Université du Luxembourg

PhD Seminar at the Department of Mathematics (DMATH)

  • Main page
  • about
  • DMATH
  • Recent sessions
  • 2020
  • 2019
  • 2018
  • 2017
  • Archive
  • 2015 – 2016
  • 2014 – 2015
  • 2013 – 2014
  • 2012 – 2013
  • 2011 – 2012
  • 2010 – 2011
  • 2009 – 2010
  • 2008 – 2009
  • 13 April 2017 Assar ANDERSSON, Operads of compactified configuration spaces
    Abstract

    In this talk we are going to discuss how different types of algebras can be encoded by an algebraic object called operad. Then we are going to show how a certain compactification of configuration spaces can give us a geometric interpretation of homotopy (Lie and associative)-algebras. This interpretation can also serve as an independent description of what a homotopy Lie-algebra is (so the audience does not have to know that beforehand). We will also outline how we can use this interpretation to construct interesting algebraic structures.

Created by Robert Baumgarth | Last updated on 27 May 2020