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Chapter 1

Setting the problem

In the following p will always be a prime number and q a power of p.

Definition 1.1. Let K be a field and let E1 and E2 be two elliptic curves over K.
We say that E1 and E2 are isogenous if there exists a non-trivial algebraic group
homomorphism φ : E1 → E2. We say that this φ is an isogeny.

Definition 1.2. If φ is an isogeny the degree of the φ is defined as deg(φ) :=
# ker(φ).

Theorem 1.3. (Tate) Let E1 and E2 be two elliptic curves over Fq.

E1 and E2 are isogenous ⇔ |E1| = |E2|.

Question: If we conider two isogenous elliptic curves, is there any difference in
security? Is any difference in the DLP?

Answer: No. (Assuming GRH and that the curves have the same endomorphism
ring over F̄q).

The requirement for the curves to have the same endomorphism ring is technical.
All known polynomial time techniques for constructing equal order curves produce
only curves with nearly equal endomorphism ring.

Question: Can we extend this result for curves of genus 2?

Answer: Hopefully we can.

Question: Can we extend this result for curves of genus 3?
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Answer: No.

There are two classes of curves of genus 3: hyperelliptic and non-hyperlleptic. A
hyperelliptic curve cannot be isomorphic to a non-hyperlleptic.

- Gaudry, Thomé, Thériault and Diem showed that the DLP in Jacobians of
hyperelliptic curves of genus 3 over Fq may be solved in Õ(q4/3) group operations.

- Diem’s index calculus algorithm can solve the DLP in Jacobians of non-
hyperelliptic curves of genus 3 over Fq in Õ(q) group operations.

As a result, the security of non-hyperelliptic curves of genus 3 is considered to be
lower than that of hyperelliptic. In order to extend the work for elliptic curves to
curves with genus 3 is better to restrict ourselves in hyperlliptic curves.

Definition 1.4. An order O in a field K is a subset of K s.t.

(i) O is a subring of K containing 1,

(ii) O is a finitely generated Z-module,

(iii) O contains a Q-basis of K.

Remark 1.5. We call OK the maximal order of K, since it contains any order
of K. The index f = [OK : O] is called the conductor of the order O. The

discriminant D of O is equal to D := f2dK , where dK is the discriminant of K.

Remark 1.6. Let O be an order in a quadratic field K.

O = Z + fOK .

Definition 1.7. Let E be an elliptic curve over Fq. An endomorphism of E is an
isogeny E → E.

We define End (E) = {η : E → E | η endomorphism} ∪ {0} to be the ring of
endomorphisms of E.

Theorem 1.8. (Deuring, 1941) End (E) is isomorphic to an order to the quater-
nion algebra or to an order in an imaginary quadrartic field. In the first case we
say E is supersingular and in the second case we say E is ordinary.

Let SN,q be the set of all elliptic curves over Fq, up to isomorphism, that have
order N over Fq.

Two elliptic curves E1 and E2 defined over Fq are said to belong in the same
isomorphism class if E1, E2 ∈ SN,q for some N .
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Curves in the same isomorphism class are either all supersingular or all ordinary.
Let E1, E2 ∈ SN,q. We say that E1 and E2 have the same level if End (E1) =
End (E2).

In the following we’ll prove the following:

Corollary 1.9. (Assuming GRH) The DLP on elliptic curves is random reducible
in the following sense: Given any algorithm A that solves DLP on some fixed
positive proportion of curves in a fixed level, then DLP can probabilistically solved
on any given curve in the same level with polylog (q) expected queries to A with
random inputs.

Method to prove the corollary: Use elements of graph theory. Introduce the
”isogeny graph” and do random walks on it.

DL[E]

isogeny graph
with short edges

ideal class graph
with small norms

λ ≤ O(kβ), β < 1
k-regular graph

how costly is one step?
O(l3) locally

how many steps?
polylog(q) steps

whole cost

DL[E’]

Graph theory

random walk

Figure 1.1: Sketch of proof
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Chapter 2

Isogenies of CM curves

Definition 2.1. Let E an elliptic curve defined over Fq and K the field containing
End (E). The field K is called the CM field of E we write cE of the conductor of
End (E) and cπ for the conductor of Z[π].

From now on, we assume that we are in the ordinary case.

The following theorem describes the structure of elliptic curves within an isogeny
class from the point of view of their endomorphism ring.

Theorem 2.2. Let E1 and E2 be ordinary isogenous elliptic curves defined over
Fq. Let K denote the imaginary quadratic field containing End (E1) and OK its
maximal order.

1. Z[π] ⊆ End (E1),End (E2) ⊆ OK.

2. End (E2) ⊂ K

3. The following are equivalent:

(a) End (E1) = End (E2),

(b) ∃φ, ψ : E1 → E2 isogenies over Fq of relatively prime degree,

(c) [OK : End (E1)] = [OK : End (E2)] (i.e. cE1 = cE2),

(d) [End (E1) : Z[π]] = [End (E2) : Z[π]].

4. Let φ : E1 → E2 be an isogeny of prime degree l, defined over Fq. Then
End (E1) ⊆ End (E2) or End (E2) ⊆ End (E1), and the index of the smaller
in the larger divides l.

7



8

5. Let l prime that divides exactly one of cE1 and cE2. Then, for every isogeny
φ : E1 → E2 defined over Fq we have that l | |φ|.

Let E be an ordinary elliptic curve defined over Fq. Let π be the Frobenius
endomorphism relative to Fq. The following are equivalent:

1. Q ⊂ End (E) ⊂ C.

2. E[pr] ∼= Z/prZ,∀r > 0.

3. The dual of the Frobenius endomorphism is separable.

4. (Tr (π), q) = 1.

For the following we denote: O = End (E),O′ = End (E′),Ol = O ⊗ Zl and
Z[π]l = Z[π]⊗ Zl.

Proposition 2.3. Let E be an ordinary elliptic curve defined over Fq with endo-
morphism ring O of discriminant D. Let l be a prime, and let (D

l ) be the Legendre
symbol.

1. Ol maximal ⇒ ∃(D
l ) + 1 isogenies of degree l to curves with endomorphism

ring isomorphic to O.

2. Ol nonmaximal ⇒6 ∃ isogenies of degree l with endomorphism ring O.

3. If there exist more than (D
l ) + 1 isogenies of degree l, up to isomorphism,

then all isogenies of degree l are defined over Fq, and up to isomorphism of
the pairs (E,E′) are exactly(

l − (
D

l
)
)

[O∗ : O′∗]−1

elliptic curves E′ and isogenies E → E′ of degree l s.t. O′ is properly
contained in O.

Proof. Proposition 23 of [Kohel].

Computing the endomorphism ring

We consider an elliptic curve E over a field K. Let cπ be the conductor of Z[π].

We know that
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OK = Z
[
π − α

cπ

]
,

where α is known.

We can compute the order of the curve in polynomial time (for example using
Schoof’s algorithm). We obtain the trace of Frobenius t by the formula t = q +
1−#E(Fq) and afterwards the discriminant t2− 4q. Since cπd2

K = t2− 4q, cπ can
be computed deterministically.

We remind that
cπ = cE [End (E) : Z[π]].

In the case that End(E) = OK (i.e. cE = 1) we are done. We can use a theorem
of Kohel to determine the isomorphic type of the endomorphism expicitly in every
case.

Theorem 2.4. There exists a deterministic algorithm that given an ellict curve
E over the field Fq, computes the isomorphism type of the endomorphism ring E.
If GRH holds, for any ε > 0 the algorithm runs in time O(q1/3+ε).

Proof. Theorem 24 of [Kohel].
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Chapter 3

Properties of isogenies of
elliptic curves

We say that an isogeny φ : E1 → E2 of prime degree l defined over Fq is

-”down” if [End (E1) : End (E2)] = l

-”up” if [End (E2) : End (E1)] = l

-”horizontal” if End (E1) = End (E2).

The following theorem classifies the number of degree l isogenies of each type:

Theorem 3.1. Let E be an ordinary elliptic curve over Fq, with endomorphism
ring End (E) of discriminant D. Let l be a prime different than p.

- Assume l 6 |cE. There are exactly 1 + (D
l ) horizontal isogenies E → E′ of

degree l.

a. l 6 |cπ ⇒ no other isogenies of degree l over Fq.

b. l|cπ ⇒ ∃l − (D
l ) down isogenies of degree l.

- Assume l|cE. There is one up isogeny of degree l.

a. l 6 | cπ
cE
⇒ no other isogenies of degree l over Fq.

b. l| cπ
cE
⇒ ∃l down isogenies of degree l.

Proof. Section 4.2 of [Kohel].
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Case Type Subcase Type
l 6 |cπ

l 6 |cE 1 + (D
l
) →

l|cπ l − (D
l
) ↓

l 6 | cπ

cE

l|cE 1 ↑
l| cπ

cE
l ↓

Table 3.1: Number and type of isogenies E → E ′ of degree l over Fq.

An isogeny graph is a graph whose nodes consist of all elements in SN,q belonging
to a fixed level.

Note that an horizontal isogeny always goes between two curves of the same level;
likewise, an up isogeny enlarges the size of the endomoprhism ring and a down
isogeny reduces its size.

Since there are fewer elliptic curves at higher levels than at lower levels, the col-
lection of isogeny graphs, under the level interpretation, as a ”pyramid” or a ”vol-
cano”, with up isogenies ascending the structure and down isogenies descending.

Definition 3.2. Let E1, E2 be two elliptic curves. We define two isogenies φ, φ′ :
E1 → E2 to be be equivalent if there exists an automorphism α ∈ Aut (E2) s.t.
φ′ = αφ.

Defining the isogeny graphs for small degree

Let now O to be the common endomorphism ring for all elliptic curves in a
SN,q for some fixed N and q.

We denote G the regular graph whose:
-vertices are elements in SN,q

-edges are equivalence classes of horizontal isogenies defined over Fq of prime
degree ≤ (log q)2+δ, for a fixed constant δ > 0.

Remark 3.3. 1. We choose this degree bound because it must be small enough
to permit isogenies to be computed, but large enough to allow the graph to
be connected and to have the rapid mixing properties we ’ll need later.

2. It is proven that a constant δ > 0 that satisfies all the requirements exists,
provided that we restrict the isogenies to a single level.
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By standard facts from Complex Multiplication Theory, each invertible ideal a ⊂ O
produces an elliptic curve C/a definied over the ring class field L of O. (Q ⊂ L ⊂
C).

The curve C/a has complex multiplication by O, and two different ideals yield
isomorphic curves if and only if they belong to the same ideal class.

Each invertible ideal b ⊂ O defines an isogeny C/a → C/ab−1, and the degree of
this isogeny is N(b).

Morover, it can be proved that for any prime ideal P in L lying over p, the
reductions mod P of the above elliptic curves and isogenies are defined over Fq,
and every elliptic curves and every horizontal isogeny in G arises in this way.

We conclude, that the isogeny graph G is isomorphic to the corresponging graph
H whose

-nodes are elliptic curves C/a with CM by O
-edges are complex analytic isogenies represented by ideals b ⊂ O of prime

norm ≤ (log q)2+δ, for a fixed constant δ > 0.

This isomorphism preserves the degrees of isogenies, in the sense that the degree
of any isogeny in G is equal to the norm of its corresponding ideal b in H.

We can now create one more isomorphic graph to the above. The graph H has an
alternate description as a Cayley graph H′ on the ideal class group Cl (O) of O.
Indeed,

- each node of H′ is an ideal class of O,
- two ideal classes [a1], [a2] are connected by an edge ⇔ exists prime ideal b

with N(b) ≤ (log q)2+δ s.t. [a1b] = [a2].

Therefore,

G−̃→H−̃→H′

Remark 3.4. For ordinary curves we have that

End (E1) = End (E2) ⇒ Aut (E1) = Aut (E2),∀E1,E2 ∈ SN,q.

Hence, the isogeny graph G is a symmetric graph and we can regard it as undirected.
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Chapter 4

Eigenvalues of adjacency
matrices of isogeny graphs

Let G = (V, E) be a finite graph with h vertices. We let G to be a k-regular graph,
i.e. exactly k edges meet at each vertice.

Given a labeling of the vertices V = {v1, ..., vh} the adjacency matrix of G is the
symmetric h× h matrix A = [Aij ], where Aij = #of vertices between vi and vj

We can identify functions on V with vectors in Rh and think of A as a self-adjoint
operation on L2(V). All the eigenvalues of A satisfy the bound |λ| ≤ k.

Constant vectors are eigenfunctions of A with eigenvalue k. This is called the
trivial eigenvalue.

A k-regular graph G is called a Ramanujan graph if all non-constant eigenvectors
have eigenvalues |λ| ≤ 2

√
k − 1 for any nontrivial eigenvalue which is not equal

−k (the latter happens if and only if the graph is bipartite).

A ”nearly Ramanujan” graph is a graph that all nontrivial eigenvalues of its ad-
jacency matrix satify O(kβ), β < 1.

Proposition 4.1. Let G be a k-regular graph on h vertices. Suppose that the
eigenvalue λ of any nonconstant eigenvector satisfies the bound |λ| ≤ c for some
c < k. Let S be any subset of the vertices of G, and x be any vertex in G. Then a
random walk of any length at least log 2h/|S|1/2

log k/c starting from x will land in S with

probability at least |S|
2h .

Proof. Proposition 3.1 of [JMV].
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If our isogeny graph is a k-regular graph, for some k, and has the properties of
”nearly Ramanujan” graph we can get our result from the last proposition.

Problem: The isogeny graph has O(
√
q) vertices and this makes it too large to

be stored.

Solution: We don’t consider all the isogenies. We compute the graph locally.

There is a way, given an elliptic curve E and a prime number l to efficiently
compute any curve E′ which is connected to E with an isogeny of degree l.

Step 1: We find the j-invariants of E′ be solving the modular polynomial relation
Φl(j(E), j(E′)) = 0. This can be done in O(l3) field operations.

Step 2: We obtain the isogenies themselves by using an algorithm of Foquet and
Morain.

Now we have to do a little work in the H graph. We recall that in this graph the
elliptic curves are represented by ideal classes in an order O of a quadratic field K.
We recall that these isogenies have prime degree ≤ m, where m = (log q)2+δ, δ > 0.

We recall that, the H graph has one node for each ideal class of O. So the total
number of nodes in the graph G is the ideal class number of O. We denote the
ideal class representatives with {α1, ..., αh}.

For the following we denote D = disc(O).

Proving that the non-trivial eigenvalues are properly bounded

The isomorphism between G and H implies that the generating function for degree
n isogenies between the vertices αi and αj of G is given by

∞∑
n=1

Mαi,αj (n)qn :=
1
e

∑
z∈α−1

i αj

qN(z)/N(α−1
i αj),

where e is the number of units in O (e = 2 for D > 4).

The righthand side sum depends only in the ideal class of the fractional ideal α−1
i αj

and in fact is a θ-series, which we can denote as θα−1
i αj

(q).

Hence, we have that

∞∑
n=1

Mαi,αj (n)qn =
1
e
θα−1

i αj
(q)

Theorem 4.2. The sum above is a holomorphic modular form of weight 1 for
Γ0(D) of SL(2,Z), of nebentype

(
D
.

)
.
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Proof. Theorem 10.9 of [Iwaniec].

We consider the simpler graph on V = {a1, ..., ah} whose edges represent isogenies
of degree exactly equal to n.

The adjacency matrix of this graph is the h× h matrix

M(n) =
[
Mαi,αj (n)

]
{1≤i,j≤h}

We can do diagonilization to these adjacency matrices for all n’s at once to get
the eigenvalues.

In order to do this we define the matrix

Aq =
∑
n≥1

M(n)qn,

for any value q < 1 (where the sum converges absolutely).

Hence, we have that

Aq =

∑
n≥1

Mαi,αj (n)qn

 =
[
1
e
θα−1

i αj
(q)

]
,

where 1 ≤ i, j ≤ h.

Let χ =

 χ(a1)
...

χ(ah)

 to be a character of Cl (O), then the i-th entry of the vector

Aqχ, computed by matrix multiplication is

(Aqχ)(αi) =
1
e

h∑
j=1

θα−1
i αj

(q)χ(αj),

i.e. (by reindexing αj 7→ αiαj)

(Aqχ)(αi) =
1
e

 h∑
j=1

χ(αj)θαj (q)

χ(αi).

i.e.
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(eAq)

 χ(a1)
...

χ(ah)

 =

 ∑
αj∈Cl (O)

χ(αj)θαj (q)


 χ(a1)

...
χ(ah)

 .
i.e.

(eAq)χ =

 ∑
αj∈Cl (O)

χ(αj)θαj (q)

χ.

Hence, χ is an eigenvector of the matrix eAq with eigenvalue equal to the sum of
θ-functions enclosed in parentheses (called the Hecke θ-function).

We denote
θχ(q) =

∑
αj∈Cl (O)

χ(αj)θαj (q).

The L-functions of these Hecke characters can be written as

L(s, χ) =
∑
a⊂K

χ(a)(Na)−s

By setting
an(χ) =

∑
a⊂K,Na=n

χ(a)

we can write

L(s, χ) =
∞∑

n=1

an(χ)n−s.

Claim: an(χ) is the eigenvalue of eM(n) for the eigenvector formed by the char-
acter χ as above.

Indeed,

Aqχ =
∑
n≥1

M(n)χqn

i.e.
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e∑
n≥1

M(n)χqn

 (ai) = θχ(q)(ai).

By isolating the coefficient of qn, we have that

eM(n)χ = an(χ)

Our isogeny graph is a superposition of the graphs M(n), where n is a prime
bounded by m = (log q)2+δ for some fixed δ > 0.

We recall that is graph is isomorph to a graph on the elliptic curves represented
by ideal classes in an order O of K = Q(

√
d), whose edges are isogenies of prime

degree ≤ m.

The characters χ of Cl (O) are the common eigenvalues of the adjacency matrices
{M(p) | p ≤ m} of these graphs. So their eigenvalues are

λχ =
1
e

∑
p≤m

ap(χ)

i.e.

λχ =
1
e

∑
p≤m

 ∑
a⊂K,Na=p

χ(a)

.
We have a bound for the eigenvalues if we assume the GRH.

Lemma 4.3. Let D < 0 and let O be the quadratic order with disc (O) = D. If χ
is a nontrivial character of Cl (O), then the GRH for L(s, χ) implies that the sum
is bounded by O(m1/2log |mD|) with an absolute implied constant.

Proof. Lemma 4.1 of [JMV]. The proof assumes the GRH for the L-functions. It
uses a result of Iwaniec to obtain the bound.

Proving that the isogeny graph is k-regular

To prove that the isogeny graph is k-regular for some k we consider the special
eigenvalue λtriv.

When χ is the trivial character λtriv equals the degree of the regular graph G.
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Since roughly half of rational primes p split in K, and those which do, split into
two ideals of norm p we have that

λtriv ∼
1
e
π(m) ∼ m

elogm
,

by the prime number theorem.

This eigenvalue is always the largest in absolute value, because |χ(a)| always equals
1 when χ is the trivial character.

Proving that the isogeny graphs are nearly Ramanujan graphs

We have to prove that λχ = O(λβ
triv), for some β < 1,∀ non-trivial eigenvalue.

There are only finitely many levels for q less than any given bound, so it suffices
to prove it for q large.

By Lemma 4.3 we have that λχ is bounded by O(m1/2log |mD|) with an absolute
implied constant. On the other hand |D| ≤ 4q, λtriv ∼ m

elog m ,m = (log q)2+δ, δ > 0.
These imply that

λχ = O(λβ
triv),

for any β > 1
2 + 1

δ+2 .

This proves that our graphs are nearly Ramanujan graphs.

Now we can state a theorem

Theorem 4.4. (Assuming GRH) Let E be an elliptic curve of order N over Fq.
There exists a polynomial P (x), independent of N and q, s.t. for m = P (log q)
the isogeny graph G on each level is a nearly Ramanujan graph and any random
walk on G will reach a subset of size h with probability at least h

2|G| after polylog (q)
steps.

Completing the proof of Theorem 4.4 and corollary 1.9

The last bound and Proposition 4.1 imply the random walk assertion of Theorem
4.4 and complete its proof.

The Theorem shows that a random walk from any fixed curve E, by using isogenies,
probabilistically reaches the proportion where the algorithm succeeds, in at most
polylog (q) steps. Since every step is a low degree isogeny, their composition can
be computed in polylog (q) steps. This provides the random polynomial time
reduction of DLOG along isogenous curves in the random walk, and hence from
E to a curve for which the algorithm succeds. This completes the proof for the
Corollary as well.


