The G&T seminar
Welcome to the webpage of the seminar of the Research Cluster in Geometry at the Mathematics Department of the University of Luxembourg.Organizers: Christian El Emam, Mingkun Liu, Nathaniel Sagman.
2022-2023
Next talk
-
Tuesday, 6 June 2023 -- 11 am, room TBAYan Mary He (University of Oklahoma)Title: Nielsen realization for some big mapping class groupsAbstract: In this talk, we show that most compactly supported big mapping class groups cannot be realized as a subgroup of the homeomorphism group. Time permitting, we will also prove the non-realizability of the mapping class group of the plane minus a Cantor set or the sphere minus a Cantor set. This is joint work with Lei Chen.
Future talks
-
Tuesday, 13 June 2023 -- 11 am, room TBAMartin Bobb (University of Michigan)Title: TBAAbstract: TBA
-
Monday, 19 June 2023 -- time TBA, room TBAJing Tao (University of Oklahoma)Title: TBAAbstract: TBA
-
Tuesday, 27 June 2023 -- 11 am, room TBAJeffrey Danciger (University of Texas at Austin)Title: TBAAbstract: TBA
-
Tuesday, 4 July 2023 -- 11 am, room TBAClara Aldana (Universidad del Norte)Title: TBAAbstract: TBA
Previous talks
-
Tuesday, 30 May 2023 -- 11 am, chalk room MNO 1st floorStefano Riolo (Università di Bologna)Title: Hyperbolic 4-manifolds of low volumeAbstract: There is a natural interest in hyperbolic manifolds of low volume, and this talk addresses dimension four. As opposite to dimension n = 3 where Thurston's hyperbolic Dehn filling holds, for n > 3 the volume spectrum is discrete, and there is at most a finite number of hyperbolic n-manifolds with bounded volume (Wang's finiteness). Computing the number of hyperbolic 4-manifolds of given small (even minimal) volume appears nowadays far from reach. Counting such manifolds up to commensurability seems less unrealistic, at least by restricting the count to arithmetic manifolds. We will give an overview of the known examples of low-volume hyperbolic 4-manifolds, with particular attention to the construction of some cusped manifolds by means of a remarkable family of polytopes discovered in 2010 by Kerckhoff and Storm. This will include some results obtained in joint works with Martelli and Slavich.
-
Tuesday, 16 May 2023 -- 11 am, MNO 1.030Christian El Emam (University of Luxembourg)Title: The holomorphic extension of Weil-Petersson metric to the Quasi-Fuchsian spaceAbstract: Quasi-Fuchsian representations extend the notion of Fuchsian representations in the character variety of PSL(2,C), and Bers theorem provides a milestone in understanding the space of these representations. In this talk, I will present a "metric" approach for quasi-Fuchsian space, which leads to a "metric" model of its holomorphic tangent bundle extending the usual metric model for the tangent bundle for the Teichmüller space (seen as the space of hyperbolic metrics up to isotopy). This formalism comes with some interesting applications. For instance, this allows giving an alternative proof of the existence of a unique holomorphic Riemannian metric on quasi-Fuchsian space extending the Weil-Petersson metric: moreover, this approach gives a new description of this metric, showing some connections with the renormalized volume and McMullen's reciprocity theorem. Time permitting, I will show how this approach can help understand what quadratic differentials arise as Schwarzian derivatives of Bers' projective structures.
-
Tuesday, 25 April 2023 -- 11 am, chalk room MNO 1st floorRichard Wentworth (University of Maryland)Title: Compactifications of Hitchin's moduli spaceAbstract: The moduli space of rank 2 Higgs bundles has two compactifications, one from the algebraic geometry of the C-star action, and another from the analytic "limiting configurations" of solutions to the Hitchin equations. In this talk, I will discuss how the nonabelian Hodge correspondence extends as a map between these compactifications. Somewhat surprisingly, the extension is not continuous.
-
Wednesday, 19 April 2023 -- 2:30 pm, chalk room MNO 1st floorAndrea Seppi (CNRS - Université Grenoble Alpes)Title: Maximal submanifolds in pseudo-hyperbolic space and applicationsAbstract: The Asymptotic Plateau Problem is the problem of existence of submanifolds of vanishing mean curvature with prescribed boundary “at infinity”. It has been studied in the hyperbolic space, in the Anti-de Sitter space, and in several other contexts. In this talk, I will present the solution of the APP for complete spacelike maximal p-dimensional submanifolds in the pseudo-hyperbolic space of signature (p,q). In the second part of the talk, I will discuss applications of this result in Teichmüller theory and for the study of Anosov representations. This is joint work with Graham Smith and Jérémy Toulisse.
-
Tuesday, 11 April 2023 -- 10 am, chalk room MNO 1st floorJacques Audibert (Sorbonne University)Title: Zariski-dense surface subgroups in latticesAbstract: Lattices are a well studied family of discrete subgroups of Lie groups. Recently, there have been a good deal of interest in constructing subgroups of lattices. When such subgroups are Zariski-dense and infinite index, they are called "thin". Although thin subgroups are not themselves lattices, they share many properties with them and have been an active field of research in the last decade. In this talk we will construct Zariski-dense surface groups in some lattices of split real Lie groups. The construction relies on special representations of surface groups in split real Lie groups, so called Hitchin representations. These are discrete and faithful representations of a surface group that form a whole connected component of the character variety. Our goal is to prove the existence of Zariski-dense Hitchin representations that have image in a lattice. To do so, we investigate arithmetic properties of lattices.
-
Tuesday, 28 March 2023 -- 11 am, chalk room MNO 1st floorAnna Roig Sanchis (Sorbonne University)Title: Random hyperbolic 3-manifoldsAbstract: We are interested in studying the behavior of geometric invariants of hyperbolic 3-manifolds, such as the length of their geodesics. A way to do so is by using probabilistic methods. That is, we consider a set of hyperbolic manifolds, put a probability measure on it, and ask what is the probability that a random manifold has a certain property. There are several models of construction of random manifolds. In this talk, I will explain one of the principal probabilistic models for 3 dimensions and I will present a result concerning the length spectrum - the multiset of lengths of all closed geodesics - of a 3-manifold constructed under this model.
-
Tuesday, 21 March 2023 -- 11 am, chalk room MNO 1st floorPeter Smillie (Heidelberg University)Title: Index of equivariant minimal surfaces in R^3 and symmetric spacesAbstract: In joint work with Nathaniel Sagman, we gave a lower bound for the index of any minimal surfaces in rank n symmetric spaces in terms of the equivariant index of a related minimal surface in R^n. In this talk, I will explain what I mean by equivariant index, and prove lower bounds for equivariant index for certain minimal surfaces in R^3. As a consequence, we'll conclude that the Labourie conjecture cannot hold for any Hitchin component with genus at least 2 and rank at least 3.
-
Tuesday, 7 March 2023 -- 11 am, MNO 1.030Francesco Bonsante (University of Pavia)Title: Circle packing on projective surfacesAbstract: Circle packings over the plane or the hyperbolic plane are widely investigated, and have been shown to be rich and interesting objects. Observing that the notion of disk in $\mathbb{C}P^1$ is invariant under projective transformations, Kojima, Mizushima and Tan proposed the study of circle packings on surfaces $S$ equipped with complex projective structures. The main observation is that the combinatoric of a circle packing is determined by a triangulation of the surface $S$, said the nerve of the triangulation. They proposed to fix a triangulation $T$ on a surface $S$ of genus $g>1$ and study the moduli space of pairs $(P,C)$, where $P$ is a projective structure on $S$ and $C$ is a circle packing with nerve equal to $T$. Indeed they showed that this moduli space can be identified to a real semialgebraic set of dimension equal to $6g-6$, where $g$ is the genus of $S$, and asked whether it is not singular and the forgetful map sending $(P,C)$ to $P$ is an embedding in the space of projective structures. Even more, they asked whether the map sending $(P,C)$ to the underlying Riemann surface $X(P)$ realises a homeomorphism. In the talk I will show that the moduli space is indeed a smooth manifold of dimension $6g-6$ and that the forgetful map $(P,C) \to P$ is an immersion. If time remains I will also illustrate some partial results on the injectivity of the map sending $(P,C)$ to $X(P)$. Results presented in the talk are part of a collaboration with Mike Wolf.
-
Tuesday, 28 February 2023 -- 11 am, room MNO 1.030Katie Vokes (University of Luxembourg)Title: Thickness and relative hyperbolicity for graphs of multicurvesAbstract: Various graphs associated to surfaces have proved to be important tools for studying the large scale geometry of mapping class groups of surfaces, among other applications. A seminal paper of Masur and Minsky proved that perhaps the most well known example, the curve graph, has the property of Gromov hyperbolicity, a powerful notion of negative curvature. However, this is not the case for every naturally defined graph associated to a surface. We will present joint work with Jacob Russell classifying a wide family of graphs associated to surfaces according to whether the graph is Gromov hyperbolic, relatively hyperbolic or not relatively hyperbolic.
-
Tuesday, 21 February 2023 -- 11 am, room MNO 1.030Davide Spriano (Oxford University)Title: Hyperbolic models for CAT(0) spacesAbstract: A very successful approach in geometric group theory is to construct "hyperbolic models" for interesting groups, namely a hyperbolic space on which a (non-hyperbolic) group acts in a nice enough way. The earliest example of this philosophy is the Bass-Serre, and other more recent examples include the curve graph for mapping class groups, contact graph for cubical groups, free factor/free splitting/cyclic splitting complex for $\mathrm{Out}(F_n)$ and so on.
-
Friday, 10 February 2023 -- 3 pm, room MNO 1.050Adele Jackson (Oxford University)Title: Triangulations of Seifert fibered spacesAbstract: If a 3-manifold has a non-trivial JSJ decomposition, the resulting pieces are either hyperbolic or Seifert fibered. When $M$ is a Seifert fibered manifold with boundary, I will describe a triangulation of $M$ that has at most a multiplicative constant more tetrahedra than the minimal triangulation of $M$. This result relies on the technical proposition that for any triangulation of a Seifert fibered space with boundary, all singular fibres (aside from those of multiplicity two) of the manifold are simplicial in its 79th barycentric subdivision.
-
Friday, 3 February 2023 -- 3 pm, room MNO 1.020(Preceded by an informal talk at 11 am, room MNO 1.050)Parker Evans (Rice University)Title: Polynomial almost-complex curves in $S^{2,4}$Abstract: In this talk, no $G_2$ background is assumed and all relevant terminology will be defined. We discuss the non-abelian Hodge theory on the punctured sphere for the split real Lie group $G_2'$. We study almost-complex curves $v_q: C \to S^{2,4}$ in the pseudosphere $S^{2,4}$ associated to polynomial sextic differential $q$. Focusing on the asymptotic geometry, we detect stable regions and critical lines where the limits of $v$ along rays change. Moreover, we find such polynomial almost-complex curves have polygonal boundaries in $\mathrm{Ein}^{2,3}$ satisfying a condition we call the annihilator property. Time permitting, we discuss a conjectural homeomorphism from a moduli space of sextic differentials to a moduli space of annihilator polygons.
-
Monday, 16 January 2023 -- 3 pm, chalk roomSourav Ghosh (Ashoka University)Title: Margulis space-timesAbstract: In this talk I will discuss the construction of Margulis space-times. Moreover, I will sketch a few interesting properties of these geometric objects.
-
Monday, 9 January 2023 -- 11 am, chalk roomHao Chen (ShanghaiTech University)Title: Triply Periodic Minimal Surfaces, an interdisciplinary topicAbstract: I will summarize how my recent works on minimal surfaces have been motivated or inspired by natural sciences, including material sciences, bio-membranes, fluid dynamics, etc.
-
Monday, 12 December 2022 -- 3 pm, room MNO 1.050Suzanne Schlich (University of Strasbourg)Title: Bowditch and primitive stable actions on hyperbolic spaceAbstract: In this talk, we will introduce Bowditch representations of the free group of rank two (defined by Bowditch in 1998) along with primitive stable representations (defined by Minsky in 2010). Recently, Series on one hand, and Lee and Xu on an other hand, proved that Bowditch and primitive stable representations with value in $\mathrm{PSL}(2,\mathbb{C})$ are equivalent. This result can be generalised to representations with value in the isometry group of an arbitrary Gromov hyperbolic space.
-
Monday, 5 December 2022 -- 3 pm, room MNO 1.030Valentina Disarlo (University of Heidelberg)Title: Stretch lines for surfaces with boundaryAbstract: In 1986 William Thurston introduced a new distance for the Teichmuller space of closed surface. In collaboration with Daniele Alessandrini (Columbia) we extend this theory to the space of Teichmuller surfaces with geodesic boundary. We will construct a large family of geodesics for the Teichmüller space of surfaces with boundary with respect to its "arc metric": we will call them "generalized stretch lines". We will prove that the Teichmüller space with the arc metric is a geodesic metric space, and that it is a Finsler space. This generalizes a result by Thurston on punctured surfaces. This is joint work with Daniele Alessandrini (University of Heidelberg).
-
Monday, 28 November 2022 -- 3 pm, room MNO 1.010Gianluca Faraco (University of Milano Bicocca)Title: Period realisation of meromorphic differentialsAbstract: Let $S$ be an oriented surface of genus $g$ and $n$ punctures. The periods of any meromorphic differential on $S$, with respect to a choice of complex structure, determine a representation $\chi:\Gamma_{g,n} \to\mathbb C$, where $\Gamma_{g,n}$ denotes the first homology group of $S$. Chenakkod-F.-Gupta characterised the representations that thus arise, that is, lie in the image of the period map $\textsf{Per}:\Omega\mathcal{M}_{g,n}\to \textsf{Hom}(\Gamma_{g,n},\Bbb C)$. This generalises a classical result of Haupt in the holomorphic case. Moreover, we determine the image of this period map when restricted to any stratum of meromorphic differentials, having prescribed orders of zeros and poles. Strata generally fail to be connected and in fact they may exhibits connected components parametrised by some additional invariants. In collaboration with D. Chen we extend the earlier result by Chenakkod-F.-Gupta to connected components of strata.
-
Thursday, 24 November 2022 -- 3:45 pm, MNO 1.040joint with the "Algebra, geometry and graph complexes" seminarAnton Alekseev (University of Geneva)Title: Hamiltonian actions and miracles of hyperbolic geometryAbstract: We consider Hamiltonian action of the (central extension of) the group of diffeomorphisms of the circle. One class of interesting examples is given by second order differential operators on the circle. We recall the classification by Lazutkin-Pankratova, Kirillov, Segal, Witten (and others), and we give a new point of view on this result. Another class of interesting examples are moduli spaces of conformally compact hyperbolic metrics on two dimensional surfaces. In this case, the moment map is given by a surprising formula which involves the metric near the boundary and the geodesic curvature of certain curves on the surface. The talk is based on a joint work in progress with Eckhard Meinrenken.
-
Tuesday, 22 November 2022 -- 10:45 am, room MNO 1.020Ludovico Battista (University of Bologna)Title: Hyperbolic 4-manifolds, Perfect Circle-Valued Morse Functions, and Infinitesimal RigidityAbstract: An intriguing 3-dimensional phenomenon is the existence of hyperbolic manifolds that fiber over the circle. Such manifolds cannot exist in dimension 4, due to a constraint given by the Euler Characteristic and the Gauss-Bonnet formula. We will introduce the notion of "perfect circle-valued Morse function", which appears to be the natural generalization of "fibration over $S^1$", and we will state some consequences of the existence of hyperbolic 4-manifolds that admit such a function. Then, we will introduce the notion of infinitesimal rigidity for the holonomy of a hyperbolic manifold, and we will provide two examples of infinitesimally rigid and geometrically infinite hyperbolic 4- and 5-manifolds. The example in dimension 4 (resp. 5) is obtained using the perfect circle-valued Morse function (resp. a fibration over $S^1$ built by Italiano, Martelli, and Migliorini). Time permitting, we will introduce the tools used to build a hyperbolic 4-manifold that admits a perfect circle-valued Morse function and how we proved the infinitesimal rigidity for the geometrically infinite manifolds we talked about. These results were obtained during my PhD in collaboration with prof. Bruno Martelli.
-
Thursday, 17 November 2022 -- 1:45 pm, room MNO 1.020Alex Nolte (Rice University / Georgia Tech)Title: Plateau problems and fundamental groups of hyperbolic manifoldsAbstract: Earlier this year, Antoine Song introduced and studied a variant of the Plateau problem that produces distinguished metric spaces out of purely group-theoretic data. These spaces have remarkable properties, which suggest that their study should lead to applications in geometric group theory. I'll discuss one such application: an equivalent reformulation of Cannon's conjecture from geometric group theory. Viewing Cannon's conjecture through Song's framework qualitatively changes the way in which it is difficult, and seems to open up the possibility of counterexamples. I will end the talk by proposing at least 6 related open problems, which I expect to be more feasibly tractable than Cannon's conjecture. This is joint work with Tam Cheetham-West.
-
Monday, 24 October 2022 -- 3 pm, room MNO 1.050Roman Prosanov (University of Vienna)Title: On hyperbolic 3-manifolds with polyhedral boundaryAbstract: It is known that convex bodies in the model 3-spaces of constant curvature are rigid with respect to the induced intrinsic metric on the boundary. This story has two classical chapters: the rigidity of convex polyhedra and the rigidity of smooth convex bodies, though there is also a common generalization obtained by Pogorelov. Similarly to this, Jean-Marc Schlenker proved that hyperbolic metrics with smooth strictly convex boundary on a compact hyperbolizable 3-manifold M are rigid with respect to the induced metric on the boundary (and also with respect to the dual metric). It is reasonable to expect that similar results should hold also for polyhedral boundaries, and eventually for general convex boundaries. Curiously enough, no polyhedral counterparts were proven up to now. One of the reasons is that convex hyperbolic cone-metrics on the boundary of M (which is a standard intrinsic description of what we expect to be the induced metric on a polyhedral boundary) might admit not so polyhedral realizations, which are hard to handle or to exclude. A prototypical example is the boundary of a convex core bent along an irrational lamination. I will present a recent work proving the rigidity (and the dual rigidity) of hyperbolic metrics on M with convex polyhedral boundary under mild additional assumptions. As another outcome, it follows that convex cocompact hyperbolic metrics on the interior on M with the convex cores that are "almost polyhedral" are globally rigid with respect to the induced metric on the boundary of the convex core, and are infinitesimally rigid with respect to the bending lamination.
-
Monday, 17 October 2022 -- 3 pm, room MNO 1.050Samuel Bronstein (ENS Paris)Title: Almost-fuchsian disks in hyperbolic 3-spaceAbstract: Almost-fuchsian disks are immersed disks whose normal bundles is diffeomorphic to the hyperbolic 3-space via the exponential map. In this talk we describe a possible parametrization of almost-fuchsian disks via quadratic differentials on the disk. Applying these results to equivariant immersions under a surface group, one gets back Uhlenbeck's notion of almost-fuchsian representation, and we build a Finsler metric on the space of hyperbolic metric on a surface.
-
Monday, 10 October 2022 -- 3 pm, Meeting room 6BNathaniel Sagman (University of Luxembourg)Title: Hitchin representations and minimal surfaces in symmetric spacesAbstract: Labourie proved that every Hitchin representation into $\mathrm{PSL}(n,\mathbb{R})$ gives rise to an equivariant minimal surface in the corresponding symmetric space. He conjectured that uniqueness holds as well (this was known for $n=2,3$), and explained that if true, then the Hitchin component admits a mapping class group equivariant parametrization as a holomorphic vector bundle over Teichmüller space.
In this talk, we will define Hitchin representations, Higgs bundles, and minimal surfaces, and give the background for the Labourie conjecture. We will then explain that the conjecture fails for $n$ at least $4$, and point to some future questions and conjectures.-
Monday, 3 October 2022 -- 3 pm, room MNO 1.050Yassin Chandran (City University of New York)Title: Space of marked hyperbolic structures on infinite type surfaces.Abstract: Bers' gave a proof of the celebrated Nielsen-Thurston classification that organizes elements of the mapping class group of finite type surfaces in terms of their action on Teichmüller space. Inspired by this perspective, we define a space of marked hyperbolic structures associated to an infinite type surface. We'll discuss various connectivity properties of this space and organize elements of the mapping class group into three classes based on their action on this space. This is work in progress joint with Ara Basmajian.
-
Monday, 26 September 2022 -- 3 pm, room MNO 1.050Mélanie Theillière (University of Luxembourg)Title: Convex Integration and isometric embeddingsAbstract: Convex Integration is a theory developped by Gromov in the 1970's. This theory allows to make the link between the sphere eversion of Smale and the Nash-Kuiper $C^1$-isometric embeddings. In this talk, we will present the Convex Integration Theory. As illustrations, we will use it to remove the singular point of a cone. Then we will use it to build explicitly a $C^1$ isometric embedding of the hyperbolic plane $\mathbb{H}^2$ in $\mathbb{E}^3$. This last construction is a joint work with the Hevea team.
-
Tuesday, 20 September 2022 -- 11:15 am, Meeting room 6AMahn-Tien Nguyen (Université Libre de Bruxelles)Title: Monotonicity theorems and how to compare themAbstract: The classical monotonicity theorem dictates how minimal submanifolds of $\mathbb{R}^n$ distribute their volume among spheres of different radii. I will show that in the hyperbolic space, each Minkowskian coordinate yields a monotonicity theorem. Such theorems concern the volume distribution of the submanifold among level sets of the coordinate function and can be used to prove non-existence or uniqueness results for minimal surfaces. If time permits, I will explain a version of the isoperimetric inequality for complete minimal surfaces of the hyperbolic space. The classical isoperimetric inequality is a relation between area and perimeter of a minimal surface in $\mathbb{R}^n$. In $\mathbb{H^n}$, the area of such surface is necessarily infinite and so this will be a statement about its renormalisation, as defined by Graham and Witten with strong motivation from String Theory.
Archive
Here is a link to the seminars of former years.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-