 7→ r
1 , is a ring homomorphism with kernel{r ∈ R | ∃s ∈ S : rs =

0}. In particular, ifR is an integral domain, then this ring homomorphism is injective.

Proof. Exercise.

Note that for an integral domainR, the equivalence relation takes the easier form

(s1, r1) ∼ (s2, r2) ⇔ r1s2 − r2s1 = 0,

provided0 6∈ S (if 0 ∈ S, thenS−1R is always the zero ring, as any element is equivalent to0
1 ).

Example 9.8. (a) LetR be an integral domain. ThenS = R\{0} is a multiplicatively closed subset.
ThenFrac(R) := S−1R is the field of fractions ofR.

Subexamples:

(1) ForR = Z, we haveFrac Z = Q.

(2) LetK be a field andR := K[X]. ThenFracK[X] =: K(X) is thefield of rational functions
overK (in one variable). Explicitly, the elements ofK(X) are equivalence classes written as
f(X)
g(X) with f, g ∈ K[X], g(X) not the zero-polynomial. The equivalence relation is, of course,

the one from the definition; asK[X] is a factorial ring, we may represent the classf(X)
g(X) as a

‘lowest fraction’, by dividing numerator and denominator by their greatest common divisor.

(b) LetR be a ring andp�R be a prime ideal. ThenS := R \ p is multiplicatively closed and1 ∈ S

and0 6∈ S.

ThenRp := S−1R is called thelocalisation ofR atp.

Subexamples:
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(1) LetR = Z andp a prime number, so that(p) is a prime ideal. Then the localisation ofZ
at (p) is Z(p) and its elements are{ rs ∈ Q | p ∤ s, gcd(r, s) = 1}.

(2) LetK be a field and considerAn(K). Leta = (a1, . . . , an) ∈ An(K).

Letp be the kernel of the ring homomorphism

K[X1, . . . , Xn] → K, f 7→ f(a1, . . . , an).

Explicitly, p = {f ∈ K[X1, . . . , Xn] | f(a) = 0}. As this homomorphism is clearly surjec-
tive (take constant maps as preimages), we have thatK[X1, . . . , Xn]/p is isomorphic toK,
showing thatp is a maximal (and, hence, a prime) ideal.

The localisationK[X1, . . . , Xn]p is the subring ofK(X1, . . . , Xn) consisting of elements
that can be written asf(X1,...,Xn)

g(X1,...,Xn) with g(a1, . . . , an) 6= 0.

This is the same as the set of rational functionsK(X1, . . . , Xn) that are defined in a Zariski-
open neighbourhood ofa. Namely, letfg ∈ K[X1, . . . , Xn]p such thatg(a) 6= 0. Then the

functionx 7→ f(x)
g(x) is well-defined (i.e. we don’t divide by0) on the Zariski-open setAn(K) \

V(g)(K), which containsa. On the other hand, if forfg ∈ K[X1, . . . , Xn] the function

x 7→ f(x)
g(x) is well-defined in some Zariski-open neighbourhood ofa, then, in particular, it is

well-defined ata, implying f
g ∈ K[X1, . . . , Xn]p.

(c) LetR be a ring and letf ∈ R be an element which is not nilpotent (i.e.fn 6= 0 for all n ∈ N).
ThenS := {fn | n ∈ N} (use0 ∈ N) is multiplicatively closed and we can formS−1R. This ring
is sometimes denotedRf (Attention: easy confusion is possible).

Subexample:

(1) LetR = Z and0 6= a ∈ N. LetS = {an | n ∈ N}. ThenS−1Z = { r
an ∈ Q | r ∈ R,n ∈

N, gcd(r, an) = 1}.

Proposition 9.9. Let R be a ring andS ⊆ R a multiplicatively closed subset with1 ∈ S. Let
µ : R→ S−1R, given byr 7→ r

1 .

(a) The map
{b � S−1R ideal} −→ {a �R ideal}, b 7→ µ−1(b) �R

is an injection, which preserves inclusions and intersections. Moreover,if b � S−1R is a prime
ideal, then so isµ−1(b) �R.

(b) Leta �R be an ideal. Then the following statements are equivalent:

(i) a = µ−1(b) for someb � S−1R (i.e.a is in the image of the map in (a)).

(ii) a = µ−1(aS−1R) (hereaS−1R is short for the ideal ofS−1R generated byµ(a), i.e. by all
elements of the forma1 for a ∈ a).

(iii) Every s ∈ S is a non-zero divisor moduloa, meaning that ifr ∈ R andrs ∈ a, thenr ∈ a.

(c) The map in (a) defines a bijection between the prime ideals ofS−1R and the prime idealsp ofR
such thatS ∩ p = ∅.
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Proof. Exercise.

Corollary 9.10. LetR be a ring andp � R be a prime ideal. Then the localisationRp ofR at p is a
local ring with maximal idealS−1p.

Proof. Let S = R \ p. Note that∅ = a ∩ S = a ∩ (R \ p) is equivalent toa ⊆ p.
Hence, Proposition 9.9 (c) gives an inclusion preserving bijection between the prime ideals of

S−1R and the prime ideals ofR which are contained inp. The corollary immediately follows.

Definition 9.11. LetR be a ring. TheJacobson radicalis defined as the intersection of all maximal
ideals ofR:

J(R) :=
⋂

m�R maximal ideal

m

Lemma 9.12. LetR a ring and leta�R be an ideal which is contained inJ(R). Then for anya ∈ a,
one has1 − a ∈ R×.

Proof. If 1 − a were not a unit, then there would be a maximal idealm containing1 − a. Since
a ∈ J(R), it follows thata ∈ m, whencea ∈ m, contradiction.

Proposition 9.13(Nakayama’s Lemma). LetR be a ring andM a finitely generatedR-module. Let
a �R be an ideal such thata ⊆ J(R). SupposeaM = M . ThenM = 0.

Proof. Exercise.

The following corollary turns out to be very useful in many applications.

Corollary 9.14. LetR be a local ring with maximal idealm and letM be a finitely generatedR-
module. Letm1, . . . ,mn ∈M be elements such that their imagesmi := mi + mM are generators of
the quotient moduleM/mM .

Thenm1, . . . ,mn generateM as anR-module.

Proof. Exercise.

Proposition 9.15. LetR be a ring,S ⊂ R a multiplicatively closed subset containing1. LetM be an
R-module.

(a) An equivalence relation onS ×M is defined by

(s1,m1) ∼ (s2,m2) ⇔ ∃t ∈ S : t(s1m2 − s2m1) = 0.

(b) The set of equivalence classesS−1M is anS−1R-module with respect to

+ : S−1M × S−1M → S−1M,
m1

s1
+
m2

s2
=
s2m1 + s1m2

s1s2

and scalar-multiplication

· : S−1R× S−1M → S−1M,
r

s1
· m
s2

=
rm

s1s2
.

The neutral element is0 := 0
1 .
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(c) The mapµ : M → S−1M , m 7→ m
1 , is anR-homomorphism with kernel{m ∈ M | ∃s ∈ S :

sm = 0}.

Proof. Easy checking.

Lemma 9.16. LetR be a ring,S ⊂ R multiplicatively closed containing1. LetM,N beR-modules
andφ : M → N anR-homomorphism.

(a) The map

φS : S−1M → S−1N,
m

s
7→ φ(m)

s

is anS−1R-homomorphism.

(b) φS is injective (surjective, bijective) ifφ is injective (surjective, bijective).

Proof. (a) Easy checking.
(b) Supposeφ is injective and letφS(xs ) = φ(x)

1 = 0; then there iss ∈ S such that0 = sφ(x) =

φ(sx), whencesx = 0 and, thus,x1 = 0
1 .

Supposeφ is surjective and letys ∈ S−1N . There isx ∈ M such thatφ(x) = y, thusφS(xs ) =
φ(x)
s = y

s , showing thatφS is surjective.

Lemma 9.17. LetR be a ring,S ⊂ R multiplicatively closed containing1 andM anR-module. The
map

ψ : S−1M → S−1R⊗RM,
m

s
7→ 1

s
⊗m

is anS−1R-isomorphism, whereS−1R⊗RM is anS−1R-module viaxs .(
y
t ⊗m) := (xs

y
t ) ⊗m.

Proof. First we check thatψ is well-defined: Letm1
s = m2

t , i.e. there isu ∈ S such thatu(tm1 −
sm2) = 0. Now 1

s ⊗m1 = tu
stu ⊗m1 = 1

stu ⊗ tum1 = 1
stu ⊗ sum2 = su

stu ⊗m2 = 1
t ⊗m2. Thatψ

is anS−1R-homomorphism is easily checked.
We now construct an inverse toψ using the universal property of the tensor product. Define

f : S−1R×M → S−1M, (
x

s
,m) 7→ xm

s
.

This is a balanced map overR. Hence, there is a uniqueZ-homomorphismφ : S−1R⊗M → S−1M

such thatφ(xs ⊗m) = xm
s .

It is clear thatφ is anS−1R-homomorphism and thatφ ◦ ψ andψ ◦ φ are the identity.

Lemma 9.18. LetR be a ring andm a maximal ideal.

(a) The natural mapµ : R→ Rm, r 7→ r
1 induces a ring isomorphism

R/m ∼= Rm/mRm.

(b) LetM be anR-module and denote byMm its localisation atm. Then:

M/mM ∼= Mm/mRmMm.

Proof. Exercise on Sheet 10.
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10 Flat modules

Definition 10.1. LetR be a not necessarily commutative ring.

(a) A rightR-moduleM is calledflat overR if for all injective homomorphisms of leftR-modules

ϕ : N1 → N2

also the group homomorphism

idM ⊗ ϕ : M ⊗R N1 →M ⊗R N2

is injective.

(b) A leftR-moduleN is calledflat overR if for all injective homomorphisms of rightR-modules

ϕ : M1 →M2

also the group homomorphism

ϕ⊗ idN : M1 ⊗R N →M2 ⊗R N

is injective.

(c) A right R-moduleM is called faithfully flat overR if M is flat overR and for all R-homo-
morphisms of leftR-modulesϕ : N1 → N2, the injectivity ofidM ⊗ ϕ implies the injectivity
ofϕ.

(d) A leftR-moduleN is calledfaithfully flat overR if N is flat overR and for allR-homomorphisms
of rightR-modulesϕ : M1 →M2, the injectivity ofϕ⊗R idN implies the injectivity ofϕ.

(e) A ring homomorphismφ : R → S is called(faithfully) flat if S is (faithfully) flat asR-module
via φ.

Lemma 10.2. LetR be a not necessarily commutative ring and letM be a rightR-module andN be
a leftR-module.

(a) M is flat overR⇔M ⊗R • preserves exactness of sequences.

(b) N is flat overR⇔ •⊗R N preserves exactness of sequences.

Proof. Combine Definition 10.1 and Proposition 8.12.

Example 10.3. (a) Q is flat asZ-module.

Reason: We don’t give a complete proof here (since we haven’t discussed the module theory
over Z). The reason is that any finitely generated abelian group is the direct sumof its torsion
elements (that are the elements of finite order) and a free module. Tensoring with Q kills the
torsion part and is injective on the free part (we will see that below).
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(b) Q is not faithfully flat asZ-module.

Reason: ConsiderZ/(p2) → Z/(p), the natural projection (forp a prime), which is not injective.
Tensoring withQ kills both sides (see Example 8.3), so we get0 ∼= Z/(p2)⊗ZQ → Z/(p)⊗ZQ ∼=
0, which is trivially injective.

(c) Fp is not flat asZ-module (forp a prime).

Reason: The homomorphismZ
n7→pn−−−−→ Z (multiplication byp) is clearly injective. But, after

tensoring it withFp overZ, we obtain the zero map, which is not injective.

Proposition 10.4. LetR be a ring andMi for i ∈ I beR-modules. Then the following statements are
equivalent:

(i) Mi is flat overR for all i ∈ I.

(ii)
⊕

i∈IMi is flat overR.

Proof. Exercise. This follows from Proposition 8.7 and the injectivity of the direct sum of injective
homomorphisms.

Lemma 10.5. LetR be a ring (commutative again) andN anR-module.

(a) Leta �R be an ideal. ThenR/a ⊗R N ∼= N/aN .

(b) The following statements are equivalent:

(i) N is faithfully flat.

(ii) N is flat and for allR-modulesM 6= 0 one has:M ⊗R N 6= 0.

Proof. (a) Start with the trivial exact sequence

0 → a → R→ R/a → 0

of R-modules. Now tensor overR with N and get

a ⊗R N
ψ−→ R⊗R N

ϕ−→ R/a ⊗R N → 0.

Use the isomorphismR⊗RN
r⊗n7→rn−−−−−→ N , to placeN into the previous exact sequence. Exactness at

the centre precisely meansker(ϕ) = im(ψ), but im(ψ) = aN . Hence, the homomorphism theorem
yieldsN/aN ∼= R/a ⊗R N , as claimed.

(b) ‘(i) ⇒ (ii)’: Let N be faithfully flat. Now letM be an arbitraryR-module and consider the

zero mapM
ϕ−→ 0. Of course, this gives rise to the zero mapM ⊗R N

ϕ⊗idN−−−−→ 0. If M ⊗R N = 0,
thenϕ⊗ idN is injective. By faithful flatness, it follows thatϕ is injective, but that is only possible if
M is the zero module.

‘(ii) ⇒ (i)’: Let N be flat and consider anyR-homomorphismϕ : M1 → M2. LetK := ker(ϕ),
so that we have the exact sequence

0 → K →M1
ϕ−→M2.
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Flatness ofN implies that also the sequence

0 → K ⊗R N →M1 ⊗R N
ϕ⊗idN−−−−→M2 ⊗R N.

is exact. Ifϕ ⊗ idN is injective, thenK ⊗R N is the zero-module. By assumption,K is the zero
module, whenceϕ is injective, showing the faithful flatness ofN .

Proposition 10.6. LetR be a ring andN a flatR-module. The following statements are equivalent:

(i) N is faithfully flat.

(ii) For all maximal idealsm �R we havemN 6= N .

Proof. ‘(i) ⇒ (ii)’: Let m be a maximal ideal ofR. By the previous lemma we know thatR/m⊗RN ∼=
N/mN . Hence, it suffices to show thatR/m⊗RN is not the zero module. But, by the faithful flatness
of N , the contrary would mean thatR/m is the zero module (also, by the previous lemma), which it
clearly is not (asm 6= R).

‘(ii) ⇒ (i)’: Let M be an arbitrary non-zeroR-module. We want to showM ⊗R N 6= 0; this
suffices because of the previous lemma. Let0 6= m ∈ M be an arbitrary element and consider the
homomorphism

ϕ : R→M, r 7→ rm.

Its kernela is a proper ideal ofR (since1m = m 6= 0); writeM1 for im(ϕ). By the homomorphism
theorem, we thus have

R/a ∼= M1 ⊆M.

Now we have
M1 ⊗R N ∼= R/a ⊗R N ∼= N/aN,

by the previous lemma. Letm be a maximal ideal ofR containinga. BecauseN/mN is non-zero by
assumption, it follows thatN/aN is non-zero, since we have the natural surjectionN/aN → N/mN .
So, we have shownM1 ⊗R N 6= 0. However, the flatness ofN implies thatM1 ⊗R N injects into
M ⊗R N , which is consequently also non-zero, as was to be shown.

Corollary 10.7. LetR be a ring.

(a) ProjectiveR-modules are flat overR.

(b) Non-zero freeR-modules are faithfully flat overR.

Proof. (a) First note thatR is a flatR-module because of the isomorphismR ⊗R N
r⊗n7→rn−−−−−→ N .

Hence, freeR-modules are flat by Proposition 10.4.
LetP be projective. We know that there is anR-moduleX such thatP ⊕X isR-free, and hence

flat. Proposition 10.4 ‘(ii)⇒ (i)’ now gives thatP is flat.
(b) LetF = FI =

⊕
i∈I R beR-free (with basisI). LetN be anR-module. We compute:

F ⊗R N = (
⊕

i∈I
R) ⊗R N ∼=

⊕

i∈I
(R⊗R N) ∼=

⊕

i∈I
N.

Hence, ifF ⊗RN = 0, thenN = 0. By Lemma 10.5 we conclude thatF is faithfully flat overR.
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Corollary 10.8. LetR be a local ring with maximal idealm andM a finitely generatedR-module.
Then the following statements are equivalent:

(i) M is free overR.

(ii) M is a projectiveR-module.

(iii) M is flat overR.

Proof. The implications ‘(i)⇒ (ii)’ and ‘(ii) ⇒ (iii)’ have already been shown. So, we now prove
‘(iii) ⇒ (i)’. Let M be flat overR and letn = dimR/mM/mM . Using the corollary of Nakayama’s
Lemma, anyR/m-basis of theR/m-vector spaceM/mM can be lifted to a set of generators ofM as
anR-module. Consequently, there is a surjection from the freeR-moduleF of rankn toM , letG be
its kernel. Hence, we have the exact sequence

0 → G→ F →M → 0.

Claim: mF ∩G = mG. Tensor the above sequence withm overR and obtain the exact sequence:

m ⊗R G→ m ⊗R F → m ⊗RM → 0.

Using the flatness ofF andM and the resulting identifications ofm ⊗R F with mF and ofm ⊗RM

with mM , we obtain thatmF ∩G is the image ofm⊗G→ F , which ismG, as claimed.
Claim: The following sequence is exact:

0 → G/mG→ F/mF →M/mM → 0.

We apply the isomorphism theorems:

M/mM ∼= (F/G)/m(F/G) ∼= (F/G)/((mF +G)/G) ∼= F/(mF +G).

Hence, the kernel of the natural surjectionF/mF → M/mM is isomorphic tomF +G/mF , which
is isomorphic toG/(mF ∩G). The previous claim now gives this claim.

But, bothF/mF andM/mM areR/m-vector spaces of the same dimension, so the surjectivity
of the natural mapF/mF → M/mM implies that it is in fact an isomorphism, whenceG/mG is
zero by the exactness. Now, again the corollary to Nakayama’s Lemma gives thatG can be generated
by 0 elements, whenceG = 0. Consequently, the surjectionF → M is an isomorphism andM is
free.

Lemma 10.9. LetR be a ring andS ⊆ R be a multiplicatively closed subset containing1. LetM be
a (faithfully) flatR-module.

ThenS−1M is a (faithfully) flatS−1R-module and a flatR-module.

Proof. Let N be anS−1R-module. Then we have by the transitivity of tensoring (Lemma 8.10 and
Lemma 9.17)

N ⊗S−1R S
−1M ∼= N ⊗S−1R (S−1R⊗RM) ∼= (N ⊗S−1R S

−1R) ⊗RM ∼= N ⊗RM.
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Thus, the (faithful) flatness ofS−1M is obvious.
Next we show thatS−1R is flat overR. LetM →֒ M ′ be an injection ofR-modules. Because

of Lemma 9.16 theS−1R-module homomorphismS−1M → S−1M ′ is also injective. Using again
Lemma 9.17), we rewrite this injection asS−1R ⊗R M →֒ S−1R ⊗R M

′, proving the flatness of
S−1R overR.

Finally, invoking Exercise 4(c) from Sheet 10, gives thatS−1M is a flatR-module.

The next two propositions give local characterisations, i.e. they give criteria saying that a certain
property (injectivity, surjectivity, flatness, faithful flatness) holds if and only if it holds in all localisa-
tions. We first start with a lemma that gives a local characterisation of a module tobe zero.

Lemma 10.10.LetR be a ring andM anR-module. Then the following statements are equivalent:

(i) M is the zero module.

(ii) For all prime idealsp �R, the localisationMp is the zero module.

(iii) For all maximal idealsm �R, the localisationMm is the zero module.

Proof. ‘(i) ⇒ (ii)’: Clear.
‘(ii) ⇒ (iii)’ is trivial because all maximal ideals are prime.
‘(iii) ⇒ (i)’: Let T :=

⊕
mRm, where the sum runs over all maximal idealsm. As mRm 6= Rm

for any maximal idealm, it follows thatmT 6= m. By Proposition 10.6 and the fact that allRm are
flat overR, it follows thatT is faithfully flat overR.

The assumption implies that0 =
⊕

mMm. We rewrite this as follows:

0 =
⊕

m

Mm
∼=

⊕

m

(Rm ⊗RM) ∼= (
⊕

m

Rm) ⊗RM ∼= T ⊗RM.

By Lemma 10.5 it follows thatM = 0.

Proposition 10.11.LetR be a ring andϕ : M → N anR-homomorphism. For a prime idealp �R,
denote byϕp : Mp → Np the localisation atp. Then the following statements are equivalent:

(i) ϕ is injective (surjective).

(ii) For all prime idealsp �R, the localisationϕp is injective (surjective).

(iii) For all maximal idealsm �R, the localisationϕm is injective (surjective).

Proof. ‘(i) ⇒ (ii)’: Lemma 9.16.
‘(ii) ⇒ (iii)’ is trivial because all maximal ideals are prime.
‘(iii) ⇒ (i)’: We only show this statement for the injectivity. The surjectivity is very similar. Let

K be the kernel ofϕ, so that we have the exact sequence

0 → K →M
ϕ−→ N.

AsRm is flat overR, also the sequence

0 → Km →Mm
ϕm−−→ Nm

is exact. Asϕm is injective, it follows thatKm = 0. By Lemma 10.10,K = 0, showing thatϕ is
injective.
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Proposition 10.12.LetR be a ring andM anR-module. Then the following statements are equiva-
lent:

(i) M is (faithfully) flat overR.

(ii) For all prime idealsp �R, the localisationMp is (faithfully) flat overR.

(iii) For all maximal idealsm �R, the localisationMm is (faithfully) flat overR.

Proof. ‘(i) ⇒ (ii)’: Lemma 10.9.
‘(ii) ⇒ (iii)’ is trivial because all maximal ideals are prime.
‘(iii) ⇒ (i)’: We start with a preliminary calculation. LetN be anR-module. Then:

N ⊗RMm
∼= N ⊗R (M ⊗R Rm) ∼= (N ⊗RM) ⊗R Rm

∼= (N ⊗RM)m.

Now let N →֒ N ′ be an injection ofR-modules. By the flatness ofMm and the preliminary
calculation, we obtain the injection:

(N ⊗RM)m →֒ (N ′ ⊗RM)m.

The previous proposition yields thatN ⊗R M → N ′ ⊗R M is injective. Consequently,M is flat
overR.

Now suppose in addition thatMm is faithfully flat overRm. By Lemma 9.18 we have

0 6= Mm/mRmMm
∼= M/mM,

which is equivalent tomM 6= M . As this holds for all maximal ideals, Proposition 10.6 yields that
M is faithfully flat overR.

11 Noetherian rings and Hilbert’s Basissatz

In this short section, we treat Noetherian and Artinian rings and prove Hilbert’s basis theorem.
Recall that in Definition 2.9 we have already defined Noetherian rings. Here we repeat this defi-

nition and extend it to modules

Definition 11.1. LetR be a ring andM anR-module. The moduleM is calledNoetherian(resp.
Artinian) if every ascending (resp. descending) chain ofR-submodules ofM

M1 ⊆M2 ⊆M3 ⊆ . . .

(resp.M1 ⊇ M2 ⊇ M3 ⊇ . . . ) becomes stationary, i.e. there isN ∈ N such that for alln ≥ N we
haveMn = MN .

The ringR is calledNoetherian(resp.Artinian) if it has this property as anR-module.

Lemma 11.2. LetR be a ring andM anR-module.
ThenM is Noetherian (resp. Artinian) if and only if every non-empty setS of submodules ofM

has a maximal (resp. minimal) element.
By a maximal (resp. minimal) element ofS we mean anR-moduleN ∈ S such thatN ⊆ N1

(resp.N ⊇ N1) impliesN = N1 for anyN1 ∈ S.
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Proof. We only prove the Lemma for the Noetherian case. The Artinian case is similar.
Let S be a non-empty set ofR-submodules ofM that does not have a maximal element. Then

construct an infinite ascending chain with strict inclusions as follows. Choose anyM1 ∈ S. AsM1 is
not maximal, it is strictly contained in someM2 ∈ S. AsM2 is not maximal, it is strictly contained
in someM3 ∈ S, etc. leading to the claimed chain. Hence,M is not Noetherian.

Conversely, letM1 ⊆ M2 ⊆ M3 ⊆ . . . be an ascending chain. LetS = {Mi | i ∈ N}. This
set contains a maximal elementMN by assumption. This means that the chain becomes stationary
atN .

Proposition 11.3. LetR be a ring andM anR-module. The following statements are equivalent:

(i) M is Noetherian.

(ii) Every submoduleN ≤M is finitely generated asR-module.

Proof. ‘(i) ⇒ (ii)’: Assume thatN is not finitely generated. In particular, there are then elements
ni ∈ N for i ∈ N such that〈n1〉 ( 〈n1, n2〉 ( 〈n1, n2, n3〉 ( . . . , contradicting the Noetherian-ness
of M .

‘(ii) ⇒ (i)’: Let M1 ⊆ M2 ⊆ M3 ⊆ . . . be an ascending chain ofR-submodules. FormU :=⋃
i∈N

Mi. It is anR-submodule ofM , which is finitely generated by assumption. Letx1, . . . , xd ∈ U

be generators ofU . As all xi already lie in someMji , there is anN such thatxi ∈ MN for all
i = 1, . . . , d. Hence, the chain becomes stationary atN .

Lemma 11.4. LetR be a ring and0 → N →M →M/N → 0 be an exact sequence ofR-modules.
The following statements are equivalent:

(i) M is Noetherian (resp. Artinian).

(ii) N andM/N are Noetherian (resp. Artinian).

Proof. We only prove this in the Noetherian case. The Artinian one is similar.
‘(i) ⇒ (ii)’: N is Noetherian because every ascending chain of submodules ofN is also an as-

cending chain of submodules ofM , and hence becomes stationary.
To see thatM/N is Noetherian consider an ascending chain ofR-submodulesM1 ⊆ M2 ⊆

M3 ⊆ . . . of M/N . Taking preimages for the natural projectionπ : M → M/N gives an ascending
chain inM , which by assumption becomes stationary. Because ofπ(π−1(M i)) = M i, also the
original chain becomes stationary.

‘(ii) ⇒ (i)’: Let
M1 ⊆M2 ⊆M3 ⊆ . . .

be an ascending chain ofR-submodules. The chain

M1 ∩N ⊆M2 ∩N ⊆M3 ∩N ⊆ . . .

becomes stationary (say, at the integern) because its members are submodules of the Noetherian
R-moduleN . Morepver, the chain

(M1 +N)/N ⊆ (M2 +N)/N ⊆ (M3 +N)/N ∩N ⊆ . . .
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also becomes stationary (say, at the integerm) because its members are submodules of the Noetherian
R-moduleM/N . By one of the isomorphism theorems, we have(Mi +N)/N ∼= Mi/(Mi ∩N). Let
now i be greater thann andm. We hence have for allj ≥ 0:

Mi/(Mi ∩N) = Mi+j/(Mi ∩N).

The other isomorphism theorem then yields:

0 ∼= (Mi+j/(Mi ∩N))/(Mi/(Mi ∩N)) ∼= Mi+j/Mi,

showingMi = Mi+j .

Proposition 11.5. Let R be a Noetherian (resp. Artinian) ring. Then every finitely generatedR-
module is Noetherian (resp. Artinian).

Proof. Exercise.

Proposition 11.6(Hilbert’s Basissatz). LetR be a Noetherian ring andn ∈ N. ThenR[X1, . . . , Xn]

is a Noetherian ring. In particular, every ideala �R[X1, . . . , Xn] is finitely generated.

Proof. By induction it clearly suffices to prove the casen = 1. So, leta � R[X] be any ideal. We
show thata is finitely generated, which implies the assertion by Proposition 11.3.

The very nice trick is the following:

a0 := {a0 ∈ R | a0 ∈ a} �R

∩
a1 := {a1 ∈ R | ∃b0 ∈ R : a1X + b0 ∈ a} �R

∩
a2 := {a2 ∈ R | ∃b0, b1 ∈ R : a2X

2 + b1X + b0 ∈ a} �R

∩
...

So,an is the set of highest coefficients of polynomials of degreen lying in a. The inclusionan−1 ⊆ an

is true because if we multiply a polynomial of degreen−1 byX, we obtain a polynomial of degreen
with the same highest coefficient.

The ascending ideal chaina0 ⊆ a1 ⊆ a2 ⊆ . . . becomes stationary becauseR is Noetherian, say
ad = ad+i for all i ∈ N. Moreover, sinceR is Noetherian, all theai are finitely generated (as ideals
of R) by Proposition 11.3, say,ai = (ai,1, . . . , ai,mi

).
By construction, for eachai,j there is a polynomialfi,j ∈ a of degreei with highest coeffi-

cient ai,j . Let b be the ideal ofR[X] generated by the finitely manyfi,j ∈ a for 1 ≤ i ≤ d and
1 ≤ j ≤ mi.

Claim: b = a.
Of course,b ⊆ a. We show by induction one that anyf ∈ a of degreee lies in b. If e = 0, then

f ∈ a0, whencef ∈ b.
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Next we treat0 < e ≤ d. Suppose we already know that any polynomial ina of degree at most
e − 1 lies in b. Let nowf ∈ a be of degreee. The highest coefficientae of f lies in ae. This means
that ae =

∑me

j=1 rjae,j for somerj ∈ R. Now, the polynomialg(X) =
∑me

j=1 rjfe,j has highest
coefficientae and is of degreee. But, nowf − g is in a and of degree at moste − 1, whence it lies
in b. We can thus conclude thatf lies inb, as well.

Finally we deal withd < e. Just as before, suppose we already know that any polynomial ina of
degree at moste − 1 lies in b and let againf ∈ a be of degreee. The highest coefficientae of f lies
in ae = ad and, hence, there arerj for j = 1, . . . ,md such thatae =

∑md

j=1 rjad,j . Consequently,
the polynomialg(X) =

∑md

j=1 rjfd,j has highest coefficientae and is of degreed. But, nowf(X) −
g(X)Xe−d is in a and of degree at moste − 1, whence it lies inb. We can thus conclude thatf lies
in b, as well, finishing the proof of the claim and the Proposition.

12 Dimension theory

This section has two main parts. The principal corollary of the first part is that the ring of integers of
a number field has dimension1, whereas we will conclude from the second part that the coordinate
ring of a plane curve has dimension1 (that shouldn’t be too astonishing, but because of the abstract
nature of the definition needs a non-trivial proof).

Definition 12.1. LetR be a ring. Achain of prime ideals of lengthn in R is

pn ( pn−1 ( pn−2 ( · · · ( p1 ( p0,

wherepi �R is a prime ideal for alli = 0, . . . , n.
Theheighth(p) of a prime idealp � R is the supremum of the lengths of all prime ideal chains

with p0 = p.
TheKrull dimensiondim(R) of the ringR is the supremum of the heights of all prime ideals ofR.

Example 12.2. (a) The Krull dimension ofZ is 1.

Reason: Recall that the prime ideals ofZ are (0) (height0) and(p) for a primep, which is also
maximal. So, the longest prime ideal chain is(0) ( (p).

(b) The Krull dimension of any field is0.

Reason:(0) is the only ideal, hence, also the only prime ideal.

(c) LetK be a field. The polynomial ringK[X1, . . . , Xn] has Krull dimensionn. This needs a
non-trivial proof and is shown below.

In the sequel, we are going to consider ring extensionsR ⊆ S. If we denoteι : R → S the
inclusion andb �S an ideal, thenι−1(b) = b∩R (in the obvious sense). In particular, ifb is a prime
ideal, then so isι−1(b) = b ∩R (see Exercise).

Lemma 12.3. LetR ⊆ S be a ring extension such thatS is integral overR. Letb � S be an ideal
anda := b ∩R�R.
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(a) ThenR/a →֒ S/b is an integral ring extension (note that this is injective because of the homo-
morphism theorem).

(b) Assume thatb is a prime ideal. Thena is maximal⇔ b is maximal.

(c) Assume in addition thatS is an integral domain. Then:R is a field⇔ S is a field.

Proof. Exercise.

Lemma 12.4. LetR ⊆ S be an integral ring extension.

(a) Letb � S be an ideal containingx ∈ b which is not a zero-divisor. Thenb ∩ R =: a � R is not
the zero ideal.

(b) LetP1 ( P2 be a chain of prime ideals ofS. Thenp1 := P1 ∩R ( P2 ∩R =: p2 is a chain of
prime ideals ofR.

Proof. (a) SinceS is integral overR, there aren ∈ N andr0, . . . , rn−1 ∈ R such that

0 = xn +
n−1∑

i=0

rix
i.

As x is not a zero-divisor, it is in particular not nilpotent, i.e. there is some coefficient ri 6= 0 (for
somei = 0, . . . , n− 1). Let j be the smallest index (≤ n− 1) such thatrj 6= 0. Now we have

0 = xj
(
xn−j +

n−1∑

i=j

rix
i−j),

implying (asx is not a zero-divisor):

0 = xn−j −
n−1∑

i=j

rix
i−j .

Rewriting yields:

rj = x(−xn−j−1 −
n−1∑

i=j+1

rix
i−j−1) ∈ R ∩ b = a,

showing thata is non-zero.
(b) Consider the integral (see Lemma 12.3) ring extensionR/p1 →֒ S/P1. The idealP2/P1 in

S/P1 is prime because(S/P1)/(P2/P1) ∼= S/P1 (isomorphism theorem) is an integral domain.
This also means thatP2/P1 consists of non-zero divisors only (except for0). Consequently, by (a),
we have(0) 6= P2/P1 ∩R/p1

∼= p2/p1.

Lemma 12.5. LetR ⊆ S be an integral ring extension and letT ⊆ R be a multiplicatively closed
subset containing1. ThenT−1R ⊆ T−1S is an integral ring extension.

Proof. Exercise.
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Lemma 12.6. LetR ⊆ S be an integral ring extension and letp �R be a prime ideal. Then there is
a prime idealP � S lying overp, by which we meanp = P ∩R.

Proof. LetT := R\p so thatRp = T−1R is the localisation ofR atp. By Lemma 12.5,Rp →֒ T−1S

is an integral ring extension. Letm be a maximal ideal ofT−1S.
Consider the commutative diagram:

R
integral

//

α

��

S

β

��

Rp
integral

// T−1S.

Put P := β−1(m). It is a prime ideal. Note thatm ∩ Rp is maximal by Lemma 12.3, hence,
m ∩ Rp = pRp is the unique maximal ideal of the local ringRp. Consequently, we have due to the
commutativity of the diagram:

p = α−1(pRp) = α−1(m ∩Rp) = R ∩ β−1(m) = R ∩ P,

showing thatP satisfies the requirements.

Proposition 12.7(Going up). LetR ⊆ S be an integral ring extension. For prime idealsp1 ⊆ p2

in R and a prime idealP1 � S lying overp1 (i.e.P1 ∩R = p1), there is a prime idealP2 in S lying
overp2 (i.e.P2 ∩R = p2) such thatP1 ⊆ P2.

Proof. By Lemma 12.3,R/p1 →֒ S/P1 is an integral ring extension. By Lemma 12.6, there is
P2 � S/P1 lying over p2 := p2/p1 such thatP2 ∩ R/p1 = p2/p1. DefineP2 asπ−1(P2) for
π : S → S/P1 the natural projection. Clearly,P2 ⊇ P1 (asP1 is in the preimage, being the
preimage of the0 class) andP2 ∩R = p2 also follows.

Corollary 12.8. LetR ⊆ S be an integral ring extension. Then the Krull dimension ofR equals the
Krull dimension ofS.

Proof. We first note that the Krull dimension ofR is at least the Krull dimension ofS. Reason: If
Pn ( Pn−1 ( · · · ( P0 is an ideal chain inS, thenPn ∩ R ( Pn−1 ∩ R ( · · · ( P0 ∩ R is an
ideal chain inR by Lemma 12.4.

Now we show that the Krull dimension ofS is at least that ofR. Letpn ( pn−1 ( · · · ( p0 be an
ideal chain inR and letPn be any prime ideal ofS lying overpn, which exists by Lemma 12.6. Then
Proposition 12.7 allows us to obtain an ideal chainPn ( Pn−1 ( · · · ( P0 such thatPi ∩ R = pi

for i = 0, . . . , n, implying the desired inequality.

Corollary 12.9. LetR be an integral domain of Krull dimension1 and letL be a finite extension of
K := FracR. Then the integral closure ofR in L has Krull dimension1.

In particular, rings of integers of number fields have Krull dimension1.

Proof. The integral closure ofR in L is an integral ring extension ofR. By Corollary 12.8, the Krull
dimension ofS is the same as that ofR, whence it is1.
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Our next aim is to compute the Krull dimension ofK[X1, . . . , Xn] for some fieldK. First we
need Nagata’s Normalisation Lemma, which will be an essential step in the proofof Noether’s Nor-
malisation Theorem and of the computation of the Krull dimension ofK[X1, . . . , Xn].

Proposition 12.10(Nagata). LetK be a field andf ∈ K[X1, . . . , Xn] be a non-constant polyno-
mial. Then there arem2,m3, . . . ,mn ∈ N such that the ring extensionR := K[f, z2, z3, . . . , zn] ⊆
K[X1, . . . , Xn] =: S with zi := Xi −Xmi

1 ∈ K[X1, . . . , Xn] is integral.

Proof. First note: S = R[X1]. Reason: The inclusion⊇ is trivial. For n ≥ i > 1, we have
Xi = zi +Xmi

1 ∈ R[X1], proving the inclusion⊆.
It suffices to show thatX1 is integral overR. The main step is to construct a monic polynomial

h ∈ R[T ] such thath(X1) = 0. We take the following general approach: For anymi ∈ N for
i = 2, 3, . . . , n the polynomial

h(T ) := f(T, z2 + Tm2 , z3 + Tm3 , . . . , zn + Tmn) − f(X1, . . . , Xn) ∈ R[T ]

obviously hasX1 as a zero. But, in order to prove the integrality ofX1 we need the highest coefficient
of h to be inR× = K[X1, . . . , Xn]

× = K×, so that we can divide by it, makingh monic. We will
achieve this by making a ‘good’ choice of themi, as follows.

Let d be the total degree off in the following sense:

f(X1, . . . , Xn) =
∑

(i1,...,in) s.t.|i|≤d
a(i1,...,in)X

i1
1 · · ·Xin

n

with one of thea(i1,...,in) 6= 0 for |i| :=
∑n

j=1 ij = d. Now we compute (lettingm1 = 1)

h(T )

=
( ∑

(i1,...,in) s.t.|i|≤d
a(i1,...,in)T

i1(z2 + Tm2)i2(z3 + Tm3)i3 . . . (zn + Tmn)in
)
− f(X1, . . . , Xn)

=
∑

(i1,...,in) s.t.|i|≤d
a(i1,...,in)T

Pn
j=1 ijmj + terms of lower degree inT.

Now choosemj = (d+1)j−1. Then the
∑n

j=1 ijmj =
∑n

j=1 ij(d+1)j−1 are distinct for all choices
of 0 ≤ ij ≤ d (consider it as the(d + 1)-adic expansion of an integer). In particular, among these
numbers there is a maximal one with0 6= a(i1,...,in). Then this is the highest coefficient ofh and it
lies inK×, as needed.

Definition 12.11. LetK be a field. A finitely generatedK-algebra is also called anaffineK-algebra.

Proposition 12.12(Noether’s Normalisation Theorem). LetK be a field andR an affineK-algebra,
which is an integral domain. Then there isr ∈ N, r ≤ n and there are elementsy1, . . . , yr ∈ R such
that

(1) R/K[y1, . . . , yr] is an integral ring extension and

(2) y1, . . . , yr areK-algebraically independent (by definition, this means thatK[y1, . . . , yr] is iso-
morphic to the polynomial ring inr variables).
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The subringK[y1, . . . , yr] ofR is called aNoether normalisation ofR.

Proof. By induction onn ∈ N we shall prove: Every affineK-algebra that can be generated byn
elements satisfies the conclusion of the proposition.

Start withn = 0. ThenR = K and the result is trivially true. Assume now that the result is
proved forn− 1. We show it forn. Letx1, . . . , xn ∈ R be a set of generators ofR asK-algebra. So,
we have the surjection ofK-algebras:

ϕ : K[X1, . . . , Xn] ։ R, Xi 7→ xi.

Its kernel is a prime idealp := ker(ϕ) sinceR is an integral domain.
We distinguish two cases. Assume firstp = (0). ThenR is isomorphic toK[X1, . . . , Xn] and

the result is trivially true. Now we put ourselves in the second casep 6= (0). Let f ∈ p be a non-
constant polynomial. We apply Nagata’s Normalisation Lemma Proposition 12.10 and obtain ele-
mentsz2, . . . , zn ∈ K[X1, . . . , Xn] such thatK[X1, . . . , Xn]/K[f, z2, . . . , zn] is an integral ring ex-
tension. Now, applyϕ to this extension and obtain the integral ring extensionR/ϕ(K[f, z2, . . . , zn]),
i.e. the integral ring extensionR/R′ with R′ := K[ϕ(z2), . . . , ϕ(zn)]. Now,R′ is generated byn− 1

elements, hence, it is an integral extension ofK[y1, . . . , yr] with r ≤ n− 1 algebraically independent
elementsy1, . . . , yr ∈ R′ ⊆ R. As integrality is transitive,R is integral overK[y1, . . . , yr], proving
the proposition.

Note that by Corollary 12.8 one obtains that the Krull dimension ofR is equal tor.

Proposition 12.13.LetK be a field. The Krull dimension ofK[X1, . . . , Xn] is equal ton.

Proof. We apply induction onn to prove the Proposition. Ifn = 0, then the Krull dimension is0 being
the Krull dimension of a field. Let us assume that we have already proved that the Krull dimension of
K[X1, . . . , Xn−1] is n− 1.

Let nowm be the Krull dimension ofK[X1, . . . , Xn]. We first provem ≥ n. The reason simply
is that we can write down a chain of prime ideals of lengthn, namely:

(0) ( (X1) ( (X1, X2) ( (X1, X2, X3) ( · · · ( (X1, X2, . . . , Xn).

Now let
(0) ( P1 ( P2 ( P3 ( · · · ( Pm

be a chain of prime ideals ofK[X1, . . . , Xn] of maximal length. We pick any non-constantf ∈
P1 and apply Nagata’s Normalisation Lemma Proposition 12.10 yielding elementsz2, . . . , zn ∈
K[X1, . . . , Xn] such thatK[X1, . . . , Xn]/R with R := K[f, z2, . . . , zn] is an integral ring exten-
sion. Settingpi := R ∩ Pi we obtain by Lemma 12.4 the chain of prime ideal ofR of lengthm:

(0) ( p1 ( p2 ( p3 ( · · · ( pm.

Since the Krull dimension ofR equals that ofK[X1, . . . , Xn] by Corollary 12.8, this prime ideal
chain is of maximal length.

LetR := K[f, z2, . . . , zn]/p1. Note that this is an integral domain, which can be generated (as a
K-algebra) byn − 1 elements, namely, the classes ofz2, . . . , zn. Let π : R = K[f, z2, . . . , zn] →
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K[f, z2, . . . , zn]/p1 = R be the natural projection. We apply it to the prime ideal chain of thepi and
get:

(0) = p1/p1 ( p2/p1 ( p3/p1 ( · · · ( pm/p1,

which is a prime ideal chain ofR of lengthm − 1. By Noether’s Normalisation Theorem Propo-
sition 12.12 it follows that the Krull dimension ofR is at mostn − 1, yielding the other inequality
m ≤ n and finishing the proof.

Corollary 12.14. LetK be a field andf(X,Y ) ∈ K[X,Y ] be a non-constant irreducible polynomial.
LetC = V(f)(K) be the resulting irreducible plane curve.

The Krull dimension of the coordinate ringK[C] = K[X,Y ]/(f(X,Y )) is equal to1.

Proof. Nagata’s Normalisation Lemma Proposition 12.10 yields an elementz ∈ K[X,Y ] such that
K[f, z] ⊆ K[X,Y ] is an integral ring extension. Modding out(f), we see thatK[f, z]/(f) ⊆ K[C]

is an integral ring extension, whence the Krull dimensions of the two rings coincide and is at most1
by Noether’s Normalisation Theorem Proposition 12.12 and Proposition 12.13 becauseK[f, z]/(f)

is an integral domain that can be generated by one element as aK-algebra, namely, by the class ofz.
If the Krull dimension ofK[C] were0, thenK[C] would be a finite field extension ofK (being a

finitely generated integral extension of a field). Hence, there would only be finitely many embeddings
of K[C] into an algebraic closureK of K. However, we know that each of the infinitely many points

(x, y) of C (we proved this earlier!) gives a different embedding, namely,K[C]
g(X,Y )+(f) 7→g(x,y)−−−−−−−−−−−−→

K. This contradiction shows that the Krull dimension ofK[C] cannot be0.

13 Dedekind rings

Lemma 13.1. LetR be an integrally closed integral domain andT ⊆ R a multiplicatively closed
subset containing1. ThenT−1R is integrally closed.

Proof. Let K be the field of fractions ofR, it is also the field of fractions ofT−1R. Let ab ∈ K

be integral overT−1R. Then (after choosing a common demoninator of the coefficients) there is an
equation of the form:

0 =
(a
b

)n
+
cn−1

t

(a
b

)n−1
+
cn−2

t

(a
b

)n−2
+ · · · + c1

t

a

b
+
c0
t

with c0, c1, . . . , cn−1 ∈ R andt ∈ T . Multiplying through withtn we obtain:

0 =
(at
b

)n
+ cn−1

(at
b

)n−1
+ cn−2t

(at
b

)n−2
+ · · · + c1t

n−2at

b
+ c0t

n−1,

showing thattab is integral overR. As R is integrally closed, it follows thattab is in R, whence
a
b ∈ T−1R.

Corollary 13.2. LetR be an integral domain with field of fractionsK andT ⊆ R a multiplicatively

closed subset containing1. Let R̃ be the integral closure ofR in K and let T̃−1R be the integral
closure ofT−1R in K.

ThenT−1R̃ = T̃−1R.
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Proof. By Lemma 13.1,T−1R̃ is integrally closed. As̃R/R is an integral ring extension, by Lem-
ma 12.5 it follows thatT−1R̃/T−1R is an integral ring extension. This shows thatT−1R̃ is the
integral closure ofT−1R.

Now we can prove the local characterisation of integrally closed integral domains.

Proposition 13.3. LetR be an integral domain. Then the following statements are equivalent:

(i) R is integrally closed.

(ii) Rp is integrally closed for all prime idealsp �R.

(iii) Rm is integrally closed for all maximal idealsm �R.

Proof. ‘(i) ⇒ (ii)’: Lemma 13.1.
‘(ii) ⇒ (iii)’: Trivial because every maximal ideal is prime.
‘(iii) ⇒ (i)’: Let us denote byR̃ the integral closure ofR. By Corollary 13.2, we know that the

localisationR̃m of R̃ atm is the integral closure ofRm.
Let ι : R →֒ R̃ the natural embedding. Of course,R is integrally closed if and only ifι is an

isomorphism. By Proposition 10.11 this is the case if and only if the localisationιm : Rm →֒ R̃m is
an isomorphism for all maximal idealsm. That is, however, the case by assumption and the previous
discussion.

Lemma 13.4. LetR be a Noetherian local ring andm �R its maximal ideal.

(a) mn/mn+1 is anR/m-vector space for the natural operation.

(b) dimR/m(m/m2) is the minimal number of generators of the idealm.

(c) If dimR/m(m/m2) = 1, thenm is a principal ideal and there are no idealsa � R such that
mn+1 ( a ( mn for anyn ∈ N.

Proof. Exercise on Sheet 12.

Definition 13.5. A Noetherian local ring with maximal idealm is calledregularif dimR/m(m/m2)

equals the Krull dimension ofR.

Proposition 13.6. LetR be a regular local ring of Krull dimension1.

(a) There isx ∈ R such that all non-zero ideals are of the form(xn) for somen ∈ N.

(b) Every non-zeror ∈ R can be uniquely written asuxn with u ∈ R× andn ∈ N.

(c) R is a principal ideal domain (in particular, it is an integral domain).

Proof. By Lemma 13.4 we know thatm is a principal ideal. Letx be a generator, i.e.(x) = m. We
also know that there are no idealsa �R such thatmn+1 ( a ( mn for anyn ∈ N.

Let 0 6= r ∈ R. We show thatr = uxn with uniqueu ∈ R× andn ∈ N. In order to do so,
we first considerM :=

⋂
n∈N

mn. We obviously havemM = M , whence by Nakayama’s Lemmma
(Proposition 9.13)M = 0.
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As r 6= 0, there is a maximaln such thatr ∈ (xn). So, we can writer = vxn for somev ∈ R.
AsR is a local ring, we haveR = R× ∪ m = R× ∪ (x). Consequently,v ∈ R× because otherwise
r ∈ (xn+1), contradicting the maximality ofn.

Let 0 6= a � R be any non-zero ideal. Letuixni (with ui ∈ R×) be generators of the ideal. Put
n := mini ni. Thena = (xn) because all other generators are multiples ofujx

nj , wherej is such
thatnj = n.

None of the idealsmn for n ≥ 2 is a prime ideal (considerx · xn−1). As the Krull dimension is1,
it follows that(0) is a (hence, the) minimal prime ideal, showing thatR is an integral domain.

Our next aim is to prove that regular local rings of Krull dimension1 are precisely the local
principal ideal domains and also the local integrally closed integral domains.

The following lemma is proved very similarly to Nakayama’s Lemma (which was an exercise).

Lemma 13.7.LetR be a ring,a�R an ideal andM a finitely generatedR-module. Letϕ : M →M

be anR-homomorphism such that the imageϕ(M) is contained inaM .
Then there aren ∈ N anda0, a1, . . . , an−1 ∈ a such that

ϕn + an−1ϕ
n−1 + an−2ϕ

n−2 + . . . a1ϕ+ a0id

is the zero-endomorphism onM .

Proof. Let x1, . . . , xn be generators ofM asR-module. By assumption there areai,j ∈ a for 1 ≤
i, j ≤ n such that

ϕ(xi) =
n∑

j=1

ai,jxj .

Consider the matrix

D(T ) := T · idn×n − (ai,j)1≤i,j≤n ∈ Matn(R[T ]).

Note thatD(T ) is made precisely in such a way thatD(ϕ)(xi) = 0 for all 1 ≤ i ≤ n. This means
thatD(ϕ) is the zero-endomorphism onM (as it is zero on all generators). We multiply with the
adjoint matrixD(T )∗ and obtainD(T )∗D(T ) = det(D(T ))idn×n. Consequently,det(D(ϕ)) is
the zero-endomorphism onM . We are done because the determinantdet(D(ϕ)) is of the desired
form.

Lemma 13.8. Let R be a local Noetherian integral domain of Krull dimension1 with maximal
idealm. Let(0) ( I �R be an ideal. Then there isn ∈ N such thatmn ⊆ I.

Proof. Exercise on Sheet 12.

Proposition 13.9. LetR be a local Noetherian ring of Krull dimension1. Then the following state-
ments are equivalent:

(i) R is an integrally closed integral domain.

(ii) R is regular.
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(iii) R is a principal ideal domain.

Proof. ‘(ii) ⇒ (iii)’: This was proved in Proposition 13.6.
‘(iii) ⇒ (i)’: Principal ideal domains are factorial (Proposition 2.12) and factorial rings are inte-

grally closed (Proposition 4.12).
‘(i) ⇒ (i)’: It suffices to show thatm is a principal ideal because this means thatdimR/m(m/m2) =

1, which is the Krull dimension ofR, so thatR is regular by definition.
We now construct an elementx such thatm = (x). To that aim, we start with any0 6= a ∈ m.

By Lemma 13.8 there isn ∈ N such thatmn ⊆ (a) andmn−1 6⊆ (a). Take anyb ∈ mn−1 \ (a). Put
x = a

b ∈ K, whereK is the field of fractions ofR.
We show thatm = (x), as follows:

• m
x ∈ R for all m ∈ m becausemx = mb

a andmb ∈ mmn−1 = mn ⊆ (a).

• x−1 6∈ R because otherwiser = x−1 = b
a ∈ R would imply b = ra ∈ (a).

• x−1m 6⊆ m because of the following: Assume the contrary, i.e.x−1m = m. Then we have the

R-homomorphismϕ : m
m7→mx−1

−−−−−−→ m. As m is finitely generated (becauseR is Noetherian),
there area0, a1, . . . , an−1 ∈ R such that

ϕn + an−1ϕ
n−1 + an−2ϕ

n−2 + . . . a1ϕ+ a0id

is the zero-endomorphism onm by Lemma 13.7 (witha = R). This means that

0 =
(
x−n + an−1x

−(n−1) + an−2x
−(n−2) + . . . a1x

−1 + a0

)
m.

AsR is an integral domain, we obtain

0 = x−n + an−1x
−(n−1) + an−2x

−(n−2) + . . . a1x
−1 + a0,

showing thatx−1 is integral overR. As R is integrally closed, we obtain furtherx−1 ∈ R,
which we excluded before.

So,x−1m is an ideal ofR which is not contained inm. Thus,x−1m = R, whencem = Rx = (x), as
was to be shown.

Definition 13.10. A Noetherian integrally closed integral domain of Krull dimension1 is called a
Dedekind ring.

Example 13.11.LetK/Q be a number field andZK its ring of integers. We have proved thatZK
is an integrally closed integral domain and that its Krull dimension is1. So,ZK is a Dedekind ring
because it is also Noetherian (this is not so difficult, but needs some terminology that we have not
introduced; we will show this in the beginning of the lecture on Algebraic Number Theory).

In a lecture on Algebraic Number Theory (e.g. next term) one sees thatDedekind rings have
the property that every non-zero ideal is a product of prime ideals in a unique way. This replaces
the unique factorisation in prime elements, which holds in a factorial ring, but, fails to hold more
generally, as we have seen.

Below we shall provide further examples of Dedekind rings coming from geometry.
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We can now conclude from our previous work the following local characterisation of Dedekind
rings.

Proposition 13.12.LetR be a Noetherian integral domain of Krull dimension1. Then the following
assertions are equivalent:

(i) R is a Dedekind ring.

(ii) R is integrally closed.

(iii) Rm is integrally closed for all maximal idealsm �R.

(iv) Rm is regular for all maximal idealsm �R.

(v) Rm is a principal ideal domain for all maximal idealsm �R.

Proof. All statements have been proved earlier! But, note that the Krull dimension ofRm is 1 for all
maximal idealsm. That is due to the fact that any non-zero prime ideal in an integral domain of Krull
dimension1 is maximal and thatmRm is also maximal and non-zero.

Let us now see what this means for plane curves. Letf(X,Y ) ∈ K[X,Y ]. Recall the Taylor
expansion:

TC,(a,b)(X,Y ) =

∂f

∂X
|(a,b)(X − a) +

∂f

∂Y
|(a,b)(Y − b) + terms of higher degree in(X − a) and(Y − b).

Definition 13.13. LetK be a field,f ∈ K[X,Y ] a non-constant irreducible polynomial andC =

V(f)(K) the associated plane curve.
Let (a, b) ∈ C be a point. Thetangent equation toC at (a, b) is defined as

TC,(a,b)(X,Y ) =
∂f

∂X
|(a,b)(X − a) +

∂f

∂Y
|(a,b)(Y − b) ∈ K[X,Y ].

If TC,(a,b)(X,Y ) is the zero polynomial, then we call(a, b) a singular point ofC.
If (a, b) is non-singular (also called:smooth), thenVTC,(a,b)

(K) is a line (instead ofA2(K)),
called thetangent line toC at (a, b).

A curve all of whose points are non-singular is callednon-singular (or smooth).

Example 13.14.(a) Letf(X,Y ) = Y 2 −X3 ∈ K[X,Y ] withK a field (say, of characteristic0).

We have∂f∂X = −3X2 and ∂f
∂X = 2Y . Hence,(0, 0) is a singularity and it is the only one. (Draw

a sketch.)

This kind of singularity is called acusp(Spitze/pointe) for obvious reasons. The tangents to the
two branches coincide at the cusp.

(b) Letf(X,Y ) = Y 2 −X3 −X2 ∈ K[X,Y ] withK a field (say, of characteristic0).

We have∂f∂X = −3X2 − 2X and ∂f
∂X = 2Y . Hence,(0, 0) is a singularity and it is the only one.

(Draw a sketch.)

This kind of singularity is called anordinary double point. The tangents to the two branches are
distinct at the ordinary double point.
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Lemma 13.15.LetK be a field,S ⊆ K[X1, . . . , Xn] be a subset,X = VS(K) theK-points of the
associated affine algebraic set. Let(a1, . . . , an) ∈ X be aK-point.

The kernel of theK-algebra homomorphism

Φ(a1,...,an) : K[X ] = K[X1, . . . , Xn]/IX → K, g(X1, . . . , Xn) + (f) 7→ g(a1, . . . , an)

is equal to(X1 − a1, . . . , Xn − an).

Proof. By a variable transformationYi := Xi − ai (formally, we take theK-algebra isomorphism

K[Y1, . . . , Yn]
Yi 7→Xi+ai−−−−−−−→ K[X1, . . . , Xn]), we may assume that0 = a1 = a2 = · · · = an. The

ideal(X1, X2, . . . , Xn) is clearly maximal because the quotient by it isK. As (X1, X2, . . . , Xn) ⊆
ker(Φ(0,...,0)) it follows that the two are equal (asΦ(0,...,0) is not the zero-map – look at constants).

Lemma 13.16.LetK be an algebraically closed field,f ∈ K[X,Y ] a non-constant irreducible poly-
nomial,C = V(f)(K) the associated plane curve andK[C] = K[X,Y ]/(f(X,Y )) the coordinate
ring. Let (a, b) ∈ C be a point andm = (X − a+ (f), Y − b + (f)) �K[C] be the corresponding
maximal ideal (see Lemma 13.15).

Then the following two statements are equivalent:

(i) The point(a, b) is non-singular.

(ii) K[C]m is a regular local ring of Krull dimension1.

Proof. After a variable transformation (as in the previous lemma) we may assume(a, b) = (0, 0).
Then

f(X,Y ) = αX + βY + higher terms.

Note thatm2 is generated byX2 + (f), Y 2 + (f), XY + (f), so that theK = K[C]/m-vector space
m/m2 is generated byX + (f) andY + (f). Hence, the minimal number of generators is at most2,
but could be1.

Note also thatK[C] has Krull dimension1 and is an integral domain becausef is irreducible (see
Corollary 12.14). Asm is not the zero ideal, also the localisationK[C]m has Krull dimension1.

‘(i) ⇒ (ii)’: We assume that(0, 0) is not a singular point. Thenα 6= 0 or β 6= 0. After possibly
exchangingX andY we may, without loss of generality, assumeα 6= 0. It follows:

X =
1

α

(
f(X,Y ) − βY − higher terms

)
≡ β

α
Y (mod m2).

So,X + (f) generatesm/m2 asK-vector space, whence the dimension of this space is1, which is
equal to the Krull dimension. This shows thatK[C]m is regular.

‘(ii) ⇒ (i)’: We now assume that(0, 0) is a singular point. Thenα = β = 0. So,X + (f) and
Y + (f) areK-linearly independent inm/m2, whence theK-dimension ofm/m2 is bigger than the
Krull dimension, showing thatK[C]m is not regular.

We now get another important occurence of Dedekind rings: As coordinate rings of non-singular
plane curves.



14 HILBERT’S NULLSTELLENSATZ 67

Proposition 13.17.LetK be an algebraically closed field,f ∈ K[X,Y ] a non-constant irreducible
polynomial,C = V(f)(K) the associated plane curve andK[C] = K[X,Y ]/(f(X,Y )) the coordi-
nate ring.

Then the following two statements are equivalent:

(i) The curveC is smooth.

(ii) K[C] is a Dedekind ring.

14 Hilbert’s Nullstellensatz

Proposition 14.1(Hilbert’s Nullstellensatz – weak form). LetK be a field anda �K[X1, . . . , Xn] a
proper ideal. ThenVa(K) 6= ∅, whereK is an algebraic closure ofK.

This will be proved as a consequence of the Proposition.

Proposition 14.2 (Field theoretic weak Nullstellensatz). Let K be a field,L/K a field extension
anda1, . . . , an ∈ L elements such thatL = K[a1, . . . , an] (that is, theK-algebra homomorphism

K[X1, . . . , Xn]
Xi 7→ai−−−−→ L is surjective).

ThenL/K is finite and algebraic.

Lemma 14.3. The statements of Proposition 14.1 and 14.2 are equivalent.

Proof. ‘14.2 ⇒ 14.1’: Let m � K[X1, . . . , Xn] be a maximal ideal containinga. ThenL :=

K[X1, . . . , Xn]/m is a field extension (we factored out a maximal ideal) ofK, which is, of course, the
image of a surjectiveK-algebra homomorphismπ : K[X1, . . . , Xn] → L (the natural projection!).
By the statement of 14.2 it follows thatL/K is a finite algebraic extension, hence,L = K because
K is algebraically closed. Writingai := π(Xi), it follows thatai ∈ K for i = 1, . . . , n. Hence,
(X1 − a1, . . . , Xn− an) ⊆ ker(π) = m. Due to the maximality of the ideal(X1 − a1, . . . , Xn− an),
it follows thata ⊆ m = (X1−a1, . . . , Xn−an). Consequently,Va(K) ⊇ Vm(K) = {(a1, . . . , an)}.

‘14.1 ⇒ 14.2’: Consider aK-algebra surjectionφ : K[X1, . . . , Xn]
Xi 7→ai−−−−→ L. Its kernel

m := ker(φ) is a maximal ideal, sinceL is a field. By the statement of 14.1, we haveVm(K) 6= ∅.
Let (b1, . . . , bn) be an element ofVm(K), which gives rise to theK-algebra homomorphismψ :

K[X1, . . . , Xn]
Xi 7→bi−−−−→ K. Note thatm is contained in the kernel ofψ (we havef(b1, . . . , bn) = 0

for all f ∈ m), whence they are equal. Consequently,K ⊆ L ⊆ K, and we conclude thatL/K is
algebraic. It is finite because it is generated by finitely many algebraic elements.

Next we are going to prove Proposition 14.2, which by the virtue of Lemma 14.3automatically
proves Proposition 14.1, too.

Proof of Proposition 14.2.Let L = K[a1, . . . , an]. It is an affineK-algebra which is a field (and
hence an integral domain). So, we may apply Noether normalisation Proposition 12.12. We obtain
elementsy1, . . . , yr ∈ L such thatL/K[y1, . . . , yr] is an integral extension andK[y1, . . . , yr] is
isomorphic to a polynomial ring inr variables. This means, in particular, that there are no relations
between theyi.
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Assumer ≥ 1. Theny−1
1 ∈ L and hence integral overK[y1, . . . , yr], so that it satisfies a monic

equation of the form

y−n1 + fn−1(y1, . . . , yr)y
−n+1
1 + · · · + f0(y1, . . . , yr) = 0,

wherefi(y1, . . . , yr) ∈ K[y1, . . . , yr]. Multiplying through withyn we get

1 + fn−1(y1, . . . , yr)y1 + · · · + f0(y1, . . . , yr)y
n
1 = 0,

i.e. a non-trivial relation between theyi. Conclusion:r = 0.
Hence,L/K is integral and hence algebraic. It is a finite field extension because it is generated

by finitely many algebraic elements.

Lemma 14.4.LetK be an algebraically closed field anda�K[X1, . . . , Xn] a proper ideal. Then the
maximal idealsm �K[X1, . . . , Xn] which containa are (X1 − a1, . . . , Xn− an) for (a1, . . . , an) ∈
Va(K).

Proof. We first determine what maximal ideals look like in general. Any ideal of the form (X1 −
a1, . . . , Xn − an) is clearly maximal (factoring it out givesK). Conversely, ifm � K[X1, . . . , Xn]

is maximal then the quotientK[X1, . . . , Xn]/m is a finite algebraic field extension ofK by Proposi-
tion 14.2, hence, equal toK becauseK is algebraically closed. Consequently, denotingai := π(Xi)

for i = 1, . . . , n with π : K[X1, . . . , Xn]
natural projection−−−−−−−−−−→ K[X1, . . . , Xn]/m ∼= K, we find (special

case of Lemma 13.15) thatm = (X1 − a1, . . . , Xn − an).
Now we prove the assertion. Letm = (X1 −a1, . . . , Xn−an), so that{(a1, . . . , an)} = Vm(K).

We have:

a ⊆ m ⇔ {(a1, . . . , an)} = Vm(K) ⊆ Va(K) ⇔ (a1, . . . , an) ∈ Va(K).

The direction⇒ is trivial. To see the other one, note thatf(a1, . . . , an) = 0 for f ∈ a impliesf ∈ m,

asm is the kernel ofK[X1, . . . , Xn]
Xi 7→ai−−−−→ K.

Definition 14.5. LetR be a ring anda �R and ideal. Theradical (ideal) ofa is defined as

√
a := {r ∈ R | ∃n ∈ N : rn ∈ a}.

An ideala is called aradical idealif a =
√

a.
TheJacobson radical ofa is defined as

J(a) =
⋃

a⊆m�R maximal

m,

i.e. the intersection of all maximal ideals ofR containinga (recall the definition of the Jacobson
radical of a ring: intersection of all maximal ideals; it is equal toJ(0)).

Lemma 14.6. LetK be a field anda �K[X1, . . . , Xn] an ideal.
ThenVa(L) = V√

a(L) for all field extensionsL/K.
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Proof. The inclusion⊇ is trivial because ofa ⊆ √
a. Let now (a1, . . . , an) ∈ Va(L), that is,

f(a1, . . . , an) = 0 for all f ∈ a. Let now g ∈ √
a. Then there ism ∈ N such thatgm ∈ a,

so thatg(a1, . . . , an)
m = 0. Since we are in an integral domain, this impliesg(a1, . . . , an) = 0,

showing the inclusion⊆.

Proposition 14.7(General Hilbert’s Nullstellensatz). LetK be a field,R an affineK-algebra,a �R

an ideal. Then
√

a = J(a).

Proof. ‘⊆’: Let m � R be any maximal ideal containinga. Let f ∈ √
a. Then there ism ∈ N such

thatfm ∈ √
a ⊆ m. The prime ideal property ofm now gives thatf ∈ m. This implies

√
a ⊆ m.

‘⊇’: Let f ∈ R \ √a. We want to showf 6∈ J(a).
Fromf 6∈ √

a it follows thatfn 6∈ a for all n ∈ N. So, the setS{fn | n ∈ N} ⊆ R/a =: R is
multiplicatively closed and does not contain0 (the zero ofR = R/a, of course). We writef for the
classf + a ∈ R. It is a unit inS−1R because we are allowingf in the denominator.

Let q be a maximal ideal ofS−1R. As f is a unit,f 6∈ q. AsR is an affineK-algebra, so is the
fieldS−1R/q =: L (we modded out by a maximal ideal). Proposition 14.2 yields thatL/K is a finite
field extension.

Note that the ringR/(R ∩ q) containsK and lies inL. Due to the finiteness ofL/K, this ring is
itself a field, so thatR ∩ q is a maximal ideal ofR.

Recall thatf 6∈ q, sof does not lie in the maximal idealR ∩ q.
Setq := π−1(q) with the natural projectionπ : R ։ R = R/a. It is a maximal ideal containinga,

butf 6∈ q. Consequently,f 6∈ J(a).

Proposition 14.8(Hilbert’s Nullstellensatz). LetK be an algebraically closed field and consider an
ideala �K[X1, . . . , Xn].

ThenIVa(K) =
√

a.
In particular, takingVa(K), the radical ideals ofK[X1, . . . , Xn] are in bijection with the affine

algebraic sets inAn(K).

Proof. ‘⊇’: By Lemmata 5.11 and 14.6 we have
√

a ⊆ IV√
a(K) = IVa(K).

‘⊆’: Let m be a maximal ideal ofK[X1, . . . , Xn] containinga. By Lemma 14.4 we knowm =

(X1 − a1, . . . , Xn − an) for some(a1, . . . , an) ∈ Va(K). Let f ∈ IVa(K). Thenf(a1, . . . , an) = 0

so thatf ∈ m, asm is the kernel ofK[X1, . . . , Xn]
Xi 7→ai−−−−→ K. This showsIVa(K) ⊆ m, and, hence,

IVa(K) ⊆ J(a). By Proposition 14.7 we thus getIVa(K) ⊆
√

a, as was to be shown.
The final statement follows like this:

X = Va(K) 7→ IVa(K) =
√

a 7→ V√
a(K) = Va(K) = X

and
a =

√
a 7→ Va(K) 7→ IVa(K) =

√
a.

This shows the correspondence.
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