
Exercises in Commutative Algebra

Winter Term 2011/2012

Université du Luxembourg

Prof. Dr. Gabor Wiese

Sheet 6

24/10/2011

1. Let K be a field and $n \in \mathbb{N}$. Show the following statements:

- (a) Let $\mathcal{X} \subseteq \mathcal{Y} \subseteq \mathbb{A}^n(K)$ be subsets. Then $\mathcal{I}_{\mathcal{X}} \supseteq \mathcal{I}_{\mathcal{Y}}$.
- (b) $\mathcal{I}_{\emptyset} = K[\underline{X}]$.
- (c) If K has infinitely many elements, then $\mathcal{I}_{\mathbb{A}^n(K)} = (0)$.
- (d) Let $S \subseteq K[\underline{X}]$ be a subset. Then $\mathcal{I}_{\mathcal{V}_S(K)} \supseteq S$.
- (e) Let $\mathcal{X} \subseteq \mathbb{A}^n(K)$ be a subset. Then $\mathcal{V}_{\mathcal{I}_{\mathcal{X}}}(K) \supseteq \mathcal{X}$.
- (f) Let $S \subseteq K[\underline{X}]$ be a subset. Then $\mathcal{V}_{\mathcal{I}_{\mathcal{V}_S(K)}}(K) = \mathcal{V}_S(K)$.
- (g) Let $\mathcal{X} \subseteq \mathbb{A}^n(K)$ be a subset. Then $\mathcal{I}_{\mathcal{V}_{\mathcal{I}_{\mathcal{X}}}(K)} = \mathcal{I}_{\mathcal{X}}$.

2. Let $(\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ be a topological space and $\mathcal{Y} \subseteq \mathcal{X}$ be a subset. Define $\mathcal{O}_{\mathcal{Y}} := \{U \cap \mathcal{Y} \mid U \in \mathcal{O}_{\mathcal{X}}\}$.

Show that $\mathcal{O}_{\mathcal{Y}}$ is a topology on \mathcal{Y} . It is called the *relative topology* or the *subset topology*.

3. Let K be a field. Show that the closed subsets of $\mathbb{A}^1(K)$ are \emptyset , $\mathbb{A}^1(K)$ and finite sets of points.

4. Let K be a field, $n \in \mathbb{N}$ and $\mathcal{X} \subseteq \mathbb{A}^n(K)$ a subset.

With $f \in K[X_1, \dots, X_n]$ associate (as in the lecture) the map

$$\varphi : \mathcal{X} \rightarrow \mathbb{A}^1(K), \quad \underline{x} \mapsto f(\underline{x}).$$

Show that φ is a continuous map, when we consider \mathcal{X} with the relative topology from $\mathbb{A}^n(K)$. Of course, $\mathbb{A}^n(K)$ and $\mathbb{A}^1(K)$ are equipped with the Zariski topology.

[By definition a map between topological spaces is continuous if the preimage of any open set is an open set.]

Hint: Use the previous exercise.]

5. Let R be a ring.

- (a) *Homomorphism theorem for modules.* Let M and N be R -modules and $\varphi : M \rightarrow N$ an R -homomorphism. Prove that the map

$$M/\ker(\varphi) \rightarrow \text{im}(N), \quad m + \ker(\varphi) \mapsto \varphi(m)$$

is a well defined R -isomorphism.

If you have done Exercise 4 on Sheet 3, you can skip this exercise, as the proof is exactly the same.

- (b) *Isomorphism theorems.* Let M be an R -module and let N_1 and N_2 be R -submodules of M . Conclude from (a) that there are the R -isomorphisms

$$(M/N_1)/(N_2/N_1) \cong M/N_2 \quad (\text{assuming here also } N_1 \subseteq N_2)$$

and

$$(N_1 + N_2)/N_1 \cong N_2/(N_1 \cap N_2).$$